arXiv Papers of Human Motion Synthesis
Authors: Jipeng Kong, Xinzhe Liu, Yuhang Lin, Jinrui Han, Sören Schwertfeger, Chenjia Bai, Xuelong Li
Abstract:
Soccer presents a significant challenge for humanoid robots, demanding tightly integrated perception-action capabilities for tasks like perception-guided kicking and whole-body balance control. Existing approaches suffer from inter-module instability in modular pipelines or conflicting training objectives in end-to-end frameworks. We propose Perception-Action integrated Decision-making (PAiD), a progressive architecture that decomposes soccer skill acquisition into three stages: motion-skill acquisition via human motion tracking, lightweight perception-action integration for positional generalization, and physics-aware sim-to-real transfer. This staged decomposition establishes stable foundational skills, avoids reward conflicts during perception integration, and minimizes sim-to-real gaps. Experiments on the Unitree G1 demonstrate high-fidelity human-like kicking with robust performance under diverse conditions-including static or rolling balls, various positions, and disturbances-while maintaining consistent execution across indoor and outdoor scenarios. Our divide-and-conquer strategy advances robust humanoid soccer capabilities and offers a scalable framework for complex embodied skill acquisition. The project page is available at https://soccer-humanoid.github.io/.
Authors: Yi Gu, Yukang Gao, Yangchen Zhou, Xingyu Chen, Yixiao Feng, Mingle Zhao, Yunyang Mo, Zhaorui Wang, Lixin Xu, Renjing Xu
Abstract:
Pose and motion priors play a crucial role in humanoid robotics. Although such priors have been widely studied in human motion recovery (HMR) domain with a range of models, their adoption for humanoid robots remains limited, largely due to the scarcity of high-quality humanoid motion data. In this work, we introduce Pose Distance Fields for Humanoid Robots (PDF-HR), a lightweight prior that represents the robot pose distribution as a continuous and differentiable manifold. Given an arbitrary pose, PDF-HR predicts its distance to a large corpus of retargeted robot poses, yielding a smooth measure of pose plausibility that is well suited for optimization and control. PDF-HR can be integrated as a reward shaping term, a regularizer, or a standalone plausibility scorer across diverse pipelines. We evaluate PDF-HR on various humanoid tasks, including single-trajectory motion tracking, general motion tracking, style-based motion mimicry, and general motion retargeting. Experiments show that this plug-and-play prior consistently and substantially strengthens strong baselines. Code and models will be released.
Authors: Lifan Wu, Ruijie Zhu, Yubo Ai, Tianzhu Zhang
Abstract:
4D generation has made remarkable progress in synthesizing dynamic 3D objects from input text, images, or videos. However, existing methods often represent motion as an implicit deformation field, which limits direct control and editability. To address this issue, we propose SkeletonGaussian, a novel framework for generating editable dynamic 3D Gaussians from monocular video input. Our approach introduces a hierarchical articulated representation that decomposes motion into sparse rigid motion explicitly driven by a skeleton and fine-grained non-rigid motion. Concretely, we extract a robust skeleton and drive rigid motion via linear blend skinning, followed by a hexplane-based refinement for non-rigid deformations, enhancing interpretability and editability. Experimental results demonstrate that SkeletonGaussian surpasses existing methods in generation quality while enabling intuitive motion editing, establishing a new paradigm for editable 4D generation. Project page: https://wusar.github.io/projects/skeletongaussian/
Authors: Ning Zhang, Zhengyu Li, Kwong Weng Loh, Mingxi Xu, Qi Wang, Zhengyu Wen, Xiaoyu He, Wei Zhao, Kehong Gong, Mingyuan Zhang
Abstract:
Prior masked modeling motion generation methods predominantly study text-to-motion. We present DiMo, a discrete diffusion-style framework, which extends masked modeling to bidirectional text--motion understanding and generation. Unlike GPT-style autoregressive approaches that tokenize motion and decode sequentially, DiMo performs iterative masked token refinement, unifying Text-to-Motion (T2M), Motion-to-Text (M2T), and text-free Motion-to-Motion (M2M) within a single model. This decoding paradigm naturally enables a quality-latency trade-off at inference via the number of refinement steps.We further improve motion token fidelity with residual vector quantization (RVQ) and enhance alignment and controllability with Group Relative Policy Optimization (GRPO). Experiments on HumanML3D and KIT-ML show strong motion quality and competitive bidirectional understanding under a unified framework. In addition, we demonstrate model ability in text-free motion completion, text-guided motion prediction and motion caption correction without architectural change.Additional qualitative results are available on our project page: https://animotionlab.github.io/DiMo/.
Authors: Zhixue Fang, Xu He, Songlin Tang, Haoxian Zhang, Qingfeng Li, Xiaoqiang Liu, Pengfei Wan, Kun Gai
Abstract:
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
Authors: Kevin Zakka, Qiayuan Liao, Brent Yi, Louis Le Lay, Koushil Sreenath, Pieter Abbeel
Abstract:
We present mjlab, a lightweight, open-source framework for robot learning that combines GPU-accelerated simulation with composable environments and minimal setup friction. mjlab adopts the manager-based API introduced by Isaac Lab, where users compose modular building blocks for observations, rewards, and events, and pairs it with MuJoCo Warp for GPU-accelerated physics. The result is a framework installable with a single command, requiring minimal dependencies, and providing direct access to native MuJoCo data structures. mjlab ships with reference implementations of velocity tracking, motion imitation, and manipulation tasks.
Authors: Cuong Le, Pavlo Melnyk, Urs Waldmann, Mårten Wadenbäck, Bastian Wandt
Abstract:
Vision-based 3D human motion capture from videos remains a challenge in computer vision. Traditional 3D pose estimation approaches often ignore the temporal consistency between frames, causing implausible and jittery motion. The emerging field of kinematics-based 3D motion capture addresses these issues by estimating the temporal transitioning between poses instead. A major drawback in current kinematics approaches is their reliance on Euler angles. Despite their simplicity, Euler angles suffer from discontinuity that leads to unstable motion reconstructions, especially in online settings where trajectory refinement is unavailable. Contrarily, quaternions have no discontinuity and can produce continuous transitions between poses. In this paper, we propose QuaMo, a novel Quaternion Motions method using quaternion differential equations (QDE) for human kinematics capture. We utilize the state-space model, an effective system for describing real-time kinematics estimations, with quaternion state and the QDE describing quaternion velocity. The corresponding angular acceleration is computed from a meta-PD controller with a novel acceleration enhancement that adaptively regulates the control signals as the human quickly changes to a new pose. Unlike previous work, our QDE is solved under the quaternion unit-sphere constraint that results in more accurate estimations. Experimental results show that our novel formulation of the QDE with acceleration enhancement accurately estimates 3D human kinematics with no discontinuity and minimal implausibilities. QuaMo outperforms comparable state-of-the-art methods on multiple datasets, namely Human3.6M, Fit3D, SportsPose and AIST. The code is available at https://github.com/cuongle1206/QuaMo
Authors: Ning Liu, Sen Shen, Zheng Li, Matthew D'Souza, Jen Jen Chung, Thomas Braunl
Abstract:
This paper addresses the challenge of human-guided navigation for mobile collaborative robots under simultaneous proximity regulation and safety constraints. We introduce Adaptive Reinforcement and Model Predictive Control Switching (ARMS), a hybrid learning-control framework that integrates a reinforcement learning follower trained with Proximal Policy Optimization (PPO) and an analytical one-step Model Predictive Control (MPC) formulated as a quadratic program safety filter. To enable robust perception under partial observability and non-stationary human motion, ARMS employs a decoupled sensing architecture with a Long Short-Term Memory (LSTM) temporal encoder for the human-robot relative state and a spatial encoder for 360-degree LiDAR scans. The core contribution is a learned adaptive neural switcher that performs context-aware soft action fusion between the two controllers, favoring conservative, constraint-aware QP-based control in low-risk regions while progressively shifting control authority to the learned follower in highly cluttered or constrained scenarios where maneuverability is critical, and reverting to the follower action when the QP becomes infeasible. Extensive evaluations against Pure Pursuit, Dynamic Window Approach (DWA), and an RL-only baseline demonstrate that ARMS achieves an 82.5 percent success rate in highly cluttered environments, outperforming DWA and RL-only approaches by 7.1 percent and 3.1 percent, respectively, while reducing average computational latency by 33 percent to 5.2 milliseconds compared to a multi-step MPC baseline. Additional simulation transfer in Gazebo and initial real-world deployment results further indicate the practicality and robustness of ARMS for safe and efficient human-robot collaboration. Source code and a demonstration video are available at https://github.com/21ning/ARMS.git.
Authors: Zhiyin Qian, Siwei Zhang, Bharat Lal Bhatnagar, Federica Bogo, Siyu Tang
Abstract:
Human motion reconstruction from monocular videos is a fundamental challenge in computer vision, with broad applications in AR/VR, robotics, and digital content creation, but remains challenging under frequent occlusions in real-world settings. Existing regression-based methods are efficient but fragile to missing observations, while optimization- and diffusion-based approaches improve robustness at the cost of slow inference speed and heavy preprocessing steps. To address these limitations, we leverage recent advances in generative masked modeling and present MoRo: Masked Modeling for human motion Recovery under Occlusions. MoRo is an occlusion-robust, end-to-end generative framework that formulates motion reconstruction as a video-conditioned task, and efficiently recover human motion in a consistent global coordinate system from RGB videos. By masked modeling, MoRo naturally handles occlusions while enabling efficient, end-to-end inference. To overcome the scarcity of paired video-motion data, we design a cross-modality learning scheme that learns multi-modal priors from a set of heterogeneous datasets: (i) a trajectory-aware motion prior trained on MoCap datasets, (ii) an image-conditioned pose prior trained on image-pose datasets, capturing diverse per-frame poses, and (iii) a video-conditioned masked transformer that fuses motion and pose priors, finetuned on video-motion datasets to integrate visual cues with motion dynamics for robust inference. Extensive experiments on EgoBody and RICH demonstrate that MoRo substantially outperforms state-of-the-art methods in accuracy and motion realism under occlusions, while performing on-par in non-occluded scenarios. MoRo achieves real-time inference at 70 FPS on a single H200 GPU.
Authors: Peng Li, Zihan Zhuang, Yangfan Gao, Yi Dong, Sixian Li, Changhao Jiang, Shihan Dou, Zhiheng Xi, Enyu Zhou, Jixuan Huang, Hui Li, Jingjing Gong, Xingjun Ma, Tao Gui, Zuxuan Wu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang, Xipeng Qiu
Abstract:
Humanoid robots are capable of performing various actions such as greeting, dancing and even backflipping. However, these motions are often hard-coded or specifically trained, which limits their versatility. In this work, we present FRoM-W1, an open-source framework designed to achieve general humanoid whole-body motion control using natural language. To universally understand natural language and generate corresponding motions, as well as enable various humanoid robots to stably execute these motions in the physical world under gravity, FRoM-W1 operates in two stages: (a) H-GPT: utilizing massive human data, a large-scale language-driven human whole-body motion generation model is trained to generate diverse natural behaviors. We further leverage the Chain-of-Thought technique to improve the model's generalization in instruction understanding. (b) H-ACT: After retargeting generated human whole-body motions into robot-specific actions, a motion controller that is pretrained and further fine-tuned through reinforcement learning in physical simulation enables humanoid robots to accurately and stably perform corresponding actions. It is then deployed on real robots via a modular simulation-to-reality module. We extensively evaluate FRoM-W1 on Unitree H1 and G1 robots. Results demonstrate superior performance on the HumanML3D-X benchmark for human whole-body motion generation, and our introduced reinforcement learning fine-tuning consistently improves both motion tracking accuracy and task success rates of these humanoid robots. We open-source the entire FRoM-W1 framework and hope it will advance the development of humanoid intelligence.
Authors: Chuqiao Li, Xianghui Xie, Yong Cao, Andreas Geiger, Gerard Pons-Moll
Abstract:
Human motion generation from text prompts has made remarkable progress in recent years. However, existing methods primarily rely on either sequence-level or action-level descriptions due to the absence of fine-grained, part-level motion annotations. This limits their controllability over individual body parts. In this work, we construct a high-quality motion dataset with atomic, temporally-aware part-level text annotations, leveraging the reasoning capabilities of large language models (LLMs). Unlike prior datasets that either provide synchronized part captions with fixed time segments or rely solely on global sequence labels, our dataset captures asynchronous and semantically distinct part movements at fine temporal resolution. Based on this dataset, we introduce a diffusion-based part-aware motion generation framework, namely FrankenMotion, where each body part is guided by its own temporally-structured textual prompt. This is, to our knowledge, the first work to provide atomic, temporally-aware part-level motion annotations and have a model that allows motion generation with both spatial (body part) and temporal (atomic action) control. Experiments demonstrate that FrankenMotion outperforms all previous baseline models adapted and retrained for our setting, and our model can compose motions unseen during training. Our code and dataset will be publicly available upon publication.
Authors: Chengfeng Zhao, Jiazhi Shu, Yubo Zhao, Tianyu Huang, Jiahao Lu, Zekai Gu, Chengwei Ren, Zhiyang Dou, Qing Shuai, Yuan Liu
Abstract:
In this paper, we find that the generation of 3D human motions and 2D human videos is intrinsically coupled. 3D motions provide the structural prior for plausibility and consistency in videos, while pre-trained video models offer strong generalization capabilities for motions, which necessitate coupling their generation processes. Based on this, we present CoMoVi, a co-generative framework that couples two video diffusion models (VDMs) to generate 3D human motions and videos synchronously within a single diffusion denoising loop. To achieve this, we first propose an effective 2D human motion representation that can inherit the powerful prior of pre-trained VDMs. Then, we design a dual-branch diffusion model to couple human motion and video generation process with mutual feature interaction and 3D-2D cross attentions. Moreover, we curate CoMoVi Dataset, a large-scale real-world human video dataset with text and motion annotations, covering diverse and challenging human motions. Extensive experiments demonstrate the effectiveness of our method in both 3D human motion and video generation tasks.
Authors: Xuetao Li, Wenke Huang, Mang Ye, Jifeng Xuan, Bo Du, Sheng Liu, Miao Li
Abstract:
Humanoid robot manipulation is a crucial research area for executing diverse human-level tasks, involving high-level semantic reasoning and low-level action generation. However, precise scene understanding and sample-efficient learning from human demonstrations remain critical challenges, severely hindering the applicability and generalizability of existing frameworks. This paper presents a novel RGMP-S, Recurrent Geometric-prior Multimodal Policy with Spiking features, facilitating both high-level skill reasoning and data-efficient motion synthesis. To ground high-level reasoning in physical reality, we leverage lightweight 2D geometric inductive biases to enable precise 3D scene understanding within the vision-language model. Specifically, we construct a Long-horizon Geometric Prior Skill Selector that effectively aligns the semantic instructions with spatial constraints, ultimately achieving robust generalization in unseen environments. For the data efficiency issue in robotic action generation, we introduce a Recursive Adaptive Spiking Network. We parameterize robot-object interactions via recursive spiking for spatiotemporal consistency, fully distilling long-horizon dynamic features while mitigating the overfitting issue in sparse demonstration scenarios. Extensive experiments are conducted across the Maniskill simulation benchmark and three heterogeneous real-world robotic systems, encompassing a custom-developed humanoid, a desktop manipulator, and a commercial robotic platform. Empirical results substantiate the superiority of our method over state-of-the-art baselines and validate the efficacy of the proposed modules in diverse generalization scenarios. To facilitate reproducibility, the source code and video demonstrations are publicly available at https://github.com/xtli12/RGMP-S.git.
Authors: Ziwen Zhuang, Shaoting Zhu, Mengjie Zhao, Hang Zhao
Abstract:
Current approaches to humanoid control generally fall into two paradigms: perceptive locomotion, which handles terrain well but is limited to pedal gaits, and general motion tracking, which reproduces complex skills but ignores environmental capabilities. This work unites these paradigms to achieve perceptive general motion control. We present a framework where exteroceptive sensing is integrated into whole-body motion tracking, permitting a humanoid to perform highly dynamic, non-locomotion tasks on uneven terrain. By training a single policy to perform multiple distinct motions across varied terrestrial features, we demonstrate the non-trivial benefit of integrating perception into the control loop. Our results show that this framework enables robust, highly dynamic multi-contact motions, such as vaulting and dive-rolling, on unstructured terrain, significantly expanding the robot's traversability beyond simple walking or running. https://project-instinct.github.io/deep-whole-body-parkour
Authors: Mengfei Li, Peng Li, Zheng Zhang, Jiahao Lu, Chengfeng Zhao, Wei Xue, Qifeng Liu, Sida Peng, Wenxiao Zhang, Wenhan Luo, Yuan Liu, Yike Guo
Abstract:
We present UniSH, a unified, feed-forward framework for joint metric-scale 3D scene and human reconstruction. A key challenge in this domain is the scarcity of large-scale, annotated real-world data, forcing a reliance on synthetic datasets. This reliance introduces a significant sim-to-real domain gap, leading to poor generalization, low-fidelity human geometry, and poor alignment on in-the-wild videos. To address this, we propose an innovative training paradigm that effectively leverages unlabeled in-the-wild data. Our framework bridges strong, disparate priors from scene reconstruction and HMR, and is trained with two core components: (1) a robust distillation strategy to refine human surface details by distilling high-frequency details from an expert depth model, and (2) a two-stage supervision scheme, which first learns coarse localization on synthetic data, then fine-tunes on real data by directly optimizing the geometric correspondence between the SMPL mesh and the human point cloud. This approach enables our feed-forward model to jointly recover high-fidelity scene geometry, human point clouds, camera parameters, and coherent, metric-scale SMPL bodies, all in a single forward pass. Extensive experiments demonstrate that our model achieves state-of-the-art performance on human-centric scene reconstruction and delivers highly competitive results on global human motion estimation, comparing favorably against both optimization-based frameworks and HMR-only methods. Project page: https://murphylmf.github.io/UniSH/
Authors: Yiling Wang, Zeyu Zhang, Yiran Wang, Hao Tang
Abstract:
Text-to-motion (T2M) generation with diffusion backbones achieves strong realism and alignment. Safety concerns in T2M methods have been raised in recent years; existing methods replace discrete VQ-VAE codebook entries to steer the model away from unsafe behaviors. However, discrete codebook replacement-based methods have two critical flaws: firstly, replacing codebook entries which are reused by benign prompts leads to drifts on everyday tasks, degrading the model's benign performance; secondly, discrete token-based methods introduce quantization and smoothness loss, resulting in artifacts and jerky transitions. Moreover, existing text-to-motion datasets naturally contain unsafe intents and corresponding motions, making them unsuitable for safety-driven machine learning. To address these challenges, we propose SafeMo, a trustworthy motion generative framework integrating Minimal Motion Unlearning (MMU), a two-stage machine unlearning strategy, enabling safe human motion generation in continuous space, preserving continuous kinematics without codebook loss and delivering strong safety-utility trade-offs compared to current baselines. Additionally, we present the first safe text-to-motion dataset SafeMoVAE-29K integrating rewritten safe text prompts and continuous refined motion for trustworthy human motion unlearning. Built upon DiP, SafeMo efficiently generates safe human motions with natural transitions. Experiments demonstrate effective unlearning performance of SafeMo by showing strengthened forgetting on unsafe prompts, reaching 2.5x and 14.4x higher forget-set FID on HumanML3D and Motion-X respectively, compared to the previous SOTA human motion unlearning method LCR, with benign performance on safe prompts being better or comparable. Code: https://github.com/AIGeeksGroup/SafeMo. Website: https://aigeeksgroup.github.io/SafeMo.
Authors: Yijie Qian, Juncheng Wang, Yuxiang Feng, Chao Xu, Wang Lu, Yang Liu, Baigui Sun, Yiqiang Chen, Yong Liu, Shujun Wang
Abstract:
Current state-of-the-art paradigms predominantly treat Text-to-Motion (T2M) generation as a direct translation problem, mapping symbolic language directly to continuous poses. While effective for simple actions, this System 1 approach faces a fundamental theoretical bottleneck we identify as the Semantic-Kinematic Impedance Mismatch: the inherent difficulty of grounding semantically dense, discrete linguistic intent into kinematically dense, high-frequency motion data in a single shot. In this paper, we argue that the solution lies in an architectural shift towards Latent System 2 Reasoning. Drawing inspiration from Hierarchical Motor Control in cognitive science, we propose Latent Motion Reasoning (LMR) that reformulates generation as a two-stage Think-then-Act decision process. Central to LMR is a novel Dual-Granularity Tokenizer that disentangles motion into two distinct manifolds: a compressed, semantically rich Reasoning Latent for planning global topology, and a high-frequency Execution Latent for preserving physical fidelity. By forcing the model to autoregressively reason (plan the coarse trajectory) before it moves (instantiates the frames), we effectively bridge the ineffability gap between language and physics. We demonstrate LMR's versatility by implementing it for two representative baselines: T2M-GPT (discrete) and MotionStreamer (continuous). Extensive experiments show that LMR yields non-trivial improvements in both semantic alignment and physical plausibility, validating that the optimal substrate for motion planning is not natural language, but a learned, motion-aligned concept space. Codes and demos can be found in \hyperlink{https://chenhaoqcdyq.github.io/LMR/}{https://chenhaoqcdyq.github.io/LMR/}
Authors: Yuxin Wen, Qing Shuai, Di Kang, Jing Li, Cheng Wen, Yue Qian, Ningxin Jiao, Changhai Chen, Weijie Chen, Yiran Wang, Jinkun Guo, Dongyue An, Han Liu, Yanyu Tong, Chao Zhang, Qing Guo, Juan Chen, Qiao Zhang, Youyi Zhang, Zihao Yao, Cheng Zhang, Hong Duan, Xiaoping Wu, Qi Chen, Fei Cheng, Liang Dong, Peng He, Hao Zhang, Jiaxin Lin, Chao Zhang, Zhongyi Fan, Yifan Li, Zhichao Hu, Yuhong Liu, Linus, Jie Jiang, Xiaolong Li, Linchao Bao
Abstract:
We present HY-Motion 1.0, a series of state-of-the-art, large-scale, motion generation models capable of generating 3D human motions from textual descriptions. HY-Motion 1.0 represents the first successful attempt to scale up Diffusion Transformer (DiT)-based flow matching models to the billion-parameter scale within the motion generation domain, delivering instruction-following capabilities that significantly outperform current open-source benchmarks. Uniquely, we introduce a comprehensive, full-stage training paradigm -- including large-scale pretraining on over 3,000 hours of motion data, high-quality fine-tuning on 400 hours of curated data, and reinforcement learning from both human feedback and reward models -- to ensure precise alignment with the text instruction and high motion quality. This framework is supported by our meticulous data processing pipeline, which performs rigorous motion cleaning and captioning. Consequently, our model achieves the most extensive coverage, spanning over 200 motion categories across 6 major classes. We release HY-Motion 1.0 to the open-source community to foster future research and accelerate the transition of 3D human motion generation models towards commercial maturity.
Authors: Johnathan Xie, Stefan Stojanov, Cristobal Eyzaguirre, Daniel L. K. Yamins, Jiajun Wu
Abstract:
Motion prediction has been studied in different contexts with models trained on narrow distributions and applied to downstream tasks in human motion prediction and robotics. Simultaneously, recent efforts in scaling video prediction have demonstrated impressive visual realism, yet they struggle to accurately model complex motions despite massive scale. Inspired by the scaling of video generation, we develop autoregressive flow matching (ARFM), a new method for probabilistic modeling of sequential continuous data and train it on diverse video datasets to generate future point track locations over long horizons. To evaluate our model, we develop benchmarks for evaluating the ability of motion prediction models to predict human and robot motion. Our model is able to predict complex motions, and we demonstrate that conditioning robot action prediction and human motion prediction on predicted future tracks can significantly improve downstream task performance. Code and models publicly available at: https://github.com/Johnathan-Xie/arfm-motion-prediction.
Authors: Jianrong Zhang, Hehe Fan, Yi Yang
Abstract:
Human motions are compositional: complex behaviors can be described as combinations of simpler primitives. However, existing approaches primarily focus on forward modeling, e.g., learning holistic mappings from text to motion or composing a complex motion from a set of motion concepts. In this paper, we consider the inverse perspective: decomposing a holistic motion into semantically meaningful sub-components. We propose DeMoGen, a compositional training paradigm for decompositional learning that employs an energy-based diffusion model. This energy formulation directly captures the composed distribution of multiple motion concepts, enabling the model to discover them without relying on ground-truth motions for individual concepts. Within this paradigm, we introduce three training variants to encourage a decompositional understanding of motion: 1. DeMoGen-Exp explicitly trains on decomposed text prompts; 2. DeMoGen-OSS performs orthogonal self-supervised decomposition; 3. DeMoGen-SC enforces semantic consistency between original and decomposed text embeddings. These variants enable our approach to disentangle reusable motion primitives from complex motion sequences. We also demonstrate that the decomposed motion concepts can be flexibly recombined to generate diverse and novel motions, generalizing beyond the training distribution. Additionally, we construct a text-decomposed dataset to support compositional training, serving as an extended resource to facilitate text-to-motion generation and motion composition.
Authors: Xindi Zhang, Dechao Meng, Steven Xiao, Qi Wang, Peng Zhang, Bang Zhang
Abstract:
High-quality AI-powered video dubbing demands precise audio-lip synchronization, high-fidelity visual generation, and faithful preservation of identity and background. Most existing methods rely on a mask-based training strategy, where the mouth region is masked in talking-head videos, and the model learns to synthesize lip movements from corrupted inputs and target audios. While this facilitates lip-sync accuracy, it disrupts spatiotemporal context, impairing performance on dynamic facial motions and causing instability in facial structure and background consistency. To overcome this limitation, we propose SyncAnyone, a novel two-stage learning framework that achieves accurate motion modeling and high visual fidelity simultaneously. In Stage 1, we train a diffusion-based video transformer for masked mouth inpainting, leveraging its strong spatiotemporal modeling to generate accurate, audio-driven lip movements. However, due to input corruption, minor artifacts may arise in the surrounding facial regions and the background. In Stage 2, we develop a mask-free tuning pipeline to address mask-induced artifacts. Specifically, on the basis of the Stage 1 model, we develop a data generation pipeline that creates pseudo-paired training samples by synthesizing lip-synced videos from the source video and random sampled audio. We further tune the stage 2 model on this synthetic data, achieving precise lip editing and better background consistency. Extensive experiments show that our method achieves state-of-the-art results in visual quality, temporal coherence, and identity preservation under in-the wild lip-syncing scenarios.
Authors: Zheng Yin, Chengjian Li, Xiangbo Shu, Meiqi Cao, Rui Yan, Jinhui Tang
Abstract:
Comprehensively and flexibly capturing the complex spatio-temporal dependencies of human motion is critical for multi-person motion prediction. Existing methods grapple with two primary limitations: i) Inflexible spatiotemporal representation due to reliance on positional encodings for capturing spatiotemporal information. ii) High computational costs stemming from the quadratic time complexity of conventional attention mechanisms. To overcome these limitations, we propose the Spatiotemporal-Untrammelled Mixture of Experts (ST-MoE), which flexibly explores complex spatio-temporal dependencies in human motion and significantly reduces computational cost. To adaptively mine complex spatio-temporal patterns from human motion, our model incorporates four distinct types of spatiotemporal experts, each specializing in capturing different spatial or temporal dependencies. To reduce the potential computational overhead while integrating multiple experts, we introduce bidirectional spatiotemporal Mamba as experts, each sharing bidirectional temporal and spatial Mamba in distinct combinations to achieve model efficiency and parameter economy. Extensive experiments on four multi-person benchmark datasets demonstrate that our approach not only outperforms state-of-art in accuracy but also reduces model parameter by 41.38% and achieves a 3.6x speedup in training. The code is available at https://github.com/alanyz106/ST-MoE.
Authors: Zhenhao Li, Shaohan Yi, Zheng Liu, Leonartinus Gao, Minh Ngoc Le, Ambrose Ling, Zhuoran Wang, Md Amirul Islam, Zhixiang Chi, Yuanhao Yu
Abstract:
Diffusion models (DMs) have recently achieved impressive photorealism in image and video generation. However, their application to image animation remains limited, even when trained on large-scale datasets. Two primary challenges contribute to this: the high dimensionality of video signals leads to a scarcity of training data, causing DMs to favor memorization over prompt compliance when generating motion; moreover, DMs struggle to generalize to novel motion patterns not present in the training set, and fine-tuning them to learn such patterns, especially using limited training data, is still under-explored. To address these limitations, we propose Modular Image-to-Video Adapter (MIVA), a lightweight sub-network attachable to a pre-trained DM, each designed to capture a single motion pattern and scalable via parallelization. MIVAs can be efficiently trained on approximately ten samples using a single consumer-grade GPU. At inference time, users can specify motion by selecting one or multiple MIVAs, eliminating the need for prompt engineering. Extensive experiments demonstrate that MIVA enables more precise motion control while maintaining, or even surpassing, the generation quality of models trained on significantly larger datasets.
Authors: Kyungwon Cho, Hanbyul Joo
Abstract:
Egocentric vision systems are becoming widely available, creating new opportunities for human-computer interaction. A core challenge is estimating the wearer's full-body motion from first-person videos, which is crucial for understanding human behavior. However, this task is difficult since most body parts are invisible from the egocentric view. Prior approaches mainly rely on head trajectories, leading to ambiguity, or assume continuously tracked hands, which is unrealistic for lightweight egocentric devices. In this work, we present HaMoS, the first hand-aware, sequence-level diffusion framework that directly conditions on both head trajectory and intermittently visible hand cues caused by field-of-view limitations and occlusions, as in real-world egocentric devices. To overcome the lack of datasets pairing diverse camera views with human motion, we introduce a novel augmentation method that models such real-world conditions. We also demonstrate that sequence-level contexts such as body shape and field-of-view are crucial for accurate motion reconstruction, and thus employ local attention to infer long sequences efficiently. Experiments on public benchmarks show that our method achieves state-of-the-art accuracy and temporal smoothness, demonstrating a practical step toward reliable in-the-wild egocentric 3D motion understanding.
Authors: Wendong Bu, Kaihang Pan, Yuze Lin, Jiacheng Li, Kai Shen, Wenqiao Zhang, Juncheng Li, Jun Xiao, Siliang Tang
Abstract:
Large language models (LLMs) have unified diverse linguistic tasks within a single framework, yet such unification remains unexplored in human motion generation. Existing methods are confined to isolated tasks, limiting flexibility for free-form and omni-objective generation. To address this, we propose OmniMoGen, a unified framework that enables versatile motion generation through interleaved text-motion instructions. Built upon a concise RVQ-VAE and transformer architecture, OmniMoGen supports end-to-end instruction-driven motion generation. We construct X2Mo, a large-scale dataset of over 137K interleaved text-motion instructions, and introduce AnyContext, a benchmark for evaluating interleaved motion generation. Experiments show that OmniMoGen achieves state-of-the-art performance on text-to-motion, motion editing, and AnyContext, exhibiting emerging capabilities such as compositional editing, self-reflective generation, and knowledge-informed generation. These results mark a step toward the next intelligent motion generation. Project Page: https://OmniMoGen.github.io/.
Authors: Shuting Zhao, Zeyu Xiao, Xinrong Chen
Abstract:
Full-body motion tracking plays an essential role in AR/VR applications, bridging physical and virtual interactions. However, it is challenging to reconstruct realistic and diverse full-body poses based on sparse signals obtained by head-mounted displays, which are the main devices in AR/VR scenarios. Existing methods for pose reconstruction often incur high computational costs or rely on separately modeling spatial and temporal dependencies, making it difficult to balance accuracy, temporal coherence, and efficiency. To address this problem, we propose KineST, a novel kinematics-guided state space model, which effectively extracts spatiotemporal dependencies while integrating local and global pose perception. The innovation comes from two core ideas. Firstly, in order to better capture intricate joint relationships, the scanning strategy within the State Space Duality framework is reformulated into kinematics-guided bidirectional scanning, which embeds kinematic priors. Secondly, a mixed spatiotemporal representation learning approach is employed to tightly couple spatial and temporal contexts, balancing accuracy and smoothness. Additionally, a geometric angular velocity loss is introduced to impose physically meaningful constraints on rotational variations for further improving motion stability. Extensive experiments demonstrate that KineST has superior performance in both accuracy and temporal consistency within a lightweight framework. Project page: https://kaka-1314.github.io/KineST/
Authors: Masashi Hatano, Saptarshi Sinha, Jacob Chalk, Wei-Hong Li, Hideo Saito, Dima Damen
Abstract:
Human motion generation is a challenging task that aims to create realistic motion imitating natural human behaviour. We focus on the well-studied behaviour of priming an object/location for pick up or put down -- that is, the spotting of an object/location from a distance, known as gaze priming, followed by the motion of approaching and reaching the target location. To that end, we curate, for the first time, 23.7K gaze-primed human motion sequences for reaching target object locations from five publicly available datasets, i.e., HD-EPIC, MoGaze, HOT3D, ADT, and GIMO. We pre-train a text-conditioned diffusion-based motion generation model, then fine-tune it conditioned on goal pose or location, on our curated sequences. Importantly, we evaluate the ability of the generated motion to imitate natural human movement through several metrics, including the 'Reach Success' and a newly introduced 'Prime Success' metric. On the largest dataset, HD-EPIC, our model achieves 60% prime success and 89% reach success when conditioned on the goal object location.
Authors: Zihan Wang, Jiashun Wang, Jeff Tan, Yiwen Zhao, Jessica Hodgins, Shubham Tulsiani, Deva Ramanan
Abstract:
We introduce CRISP, a method that recovers simulatable human motion and scene geometry from monocular video. Prior work on joint human-scene reconstruction relies on data-driven priors and joint optimization with no physics in the loop, or recovers noisy geometry with artifacts that cause motion tracking policies with scene interactions to fail. In contrast, our key insight is to recover convex, clean, and simulation-ready geometry by fitting planar primitives to a point cloud reconstruction of the scene, via a simple clustering pipeline over depth, normals, and flow. To reconstruct scene geometry that might be occluded during interactions, we make use of human-scene contact modeling (e.g., we use human posture to reconstruct the occluded seat of a chair). Finally, we ensure that human and scene reconstructions are physically-plausible by using them to drive a humanoid controller via reinforcement learning. Our approach reduces motion tracking failure rates from 55.2\% to 6.9\% on human-centric video benchmarks (EMDB, PROX), while delivering a 43\% faster RL simulation throughput. We further validate it on in-the-wild videos including casually-captured videos, Internet videos, and even Sora-generated videos. This demonstrates CRISP's ability to generate physically-valid human motion and interaction environments at scale, greatly advancing real-to-sim applications for robotics and AR/VR.
Authors: Yannan He, Garvita Tiwari, Xiaohan Zhang, Pankaj Bora, Tolga Birdal, Jan Eric Lenssen, Gerard Pons-Moll
Abstract:
We introduce MoLingo, a text-to-motion (T2M) model that generates realistic, lifelike human motion by denoising in a continuous latent space. Recent works perform latent space diffusion, either on the whole latent at once or auto-regressively over multiple latents. In this paper, we study how to make diffusion on continuous motion latents work best. We focus on two questions: (1) how to build a semantically aligned latent space so diffusion becomes more effective, and (2) how to best inject text conditioning so the motion follows the description closely. We propose a semantic-aligned motion encoder trained with frame-level text labels so that latents with similar text meaning stay close, which makes the latent space more diffusion-friendly. We also compare single-token conditioning with a multi-token cross-attention scheme and find that cross-attention gives better motion realism and text-motion alignment. With semantically aligned latents, auto-regressive generation, and cross-attention text conditioning, our model sets a new state of the art in human motion generation on standard metrics and in a user study. We will release our code and models for further research and downstream usage.
Authors: Foivos Paraperas Papantoniou, Stathis Galanakis, Rolandos Alexandros Potamias, Bernhard Kainz, Stefanos Zafeiriou
Abstract:
This paper presents STARCaster, an identity-aware spatio-temporal video diffusion model that addresses both speech-driven portrait animation and free-viewpoint talking portrait synthesis, given an identity embedding or reference image, within a unified framework. Existing 2D speech-to-video diffusion models depend heavily on reference guidance, leading to limited motion diversity. At the same time, 3D-aware animation typically relies on inversion through pre-trained tri-plane generators, which often leads to imperfect reconstructions and identity drift. We rethink reference- and geometry-based paradigms in two ways. First, we deviate from strict reference conditioning at pre-training by introducing softer identity constraints. Second, we address 3D awareness implicitly within the 2D video domain by leveraging the inherent multi-view nature of video data. STARCaster adopts a compositional approach progressing from ID-aware motion modeling, to audio-visual synchronization via lip reading-based supervision, and finally to novel view animation through temporal-to-spatial adaptation. To overcome the scarcity of 4D audio-visual data, we propose a decoupled learning approach in which view consistency and temporal coherence are trained independently. A self-forcing training scheme enables the model to learn from longer temporal contexts than those generated at inference, mitigating the overly static animations common in existing autoregressive approaches. Comprehensive evaluations demonstrate that STARCaster generalizes effectively across tasks and identities, consistently surpassing prior approaches in different benchmarks.
Authors: Boyuan Li, Sipeng Zheng, Bin Cao, Ruihua Song, Zongqing Lu
Abstract:
Extracting human motion from large-scale web videos offers a scalable solution to the data scarcity issue in character animation. However, some human parts in many video frames cannot be seen due to off-screen captures or occlusions. It brings a dilemma: discarding the data missing any part limits scale and diversity, while retaining it compromises data quality and model performance. To address this problem, we propose leveraging credible part-level data extracted from videos to enhance motion generation via a robust part-aware masked autoregression model. First, we decompose a human body into five parts and detect the parts clearly seen in a video frame as "credible". Second, the credible parts are encoded into latent tokens by our proposed part-aware variational autoencoder. Third, we propose a robust part-level masked generation model to predict masked credible parts, while ignoring those noisy parts. In addition, we contribute K700-M, a challenging new benchmark comprising approximately 200k real-world motion sequences, for evaluation. Experimental results indicate that our method successfully outperforms baselines on both clean and noisy datasets in terms of motion quality, semantic consistency and diversity. Project page: https://boyuaner.github.io/ropar-main/
Authors: Mingwang Xu, Jiahao Cui, Feipeng Cai, Hanlin Shang, Zhihao Zhu, Shan Luan, Yifang Xu, Neng Zhang, Yaoyi Li, Jia Cai, Siyu Zhu
Abstract:
End-to-end autonomous driving systems based on vision-language-action (VLA) models integrate multimodal sensor inputs and language instructions to generate planning and control signals. While autoregressive large language models and continuous diffusion policies are prevalent, the potential of discrete masked diffusion for trajectory generation remains largely unexplored. This paper presents WAM-Diff, a VLA framework that employs masked diffusion to iteratively refine a discrete sequence representing future ego-trajectories. Our approach features three key innovations: a systematic adaptation of masked diffusion for autonomous driving that supports flexible, non-causal decoding orders; scalable model capacity via a sparse MoE architecture trained jointly on motion prediction and driving-oriented visual question answering (VQA); and online reinforcement learning using Group Sequence Policy Optimization (GSPO) to optimize sequence-level driving rewards. Remarkably, our model achieves 91.0 PDMS on NAVSIM-v1 and 89.7 EPDMS on NAVSIM-v2, demonstrating the effectiveness of masked diffusion for autonomous driving. The approach provides a promising alternative to autoregressive and diffusion-based policies, supporting scenario-aware decoding strategies for trajectory generation. The code for this paper will be released publicly at: https://github.com/fudan-generative-vision/WAM-Diff
Authors: Luca Cazzola, Ahed Alboody
Abstract:
The acquisition cost for large, annotated motion datasets remains a critical bottleneck for skeletal-based Human Activity Recognition (HAR). Although Text-to-Motion (T2M) generative models offer a compelling, scalable source of synthetic data, their training objectives, which emphasize general artistic motion, and dataset structures fundamentally differ from HAR's requirements for kinematically precise, class-discriminative actions. This disparity creates a significant domain gap, making generalist T2M models ill-equipped for generating motions suitable for HAR classifiers. To address this challenge, we propose KineMIC (Kinetic Mining In Context), a transfer learning framework for few-shot action synthesis. KineMIC adapts a T2M diffusion model to an HAR domain by hypothesizing that semantic correspondences in the text encoding space can provide soft supervision for kinematic distillation. We operationalize this via a kinetic mining strategy that leverages CLIP text embeddings to establish correspondences between sparse HAR labels and T2M source data. This process guides fine-tuning, transforming the generalist T2M backbone into a specialized few-shot Action-to-Motion generator. We validate KineMIC using HumanML3D as the source T2M dataset and a subset of NTU RGB+D 120 as the target HAR domain, randomly selecting just 10 samples per action class. Our approach generates significantly more coherent motions, providing a robust data augmentation source that delivers a +23.1% accuracy points improvement. Animated illustrations and supplementary materials are available at (https://lucazzola.github.io/publications/kinemic).
Authors: Jingchao Wu, Zejian Kang, Haibo Liu, Yuanchen Fei, Xiangru Huang
Abstract:
Generating dynamic 3D facial animation from natural language requires understanding both temporally structured semantics and fine-grained expression changes. Existing datasets and methods mainly focus on speech-driven animation or unstructured expression sequences and therefore lack the semantic grounding and temporal structures needed for expressive human performance generation. In this work, we introduce KeyframeFace, a large-scale multimodal dataset designed for text-to-animation research through keyframe-level supervision. KeyframeFace provides 2,100 expressive scripts paired with monocular videos, per-frame ARKit coefficients, contextual backgrounds, complex emotions, manually defined keyframes, and multi-perspective annotations based on ARKit coefficients and images via Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Beyond the dataset, we propose the first text-to-animation framework that explicitly leverages LLM priors for interpretable facial motion synthesis. This design aligns the semantic understanding capabilities of LLMs with the interpretable structure of ARKit's coefficients, enabling high-fidelity expressive animation. KeyframeFace and our LLM-based framework together establish a new foundation for interpretable, keyframe-guided, and context-aware text-to-animation. Code and data are available at https://github.com/wjc12345123/KeyframeFace.
Authors: Yuan-Ming Li, Qize Yang, Nan Lei, Shenghao Fu, Ling-An Zeng, Jian-Fang Hu, Xihan Wei, Wei-Shi Zheng
Abstract:
Recent advances in motion-aware large language models have shown remarkable promise for unifying motion understanding and generation tasks. However, these models typically treat understanding and generation separately, limiting the mutual benefits that could arise from interactive feedback between tasks. In this work, we reveal that motion assessment and refinement tasks act as crucial bridges to enable bidirectional knowledge flow between understanding and generation. Leveraging this insight, we propose Interleaved Reasoning for Motion Generation (IRMoGen), a novel paradigm that tightly couples motion generation with assessment and refinement through iterative text-motion dialogue. To realize this, we introduce IRG-MotionLLM, the first model that seamlessly interleaves motion generation, assessment, and refinement to improve generation performance. IRG-MotionLLM is developed progressively with a novel three-stage training scheme, initializing and subsequently enhancing native IRMoGen capabilities. To facilitate this development, we construct an automated data engine to synthesize interleaved reasoning annotations from existing text-motion datasets. Extensive experiments demonstrate that: (i) Assessment and refinement tasks significantly improve text-motion alignment; (ii) Interleaving motion generation, assessment, and refinement steps yields consistent performance gains across training stages; and (iii) IRG-MotionLLM clearly outperforms the baseline model and achieves advanced performance on standard text-to-motion generation benchmarks. Cross-evaluator testing further validates its effectiveness. Code & Data: https://github.com/HumanMLLM/IRG-MotionLLM/tree/main.
Authors: Yixin Wan, Lei Ke, Wenhao Yu, Kai-Wei Chang, Dong Yu
Abstract:
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness. Our code is at https://github.com/elainew728/motion-edit/.
Authors: Sangwoon Kwak, Weeyoung Kwon, Jun Young Jeong, Geonho Kim, Won-Sik Cheong, Jihyong Oh
Abstract:
Recent advances in 4D Gaussian Splatting (4DGS) have extended the high-speed rendering capability of 3D Gaussian Splatting (3DGS) into the temporal domain, enabling real-time rendering of dynamic scenes. However, one of the major remaining challenges lies in modeling long-range motion-contained dynamic videos, where a naive extension of existing methods leads to severe memory explosion, temporal flickering, and failure to handle appearing or disappearing occlusions over time. To address these challenges, we propose a novel 4DGS framework characterized by an Anchor Relay-based Bidirectional Blending (ARBB) mechanism, named MoRel, which enables temporally consistent and memory-efficient modeling of long-range dynamic scenes. Our method progressively constructs locally canonical anchor spaces at key-frame time index and models inter-frame deformations at the anchor level, enhancing temporal coherence. By learning bidirectional deformations between KfA and adaptively blending them through learnable opacity control, our approach mitigates temporal discontinuities and flickering artifacts. We further introduce a Feature-variance-guided Hierarchical Densification (FHD) scheme that effectively densifies KfA's while keeping rendering quality, based on an assigned level of feature-variance. To effectively evaluate our model's capability to handle real-world long-range 4D motion, we newly compose long-range 4D motion-contained dataset, called SelfCap$_{\text{LR}}$. It has larger average dynamic motion magnitude, captured at spatially wider spaces, compared to previous dynamic video datasets. Overall, our MoRel achieves temporally coherent and flicker-free long-range 4D reconstruction while maintaining bounded memory usage, demonstrating both scalability and efficiency in dynamic Gaussian-based representations.
Authors: Ruihang Chu, Yefei He, Zhekai Chen, Shiwei Zhang, Xiaogang Xu, Bin Xia, Dingdong Wang, Hongwei Yi, Xihui Liu, Hengshuang Zhao, Yu Liu, Yingya Zhang, Yujiu Yang
Abstract:
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.
Authors: Jianan Li, Xiao Chen, Tao Huang, Tien-Tsin Wong
Abstract:
Video data is more cost-effective than motion capture data for learning 3D character motion controllers, yet synthesizing realistic and diverse behaviors directly from videos remains challenging. Previous approaches typically rely on off-the-shelf motion reconstruction techniques to obtain 3D trajectories for physics-based imitation. These reconstruction methods struggle with generalizability, as they either require 3D training data (potentially scarce) or fail to produce physically plausible poses, hindering their application to challenging scenarios like human-object interaction (HOI) or non-human characters. We tackle this challenge by introducing Mimic2DM, a novel motion imitation framework that learns the control policy directly and solely from widely available 2D keypoint trajectories extracted from videos. By minimizing the reprojection error, we train a general single-view 2D motion tracking policy capable of following arbitrary 2D reference motions in physics simulation, using only 2D motion data. The policy, when trained on diverse 2D motions captured from different or slightly different viewpoints, can further acquire 3D motion tracking capabilities by aggregating multiple views. Moreover, we develop a transformer-based autoregressive 2D motion generator and integrate it into a hierarchical control framework, where the generator produces high-quality 2D reference trajectories to guide the tracking policy. We show that the proposed approach is versatile and can effectively learn to synthesize physically plausible and diverse motions across a range of domains, including dancing, soccer dribbling, and animal movements, without any reliance on explicit 3D motion data. Project Website: https://jiann-li.github.io/mimic2dm/
Authors: Baris Yilmaz, Bevan Deniz Cilgin, Erdem Akagündüz, Salih Tileylioglu
Abstract:
Effective earthquake risk reduction relies on accurate site-specific evaluations. This requires models that can represent the influence of local site conditions on ground motion characteristics. In this context, data driven approaches that learn site controlled signatures from recorded ground motions offer a promising direction. We address strong ground motion generation from time-domain accelerometer records and introduce the TimesNet-Gen, a time-domain conditional generator. The approach uses a station specific latent bottleneck. We evaluate generation by comparing HVSR curves and fundamental site-frequency $f_0$ distributions between real and generated records per station, and summarize station specificity with a score based on the $f_0$ distribution confusion matrices. TimesNet-Gen achieves strong station-wise alignment and compares favorably with a spectrogram-based conditional VAE baseline for site-specific strong motion synthesis. Our codes are available via https://github.com/brsylmz23/TimesNet-Gen.
Authors: Youxin Pang, Yong Zhang, Ruizhi Shao, Xiang Deng, Feng Gao, Xu Xiaoming, Xiaoming Wei, Yebin Liu
Abstract:
We propose UniMo, an innovative autoregressive model for joint modeling of 2D human videos and 3D human motions within a unified framework, enabling simultaneous generation and understanding of these two modalities for the first time. Current methods predominantly focus on generating one modality given another as the condition or integrating either of them with other modalities such as text and audio. Unifying 2D videos and 3D motions for simultaneous optimization and generation remains largely unexplored, presenting significant challenges due to their substantial structural and distributional differences. Inspired by the LLM's ability to unify different modalities, our method models videos and 3D motions as a unified tokens sequence, utilizing separate embedding layers to mitigate distribution gaps. Additionally, we devise a sequence modeling strategy that integrates two distinct tasks within a single framework, proving the effectiveness of unified modeling. Moreover, to efficiently align with visual tokens and preserve 3D spatial information, we design a novel 3D motion tokenizer with a temporal expansion strategy, using a single VQ-VAE to produce quantized motion tokens. It features multiple expert decoders that handle body shapes, translation, global orientation, and body poses for reliable 3D motion reconstruction. Extensive experiments demonstrate that our method simultaneously generates corresponding videos and motions while performing accurate motion capture. This work taps into the capacity of LLMs to fuse diverse data types, paving the way for integrating human-centric information into existing models and potentially enabling multimodal, controllable joint modeling of humans, objects, and scenes.
Authors: Marlon Steiner, Royden Wagner, Ömer Sahin Tas, Christoph Stiller
Abstract:
Combining motion prediction and motion planning offers a promising framework for enhancing interactions between automated vehicles and other traffic participants. However, this introduces challenges in conditioning predictions on navigation goals and ensuring stable, kinematically feasible trajectories. Addressing the former challenge, this paper investigates the extension of attention-based motion prediction models with navigation information. By integrating the ego vehicle's intended route and goal pose into the model architecture, we bridge the gap between multi-agent motion prediction and goal-based motion planning. We propose and evaluate several architectural navigation integration strategies to our model on the nuPlan dataset. Our results demonstrate the potential of prediction-driven motion planning, highlighting how navigation information can enhance both prediction and planning tasks. Our implementation is at: https://github.com/KIT-MRT/future-motion.
Authors: Muhammed Burak Kizil, Enes Sanli, Niloy J. Mitra, Erkut Erdem, Aykut Erdem, Duygu Ceylan
Abstract:
Video generation has achieved remarkable progress in visual fidelity and controllability, enabling conditioning on text, layout, or motion. Among these, motion control - specifying object dynamics and camera trajectories - is essential for composing complex, cinematic scenes, yet existing interfaces remain limited. We introduce LAMP that leverages large language models (LLMs) as motion planners to translate natural language descriptions into explicit 3D trajectories for dynamic objects and (relatively defined) cameras. LAMP defines a motion domain-specific language (DSL), inspired by cinematography conventions. By harnessing program synthesis capabilities of LLMs, LAMP generates structured motion programs from natural language, which are deterministically mapped to 3D trajectories. We construct a large-scale procedural dataset pairing natural text descriptions with corresponding motion programs and 3D trajectories. Experiments demonstrate LAMP's improved performance in motion controllability and alignment with user intent compared to state-of-the-art alternatives establishing the first framework for generating both object and camera motions directly from natural language specifications. Code, models and data are available on our project page.
Authors: Yiyi Cai, Yuhan Wu, Kunhang Li, You Zhou, Bo Zheng, Haiyang Liu
Abstract:
We present FloodDiffusion, a new framework for text-driven, streaming human motion generation. Given time-varying text prompts, FloodDiffusion generates text-aligned, seamless motion sequences with real-time latency. Unlike existing methods that rely on chunk-by-chunk or auto-regressive model with diffusion head, we adopt a diffusion forcing framework to model this time-series generation task under time-varying control events. We find that a straightforward implementation of vanilla diffusion forcing (as proposed for video models) fails to model real motion distributions. We demonstrate that to guarantee modeling the output distribution, the vanilla diffusion forcing must be tailored to: (i) train with a bi-directional attention instead of casual attention; (ii) implement a lower triangular time scheduler instead of a random one; (iii) utilize a continues time-varying way to introduce text conditioning. With these improvements, we demonstrate in the first time that the diffusion forcing-based framework achieves state-of-the-art performance on the streaming motion generation task, reaching an FID of 0.057 on the HumanML3D benchmark. Models, code, and weights are available. https://shandaai.github.io/FloodDiffusion/
Authors: Qinghe Wang, Xiaoyu Shi, Baolu Li, Weikang Bian, Quande Liu, Huchuan Lu, Xintao Wang, Pengfei Wan, Kun Gai, Xu Jia
Abstract:
Current video generation techniques excel at single-shot clips but struggle to produce narrative multi-shot videos, which require flexible shot arrangement, coherent narrative, and controllability beyond text prompts. To tackle these challenges, we propose MultiShotMaster, a framework for highly controllable multi-shot video generation. We extend a pretrained single-shot model by integrating two novel variants of RoPE. First, we introduce Multi-Shot Narrative RoPE, which applies explicit phase shift at shot transitions, enabling flexible shot arrangement while preserving the temporal narrative order. Second, we design Spatiotemporal Position-Aware RoPE to incorporate reference tokens and grounding signals, enabling spatiotemporal-grounded reference injection. In addition, to overcome data scarcity, we establish an automated data annotation pipeline to extract multi-shot videos, captions, cross-shot grounding signals and reference images. Our framework leverages the intrinsic architectural properties to support multi-shot video generation, featuring text-driven inter-shot consistency, customized subject with motion control, and background-driven customized scene. Both shot count and duration are flexibly configurable. Extensive experiments demonstrate the superior performance and outstanding controllability of our framework.
Authors: Jiahui Chen, Weida Wang, Runhua Shi, Huan Yang, Chaofan Ding, Zihao Chen
Abstract:
While diffusion model for audio-driven avatar video generation have achieved notable process in synthesizing long sequences with natural audio-visual synchronization and identity consistency, the generation of music-performance videos with camera motions remains largely unexplored. We present YingVideo-MV, the first cascaded framework for music-driven long-video generation. Our approach integrates audio semantic analysis, an interpretable shot planning module (MV-Director), temporal-aware diffusion Transformer architectures, and long-sequence consistency modeling to enable automatic synthesis of high-quality music performance videos from audio signals. We construct a large-scale Music-in-the-Wild Dataset by collecting web data to support the achievement of diverse, high-quality results. Observing that existing long-video generation methods lack explicit camera motion control, we introduce a camera adapter module that embeds camera poses into latent noise. To enhance continulity between clips during long-sequence inference, we further propose a time-aware dynamic window range strategy that adaptively adjust denoising ranges based on audio embedding. Comprehensive benchmark tests demonstrate that YingVideo-MV achieves outstanding performance in generating coherent and expressive music videos, and enables precise music-motion-camera synchronization. More videos are available in our project page: https://giantailab.github.io/YingVideo-MV/ .
Authors: Cheng Zhang, Hanwen Liang, Donny Y. Chen, Qianyi Wu, Konstantinos N. Plataniotis, Camilo Cruz Gambardella, Jianfei Cai
Abstract:
Panoramic video generation has attracted growing attention due to its applications in virtual reality and immersive media. However, existing methods lack explicit motion control and struggle to generate scenes with large and complex motions. We propose PanFlow, a novel approach that exploits the spherical nature of panoramas to decouple the highly dynamic camera rotation from the input optical flow condition, enabling more precise control over large and dynamic motions. We further introduce a spherical noise warping strategy to promote loop consistency in motion across panorama boundaries. To support effective training, we curate a large-scale, motion-rich panoramic video dataset with frame-level pose and flow annotations. We also showcase the effectiveness of our method in various applications, including motion transfer and video editing. Extensive experiments demonstrate that PanFlow significantly outperforms prior methods in motion fidelity, visual quality, and temporal coherence. Our code, dataset, and models are available at https://github.com/chengzhag/PanFlow.
Authors: Ryan Burgert, Charles Herrmann, Forrester Cole, Michael S Ryoo, Neal Wadhwa, Andrey Voynov, Nataniel Ruiz
Abstract:
While generative video models have achieved remarkable fidelity and consistency, applying these capabilities to video editing remains a complex challenge. Recent research has explored motion controllability as a means to enhance text-to-video generation or image animation; however, we identify precise motion control as a promising yet under-explored paradigm for editing existing videos. In this work, we propose modifying video motion by directly editing sparse trajectories extracted from the input. We term the deviation between input and output trajectories a "motion edit" and demonstrate that this representation, when coupled with a generative backbone, enables powerful video editing capabilities. To achieve this, we introduce a pipeline for generating "motion counterfactuals", video pairs that share identical content but distinct motion, and we fine-tune a motion-conditioned video diffusion architecture on this dataset. Our approach allows for edits that start at any timestamp and propagate naturally. In a four-way head-to-head user study, our model achieves over 65 percent preference against prior work. Please see our project page: https://ryanndagreat.github.io/MotionV2V
Authors: Jeonghyeon Na, Sangwon Baik, Inhee Lee, Junyoung Lee, Hanbyul Joo
Abstract:
The way humans interact with each other, including interpersonal distances, spatial configuration, and motion, varies significantly across different situations. To enable machines to understand such complex, context-dependent behaviors, it is essential to model multiple people in relation to the surrounding scene context. In this paper, we present a novel research problem to model the correlations between two people engaged in a shared interaction involving an object. We refer to this formulation as Human-Human-Object Interactions (HHOIs). To overcome the lack of dedicated datasets for HHOIs, we present a newly captured HHOIs dataset and a method to synthesize HHOI data by leveraging image generative models. As an intermediary, we obtain individual human-object interaction (HOIs) and human-human interaction (HHIs) from the HHOIs, and with these data, we train an text-to-HOI and text-to-HHI model using score-based diffusion model. Finally, we present a unified generative framework that integrates the two individual model, capable of synthesizing complete HHOIs in a single advanced sampling process. Our method extends HHOI generation to multi-human settings, enabling interactions involving more than two individuals. Experimental results show that our method generates realistic HHOIs conditioned on textual descriptions, outperforming previous approaches that focus only on single-human HOIs. Furthermore, we introduce multi-human motion generation involving objects as an application of our framework.
Authors: Da Li, Jiping Jin, Xuanlong Yu, Wei Liu, Xiaodong Cun, Kai Chen, Rui Fan, Jiangang Kong, Xi Shen
Abstract:
Parametric 3D human models such as SMPL have driven significant advances in human pose and shape estimation, yet their simplified kinematics limit biomechanical realism. The recently proposed SKEL model addresses this limitation by re-rigging SMPL with an anatomically accurate skeleton. However, estimating SKEL parameters directly remains challenging due to limited training data, perspective ambiguities, and the inherent complexity of human articulation. We introduce SKEL-CF, a coarse-to-fine framework for SKEL parameter estimation. SKEL-CF employs a transformer-based encoder-decoder architecture, where the encoder predicts coarse camera and SKEL parameters, and the decoder progressively refines them in successive layers. To ensure anatomically consistent supervision, we convert the existing SMPL-based dataset 4DHuman into a SKEL-aligned version, 4DHuman-SKEL, providing high-quality training data for SKEL estimation. In addition, to mitigate depth and scale ambiguities, we explicitly incorporate camera modeling into the SKEL-CF pipeline and demonstrate its importance across diverse viewpoints. Extensive experiments validate the effectiveness of the proposed design. On the challenging MOYO dataset, SKEL-CF achieves 85.0 MPJPE / 51.4 PA-MPJPE, significantly outperforming the previous SKEL-based state-of-the-art HSMR (104.5 / 79.6). These results establish SKEL-CF as a scalable and anatomically faithful framework for human motion analysis, bridging the gap between computer vision and biomechanics. Our implementation is available on the project page: https://pokerman8.github.io/SKEL-CF/.
Authors: Kyotaro Tokoro, Hiromu Taketsugu, Norimichi Ukita
Abstract:
This paper proposes a novel metric for Human Motion Prediction (HMP). Since a single past sequence can lead to multiple possible futures, a probabilistic HMP method predicts such multiple motions. While a single motion predicted by a deterministic method is evaluated only with the difference from its ground truth motion, multiple predicted motions should also be evaluated based on their distribution. For this evaluation, this paper focuses on the following two criteria. \textbf{(a) Coverage}: motions should be distributed among multiple motion modes to cover diverse possibilities. \textbf{(b) Validity}: motions should be kinematically valid as future motions observable from a given past motion. However, existing metrics simply appreciate widely distributed motions even if these motions are observed in a single mode and kinematically invalid. To resolve these disadvantages, this paper proposes a Multimodality-aware Metric using Clustering-based Modes (MMCM). For (a) coverage, MMCM divides a motion space into several clusters, each of which is regarded as a mode. These modes are used to explicitly evaluate whether predicted motions are distributed among multiple modes. For (b) validity, MMCM identifies valid modes by collecting possible future motions from a motion dataset. Our experiments validate that our clustering yields sensible mode definitions and that MMCM accurately scores multimodal predictions. Code: https://github.com/placerkyo/MMCM
Authors: Seungjae Kim, SeungJoon Lee, MyeongAh Cho
Abstract:
Multi-object tracking (MOT) predominantly follows the tracking-by-detection paradigm, where Kalman filters serve as the standard motion predictor due to computational efficiency but inherently fail on non-linear motion patterns. Conversely, recent data-driven motion predictors capture complex non-linear dynamics but suffer from limited domain generalization and computational overhead. Through extensive analysis, we reveal that even in datasets dominated by non-linear motion, Kalman filter outperforms data-driven predictors in up to 34\% of cases, demonstrating that real-world tracking scenarios inherently involve both linear and non-linear patterns. To leverage this complementarity, we propose PlugTrack, a novel framework that adaptively fuses Kalman filter and data-driven motion predictors through multi-perceptive motion understanding. Our approach employs multi-perceptive motion analysis to generate adaptive blending factors. PlugTrack achieves significant performance gains on MOT17/MOT20 and state-of-the-art on DanceTrack without modifying existing motion predictors. To the best of our knowledge, PlugTrack is the first framework to bridge classical and modern motion prediction paradigms through adaptive fusion in MOT.
Authors: Chaoyi Pan, Changhao Wang, Haozhi Qi, Zixi Liu, Homanga Bharadhwaj, Akash Sharma, Tingfan Wu, Guanya Shi, Jitendra Malik, Francois Hogan
Abstract:
Learning dexterous and agile policy for humanoid and dexterous hand control requires large-scale demonstrations, but collecting robot-specific data is prohibitively expensive. In contrast, abundant human motion data is readily available from motion capture, videos, and virtual reality, which could help address the data scarcity problem. However, due to the embodiment gap and missing dynamic information like force and torque, these demonstrations cannot be directly executed on robots. To bridge this gap, we propose Scalable Physics-Informed DExterous Retargeting (SPIDER), a physics-based retargeting framework to transform and augment kinematic-only human demonstrations to dynamically feasible robot trajectories at scale. Our key insight is that human demonstrations should provide global task structure and objective, while large-scale physics-based sampling with curriculum-style virtual contact guidance should refine trajectories to ensure dynamical feasibility and correct contact sequences. SPIDER scales across diverse 9 humanoid/dexterous hand embodiments and 6 datasets, improving success rates by 18% compared to standard sampling, while being 10X faster than reinforcement learning (RL) baselines, and enabling the generation of a 2.4M frames dynamic-feasible robot dataset for policy learning. As a universal physics-based retargeting method, SPIDER can work with diverse quality data and generate diverse and high-quality data to enable efficient policy learning with methods like RL.
Authors: Jiayue Yuan, Fangting Xie, Guangwen Ouyang, Changhai Ma, Ziyu Wu, Heyu Ding, Quan Wan, Yi Ke, Yuchen Wu, Xiaohui Cai
Abstract:
Multi-person global human mesh recovery (HMR) is crucial for understanding crowd dynamics and interactions. Traditional vision-based HMR methods sometimes face limitations in real-world scenarios due to mutual occlusions, insufficient lighting, and privacy concerns. Human-floor tactile interactions offer an occlusion-free and privacy-friendly alternative for capturing human motion. Existing research indicates that pressure signals acquired from tactile mats can effectively estimate human pose in single-person scenarios. However, when multiple individuals walk randomly on the mat simultaneously, how to distinguish intermingled pressure signals generated by different persons and subsequently acquire individual temporal pressure data remains a pending challenge for extending pressure-based HMR to the multi-person situation. In this paper, we present \textbf{PressTrack-HMR}, a top-down pipeline that recovers multi-person global human meshes solely from pressure signals. This pipeline leverages a tracking-by-detection strategy to first identify and segment each individual's pressure signal from the raw pressure data, and subsequently performs HMR for each extracted individual signal. Furthermore, we build a multi-person interaction pressure dataset \textbf{MIP}, which facilitates further research into pressure-based human motion analysis in multi-person scenarios. Experimental results demonstrate that our method excels in multi-person HMR using pressure data, with 89.2 $mm$ MPJPE and 112.6 $mm$ WA-MPJPE$_{100}$, and these showcase the potential of tactile mats for ubiquitous, privacy-preserving multi-person action recognition. Our dataset & code are available at https://github.com/Jiayue-Yuan/PressTrack-HMR.
Authors: Assaf Singer, Noam Rotstein, Amir Mann, Ron Kimmel, Or Litany
Abstract:
Diffusion-based video generation can create realistic videos, yet existing image- and text-based conditioning fails to offer precise motion control. Prior methods for motion-conditioned synthesis typically require model-specific fine-tuning, which is computationally expensive and restrictive. We introduce Time-to-Move (TTM), a training-free, plug-and-play framework for motion- and appearance-controlled video generation with image-to-video (I2V) diffusion models. Our key insight is to use crude reference animations obtained through user-friendly manipulations such as cut-and-drag or depth-based reprojection. Motivated by SDEdit's use of coarse layout cues for image editing, we treat the crude animations as coarse motion cues and adapt the mechanism to the video domain. We preserve appearance with image conditioning and introduce dual-clock denoising, a region-dependent strategy that enforces strong alignment in motion-specified regions while allowing flexibility elsewhere, balancing fidelity to user intent with natural dynamics. This lightweight modification of the sampling process incurs no additional training or runtime cost and is compatible with any backbone. Extensive experiments on object and camera motion benchmarks show that TTM matches or exceeds existing training-based baselines in realism and motion control. Beyond this, TTM introduces a unique capability: precise appearance control through pixel-level conditioning, exceeding the limits of text-only prompting. Visit our project page for video examples and code: https://time-to-move.github.io/.
Authors: Michael Bowman, Xiaoli Zhang
Abstract:
Intent inferencing in teleoperation has been instrumental in aligning operator goals and coordinating actions with robotic partners. However, current intent inference methods often ignore subtle motion that can be strong indicators for a sudden change in intent. Specifically, we aim to tackle 1) if we can detect sudden jumps in operator trajectories, 2) how we appropriately use these sudden jump motions to infer an operator's goal state, and 3) how to incorporate these discontinuous and continuous dynamics to infer operator motion. Our framework, called Psychic, models these small indicative motions through a jump-drift-diffusion stochastic differential equation to cover discontinuous and continuous dynamics. Kramers-Moyal (KM) coefficients allow us to detect jumps with a trajectory which we pair with a statistical outlier detection algorithm to nominate goal transitions. Through identifying jumps, we can perform early detection of existing goals and discover undefined goals in unstructured scenarios. Our framework then applies a Sparse Identification of Nonlinear Dynamics (SINDy) model using KM coefficients with the goal transitions as a control input to infer an operator's motion behavior in unstructured scenarios. We demonstrate Psychic can produce probabilistic reachability sets and compare our strategy to a negative log-likelihood model fit. We perform a retrospective study on 600 operator trajectories in a hands-free teleoperation task to evaluate the efficacy of our opensource package, Psychic, in both offline and online learning.
Authors: Zhengyi Luo, Ye Yuan, Tingwu Wang, Chenran Li, Sirui Chen, Fernando Castañeda, Zi-Ang Cao, Jiefeng Li, David Minor, Qingwei Ben, Xingye Da, Runyu Ding, Cyrus Hogg, Lina Song, Edy Lim, Eugene Jeong, Tairan He, Haoru Xue, Wenli Xiao, Zi Wang, Simon Yuen, Jan Kautz, Yan Chang, Umar Iqbal, Linxi "Jim" Fan, Yuke Zhu
Abstract:
Despite the rise of billion-parameter foundation models trained across thousands of GPUs, similar scaling gains have not been shown for humanoid control. Current neural controllers for humanoids remain modest in size, target a limited behavior set, and are trained on a handful of GPUs over several days. We show that scaling up model capacity, data, and compute yields a generalist humanoid controller capable of creating natural and robust whole-body movements. Specifically, we posit motion tracking as a natural and scalable task for humanoid control, leverageing dense supervision from diverse motion-capture data to acquire human motion priors without manual reward engineering. We build a foundation model for motion tracking by scaling along three axes: network size (from 1.2M to 42M parameters), dataset volume (over 100M frames, 700 hours of high-quality motion data), and compute (9k GPU hours). Beyond demonstrating the benefits of scale, we show the practical utility of our model through two mechanisms: (1) a real-time universal kinematic planner that bridges motion tracking to downstream task execution, enabling natural and interactive control, and (2) a unified token space that supports various motion input interfaces, such as VR teleoperation devices, human videos, and vision-language-action (VLA) models, all using the same policy. Scaling motion tracking exhibits favorable properties: performance improves steadily with increased compute and data diversity, and learned representations generalize to unseen motions, establishing motion tracking at scale as a practical foundation for humanoid control.
Authors: Gong Jingyu, Tong Kunkun, Chen Zhuoran, Yuan Chuanhan, Chen Mingang, Zhang Zhizhong, Tan Xin, Xie Yuan
Abstract:
Human motion synthesis in 3D scenes relies heavily on scene comprehension, while current methods focus mainly on scene structure but ignore the semantic understanding. In this paper, we propose a human motion synthesis framework that take an unified Scene Semantic Occupancy (SSO) for scene representation, termed SSOMotion. We design a bi-directional tri-plane decomposition to derive a compact version of the SSO, and scene semantics are mapped to an unified feature space via CLIP encoding and shared linear dimensionality reduction. Such strategy can derive the fine-grained scene semantic structures while significantly reduce redundant computations. We further take these scene hints and movement direction derived from instructions for motion control via frame-wise scene query. Extensive experiments and ablation studies conducted on cluttered scenes using ShapeNet furniture, as well as scanned scenes from PROX and Replica datasets, demonstrate its cutting-edge performance while validating its effectiveness and generalization ability. Code will be publicly available at https://github.com/jingyugong/SSOMotion.
Authors: Hanmo Chen, Chenghao Xu, Jiexi Yan, Cheng Deng
Abstract:
Human motion style transfer allows characters to appear less rigidity and more realism with specific style. Traditional arbitrary image style transfer typically process mean and variance which is proved effective. Meanwhile, similar methods have been adapted for motion style transfer. However, due to the fundamental differences between images and motion, relying on mean and variance is insufficient to fully capture the complex dynamic patterns and spatiotemporal coherence properties of motion data. Building upon this, our key insight is to bring two more coefficient, skewness and kurtosis, into the analysis of motion style. Specifically, we propose a novel Adaptive Statistics Fusor (AStF) which consists of Style Disentanglement Module (SDM) and High-Order Multi-Statistics Attention (HOS-Attn). We trained our AStF in conjunction with a Motion Consistency Regularization (MCR) discriminator. Experimental results show that, by providing a more comprehensive model of the spatiotemporal statistical patterns inherent in dynamic styles, our proposed AStF shows proficiency superiority in motion style transfers over state-of-the-arts. Our code and model are available at https://github.com/CHMimilanlan/AStF.
Authors: Tingzhu Bi, Yicheng Pan, Xinrui Jiang, Huize Sun, Meng Ma, Ping Wang
Abstract:
Uncovering cause-effect relationships from observational time series is fundamental to understanding complex systems. While many methods infer static causal graphs, real-world systems often exhibit dynamic causality-where relationships evolve over time. Accurately capturing these temporal dynamics requires time-resolved causal graphs. We propose UnCLe, a novel deep learning method for scalable dynamic causal discovery. UnCLe employs a pair of Uncoupler and Recoupler networks to disentangle input time series into semantic representations and learns inter-variable dependencies via auto-regressive Dependency Matrices. It estimates dynamic causal influences by analyzing datapoint-wise prediction errors induced by temporal perturbations. Extensive experiments demonstrate that UnCLe not only outperforms state-of-the-art baselines on static causal discovery benchmarks but, more importantly, exhibits a unique capability to accurately capture and represent evolving temporal causality in both synthetic and real-world dynamic systems (e.g., human motion). UnCLe offers a promising approach for revealing the underlying, time-varying mechanisms of complex phenomena.
Authors: Zhe Liu, Jinghua Hou, Xiaoqing Ye, Jingdong Wang, Hengshuang Zhao, Xiang Bai
Abstract:
Although transformers have demonstrated remarkable capabilities across various domains, their quadratic attention mechanisms introduce significant computational overhead when processing long-sequence data. In this paper, we present a unified autonomous driving model, UniLION, which efficiently handles large-scale LiDAR point clouds, high-resolution multi-view images, and even temporal sequences based on the linear group RNN operator (i.e., performs linear RNN for grouped features). Remarkably, UniLION serves as a single versatile architecture that can seamlessly support multiple specialized variants (i.e., LiDAR-only, temporal LiDAR, multi-modal, and multi-modal temporal fusion configurations) without requiring explicit temporal or multi-modal fusion modules. Moreover, UniLION consistently delivers competitive and even state-of-the-art performance across a wide range of core tasks, including 3D perception (e.g., 3D object detection, 3D object tracking, 3D occupancy prediction, BEV map segmentation), prediction (e.g., motion prediction), and planning (e.g., end-to-end planning). This unified paradigm naturally simplifies the design of multi-modal and multi-task autonomous driving systems while maintaining superior performance. Ultimately, we hope UniLION offers a fresh perspective on the development of 3D foundation models in autonomous driving. Code is available at https://github.com/happinesslz/UniLION
Authors: Mengyuan Liu, Sheng Yan, Yong Wang, Yingjie Li, Gui-Bin Bian, Hong Liu
Abstract:
We introduce MoSa, a novel hierarchical motion generation framework for text-driven 3D human motion generation that enhances the Vector Quantization-guided Generative Transformers (VQ-GT) paradigm through a coarse-to-fine scalable generation process. In MoSa, we propose a Multi-scale Token Preservation Strategy (MTPS) integrated into a hierarchical residual vector quantization variational autoencoder (RQ-VAE). MTPS employs interpolation at each hierarchical quantization to effectively retain coarse-to-fine multi-scale tokens. With this, the generative transformer supports Scalable Autoregressive (SAR) modeling, which predicts scale tokens, unlike traditional methods that predict only one token at each step. Consequently, MoSa requires only 10 inference steps, matching the number of RQ-VAE quantization layers. To address potential reconstruction degradation from frequent interpolation, we propose CAQ-VAE, a lightweight yet expressive convolution-attention hybrid VQ-VAE. CAQ-VAE enhances residual block design and incorporates attention mechanisms to better capture global dependencies. Extensive experiments show that MoSa achieves state-of-the-art generation quality and efficiency, outperforming prior methods in both fidelity and speed. On the Motion-X dataset, MoSa achieves an FID of 0.06 (versus MoMask's 0.20) while reducing inference time by 27 percent. Moreover, MoSa generalizes well to downstream tasks such as motion editing, requiring no additional fine-tuning. The code is available at https://mosa-web.github.io/MoSa-web
Authors: Cheng Zheng, William Koch, Baiang Li, Felix Heide
Abstract:
Hierarchical structures of motion exist across research fields, including computer vision, graphics, and robotics, where complex dynamics typically arise from coordinated interactions among simpler motion components. Existing methods to model such dynamics typically rely on manually-defined or heuristic hierarchies with fixed motion primitives, limiting their generalizability across different tasks. In this work, we propose a general hierarchical motion modeling method that learns structured, interpretable motion relationships directly from data. Our method represents observed motions using graph-based hierarchies, explicitly decomposing global absolute motions into parent-inherited patterns and local motion residuals. We formulate hierarchy inference as a differentiable graph learning problem, where vertices represent elemental motions and directed edges capture learned parent-child dependencies through graph neural networks. We evaluate our hierarchical reconstruction approach on three examples: 1D translational motion, 2D rotational motion, and dynamic 3D scene deformation via Gaussian splatting. Experimental results show that our method reconstructs the intrinsic motion hierarchy in 1D and 2D cases, and produces more realistic and interpretable deformations compared to the baseline on dynamic 3D Gaussian splatting scenes. By providing an adaptable, data-driven hierarchical modeling paradigm, our method offers a formulation applicable to a broad range of motion-centric tasks. Project Page: https://light.princeton.edu/HEIR/
Authors: Kyungmin Lee, Sibeen Kim, Minho Park, Hyunseung Kim, Dongyoon Hwang, Hojoon Lee, Jaegul Choo
Abstract:
Motion imitation is a promising approach for humanoid locomotion, enabling agents to acquire humanlike behaviors. Existing methods typically rely on high-quality motion capture datasets such as AMASS, but these are scarce and expensive, limiting scalability and diversity. Recent studies attempt to scale data collection by converting large-scale internet videos, exemplified by Humanoid-X. However, they often introduce physical artifacts such as floating, penetration, and foot skating, which hinder stable imitation. In response, we introduce PHUMA, a Physically-grounded HUMAnoid locomotion dataset that leverages human video at scale, while addressing physical artifacts through careful data curation and physics-constrained retargeting. PHUMA enforces joint limits, ensures ground contact, and eliminates foot skating, producing motions that are both large-scale and physically reliable. We evaluated PHUMA in two sets of conditions: (i) imitation of unseen motion from self-recorded test videos and (ii) path following with pelvis-only guidance. In both cases, PHUMA-trained policies outperform Humanoid-X and AMASS, achieving significant gains in imitating diverse motions. The code is available at https://davian-robotics.github.io/PHUMA.
Authors: Youcan Xu, Zhen Wang, Jiaxin Shi, Kexin Li, Feifei Shao, Jun Xiao, Yi Yang, Jun Yu, Long Chen
Abstract:
While recent text-to-video models excel at generating diverse scenes, they struggle with precise motion control, particularly for complex, multi-subject motions. Although methods for single-motion customization have been developed to address this gap, they fail in compositional scenarios due to two primary challenges: motion-appearance entanglement and ineffective multi-motion blending. This paper introduces CoMo, a novel framework for $\textbf{compositional motion customization}$ in text-to-video generation, enabling the synthesis of multiple, distinct motions within a single video. CoMo addresses these issues through a two-phase approach. First, in the single-motion learning phase, a static-dynamic decoupled tuning paradigm disentangles motion from appearance to learn a motion-specific module. Second, in the multi-motion composition phase, a plug-and-play divide-and-merge strategy composes these learned motions without additional training by spatially isolating their influence during the denoising process. To facilitate research in this new domain, we also introduce a new benchmark and a novel evaluation metric designed to assess multi-motion fidelity and blending. Extensive experiments demonstrate that CoMo achieves state-of-the-art performance, significantly advancing the capabilities of controllable video generation. Our project page is at https://como6.github.io/.
Authors: Ying Xue, Jiaxi Jiang, Rayan Armani, Dominik Hollidt, Yi-Chi Liao, Christian Holz
Abstract:
Tracking human full-body motion using sparse wearable inertial measurement units (IMUs) overcomes the limitations of occlusion and instrumentation of the environment inherent in vision-based approaches. However, purely IMU-based tracking compromises translation estimates and accurate relative positioning between individuals, as inertial cues are inherently self-referential and provide no direct spatial reference for others. In this paper, we present a novel approach for robustly estimating body poses and global translation for multiple individuals by leveraging the distances between sparse wearable sensors - both on each individual and across multiple individuals. Our method Group Inertial Poser estimates these absolute distances between pairs of sensors from ultra-wideband ranging (UWB) and fuses them with inertial observations as input into structured state-space models to integrate temporal motion patterns for precise 3D pose estimation. Our novel two-step optimization further leverages the estimated distances for accurately tracking people's global trajectories through the world. We also introduce GIP-DB, the first IMU+UWB dataset for two-person tracking, which comprises 200 minutes of motion recordings from 14 participants. In our evaluation, Group Inertial Poser outperforms previous state-of-the-art methods in accuracy and robustness across synthetic and real-world data, showing the promise of IMU+UWB-based multi-human motion capture in the wild. Code, models, dataset: https://github.com/eth-siplab/GroupInertialPoser
Authors: Keaton Kraiger, Jingjing Li, Skanda Bharadwaj, Jesse Scott, Robert T. Collins, Yanxi Liu
Abstract:
We propose FootFormer, a cross-modality approach for jointly predicting human motion dynamics directly from visual input. On multiple datasets, FootFormer achieves statistically significantly better or equivalent estimates of foot pressure distributions, foot contact maps, and center of mass (CoM), as compared with existing methods that generate one or two of those measures. Furthermore, FootFormer achieves SOTA performance in estimating stability-predictive components (CoP, CoM, BoS) used in classic kinesiology metrics. Code and data are available at https://github.com/keatonkraiger/Vision-to-Stability.git.
Authors: Peiqin Zhuang, Lei Bai, Yichao Wu, Ding Liang, Luping Zhou, Yali Wang, Wanli Ouyang
Abstract:
Recently, action recognition has been dominated by transformer-based methods, thanks to their spatiotemporal contextual aggregation capacities. However, despite the significant progress achieved on scene-related datasets, they do not perform well on motion-sensitive datasets due to the lack of elaborate motion modeling designs. Meanwhile, we observe that the widely-used cost volume in traditional action recognition is highly similar to the affinity matrix defined in self-attention, but equipped with powerful motion modeling capacities. In light of this, we propose to integrate those effective motion modeling properties into the existing transformer in a unified and neat way, with the proposal of the Explicit Motion Information Mining module (EMIM). In EMIM, we propose to construct the desirable affinity matrix in a cost volume style, where the set of key candidate tokens is sampled from the query-based neighboring area in the next frame in a sliding-window manner. Then, the constructed affinity matrix is used to aggregate contextual information for appearance modeling and is converted into motion features for motion modeling as well. We validate the motion modeling capacities of our method on four widely-used datasets, and our method performs better than existing state-of-the-art approaches, especially on motion-sensitive datasets, i.e., Something-Something V1 & V2. Our project is available at https://github.com/PeiqinZhuang/EMIM .
Authors: Lu Yin, Ziying Shi, Yinghao Wu, Xinyu Yi, Feng Xu, Shihui Guo
Abstract:
Human motion capture with sparse inertial sensors has gained significant attention recently. However, existing methods almost exclusively rely on a template adult body shape to model the training data, which poses challenges when generalizing to individuals with largely different body shapes (such as a child). This is primarily due to the variation in IMU-measured acceleration caused by changes in body shape. To fill this gap, we propose Shape-aware Inertial Poser (SAIP), the first solution considering body shape differences in sparse inertial-based motion capture. Specifically, we decompose the sensor measurements related to shape and pose in order to effectively model their joint correlations. Firstly, we train a regression model to transfer the IMU-measured accelerations of a real body to match the template adult body model, compensating for the shape-related sensor measurements. Then, we can easily follow the state-of-the-art methods to estimate the full body motions of the template-shaped body. Finally, we utilize a second regression model to map the joint velocities back to the real body, combined with a shape-aware physical optimization strategy to calculate global motions on the subject. Furthermore, our method relies on body shape awareness, introducing the first inertial shape estimation scheme. This is accomplished by modeling the shape-conditioned IMU-pose correlation using an MLP-based network. To validate the effectiveness of SAIP, we also present the first IMU motion capture dataset containing individuals of different body sizes. This dataset features 10 children and 10 adults, with heights ranging from 110 cm to 190 cm, and a total of 400 minutes of paired IMU-Motion samples. Extensive experimental results demonstrate that SAIP can effectively handle motion capture tasks for diverse body shapes. The code and dataset are available at https://github.com/yinlu5942/SAIP.
Authors: Guo Cheng, Danni Yang, Ziqi Huang, Jianlou Si, Chenyang Si, Ziwei Liu
Abstract:
Video generative models have recently achieved notable advancements in synthesis quality. However, generating complex motions remains a critical challenge, as existing models often struggle to produce natural, smooth, and contextually consistent movements. This gap between generated and real-world motions limits their practical applicability. To address this issue, we introduce RealDPO, a novel alignment paradigm that leverages real-world data as positive samples for preference learning, enabling more accurate motion synthesis. Unlike traditional supervised fine-tuning (SFT), which offers limited corrective feedback, RealDPO employs Direct Preference Optimization (DPO) with a tailored loss function to enhance motion realism. By contrasting real-world videos with erroneous model outputs, RealDPO enables iterative self-correction, progressively refining motion quality. To support post-training in complex motion synthesis, we propose RealAction-5K, a curated dataset of high-quality videos capturing human daily activities with rich and precise motion details. Extensive experiments demonstrate that RealDPO significantly improves video quality, text alignment, and motion realism compared to state-of-the-art models and existing preference optimization techniques.
Authors: Xue Bin Peng
Abstract:
MimicKit is an open-source framework for training motion controllers using motion imitation and reinforcement learning. The codebase provides implementations of commonly-used motion-imitation techniques and RL algorithms. This framework is intended to support research and applications in computer graphics and robotics by providing a unified training framework, along with standardized environment, agent, and data structures. The codebase is designed to be modular and easily configurable, enabling convenient modification and extension to new characters and tasks. The open-source codebase is available at: https://github.com/xbpeng/MimicKit.
Authors: Xuanchen Wang, Heng Wang, Weidong Cai
Abstract:
Music is both an auditory and an embodied phenomenon, closely linked to human motion and naturally expressed through dance. However, most existing audio representations neglect this embodied dimension, limiting their ability to capture rhythmic and structural cues that drive movement. We propose MotionBeat, a framework for motion-aligned music representation learning. MotionBeat is trained with two newly proposed objectives: the Embodied Contrastive Loss (ECL), an enhanced InfoNCE formulation with tempo-aware and beat-jitter negatives to achieve fine-grained rhythmic discrimination, and the Structural Rhythm Alignment Loss (SRAL), which ensures rhythm consistency by aligning music accents with corresponding motion events. Architecturally, MotionBeat introduces bar-equivariant phase rotations to capture cyclic rhythmic patterns and contact-guided attention to emphasize motion events synchronized with musical accents. Experiments show that MotionBeat outperforms state-of-the-art audio encoders in music-to-dance generation and transfers effectively to beat tracking, music tagging, genre and instrument classification, emotion recognition, and audio-visual retrieval. Our project demo page: https://motionbeat2025.github.io/.
Authors: Quang Nguyen, Tri Le, Baoru Huang, Minh Nhat Vu, Ngan Le, Thieu Vo, Anh Nguyen
Abstract:
Learning human motion based on a time-dependent input signal presents a challenging yet impactful task with various applications. The goal of this task is to generate or estimate human movement that consistently reflects the temporal patterns of conditioning inputs. Existing methods typically rely on cross-attention mechanisms to fuse the condition with motion. However, this approach primarily captures global interactions and struggles to maintain step-by-step temporal alignment. To address this limitation, we introduce Temporally Conditional Mamba, a new mamba-based model for human motion generation. Our approach integrates conditional information into the recurrent dynamics of the Mamba block, enabling better temporally aligned motion. To validate the effectiveness of our method, we evaluate it on a variety of human motion tasks. Extensive experiments demonstrate that our model significantly improves temporal alignment, motion realism, and condition consistency over state-of-the-art approaches. Our project page is available at https://zquang2202.github.io/TCM.
Authors: Shunnosuke Yoshimura, Kento Kawaharazuka, Kei Okada
Abstract:
Tactile sensors have a wide range of applications, from utilization in robotic grippers to human motion measurement. If tactile sensors could be fabricated and integrated more easily, their applicability would further expand. In this study, we propose a tactile sensor-M3D-skin-that can be easily fabricated with high versatility by leveraging the infill patterns of a multi-material fused deposition modeling (FDM) 3D printer as the sensing principle. This method employs conductive and non-conductive flexible filaments to create a hierarchical structure with a specific infill pattern. The flexible hierarchical structure deforms under pressure, leading to a change in electrical resistance, enabling the acquisition of tactile information. We measure the changes in characteristics of the proposed tactile sensor caused by modifications to the hierarchical structure. Additionally, we demonstrate the fabrication and use of a multi-tile sensor. Furthermore, as applications, we implement motion pattern measurement on the sole of a foot, integration with a robotic hand, and tactile-based robotic operations. Through these experiments, we validate the effectiveness of the proposed tactile sensor.
Authors: Kesen Zhao, Jiaxin Shi, Beier Zhu, Junbao Zhou, Xiaolong Shen, Yuan Zhou, Qianru Sun, Hanwang Zhang
Abstract:
Real-time motion-controllable video generation remains challenging due to the inherent latency of bidirectional diffusion models and the lack of effective autoregressive (AR) approaches. Existing AR video diffusion models are limited to simple control signals or text-to-video generation, and often suffer from quality degradation and motion artifacts in few-step generation. To address these challenges, we propose AR-Drag, the first RL-enhanced few-step AR video diffusion model for real-time image-to-video generation with diverse motion control. We first fine-tune a base I2V model to support basic motion control, then further improve it via reinforcement learning with a trajectory-based reward model. Our design preserves the Markov property through a Self-Rollout mechanism and accelerates training by selectively introducing stochasticity in denoising steps. Extensive experiments demonstrate that AR-Drag achieves high visual fidelity and precise motion alignment, significantly reducing latency compared with state-of-the-art motion-controllable VDMs, while using only 1.3B parameters. Additional visualizations can be found on our project page: https://kesenzhao.github.io/AR-Drag.github.io/.
Authors: Yue Chen, Xingyu Chen, Yuxuan Xue, Anpei Chen, Yuliang Xiu, Gerard Pons-Moll
Abstract:
We present Human3R, a unified, feed-forward framework for online 4D human-scene reconstruction, in the world frame, from casually captured monocular videos. Unlike previous approaches that rely on multi-stage pipelines, iterative contact-aware refinement between humans and scenes, and heavy dependencies, e.g., human detection, depth estimation, and SLAM pre-processing, Human3R jointly recovers global multi-person SMPL-X bodies ("everyone"), dense 3D scene ("everywhere"), and camera trajectories in a single forward pass ("all-at-once"). Our method builds upon the 4D online reconstruction model CUT3R, and uses parameter-efficient visual prompt tuning, to strive to preserve CUT3R's rich spatiotemporal priors, while enabling direct readout of multiple SMPL-X bodies. Human3R is a unified model that eliminates heavy dependencies and iterative refinement. After being trained on the relatively small-scale synthetic dataset BEDLAM for just one day on one GPU, it achieves superior performance with remarkable efficiency: it reconstructs multiple humans in a one-shot manner, along with 3D scenes, in one stage, at real-time speed (15 FPS) with a low memory footprint (8 GB). Extensive experiments demonstrate that Human3R delivers state-of-the-art or competitive performance across tasks, including global human motion estimation, local human mesh recovery, video depth estimation, and camera pose estimation, with a single unified model. We hope that Human3R will serve as a simple yet strong baseline, be easily extended for downstream applications.Code available in https://fanegg.github.io/Human3R
Authors: Robin Courant, Xi Wang, David Loiseaux, Marc Christie, Vicky Kalogeiton
Abstract:
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.
Authors: Hyelin Nam, Hyojun Go, Byeongjun Park, Byung-Hoon Kim, Hyungjin Chung
Abstract:
Human video generation is becoming an increasingly important task with broad applications in graphics, entertainment, and embodied AI. Despite the rapid progress of video diffusion models (VDMs), their use for general-purpose human video generation remains underexplored, with most works constrained to image-to-video setups or narrow domains like dance videos. In this work, we propose CAMEO, a cascaded framework for general human motion video generation. It seamlessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating suboptimal factors that may arise in this process across both training and inference through carefully designed components. Specifically, we analyze and prepare both textual prompts and visual conditions to effectively train the VDM, ensuring robust alignment between motion descriptions, conditioning signals, and the generated videos. Furthermore, we introduce a camera-aware conditioning module that connects the two stages, automatically selecting viewpoints aligned with the input text to enhance coherence and reduce manual intervention. We demonstrate the effectiveness of our approach on both the MovieGen benchmark and a newly introduced benchmark tailored to the T2M-VDM combination, while highlighting its versatility across diverse use cases.
Authors: Yufei Zhu, Andrey Rudenko, Tomasz P. Kucner, Achim J. Lilienthal, Martin Magnusson
Abstract:
Long-term human motion prediction (LHMP) is important for the safe and efficient operation of autonomous robots and vehicles in environments shared with humans. Accurate predictions are important for applications including motion planning, tracking, human-robot interaction, and safety monitoring. In this paper, we exploit Maps of Dynamics (MoDs), which encode spatial or spatio-temporal motion patterns as environment features, to achieve LHMP for horizons of up to 60 seconds. We propose an MoD-informed LHMP framework that supports various types of MoDs and includes a ranking method to output the most likely predicted trajectory, improving practical utility in robotics. Further, a time-conditioned MoD is introduced to capture motion patterns that vary across different times of day. We evaluate MoD-LHMP instantiated with three types of MoDs. Experiments on two real-world datasets show that MoD-informed method outperforms learning-based ones, with up to 50\% improvement in average displacement error, and the time-conditioned variant achieves the highest accuracy overall. Project code is available at https://github.com/test-bai-cpu/LHMP-with-MoDs.git
Authors: Junyu Shi, Yong Sun, Zhiyuan Zhang, Lijiang Liu, Zhengjie Zhang, Yuxin He, Qiang Nie
Abstract:
Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC
Authors: Sung-Yeon Park, Adam Lee, Juanwu Lu, Can Cui, Luyang Jiang, Rohit Gupta, Kyungtae Han, Ahmadreza Moradipari, Ziran Wang
Abstract:
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/
Authors: Joao Pedro Araujo, Yanjie Ze, Pei Xu, Jiajun Wu, C. Karen Liu
Abstract:
Humanoid motion tracking policies are central to building teleoperation pipelines and hierarchical controllers, yet they face a fundamental challenge: the embodiment gap between humans and humanoid robots. Current approaches address this gap by retargeting human motion data to humanoid embodiments and then training reinforcement learning (RL) policies to imitate these reference trajectories. However, artifacts introduced during retargeting, such as foot sliding, self-penetration, and physically infeasible motion are often left in the reference trajectories for the RL policy to correct. While prior work has demonstrated motion tracking abilities, they often require extensive reward engineering and domain randomization to succeed. In this paper, we systematically evaluate how retargeting quality affects policy performance when excessive reward tuning is suppressed. To address issues that we identify with existing retargeting methods, we propose a new retargeting method, General Motion Retargeting (GMR). We evaluate GMR alongside two open-source retargeters, PHC and ProtoMotions, as well as with a high-quality closed-source dataset from Unitree. Using BeyondMimic for policy training, we isolate retargeting effects without reward tuning. Our experiments on a diverse subset of the LAFAN1 dataset reveal that while most motions can be tracked, artifacts in retargeted data significantly reduce policy robustness, particularly for dynamic or long sequences. GMR consistently outperforms existing open-source methods in both tracking performance and faithfulness to the source motion, achieving perceptual fidelity and policy success rates close to the closed-source baseline. Website: https://jaraujo98.github.io/retargeting_matters. Code: https://github.com/YanjieZe/GMR.
Authors: Yingdong Hu, Yisheng He, Jinnan Chen, Weihao Yuan, Kejie Qiu, Zehong Lin, Siyu Zhu, Zilong Dong, Jun Zhang
Abstract:
Instant reconstruction of dynamic 3D humans from uncalibrated sparse-view videos is critical for numerous downstream applications. Existing methods, however, are either limited by the slow reconstruction speeds or incapable of generating novel-time representations. To address these challenges, we propose Forge4D, a feed-forward 4D human reconstruction and interpolation model that efficiently reconstructs temporally aligned representations from uncalibrated sparse-view videos, enabling both novel view and novel time synthesis. Our model simplifies the 4D reconstruction and interpolation problem as a joint task of streaming 3D Gaussian reconstruction and dense motion prediction. For the task of streaming 3D Gaussian reconstruction, we first reconstruct static 3D Gaussians from uncalibrated sparse-view images and then introduce learnable state tokens to enforce temporal consistency in a memory-friendly manner by interactively updating shared information across different timestamps. For novel time synthesis, we design a novel motion prediction module to predict dense motions for each 3D Gaussian between two adjacent frames, coupled with an occlusion-aware Gaussian fusion process to interpolate 3D Gaussians at arbitrary timestamps. To overcome the lack of the ground truth for dense motion supervision, we formulate dense motion prediction as a dense point matching task and introduce a self-supervised retargeting loss to optimize this module. An additional occlusion-aware optical flow loss is introduced to ensure motion consistency with plausible human movement, providing stronger regularization. Extensive experiments demonstrate the effectiveness of our model on both in-domain and out-of-domain datasets. Project page and code at: https://zhenliuzju.github.io/huyingdong/Forge4D.
Authors: Gabriel Maldonado, Narges Rashvand, Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, Hamed Tabkhi
Abstract:
Continuous human motion understanding remains a core challenge in computer vision due to its high dimensionality and inherent redundancy. Efficient compression and representation are crucial for analyzing complex motion dynamics. In this work, we introduce an adversarially-refined VQ-GAN framework with dense motion tokenization for compressing spatio-temporal heatmaps while preserving the fine-grained traces of human motion. Our approach combines dense motion tokenization with adversarial refinement, which eliminates reconstruction artifacts like motion smearing and temporal misalignment observed in non-adversarial baselines. Our experiments on the CMU Panoptic dataset provide conclusive evidence of our method's superiority, outperforming the dVAE baseline by 9.31% SSIM and reducing temporal instability by 37.1%. Furthermore, our dense tokenization strategy enables a novel analysis of motion complexity, revealing that 2D motion can be optimally represented with a compact 128-token vocabulary, while 3D motion's complexity demands a much larger 1024-token codebook for faithful reconstruction. These results establish practical deployment feasibility across diverse motion analysis applications. The code base for this work is available at https://github.com/TeCSAR-UNCC/Pose-Quantization.
Authors: Ying Feng, Hongjie Fang, Yinong He, Jingjing Chen, Chenxi Wang, Zihao He, Ruonan Liu, Cewu Lu
Abstract:
Dexterous robotic hands enable robots to perform complex manipulations that require fine-grained control and adaptability. Achieving such manipulation is challenging because the high degrees of freedom tightly couple hand and arm motions, making learning and control difficult. Successful dexterous manipulation relies not only on precise hand motions, but also on accurate spatial positioning of the arm and coordinated arm-hand dynamics. However, most existing visuomotor policies represent arm and hand actions in a single combined space, which often causes high-dimensional hand actions to dominate the coupled action space and compromise arm control. To address this, we propose DQ-RISE, which quantizes hand states to simplify hand motion prediction while preserving essential patterns, and applies a continuous relaxation that allows arm actions to diffuse jointly with these compact hand states. This design enables the policy to learn arm-hand coordination from data while preventing hand actions from overwhelming the action space. Experiments show that DQ-RISE achieves more balanced and efficient learning, paving the way toward structured and generalizable dexterous manipulation. Project website: http://rise-policy.github.io/DQ-RISE/
Authors: Buyin Deng, Lingxin Huang, Kai Luo, Fei Teng, Kailun Yang
Abstract:
Visual Multi-Object Tracking (MOT) is a crucial component of robotic perception, yet existing Tracking-By-Detection (TBD) methods often rely on 2D cues, such as bounding boxes and motion modeling, which struggle under occlusions and close-proximity interactions. Trackers relying on these 2D cues are particularly unreliable in robotic environments, where dense targets and frequent occlusions are common. While depth information has the potential to alleviate these issues, most existing MOT datasets lack depth annotations, leading to its underexploited role in the domain. To unveil the potential of depth-informed trajectory refinement, we introduce DepTR-MOT, a DETR-based detector enhanced with instance-level depth information. Specifically, we propose two key innovations: (i) foundation model-based instance-level soft depth label supervision, which refines depth prediction, and (ii) the distillation of dense depth maps to maintain global depth consistency. These strategies enable DepTR-MOT to output instance-level depth during inference, without requiring foundation models and without additional computational cost. By incorporating depth cues, our method enhances the robustness of the TBD paradigm, effectively resolving occlusion and close-proximity challenges. Experiments on both the QuadTrack and DanceTrack datasets demonstrate the effectiveness of our approach, achieving HOTA scores of 27.59 and 44.47, respectively. In particular, results on QuadTrack, a robotic platform MOT dataset, highlight the advantages of our method in handling occlusion and close-proximity challenges in robotic tracking. The source code will be made publicly available at https://github.com/warriordby/DepTR-MOT.
Authors: Chang Soo Lim, Joonyoung Moon, Donghyeon Cho
Abstract:
Video object segmentation (VOS) is a challenging task with wide applications such as video editing and autonomous driving. While Cutie provides strong query-based segmentation and SAM2 offers enriched representations via a pretrained ViT encoder, each has limitations in feature capacity and temporal modeling. In this report, we propose a framework that integrates their complementary strengths by replacing the encoder of Cutie with the ViT encoder of SAM2 and introducing a motion prediction module for temporal stability. We further adopt an ensemble strategy combining Cutie, SAM2, and our variant, achieving 3rd place in the MOSEv2 track of the 7th LSVOS Challenge. We refer to our final model as SCOPE (SAM2-CUTIE Object Prediction Ensemble). This demonstrates the effectiveness of enriched feature representation and motion prediction for robust video object segmentation. The code is available at https://github.com/2025-LSVOS-3rd-place/MOSEv2_3rd_place.
Authors: Dvij Kalaria, Sudarshan S Harithas, Pushkal Katara, Sangkyung Kwak, Sarthak Bhagat, Shankar Sastry, Srinath Sridhar, Sai Vemprala, Ashish Kapoor, Jonathan Chung-Kuan Huang
Abstract:
We introduce DreamControl, a novel methodology for learning autonomous whole-body humanoid skills. DreamControl leverages the strengths of diffusion models and Reinforcement Learning (RL): our core innovation is the use of a diffusion prior trained on human motion data, which subsequently guides an RL policy in simulation to complete specific tasks of interest (e.g., opening a drawer or picking up an object). We demonstrate that this human motion-informed prior allows RL to discover solutions unattainable by direct RL, and that diffusion models inherently promote natural looking motions, aiding in sim-to-real transfer. We validate DreamControl's effectiveness on a Unitree G1 robot across a diverse set of challenging tasks involving simultaneous lower and upper body control and object interaction. Project website at https://genrobo.github.io/DreamControl/
Authors: Chao Chen, Shunyu Yao, Yuanwu He, Tao Feng, Ruojing Song, Yuliang Guo, Xinyu Huang, Chenxu Wu, Ren Liu, Chen Feng
Abstract:
Precise parking requires an end-to-end system where perception adaptively provides policy-relevant details-especially in critical areas where fine control decisions are essential. End-to-end learning offers a unified framework by directly mapping sensor inputs to control actions, but existing approaches lack effective synergy between perception and control. We find that transformer-based self-attention, when used alone, tends to produce unstable and temporally inconsistent spatial attention, which undermines the reliability of downstream policy decisions over time. Instead, we propose CAA-Policy, an end-to-end imitation learning system that allows control signal to guide the learning of visual attention via a novel Control-Aided Attention (CAA) mechanism. For the first time, we train such an attention module in a self-supervised manner, using backpropagated gradients from the control outputs instead of from the training loss. This strategy encourages the attention to focus on visual features that induce high variance in action outputs, rather than merely minimizing the training loss-a shift we demonstrate leads to a more robust and generalizable policy. To further enhance stability, CAA-Policy integrates short-horizon waypoint prediction as an auxiliary task, and introduces a separately trained motion prediction module to robustly track the target spot over time. Extensive experiments in the CARLA simulator show that \titlevariable~consistently surpasses both the end-to-end learning baseline and the modular BEV segmentation + hybrid A* pipeline, achieving superior accuracy, robustness, and interpretability. Code is released at https://github.com/Joechencc/CAAPolicy.
Authors: Sirui Xu, Dongting Li, Yucheng Zhang, Xiyan Xu, Qi Long, Ziyin Wang, Yunzhi Lu, Shuchang Dong, Hezi Jiang, Akshat Gupta, Yu-Xiong Wang, Liang-Yan Gui
Abstract:
While large-scale human motion capture datasets have advanced human motion generation, modeling and generating dynamic 3D human-object interactions (HOIs) remain challenging due to dataset limitations. Existing datasets often lack extensive, high-quality motion and annotation and exhibit artifacts such as contact penetration, floating, and incorrect hand motions. To address these issues, we introduce InterAct, a large-scale 3D HOI benchmark featuring dataset and methodological advancements. First, we consolidate and standardize 21.81 hours of HOI data from diverse sources, enriching it with detailed textual annotations. Second, we propose a unified optimization framework to enhance data quality by reducing artifacts and correcting hand motions. Leveraging the principle of contact invariance, we maintain human-object relationships while introducing motion variations, expanding the dataset to 30.70 hours. Third, we define six benchmarking tasks and develop a unified HOI generative modeling perspective, achieving state-of-the-art performance. Extensive experiments validate the utility of our dataset as a foundational resource for advancing 3D human-object interaction generation. To support continued research in this area, the dataset is publicly available at https://github.com/wzyabcas/InterAct, and will be actively maintained.
Authors: Ha Linh Nguyen, Tze Ho Elden Tse, Angela Yao
Abstract:
Many studies decompose human motion into local motion in a frame attached to the root joint and global motion of the root joint in the world frame, treating them separately. However, these two components are not independent. Global movement arises from interactions with the environment, which are, in turn, driven by changes in the body configuration. Motion models often fail to precisely capture this physical coupling between local and global dynamics, while deriving global trajectories from joint torques and external forces is computationally expensive and complex. To address these challenges, we propose using whole-body linear and angular momentum as a constraint to link local motion with global movement. Since momentum reflects the aggregate effect of joint-level dynamics on the body's movement through space, it provides a physically grounded way to relate local joint behavior to global displacement. Building on this insight, we introduce a new loss term that enforces consistency between the generated momentum profiles and those observed in ground-truth data. Incorporating our loss reduces foot sliding and jitter, improves balance, and preserves the accuracy of the recovered motion. Code and data are available at the project page https://hlinhn.github.io/momentum_bmvc.
Authors: Haiwei Xue, Xiangyang Luo, Zhanghao Hu, Xin Zhang, Xunzhi Xiang, Yuqin Dai, Jianzhuang Liu, Zhensong Zhang, Minglei Li, Jian Yang, Fei Ma, Zhiyong Wu, Changpeng Yang, Zonghong Dai, Fei Richard Yu
Abstract:
Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.
Authors: Yangsong Zhang, Abdul Ahad Butt, Gül Varol, Ivan Laptev
Abstract:
Human motion generation has shown great advances thanks to the recent diffusion models trained on large-scale motion capture data. Most of existing works, however, currently target animation of isolated people in empty scenes. Meanwhile, synthesizing realistic human-object interactions in complex 3D scenes remains a critical challenge in computer graphics and robotics. One obstacle towards generating versatile high-fidelity human-object interactions is the lack of large-scale datasets with diverse object manipulations. Indeed, existing motion capture data is typically restricted to single people and manipulations of limited sets of objects. To address this issue, we propose an automatic motion extraction pipeline and use it to collect interaction-rich human motions. Our new dataset InterPose contains 73.8K sequences of 3D human motions and corresponding text captions automatically obtained from 45.8K videos with human-object interactions. We perform extensive experiments and demonstrate InterPose to bring significant improvements to state-of-the-art methods for human motion generation. Moreover, using InterPose we develop an LLM-based agent enabling zero-shot animation of people interacting with diverse objects and scenes.
Authors: Enrico Martini, Ho Jin Choi, Nadia Figueroa, Nicola Bombieri
Abstract:
In the era of Industry 5.0, monitoring human activity is essential for ensuring both ergonomic safety and overall well-being. While multi-camera centralized setups improve pose estimation accuracy, they often suffer from high computational costs and bandwidth requirements, limiting scalability and real-time applicability. Distributing processing across edge devices can reduce network bandwidth and computational load. On the other hand, the constrained resources of edge devices lead to accuracy degradation, and the distribution of computation leads to temporal and spatial inconsistencies. We address this challenge by proposing COMETH (Convex Optimization for Multiview Estimation and Tracking of Humans), a lightweight algorithm for real-time multi-view human pose fusion that relies on three concepts: it integrates kinematic and biomechanical constraints to increase the joint positioning accuracy; it employs convex optimization-based inverse kinematics for spatial fusion; and it implements a state observer to improve temporal consistency. We evaluate COMETH on both public and industrial datasets, where it outperforms state-of-the-art methods in localization, detection, and tracking accuracy. The proposed fusion pipeline enables accurate and scalable human motion tracking, making it well-suited for industrial and safety-critical applications. The code is publicly available at https://github.com/PARCO-LAB/COMETH.
Authors: Yiguo Jiang, Xiaodong Cun, Yong Zhang, Yudian Zheng, Fan Tang, Chi-Man Pun
Abstract:
Emotional talking head synthesis aims to generate talking portrait videos with vivid expressions. Existing methods still exhibit limitations in control flexibility, motion naturalness, and expression quality. Moreover, currently available datasets are primarily collected in lab settings, further exacerbating these shortcomings. Consequently, these limitations substantially hinder practical applications in real-world scenarios. To address these challenges, we propose EmoCAST, a diffusion-based framework with two key modules for precise text-driven emotional synthesis. In appearance modeling, emotional prompts are integrated through a text-guided decoupled emotive module, enhancing the spatial knowledge to improve emotion comprehension. To improve the relationship between audio and emotion, we introduce an emotive audio attention module to capture the interplay between controlled emotion and driving audio, generating emotion-aware features to guide more precise facial motion synthesis. Additionally, we construct an emotional talking head dataset with comprehensive emotive text descriptions to optimize the framework's performance. Based on the proposed dataset, we propose an emotion-aware sampling training strategy and a progressive functional training strategy that further improve the model's ability to capture nuanced expressive features and achieve accurate lip-synchronization. Overall, EmoCAST achieves state-of-the-art performance in generating realistic, emotionally expressive, and audio-synchronized talking-head videos. Project Page: https://github.com/GVCLab/EmoCAST
Authors: Zhecheng Yuan, Tianming Wei, Langzhe Gu, Pu Hua, Tianhai Liang, Yuanpei Chen, Huazhe Xu
Abstract:
Leveraging human motion data to impart robots with versatile manipulation skills has emerged as a promising paradigm in robotic manipulation. Nevertheless, translating multi-source human hand motions into feasible robot behaviors remains challenging, particularly for robots equipped with multi-fingered dexterous hands characterized by complex, high-dimensional action spaces. Moreover, existing approaches often struggle to produce policies capable of adapting to diverse environmental conditions. In this paper, we introduce HERMES, a human-to-robot learning framework for mobile bimanual dexterous manipulation. First, HERMES formulates a unified reinforcement learning approach capable of seamlessly transforming heterogeneous human hand motions from multiple sources into physically plausible robotic behaviors. Subsequently, to mitigate the sim2real gap, we devise an end-to-end, depth image-based sim2real transfer method for improved generalization to real-world scenarios. Furthermore, to enable autonomous operation in varied and unstructured environments, we augment the navigation foundation model with a closed-loop Perspective-n-Point (PnP) localization mechanism, ensuring precise alignment of visual goals and effectively bridging autonomous navigation and dexterous manipulation. Extensive experimental results demonstrate that HERMES consistently exhibits generalizable behaviors across diverse, in-the-wild scenarios, successfully performing numerous complex mobile bimanual dexterous manipulation tasks. Project Page:https://gemcollector.github.io/HERMES/.
Authors: Himanshu Gaurav Singh, Pieter Abbeel, Jitendra Malik, Antonio Loquercio
Abstract:
As the embodiment gap between a robot and a human narrows, new opportunities arise to leverage datasets of humans interacting with their surroundings for robot learning. We propose a novel technique for training sensorimotor policies with reinforcement learning by imitating predictive models of human motions. Our key insight is that the motion of keypoints on human-inspired robot end-effectors closely mirrors the motion of corresponding human body keypoints. This enables us to use a model trained to predict future motion on human data \emph{zero-shot} on robot data. We train sensorimotor policies to track the predictions of such a model, conditioned on a history of past robot states, while optimizing a relatively sparse task reward. This approach entirely bypasses gradient-based kinematic retargeting and adversarial losses, which limit existing methods from fully leveraging the scale and diversity of modern human-scene interaction datasets. Empirically, we find that our approach can work across robots and tasks, outperforming existing baselines by a large margin. In addition, we find that tracking a human motion model can substitute for carefully designed dense rewards and curricula in manipulation tasks. Code, data and qualitative results available at https://jirl-upenn.github.io/track_reward/.
Authors: Haoyu Wang, Hao Tang, Donglin Di, Zhilu Zhang, Wangmeng Zuo, Feng Gao, Siwei Ma, Shiliang Zhang
Abstract:
Generating human videos with consistent motion from text prompts remains a significant challenge, particularly for whole-body or long-range motion. Existing video generation models prioritize appearance fidelity, resulting in unrealistic or physically implausible human movements with poor structural coherence. Additionally, most existing human video datasets primarily focus on facial or upper-body motions, or consist of vertically oriented dance videos, limiting the scope of corresponding generation methods to simple movements. To overcome these challenges, we propose MoCo, which decouples the process of human video generation into two components: structure generation and appearance generation. Specifically, our method first employs an efficient 3D structure generator to produce a human motion sequence from a text prompt. The remaining video appearance is then synthesized under the guidance of the generated structural sequence. To improve fine-grained control over sparse human structures, we introduce Human-Aware Dynamic Control modules and integrate dense tracking constraints during training. Furthermore, recognizing the limitations of existing datasets, we construct a large-scale whole-body human video dataset featuring complex and diverse motions. Extensive experiments demonstrate that MoCo outperforms existing approaches in generating realistic and structurally coherent human videos.
Authors: Hengyuan Zhang, Zhe Li, Xingqun Qi, Mengze Li, Muyi Sun, Man Zhang, Sirui Han
Abstract:
Generating coherent and diverse human dances from music signals has gained tremendous progress in animating virtual avatars. While existing methods support direct dance synthesis, they fail to recognize that enabling users to edit dance movements is far more practical in real-world choreography scenarios. Moreover, the lack of high-quality dance datasets incorporating iterative editing also limits addressing this challenge. To achieve this goal, we first construct DanceRemix, a large-scale multi-turn editable dance dataset comprising the prompt featuring over 25.3M dance frames and 84.5K pairs. In addition, we propose a novel framework for iterative and editable dance generation coherently aligned with given music signals, namely DanceEditor. Considering the dance motion should be both musical rhythmic and enable iterative editing by user descriptions, our framework is built upon a prediction-then-editing paradigm unifying multi-modal conditions. At the initial prediction stage, our framework improves the authority of generated results by directly modeling dance movements from tailored, aligned music. Moreover, at the subsequent iterative editing stages, we incorporate text descriptions as conditioning information to draw the editable results through a specifically designed Cross-modality Editing Module (CEM). Specifically, CEM adaptively integrates the initial prediction with music and text prompts as temporal motion cues to guide the synthesized sequences. Thereby, the results display music harmonics while preserving fine-grained semantic alignment with text descriptions. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on our newly collected DanceRemix dataset. Code is available at https://lzvsdy.github.io/DanceEditor/.
Authors: Prerit Gupta, Jason Alexander Fotso-Puepi, Zhengyuan Li, Jay Mehta, Aniket Bera
Abstract:
We introduce Multimodal DuetDance (MDD), a diverse multimodal benchmark dataset designed for text-controlled and music-conditioned 3D duet dance motion generation. Our dataset comprises 620 minutes of high-quality motion capture data performed by professional dancers, synchronized with music, and detailed with over 10K fine-grained natural language descriptions. The annotations capture a rich movement vocabulary, detailing spatial relationships, body movements, and rhythm, making MDD the first dataset to seamlessly integrate human motions, music, and text for duet dance generation. We introduce two novel tasks supported by our dataset: (1) Text-to-Duet, where given music and a textual prompt, both the leader and follower dance motion are generated (2) Text-to-Dance Accompaniment, where given music, textual prompt, and the leader's motion, the follower's motion is generated in a cohesive, text-aligned manner. We include baseline evaluations on both tasks to support future research.
Authors: Chunji Lv, Zequn Chen, Donglin Di, Weinan Zhang, Hao Li, Wei Chen, Changsheng Li
Abstract:
While physics-grounded 3D motion synthesis has seen significant progress, current methods face critical limitations. They typically rely on pre-reconstructed 3D Gaussian Splatting (3DGS) representations, while physics integration depends on either inflexible, manually defined physical attributes or unstable, optimization-heavy guidance from video models. To overcome these challenges, we introduce PhysGM, a feed-forward framework that jointly predicts a 3D Gaussian representation and its physical properties from a single image, enabling immediate, physical simulation and high-fidelity 4D rendering. We first establish a base model by jointly optimizing for Gaussian reconstruction and probabilistic physics prediction. The model is then refined with physically plausible reference videos to enhance both rendering fidelity and physics prediction accuracy. We adopt the Direct Preference Optimization (DPO) to align its simulations with reference videos, circumventing Score Distillation Sampling (SDS) optimization which needs back-propagating gradients through the complex differentiable simulation and rasterization. To facilitate the training, we introduce a new dataset PhysAssets of over 24,000 3D assets, annotated with physical properties and corresponding guiding videos. Experimental results demonstrate that our method effectively generates high-fidelity 4D simulations from a single image in one minute. This represents a significant speedup over prior works while delivering realistic rendering results. Our project page is at:https://hihixiaolv.github.io/PhysGM.github.io/
Authors: Rhea Malhotra, William Chong, Catie Cuan, Oussama Khatib
Abstract:
Generating sequences of human-like motions for humanoid robots presents challenges in collecting and analyzing reference human motions, synthesizing new motions based on these reference motions, and mapping the generated motion onto humanoid robots. To address these issues, we introduce SynSculptor, a humanoid motion analysis and editing framework that leverages postural synergies for training-free human-like motion scripting. To analyze human motion, we collect 3+ hours of motion capture data across 20 individuals where a real-time operational space controller mimics human motion on a simulated humanoid robot. The major postural synergies are extracted using principal component analysis (PCA) for velocity trajectories segmented by changes in robot momentum, constructing a style-conditioned synergy library for free-space motion generation. To evaluate generated motions using the synergy library, the foot-sliding ratio and proposed metrics for motion smoothness involving total momentum and kinetic energy deviations are computed for each generated motion, and compared with reference motions. Finally, we leverage the synergies with a motion-language transformer, where the humanoid, during execution of motion tasks with its end-effectors, adapts its posture based on the chosen synergy. Supplementary material, code, and videos are available at https://rhea-mal.github.io/humanoidsynergies.io.
Authors: Mengyuan Liu, Xinshun Wang, Zhongbin Fang, Deheng Ye, Xia Li, Tao Tang, Songtao Wu, Xiangtai Li, Ming-Hsuan Yang
Abstract:
This paper aims to model 3D human motion across domains, where a single model is expected to handle multiple modalities, tasks, and datasets. Existing cross-domain models often rely on domain-specific components and multi-stage training, which limits their practicality and scalability. To overcome these challenges, we propose a new setting to train a unified cross-domain model through a single process, eliminating the need for domain-specific components and multi-stage training. We first introduce Pose-in-Context (PiC), which leverages in-context learning to create a pose-centric cross-domain model. While PiC generalizes across multiple pose-based tasks and datasets, it encounters difficulties with modality diversity, prompting strategy, and contextual dependency handling. We thus propose Human-in-Context (HiC), an extension of PiC that broadens generalization across modalities, tasks, and datasets. HiC combines pose and mesh representations within a unified framework, expands task coverage, and incorporates larger-scale datasets. Additionally, HiC introduces a max-min similarity prompt sampling strategy to enhance generalization across diverse domains and a network architecture with dual-branch context injection for improved handling of contextual dependencies. Extensive experimental results show that HiC performs better than PiC in terms of generalization, data scale, and performance across a wide range of domains. These results demonstrate the potential of HiC for building a unified cross-domain 3D human motion model with improved flexibility and scalability. The source codes and models are available at https://github.com/BradleyWang0416/Human-in-Context.
Authors: Lingen Li, Guangzhi Wang, Zhaoyang Zhang, Yaowei Li, Xiaoyu Li, Qi Dou, Jinwei Gu, Tianfan Xue, Ying Shan
Abstract:
Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.
Authors: Philipp Wolters, Johannes Gilg, Torben Teepe, Gerhard Rigoll
Abstract:
End-to-end autonomous driving systems promise stronger performance through unified optimization of perception, motion forecasting, and planning. However, vision-based approaches face fundamental limitations in adverse weather conditions, partial occlusions, and precise velocity estimation - critical challenges in safety-sensitive scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. To address these limitations, we propose SpaRC-AD, a query-based end-to-end camera-radar fusion framework for planning-oriented autonomous driving. Through sparse 3D feature alignment, and doppler-based velocity estimation, we achieve strong 3D scene representations for refinement of agent anchors, map polylines and motion modelling. Our method achieves strong improvements over the state-of-the-art vision-only baselines across multiple autonomous driving tasks, including 3D detection (+4.8% mAP), multi-object tracking (+8.3% AMOTA), online mapping (+1.8% mAP), motion prediction (-4.0% mADE), and trajectory planning (-0.1m L2 and -9% TPC). We achieve both spatial coherence and temporal consistency on multiple challenging benchmarks, including real-world open-loop nuScenes, long-horizon T-nuScenes, and closed-loop simulator Bench2Drive. We show the effectiveness of radar-based fusion in safety-critical scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. The source code of all experiments is available at https://phi-wol.github.io/sparcad/
Authors: Keishi Ishihara, Kento Sasaki, Tsubasa Takahashi, Daiki Shiono, Yu Yamaguchi
Abstract:
Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16 million QA pairs over 285K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, achieving near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.
Authors: Jiwon Kim, Pureum Kim, SeonHwa Kim, Soobin Park, Eunju Cha, Kyong Hwan Jin
Abstract:
Recent advancements in controllable text-to-image (T2I) diffusion models, such as Ctrl-X and FreeControl, have demonstrated robust spatial and appearance control without requiring auxiliary module training. However, these models often struggle to accurately preserve spatial structures and fail to capture fine-grained conditions related to object poses and scene layouts. To address these challenges, we propose a training-free Dual Recursive Feedback (DRF) system that properly reflects control conditions in controllable T2I models. The proposed DRF consists of appearance feedback and generation feedback that recursively refines the intermediate latents to better reflect the given appearance information and the user's intent. This dual-update mechanism guides latent representations toward reliable manifolds, effectively integrating structural and appearance attributes. Our approach enables fine-grained generation even between class-invariant structure-appearance fusion, such as transferring human motion onto a tiger's form. Extensive experiments demonstrate the efficacy of our method in producing high-quality, semantically coherent, and structurally consistent image generations. Our source code is available at https://github.com/jwonkm/DRF.
Authors: Guangxun Zhu, Shiyu Fan, Hang Dai, Edmond S. L. Ho
Abstract:
Large-scale high-quality 3D motion datasets with multi-person interactions are crucial for data-driven models in autonomous driving to achieve fine-grained pedestrian interaction understanding in dynamic urban environments. However, existing datasets mostly rely on estimating 3D poses from monocular RGB video frames, which suffer from occlusion and lack of temporal continuity, thus resulting in unrealistic and low-quality human motion. In this paper, we introduce Waymo-3DSkelMo, the first large-scale dataset providing high-quality, temporally coherent 3D skeletal motions with explicit interaction semantics, derived from the Waymo Perception dataset. Our key insight is to utilize 3D human body shape and motion priors to enhance the quality of the 3D pose sequences extracted from the raw LiDRA point clouds. The dataset covers over 14,000 seconds across more than 800 real driving scenarios, including rich interactions among an average of 27 agents per scene (with up to 250 agents in the largest scene). Furthermore, we establish 3D pose forecasting benchmarks under varying pedestrian densities, and the results demonstrate its value as a foundational resource for future research on fine-grained human behavior understanding in complex urban environments. The dataset and code will be available at https://github.com/GuangxunZhu/Waymo-3DSkelMo
Authors: Jingyun Liang, Jingkai Zhou, Shikai Li, Chenjie Cao, Lei Sun, Yichen Qian, Weihua Chen, Fan Wang
Abstract:
Generating human videos with realistic and controllable motions is a challenging task. While existing methods can generate visually compelling videos, they lack separate control over four key video elements: foreground subject, background video, human trajectory and action patterns. In this paper, we propose a decomposed human motion control and video generation framework that explicitly decouples motion from appearance, subject from background, and action from trajectory, enabling flexible mix-and-match composition of these elements. Concretely, we first build a ground-aware 3D world coordinate system and perform motion editing directly in the 3D space. Trajectory control is implemented by unprojecting edited 2D trajectories into 3D with focal-length calibration and coordinate transformation, followed by speed alignment and orientation adjustment; actions are supplied by a motion bank or generated via text-to-motion methods. Then, based on modern text-to-video diffusion transformer models, we inject the subject as tokens for full attention, concatenate the background along the channel dimension, and add motion (trajectory and action) control signals by addition. Such a design opens up the possibility for us to generate realistic videos of anyone doing anything anywhere. Extensive experiments on benchmark datasets and real-world cases demonstrate that our method achieves state-of-the-art performance on both element-wise controllability and overall video quality.
Authors: Qiayuan Liao, Takara E. Truong, Xiaoyu Huang, Guy Tevet, Koushil Sreenath, C. Karen Liu
Abstract:
Learning skills from human motions offers a promising path toward generalizable policies for versatile humanoid whole-body control, yet two key cornerstones are missing: (1) a high-quality motion tracking framework that faithfully transforms large-scale kinematic references into robust and extremely dynamic motions on real hardware, and (2) a distillation approach that can effectively learn these motion primitives and compose them to solve downstream tasks. We address these gaps with BeyondMimic, a real-world framework to learn from human motions for versatile and naturalistic humanoid control via guided diffusion. Our framework provides a motion tracking pipeline capable of challenging skills such as jumping spins, sprinting, and cartwheels with state-of-the-art motion quality. Moving beyond simply mimicking existing motions, we further introduce a unified diffusion policy that enables zero-shot task-specific control at test time using simple cost functions. Deployed on hardware, BeyondMimic performs diverse tasks at test time, including waypoint navigation, joystick teleoperation, and obstacle avoidance, bridging sim-to-real motion tracking and flexible synthesis of human motion primitives for whole-body control. https://beyondmimic.github.io/.
Authors: Bin Cao, Sipeng Zheng, Ye Wang, Lujie Xia, Qianshan Wei, Qin Jin, Jing Liu, Zongqing Lu
Abstract:
Human motion generation has emerged as a critical technology with transformative potential for real-world applications. However, existing vision-language-motion models (VLMMs) face significant limitations that hinder their practical deployment. We identify controllability as a main bottleneck, manifesting in five key aspects: inadequate response to diverse human commands, limited pose initialization capabilities, poor performance on long-term sequences, insufficient handling of unseen scenarios, and lack of fine-grained control over individual body parts. To overcome these limitations, we present Being-M0.5, the first real-time, controllable VLMM that achieves state-of-the-art performance across multiple motion generation tasks. Our approach is built upon HuMo100M, the largest and most comprehensive human motion dataset to date, comprising over 5 million self-collected motion sequences, 100 million multi-task instructional instances, and detailed part-level annotations that address a critical gap in existing datasets. We introduce a novel part-aware residual quantization technique for motion tokenization that enables precise, granular control over individual body parts during generation. Extensive experimental validation demonstrates Being-M0.5's superior performance across diverse motion benchmarks, while comprehensive efficiency analysis confirms its real-time capabilities. Our contributions include design insights and detailed computational analysis to guide future development of practical motion generators. We believe that HuMo100M and Being-M0.5 represent significant advances that will accelerate the adoption of motion generation technologies in real-world applications. The project page is available at https://beingbeyond.github.io/Being-M0.5.
Authors: Shaohua Pan, Xinyu Yi, Yan Zhou, Weihua Jian, Yuan Zhang, Pengfei Wan, Feng Xu
Abstract:
Combining sparse IMUs and a monocular camera is a new promising setting to perform real-time human motion capture. This paper proposes a diffusion-based solution to learn human motion priors and fuse the two modalities of signals together seamlessly in a unified framework. By delicately considering the characteristics of the two signals, the sequential visual information is considered as a whole and transformed into a condition embedding, while the inertial measurement is concatenated with the noisy body pose frame by frame to construct a sequential input for the diffusion model. Firstly, we observe that the visual information may be unavailable in some frames due to occlusions or subjects moving out of the camera view. Thus incorporating the sequential visual features as a whole to get a single feature embedding is robust to the occasional degenerations of visual information in those frames. On the other hand, the IMU measurements are robust to occlusions and always stable when signal transmission has no problem. So incorporating them frame-wisely could better explore the temporal information for the system. Experiments have demonstrated the effectiveness of the system design and its state-of-the-art performance in pose estimation compared with the previous works. Our codes are available for research at https://shaohua-pan.github.io/diffcap-page.
Authors: Liang Xu, Chengqun Yang, Zili Lin, Fei Xu, Yifan Liu, Congsheng Xu, Yiyi Zhang, Jie Qin, Xingdong Sheng, Yunhui Liu, Xin Jin, Yichao Yan, Wenjun Zeng, Xiaokang Yang
Abstract:
Learning action models from real-world human-centric interaction datasets is important towards building general-purpose intelligent assistants with efficiency. However, most existing datasets only offer specialist interaction category and ignore that AI assistants perceive and act based on first-person acquisition. We urge that both the generalist interaction knowledge and egocentric modality are indispensable. In this paper, we embed the manual-assisted task into a vision-language-action framework, where the assistant provides services to the instructor following egocentric vision and commands. With our hybrid RGB-MoCap system, pairs of assistants and instructors engage with multiple objects and the scene following GPT-generated scripts. Under this setting, we accomplish InterVLA, the first large-scale human-object-human interaction dataset with 11.4 hours and 1.2M frames of multimodal data, spanning 2 egocentric and 5 exocentric videos, accurate human/object motions and verbal commands. Furthermore, we establish novel benchmarks on egocentric human motion estimation, interaction synthesis, and interaction prediction with comprehensive analysis. We believe that our InterVLA testbed and the benchmarks will foster future works on building AI agents in the physical world.
Authors: Kangrui Cen, Baixuan Zhao, Yi Xin, Siqi Luo, Guangtao Zhai, Xiaohong Liu
Abstract:
Controlling object motion trajectories in Text-to-Video (T2V) generation is a challenging and relatively under-explored area, particularly in scenarios involving multiple moving objects. Most community models and datasets in the T2V domain are designed for single-object motion, limiting the performance of current generative models in multi-object tasks. Additionally, existing motion control methods in T2V either lack support for multi-object motion scenes or experience severe performance degradation when object trajectories intersect, primarily due to the semantic conflicts in colliding regions. To address these limitations, we introduce LayerT2V, the first approach for generating video by compositing background and foreground objects layer by layer. This layered generation enables flexible integration of multiple independent elements within a video, positioning each element on a distinct "layer" and thus facilitating coherent multi-object synthesis while enhancing control over the generation process. Extensive experiments demonstrate the superiority of LayerT2V in generating complex multi-object scenarios, showcasing 1.4x and 4.5x improvements in mIoU and AP50 metrics over state-of-the-art (SOTA) methods. Project page and code are available at https://kr-panghu.github.io/LayerT2V/ .
Authors: Chenxu Zhang, Zenan Li, Hongyi Xu, You Xie, Xiaochen Zhao, Tianpei Gu, Guoxian Song, Xin Chen, Chao Liang, Jianwen Jiang, Linjie Luo
Abstract:
We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.
Authors: Zhengdao Li, Siheng Wang, Zeyu Zhang, Hao Tang
Abstract:
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.
Authors: Xu Wang, Shengeng Tang, Fei Wang, Lechao Cheng, Dan Guo, Feng Xue, Richang Hong
Abstract:
Generating semantically coherent and visually accurate talking faces requires bridging the gap between linguistic meaning and facial articulation. Although audio-driven methods remain prevalent, their reliance on high-quality paired audio visual data and the inherent ambiguity in mapping acoustics to lip motion pose significant challenges in terms of scalability and robustness. To address these issues, we propose Text2Lip, a viseme-centric framework that constructs an interpretable phonetic-visual bridge by embedding textual input into structured viseme sequences. These mid-level units serve as a linguistically grounded prior for lip motion prediction. Furthermore, we design a progressive viseme-audio replacement strategy based on curriculum learning, enabling the model to gradually transition from real audio to pseudo-audio reconstructed from enhanced viseme features via cross-modal attention. This allows for robust generation in both audio-present and audio-free scenarios. Finally, a landmark-guided renderer synthesizes photorealistic facial videos with accurate lip synchronization. Extensive evaluations show that Text2Lip outperforms existing approaches in semantic fidelity, visual realism, and modality robustness, establishing a new paradigm for controllable and flexible talking face generation. Our project homepage is https://plyon1.github.io/Text2Lip/.
Authors: Daniel Lengerer, Mathias Pechinger, Klaus Bogenberger, Carsten Markgraf
Abstract:
This work investigates the integration of spatially aligned aerial imagery into perception tasks for automated vehicles (AVs). As a central contribution, we present AID4AD, a publicly available dataset that augments the nuScenes dataset with high-resolution aerial imagery precisely aligned to its local coordinate system. The alignment is performed using SLAM-based point cloud maps provided by nuScenes, establishing a direct link between aerial data and nuScenes local coordinate system. To ensure spatial fidelity, we propose an alignment workflow that corrects for localization and projection distortions. A manual quality control process further refines the dataset by identifying a set of high-quality alignments, which we publish as ground truth to support future research on automated registration. We demonstrate the practical value of AID4AD in two representative tasks: in online map construction, aerial imagery serves as a complementary input that improves the mapping process; in motion prediction, it functions as a structured environmental representation that replaces high-definition maps. Experiments show that aerial imagery leads to a 15-23% improvement in map construction accuracy and a 2% gain in trajectory prediction performance. These results highlight the potential of aerial imagery as a scalable and adaptable source of environmental context in automated vehicle systems, particularly in scenarios where high-definition maps are unavailable, outdated, or costly to maintain. AID4AD, along with evaluation code and pretrained models, is publicly released to foster further research in this direction: https://github.com/DriverlessMobility/AID4AD.
Authors: Chen Li, Chinthani Sugandhika, Yeo Keat Ee, Eric Peh, Hao Zhang, Hong Yang, Deepu Rajan, Basura Fernando
Abstract:
Existing human motion Q\&A methods rely on explicit program execution, where the requirement for manually defined functional modules may limit the scalability and adaptability. To overcome this, we propose an implicit program-guided motion reasoning (IMoRe) framework that unifies reasoning across multiple query types without manually designed modules. Unlike existing implicit reasoning approaches that infer reasoning operations from question words, our model directly conditions on structured program functions, ensuring a more precise execution of reasoning steps. Additionally, we introduce a program-guided reading mechanism, which dynamically selects multi-level motion representations from a pretrained motion Vision Transformer (ViT), capturing both high-level semantics and fine-grained motion cues. The reasoning module iteratively refines memory representations, leveraging structured program functions to extract relevant information for different query types. Our model achieves state-of-the-art performance on Babel-QA and generalizes to a newly constructed motion Q\&A dataset based on HuMMan, demonstrating its adaptability across different motion reasoning datasets. Code and dataset are available at: https://github.com/LUNAProject22/IMoRe.
Authors: Chaitanya Patel, Hiroki Nakamura, Yuta Kyuragi, Kazuki Kozuka, Juan Carlos Niebles, Ehsan Adeli
Abstract:
Egocentric human motion generation and forecasting with scene-context is crucial for enhancing AR/VR experiences, improving human-robot interaction, advancing assistive technologies, and enabling adaptive healthcare solutions by accurately predicting and simulating movement from a first-person perspective. However, existing methods primarily focus on third-person motion synthesis with structured 3D scene contexts, limiting their effectiveness in real-world egocentric settings where limited field of view, frequent occlusions, and dynamic cameras hinder scene perception. To bridge this gap, we introduce Egocentric Motion Generation and Egocentric Motion Forecasting, two novel tasks that utilize first-person images for scene-aware motion synthesis without relying on explicit 3D scene. We propose UniEgoMotion, a unified conditional motion diffusion model with a novel head-centric motion representation tailored for egocentric devices. UniEgoMotion's simple yet effective design supports egocentric motion reconstruction, forecasting, and generation from first-person visual inputs in a unified framework. Unlike previous works that overlook scene semantics, our model effectively extracts image-based scene context to infer plausible 3D motion. To facilitate training, we introduce EE4D-Motion, a large-scale dataset derived from EgoExo4D, augmented with pseudo-ground-truth 3D motion annotations. UniEgoMotion achieves state-of-the-art performance in egocentric motion reconstruction and is the first to generate motion from a single egocentric image. Extensive evaluations demonstrate the effectiveness of our unified framework, setting a new benchmark for egocentric motion modeling and unlocking new possibilities for egocentric applications.
Authors: Weicheng Gao
Abstract:
This work is completed on a whim after discussions with my junior colleague. The motion direction angle affects the micro-Doppler spectrum width, thus determining the human motion direction can provide important prior information for downstream tasks such as gait recognition. However, Doppler-Time map (DTM)-based methods still have room for improvement in achieving feature augmentation and motion determination simultaneously. In response, a low-cost but accurate radar-based human motion direction determination (HMDD) method is explored in this paper. In detail, the radar-based human gait DTMs are first generated, and then the feature augmentation is achieved using feature linking model. Subsequently, the HMDD is implemented through a lightweight and fast Vision Transformer-Convolutional Neural Network hybrid model structure. The effectiveness of the proposed method is verified through open-source dataset. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Low-Cost-Accurate-Radar-Based-Human-Motion-Direction-Determination.
Authors: Jing Xu, Weiqiang Wang, Cunjian Chen, Jun Liu, Qiuhong Ke
Abstract:
Group dance generation from music has broad applications in film, gaming, and animation production. However, it requires synchronizing multiple dancers while maintaining spatial coordination. As the number of dancers and sequence length increase, this task faces higher computational complexity and a greater risk of motion collisions. Existing methods often struggle to model dense spatial-temporal interactions, leading to scalability issues and multi-dancer collisions. To address these challenges, we propose ST-GDance, a novel framework that decouples spatial and temporal dependencies to optimize long-term and collision-free group choreography. We employ lightweight graph convolutions for distance-aware spatial modeling and accelerated sparse attention for efficient temporal modeling. This design significantly reduces computational costs while ensuring smooth and collision-free interactions. Experiments on the AIOZ-GDance dataset demonstrate that ST-GDance outperforms state-of-the-art baselines, particularly in generating long and coherent group dance sequences. Project page: https://yilliajing.github.io/ST-GDance-Website/.
Authors: Hyung Kyu Kim, Sangmin Lee, Hak Gu Kim
Abstract:
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.
Authors: Chengchang Tian, Jianwei Ma, Yan Huang, Zhanye Chen, Honghao Wei, Hui Zhang, Wei Hong
Abstract:
Feature-level fusion shows promise in collaborative perception (CP) through balanced performance and communication bandwidth trade-off. However, its effectiveness critically relies on input feature quality. The acquisition of high-quality features faces domain gaps from hardware diversity and deployment conditions, alongside temporal misalignment from transmission delays. These challenges degrade feature quality with cumulative effects throughout the collaborative network. In this paper, we present the Domain-And-Time Alignment (DATA) network, designed to systematically align features while maximizing their semantic representations for fusion. Specifically, we propose a Consistency-preserving Domain Alignment Module (CDAM) that reduces domain gaps through proximal-region hierarchical downsampling and observability-constrained discriminator. We further propose a Progressive Temporal Alignment Module (PTAM) to handle transmission delays via multi-scale motion modeling and two-stage compensation. Building upon the aligned features, an Instance-focused Feature Aggregation Module (IFAM) is developed to enhance semantic representations. Extensive experiments demonstrate that DATA achieves state-of-the-art performance on three typical datasets, maintaining robustness with severe communication delays and pose errors. The code will be released at https://github.com/ChengchangTian/DATA.
Authors: Haichao Liu, Haoren Guo, Pei Liu, Benshan Ma, Yuxiang Zhang, Jun Ma, Tong Heng Lee
Abstract:
Scene understanding and risk-aware attentions are crucial for human drivers to make safe and effective driving decisions. To imitate this cognitive ability in urban autonomous driving while ensuring the transparency and interpretability, we propose a vision-language model (VLM)-enhanced unified decision-making and motion control framework, named VLM-UDMC. This framework incorporates scene reasoning and risk-aware insights into an upper-level slow system, which dynamically reconfigures the optimal motion planning for the downstream fast system. The reconfiguration is based on real-time environmental changes, which are encoded through context-aware potential functions. More specifically, the upper-level slow system employs a two-step reasoning policy with Retrieval-Augmented Generation (RAG), leveraging foundation models to process multimodal inputs and retrieve contextual knowledge, thereby generating risk-aware insights. Meanwhile, a lightweight multi-kernel decomposed LSTM provides real-time trajectory predictions for heterogeneous traffic participants by extracting smoother trend representations for short-horizon trajectory prediction. The effectiveness of the proposed VLM-UDMC framework is verified via both simulations and real-world experiments with a full-size autonomous vehicle. It is demonstrated that the presented VLM-UDMC effectively leverages scene understanding and attention decomposition for rational driving decisions, thus improving the overall urban driving performance. Our open-source project is available at https://github.com/henryhcliu/vlmudmc.git.
Authors: Yuchen Wang, Hongjue Zhao, Haohong Lin, Enze Xu, Lifang He, Huajie Shao
Abstract:
This work aims to address the problem of long-term dynamic forecasting in complex environments where data are noisy and irregularly sampled. While recent studies have introduced some methods to improve prediction performance, these approaches still face a significant challenge in handling long-term extrapolation tasks under such complex scenarios. To overcome this challenge, we propose Phy-SSM, a generalizable method that integrates partial physics knowledge into state space models (SSMs) for long-term dynamics forecasting in complex environments. Our motivation is that SSMs can effectively capture long-range dependencies in sequential data and model continuous dynamical systems, while the incorporation of physics knowledge improves generalization ability. The key challenge lies in how to seamlessly incorporate partially known physics into SSMs. To achieve this, we decompose partially known system dynamics into known and unknown state matrices, which are integrated into a Phy-SSM unit. To further enhance long-term prediction performance, we introduce a physics state regularization term to make the estimated latent states align with system dynamics. Besides, we theoretically analyze the uniqueness of the solutions for our method. Extensive experiments on three real-world applications, including vehicle motion prediction, drone state prediction, and COVID-19 epidemiology forecasting, demonstrate the superior performance of Phy-SSM over the baselines in both long-term interpolation and extrapolation tasks. The code is available at https://github.com/511205787/Phy_SSM-ICML2025.
Authors: Xinyu Zhang, Zhonghao Ye, Jingwei Zhang, Xiang Tian, Zhisheng Liang, Shipeng Yu
Abstract:
WiFi-based human pose estimation has emerged as a promising non-visual alternative approaches due to its pene-trability and privacy advantages. This paper presents VST-Pose, a novel deep learning framework for accurate and continuous pose estimation using WiFi channel state information. The proposed method introduces ViSTA-Former, a spatiotemporal attention backbone with dual-stream architecture that adopts a dual-stream architecture to separately capture temporal dependencies and structural relationships among body joints. To enhance sensitivity to subtle human motions, a velocity modeling branch is integrated into the framework, which learns short-term keypoint dis-placement patterns and improves fine-grained motion representation. We construct a 2D pose dataset specifically designed for smart home care scenarios and demonstrate that our method achieves 92.2% accuracy on the PCK@50 metric, outperforming existing methods by 8.3% in PCK@50 on the self-collected dataset. Further evaluation on the public MMFi dataset confirms the model's robustness and effectiveness in 3D pose estimation tasks. The proposed system provides a reliable and privacy-aware solution for continuous human motion analysis in indoor environments. Our codes are available in https://github.com/CarmenQing/VST-Pose.
Authors: Yuanhong Zheng, Ruixuan Yu, Jian Sun
Abstract:
3D multi-person motion prediction is a highly complex task, primarily due to the dependencies on both individual past movements and the interactions between agents. Moreover, effectively modeling these interactions often incurs substantial computational costs. In this work, we propose a computationally efficient model for multi-person motion prediction by simplifying spatial and temporal interactions. Our approach begins with the design of lightweight dual branches that learn local and global representations for individual and multiple persons separately. Additionally, we introduce a novel cross-level interaction block to integrate the spatial and temporal representations from both branches. To further enhance interaction modeling, we explicitly incorporate the spatial inter-person distance embedding. With above efficient temporal and spatial design, we achieve state-of-the-art performance for multiple metrics on standard datasets of CMU-Mocap, MuPoTS-3D, and 3DPW, while significantly reducing the computational cost. Code is available at https://github.com/Yuanhong-Zheng/EMPMP.
Authors: Chuan Guo, Inwoo Hwang, Jian Wang, Bing Zhou
Abstract:
Text-to-motion generation has experienced remarkable progress in recent years. However, current approaches remain limited to synthesizing motion from short or general text prompts, primarily due to dataset constraints. This limitation undermines fine-grained controllability and generalization to unseen prompts. In this paper, we introduce SnapMoGen, a new text-motion dataset featuring high-quality motion capture data paired with accurate, expressive textual annotations. The dataset comprises 20K motion clips totaling 44 hours, accompanied by 122K detailed textual descriptions averaging 48 words per description (vs. 12 words of HumanML3D). Importantly, these motion clips preserve original temporal continuity as they were in long sequences, facilitating research in long-term motion generation and blending. We also improve upon previous generative masked modeling approaches. Our model, MoMask++, transforms motion into multi-scale token sequences that better exploit the token capacity, and learns to generate all tokens using a single generative masked transformer. MoMask++ achieves state-of-the-art performance on both HumanML3D and SnapMoGen benchmarks. Additionally, we demonstrate the ability to process casual user prompts by employing an LLM to reformat inputs to align with the expressivity and narration style of SnapMoGen. Project webpage: https://snap-research.github.io/SnapMoGen/
Authors: Kui Jiang, Shiyu Liu, Junjun Jiang, Hongxun Yao, Xiaopeng Fan
Abstract:
Audio-driven talking head generation holds significant potential for film production. While existing 3D methods have advanced motion modeling and content synthesis, they often produce rendering artifacts, such as motion blur, temporal jitter, and local penetration, due to limitations in representing stable, fine-grained motion fields. Through systematic analysis, we reformulate talking head generation into a unified framework comprising three steps: video preprocessing, motion representation, and rendering reconstruction. This framework underpins our proposed M2DAO-Talker, which addresses current limitations via multi-granular motion decoupling and alternating optimization. Specifically, we devise a novel 2D portrait preprocessing pipeline to extract frame-wise deformation control conditions (motion region segmentation masks, and camera parameters) to facilitate motion representation. To ameliorate motion modeling, we elaborate a multi-granular motion decoupling strategy, which independently models non-rigid (oral and facial) and rigid (head) motions for improved reconstruction accuracy. Meanwhile, a motion consistency constraint is developed to ensure head-torso kinematic consistency, thereby mitigating penetration artifacts caused by motion aliasing. In addition, an alternating optimization strategy is designed to iteratively refine facial and oral motion parameters, enabling more realistic video generation. Experiments across multiple datasets show that M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness versus TalkingGaussian while with 150 FPS inference speed. Our project homepage is https://m2dao-talker.github.io/M2DAO-Talk.github.io.
Authors: Evgenii Rudakov, Jonathan Shock, Otto Lappi, Benjamin Ultan Cowley
Abstract:
This paper introduces a SSSUMO, semi-supervised deep learning approach for submovement decomposition that achieves state-of-the-art accuracy and speed. While submovement analysis offers valuable insights into motor control, existing methods struggle with reconstruction accuracy, computational cost, and validation, due to the difficulty of obtaining hand-labeled data. We address these challenges using a semi-supervised learning framework. This framework learns from synthetic data, initially generated from minimum-jerk principles and then iteratively refined through adaptation to unlabeled human movement data. Our fully convolutional architecture with differentiable reconstruction significantly surpasses existing methods on both synthetic and diverse human motion datasets, demonstrating robustness even in high-noise conditions. Crucially, the model operates in real-time (less than a millisecond per input second), a substantial improvement over optimization-based techniques. This enhanced performance facilitates new applications in human-computer interaction, rehabilitation medicine, and motor control studies. We demonstrate the model's effectiveness across diverse human-performed tasks such as steering, rotation, pointing, object moving, handwriting, and mouse-controlled gaming, showing notable improvements particularly on challenging datasets where traditional methods largely fail. Training and benchmarking source code, along with pre-trained model weights, are made publicly available at https://github.com/dolphin-in-a-coma/sssumo.
Authors: Shuaijin Wan
Abstract:
Human motion is a continuous physical process in 3D space, governed by complex dynamic and kinematic constraints. Existing methods typically represent the human pose as an abstract graph structure, neglecting the intrinsic physical dependencies between joints, which increases learning difficulty and makes the model prone to generating unrealistic motions. In this paper, we propose GGMotion, a group graph dynamics-kinematics network that models human topology in groups to better leverage dynamics and kinematics priors. To preserve the geometric equivariance in 3D space, we propose a novel radial field for the graph network that captures more comprehensive spatio-temporal dependencies by aggregating joint features through spatial and temporal edges. Inter-group and intra-group interaction modules are employed to capture the dependencies of joints at different scales. Combined with equivariant multilayer perceptrons (MLP), joint position features are updated in each group through parallelized dynamics-kinematics propagation to improve physical plausibility. Meanwhile, we introduce an auxiliary loss to supervise motion priors during training. Extensive experiments on three standard benchmarks, including Human3.6M, CMU-Mocap, and 3DPW, demonstrate the effectiveness and superiority of our approach, achieving a significant performance margin in short-term motion prediction. The code is available at https://github.com/inkcat520/GGMotion.git.
Authors: Ke Fan, Shunlin Lu, Minyue Dai, Runyi Yu, Lixing Xiao, Zhiyang Dou, Junting Dong, Lizhuang Ma, Jingbo Wang
Abstract:
Generating diverse and natural human motion sequences based on textual descriptions constitutes a fundamental and challenging research area within the domains of computer vision, graphics, and robotics. Despite significant advancements in this field, current methodologies often face challenges regarding zero-shot generalization capabilities, largely attributable to the limited size of training datasets. Moreover, the lack of a comprehensive evaluation framework impedes the advancement of this task by failing to identify directions for improvement. In this work, we aim to push text-to-motion into a new era, that is, to achieve the generalization ability of zero-shot. To this end, firstly, we develop an efficient annotation pipeline and introduce MotionMillion-the largest human motion dataset to date, featuring over 2,000 hours and 2 million high-quality motion sequences. Additionally, we propose MotionMillion-Eval, the most comprehensive benchmark for evaluating zero-shot motion generation. Leveraging a scalable architecture, we scale our model to 7B parameters and validate its performance on MotionMillion-Eval. Our results demonstrate strong generalization to out-of-domain and complex compositional motions, marking a significant step toward zero-shot human motion generation. The code is available at https://github.com/VankouF/MotionMillion-Codes.
Authors: Inès Hyeonsu Kim, Seokju Cho, Jahyeok Koo, Junghyun Park, Jiahui Huang, Joon-Young Lee, Seungryong Kim
Abstract:
Human motion, with its inherent complexities, such as non-rigid deformations, articulated movements, clothing distortions, and frequent occlusions caused by limbs or other individuals, provides a rich and challenging source of supervision that is crucial for training robust and generalizable point trackers. Despite the suitability of human motion, acquiring extensive training data for point tracking remains difficult due to laborious manual annotation. Our proposed pipeline, AnthroTAP, addresses this by proposing an automated pipeline to generate pseudo-labeled training data, leveraging the Skinned Multi-Person Linear (SMPL) model. We first fit the SMPL model to detected humans in video frames, project the resulting 3D mesh vertices onto 2D image planes to generate pseudo-trajectories, handle occlusions using ray-casting, and filter out unreliable tracks based on optical flow consistency. A point tracking model trained on AnthroTAP annotated dataset achieves state-of-the-art performance on the TAP-Vid benchmark, surpassing other models trained on real videos while using 10,000 times less data and only 1 day in 4 GPUs, compared to 256 GPUs used in recent state-of-the-art.
Authors: Zhenghao Zhang, Junchao Liao, Xiangyu Meng, Long Qin, Weizhi Wang
Abstract:
Recent advances in diffusion transformer models for motion-guided video generation, such as Tora, have shown significant progress. In this paper, we present Tora2, an enhanced version of Tora, which introduces several design improvements to expand its capabilities in both appearance and motion customization. Specifically, we introduce a decoupled personalization extractor that generates comprehensive personalization embeddings for multiple open-set entities, better preserving fine-grained visual details compared to previous methods. Building on this, we design a gated self-attention mechanism to integrate trajectory, textual description, and visual information for each entity. This innovation significantly reduces misalignment in multimodal conditioning during training. Moreover, we introduce a contrastive loss that jointly optimizes trajectory dynamics and entity consistency through explicit mapping between motion and personalization embeddings. Tora2 is, to our best knowledge, the first method to achieve simultaneous multi-entity customization of appearance and motion for video generation. Experimental results demonstrate that Tora2 achieves competitive performance with state-of-the-art customization methods while providing advanced motion control capabilities, which marks a critical advancement in multi-condition video generation. Project page: https://ali-videoai.github.io/Tora2_page/.
Authors: Fabian Konstantinidis, Ariel Dallari Guerreiro, Raphael Trumpp, Moritz Sackmann, Ulrich Hofmann, Marco Caccamo, Christoph Stiller
Abstract:
Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.
Authors: Jianwei Tang, Hong Yang, Tengyue Chen, Jian-Fang Hu
Abstract:
Action-driven stochastic human motion prediction aims to generate future motion sequences of a pre-defined target action based on given past observed sequences performing non-target actions. This task primarily presents two challenges. Firstly, generating smooth transition motions is hard due to the varying transition speeds of different actions. Secondly, the action characteristic is difficult to be learned because of the similarity of some actions. These issues cause the predicted results to be unreasonable and inconsistent. As a result, we propose two memory banks, the Soft-transition Action Bank (STAB) and Action Characteristic Bank (ACB), to tackle the problems above. The STAB stores the action transition information. It is equipped with the novel soft searching approach, which encourages the model to focus on multiple possible action categories of observed motions. The ACB records action characteristic, which produces more prior information for predicting certain actions. To fuse the features retrieved from the two banks better, we further propose the Adaptive Attention Adjustment (AAA) strategy. Extensive experiments on four motion prediction datasets demonstrate that our approach consistently outperforms the previous state-of-the-art. The demo and code are available at https://hyqlat.github.io/STABACB.github.io/.
Authors: Jianwei Tang, Jiangxin Sun, Xiaotong Lin, Lifang Zhang, Wei-Shi Zheng, Jian-Fang Hu
Abstract:
Human Motion Prediction (HMP) aims to predict future poses at different moments according to past motion sequences. Previous approaches have treated the prediction of various moments equally, resulting in two main limitations: the learning of short-term predictions is hindered by the focus on long-term predictions, and the incorporation of prior information from past predictions into subsequent predictions is limited. In this paper, we introduce a novel multi-stage training framework called Temporal Continual Learning (TCL) to address the above challenges. To better preserve prior information, we introduce the Prior Compensation Factor (PCF). We incorporate it into the model training to compensate for the lost prior information. Furthermore, we derive a more reasonable optimization objective through theoretical derivation. It is important to note that our TCL framework can be easily integrated with different HMP backbone models and adapted to various datasets and applications. Extensive experiments on four HMP benchmark datasets demonstrate the effectiveness and flexibility of TCL. The code is available at https://github.com/hyqlat/TCL.
Authors: Jiahao Wu, Rui Peng, Jianbo Jiao, Jiayu Yang, Luyang Tang, Kaiqiang Xiong, Jie Liang, Jinbo Yan, Runling Liu, Ronggang Wang
Abstract:
Due to the complex and highly dynamic motions in the real world, synthesizing dynamic videos from multi-view inputs for arbitrary viewpoints is challenging. Previous works based on neural radiance field or 3D Gaussian splatting are limited to modeling fine-scale motion, greatly restricting their application. In this paper, we introduce LocalDyGS, which consists of two parts to adapt our method to both large-scale and fine-scale motion scenes: 1) We decompose a complex dynamic scene into streamlined local spaces defined by seeds, enabling global modeling by capturing motion within each local space. 2) We decouple static and dynamic features for local space motion modeling. A static feature shared across time steps captures static information, while a dynamic residual field provides time-specific features. These are combined and decoded to generate Temporal Gaussians, modeling motion within each local space. As a result, we propose a novel dynamic scene reconstruction framework to model highly dynamic real-world scenes more realistically. Our method not only demonstrates competitive performance on various fine-scale datasets compared to state-of-the-art (SOTA) methods, but also represents the first attempt to model larger and more complex highly dynamic scenes. Project page: https://wujh2001.github.io/LocalDyGS/.
Authors: Yuhao Lin, Yi-Lin Wei, Haoran Liao, Mu Lin, Chengyi Xing, Hao Li, Dandan Zhang, Mark Cutkosky, Wei-Shi Zheng
Abstract:
Dexterous teleoperation plays a crucial role in robotic manipulation for real-world data collection and remote robot control. Previous dexterous teleoperation mostly relies on hand retargeting to closely mimic human hand postures. However, these approaches may fail to fully leverage the inherent dexterity of dexterous hands, which can execute unique actions through their structural advantages compared to human hands. To address this limitation, we propose TypeTele, a type-guided dexterous teleoperation system, which enables dexterous hands to perform actions that are not constrained by human motion patterns. This is achieved by introducing dexterous manipulation types into the teleoperation system, allowing operators to employ appropriate types to complete specific tasks. To support this system, we build an extensible dexterous manipulation type library to cover comprehensive dexterous postures used in manipulation tasks. During teleoperation, we employ a MLLM (Multi-modality Large Language Model)-assisted type retrieval module to identify the most suitable manipulation type based on the specific task and operator commands. Extensive experiments of real-world teleoperation and imitation learning demonstrate that the incorporation of manipulation types significantly takes full advantage of the dexterous robot's ability to perform diverse and complex tasks with higher success rates.
Authors: Cuong Le, Huy-Phuong Le, Duc Le, Minh-Thien Duong, Van-Binh Nguyen, My-Ha Le
Abstract:
Body dynamics are crucial information for the analysis of human motions in important research fields, ranging from biomechanics, sports science to computer vision and graphics. Modern approaches collect the body dynamics, external reactive force specifically, via force plates, synchronizing with human motion capture data, and learn to estimate the dynamics from a black-box deep learning model. Being specialized devices, force plates can only be installed in laboratory setups, imposing a significant limitation on the learning of human dynamics. To this end, we propose a novel method for estimating human ground reaction dynamics directly from the more reliable motion capture data with physics laws and computational simulation as constrains. We introduce a highly accurate and robust method for computing ground reaction forces from motion capture data using Euler's integration scheme and PD algorithm. The physics-based reactive forces are used to inform the learning model about the physics-informed motion dynamics thus improving the estimation accuracy. The proposed approach was tested on the GroundLink dataset, outperforming the baseline model on: 1) the ground reaction force estimation accuracy compared to the force plates measurement; and 2) our simulated root trajectory precision. The implementation code is available at https://github.com/cuongle1206/Phys-GRD
Authors: Zhe Kong, Le Li, Yong Zhang, Feng Gao, Shaoshu Yang, Tao Wang, Kaihao Zhang, Zhuoliang Kang, Xiaoming Wei, Guanying Chen, Wenhan Luo
Abstract:
Real-world video super-resolution (VSR) presents significant challenges due to complex and unpredictable degradations. Although some recent methods utilize image diffusion models for VSR and have shown improved detail generation capabilities, they still struggle to produce temporally consistent frames. We attempt to use Stable Video Diffusion (SVD) combined with ControlNet to address this issue. However, due to the intrinsic image-animation characteristics of SVD, it is challenging to generate fine details using only low-quality videos. To tackle this problem, we propose DAM-VSR, an appearance and motion disentanglement framework for VSR. This framework disentangles VSR into appearance enhancement and motion control problems. Specifically, appearance enhancement is achieved through reference image super-resolution, while motion control is achieved through video ControlNet. This disentanglement fully leverages the generative prior of video diffusion models and the detail generation capabilities of image super-resolution models. Furthermore, equipped with the proposed motion-aligned bidirectional sampling strategy, DAM-VSR can conduct VSR on longer input videos. DAM-VSR achieves state-of-the-art performance on real-world data and AIGC data, demonstrating its powerful detail generation capabilities.
Authors: Hendric Voss, Stefan Kopp
Abstract:
Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/JAX-IK
Authors: Ying Guo, Xi Liu, Cheng Zhen, Pengfei Yan, Xiaoming Wei
Abstract:
Face-to-face communication, as a common human activity, motivates the research on interactive head generation. A virtual agent can generate motion responses with both listening and speaking capabilities based on the audio or motion signals of the other user and itself. However, previous clip-wise generation paradigm or explicit listener/speaker generator-switching methods have limitations in future signal acquisition, contextual behavioral understanding, and switching smoothness, making it challenging to be real-time and realistic. In this paper, we propose an autoregressive (AR) based frame-wise framework called ARIG to realize the real-time generation with better interaction realism. To achieve real-time generation, we model motion prediction as a non-vector-quantized AR process. Unlike discrete codebook-index prediction, we represent motion distribution using diffusion procedure, achieving more accurate predictions in continuous space. To improve interaction realism, we emphasize interactive behavior understanding (IBU) and detailed conversational state understanding (CSU). In IBU, based on dual-track dual-modal signals, we summarize short-range behaviors through bidirectional-integrated learning and perform contextual understanding over long ranges. In CSU, we use voice activity signals and context features of IBU to understand the various states (interruption, feedback, pause, etc.) that exist in actual conversations. These serve as conditions for the final progressive motion prediction. Extensive experiments have verified the effectiveness of our model.
Authors: Yusuke Tanaka, Alvin Zhu, Quanyou Wang, Dennis Hong
Abstract:
Reinforcement learning (RL) has enabled advances in humanoid robot locomotion, yet most learning frameworks do not account for mechanical intelligence embedded in parallel actuation mechanisms due to limitations in simulator support for closed kinematic chains. This omission can lead to inaccurate motion modeling and suboptimal policies, particularly for robots with high actuation complexity. This paper presents general formulations and simulation methods for three types of parallel mechanisms: a differential pulley, a five-bar linkage, and a four-bar linkage, and trains a parallel-mechanism aware policy through an end-to-end curriculum RL framework for BRUCE, a kid-sized humanoid robot. Unlike prior approaches that rely on simplified serial approximations, we simulate all closed-chain constraints natively using GPU-accelerated MuJoCo (MJX), preserving the hardware's mechanical nonlinear properties during training. We benchmark our RL approach against a model predictive controller (MPC), demonstrating better surface generalization and performance in real-world zero-shot deployment. This work highlights the computational approaches and performance benefits of fully simulating parallel mechanisms in end-to-end learning pipelines for legged humanoids. Project codes with parallel mechanisms: https://github.com/alvister88/og_bruce
Authors: Shuai Tan, Biao Gong, Yujie Wei, Shiwei Zhang, Zhuoxin Liu, Dandan Zheng, Jingdong Chen, Yan Wang, Hao Ouyang, Kecheng Zheng, Yujun Shen
Abstract:
Diffusion-based video motion customization facilitates the acquisition of human motion representations from a few video samples, while achieving arbitrary subjects transfer through precise textual conditioning. Existing approaches often rely on semantic-level alignment, expecting the model to learn new motion concepts and combine them with other entities (e.g., ''cats'' or ''dogs'') to produce visually appealing results. However, video data involve complex spatio-temporal patterns, and focusing solely on semantics cause the model to overlook the visual complexity of motion. Conversely, tuning only the visual representation leads to semantic confusion in representing the intended action. To address these limitations, we propose SynMotion, a new motion-customized video generation model that jointly leverages semantic guidance and visual adaptation. At the semantic level, we introduce the dual-embedding semantic comprehension mechanism which disentangles subject and motion representations, allowing the model to learn customized motion features while preserving its generative capabilities for diverse subjects. At the visual level, we integrate parameter-efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence. Furthermore, we introduce a new embedding-specific training strategy which \textbf{alternately optimizes} subject and motion embeddings, supported by the manually constructed Subject Prior Video (SPV) training dataset. This strategy promotes motion specificity while preserving generalization across diverse subjects. Lastly, we introduce MotionBench, a newly curated benchmark with diverse motion patterns. Experimental results across both T2V and I2V settings demonstrate that \method outperforms existing baselines. Project page: https://lucaria-academy.github.io/SynMotion/
Authors: Marko Mihajlovic, Siwei Zhang, Gen Li, Kaifeng Zhao, Lea Müller, Siyu Tang
Abstract:
Parametric human body models play a crucial role in computer graphics and vision, enabling applications ranging from human motion analysis to understanding human-environment interactions. Traditionally, these models use surface meshes, which pose challenges in efficiently handling interactions with other geometric entities, such as objects and scenes, typically represented as meshes or point clouds. To address this limitation, recent research has explored volumetric neural implicit body models. However, existing works are either insufficiently robust for complex human articulations or impose high computational and memory costs, limiting their widespread use. To this end, we introduce VolumetricSMPL, a neural volumetric body model that leverages Neural Blend Weights (NBW) to generate compact, yet efficient MLP decoders. Unlike prior approaches that rely on large MLPs, NBW dynamically blends a small set of learned weight matrices using predicted shape- and pose-dependent coefficients, significantly improving computational efficiency while preserving expressiveness. VolumetricSMPL outperforms prior volumetric occupancy model COAP with 10x faster inference, 6x lower GPU memory usage, enhanced accuracy, and a Signed Distance Function (SDF) for efficient and differentiable contact modeling. We demonstrate VolumetricSMPL's strengths across four challenging tasks: (1) reconstructing human-object interactions from in-the-wild images, (2) recovering human meshes in 3D scenes from egocentric views, (3) scene-constrained motion synthesis, and (4) resolving self-intersections. Our results highlight its broad applicability and significant performance and efficiency gains.
Authors: Yu Shang, Xin Zhang, Yinzhou Tang, Lei Jin, Chen Gao, Wei Wu, Yong Li
Abstract:
World models have become indispensable tools for embodied intelligence, serving as powerful simulators capable of generating realistic robotic videos while addressing critical data scarcity challenges. However, current embodied world models exhibit limited physical awareness, particularly in modeling 3D geometry and motion dynamics, resulting in unrealistic video generation for contact-rich robotic scenarios. In this paper, we present RoboScape, a unified physics-informed world model that jointly learns RGB video generation and physics knowledge within an integrated framework. We introduce two key physics-informed joint training tasks: temporal depth prediction that enhances 3D geometric consistency in video rendering, and keypoint dynamics learning that implicitly encodes physical properties (e.g., object shape and material characteristics) while improving complex motion modeling. Extensive experiments demonstrate that RoboScape generates videos with superior visual fidelity and physical plausibility across diverse robotic scenarios. We further validate its practical utility through downstream applications including robotic policy training with generated data and policy evaluation. Our work provides new insights for building efficient physics-informed world models to advance embodied intelligence research. The code is available at: https://github.com/tsinghua-fib-lab/RoboScape.
Authors: Xianghan Meng, Zhengyu Tong, Zhiyuan Huang, Chun-Guang Li
Abstract:
Human Motion Segmentation (HMS), which aims to partition videos into non-overlapping human motions, has attracted increasing research attention recently. Existing approaches for HMS are mainly dominated by subspace clustering methods, which are grounded on the assumption that high-dimensional temporal data align with a Union-of-Subspaces (UoS) distribution. However, the frames in video capturing complex human motions with cluttered backgrounds may not align well with the UoS distribution. In this paper, we propose a novel approach for HMS, named Temporal Rate Reduction Clustering ($\text{TR}^2\text{C}$), which jointly learns structured representations and affinity to segment the sequences of frames in video. Specifically, the structured representations learned by $\text{TR}^2\text{C}$ enjoy temporally consistency and are aligned well with a UoS structure, which is favorable for addressing the HMS task. We conduct extensive experiments on five benchmark HMS datasets and achieve state-of-the-art performances with different feature extractors. The code is available at: https://github.com/mengxianghan123/TR2C.
Authors: Zehuan Huang, Haoran Feng, Yangtian Sun, Yuanchen Guo, Yanpei Cao, Lu Sheng
Abstract:
We present AnimaX, a feed-forward 3D animation framework that bridges the motion priors of video diffusion models with the controllable structure of skeleton-based animation. Traditional motion synthesis methods are either restricted to fixed skeletal topologies or require costly optimization in high-dimensional deformation spaces. In contrast, AnimaX effectively transfers video-based motion knowledge to the 3D domain, supporting diverse articulated meshes with arbitrary skeletons. Our method represents 3D motion as multi-view, multi-frame 2D pose maps, and enables joint video-pose diffusion conditioned on template renderings and a textual motion prompt. We introduce shared positional encodings and modality-aware embeddings to ensure spatial-temporal alignment between video and pose sequences, effectively transferring video priors to motion generation task. The resulting multi-view pose sequences are triangulated into 3D joint positions and converted into mesh animation via inverse kinematics. Trained on a newly curated dataset of 160,000 rigged sequences, AnimaX achieves state-of-the-art results on VBench in generalization, motion fidelity, and efficiency, offering a scalable solution for category-agnostic 3D animation. Project page: \href{https://anima-x.github.io/}{https://anima-x.github.io/}.
Authors: Kawser Ahmed, Mir Shahriar Fardin, Md Arif Faysal Nayem, Fahim Hafiz, Swakkhar Shatabda
Abstract:
The increasing demand for underwater exploration and rescue operations enforces the development of advanced wireless or semi-wireless underwater vessels equipped with manipulator arms. This paper presents the implementation of a semi-wireless underwater vehicle, "TritonZ" equipped with a manipulator arm, tailored for effective underwater exploration and rescue operations. The vehicle's compact design enables deployment in different submarine surroundings, addressing the need for wireless systems capable of navigating challenging underwater terrains. The manipulator arm can interact with the environment, allowing the robot to perform sophisticated tasks during exploration and rescue missions in emergency situations. TritonZ is equipped with various sensors such as Pi-Camera, Humidity, and Temperature sensors to send real-time environmental data. Our underwater vehicle controlled using a customized remote controller can navigate efficiently in the water where Pi-Camera enables live streaming of the surroundings. Motion control and video capture are performed simultaneously using this camera. The manipulator arm is designed to perform various tasks, similar to grasping, manipulating, and collecting underwater objects. Experimental results shows the efficacy of the proposed remotely operated vehicle in performing a variety of underwater exploration and rescue tasks. Additionally, the results show that TritonZ can maintain an average of 13.5cm/s with a minimal delay of 2-3 seconds. Furthermore, the vehicle can sustain waves underwater by maintaining its position as well as average velocity. The full project details and source code can be accessed at this link: https://github.com/kawser-ahmed-byte/TritonZ
Authors: Jeremy A. Collins, Loránd Cheng, Kunal Aneja, Albert Wilcox, Benjamin Joffe, Animesh Garg
Abstract:
Action-labeled data for robotics is scarce and expensive, limiting the generalization of learned policies. In contrast, vast amounts of action-free video data are readily available, but translating these observations into effective policies remains a challenge. We introduce AMPLIFY, a novel framework that leverages large-scale video data by encoding visual dynamics into compact, discrete motion tokens derived from keypoint trajectories. Our modular approach separates visual motion prediction from action inference, decoupling the challenges of learning what motion defines a task from how robots can perform it. We train a forward dynamics model on abundant action-free videos and an inverse dynamics model on a limited set of action-labeled examples, allowing for independent scaling. Extensive evaluations demonstrate that the learned dynamics are both accurate, achieving up to 3.7x better MSE and over 2.5x better pixel prediction accuracy compared to prior approaches, and broadly useful. In downstream policy learning, our dynamics predictions enable a 1.2-2.2x improvement in low-data regimes, a 1.4x average improvement by learning from action-free human videos, and the first generalization to LIBERO tasks from zero in-distribution action data. Beyond robotic control, we find the dynamics learned by AMPLIFY to be a versatile latent world model, enhancing video prediction quality. Our results present a novel paradigm leveraging heterogeneous data sources to build efficient, generalizable world models. More information can be found at https://amplify-robotics.github.io/.
Authors: Hao Xu, Lechao Cheng, Yaxiong Wang, Shengeng Tang, Zhun Zhong
Abstract:
We present our solution to the MiGA Challenge at IJCAI 2025, which aims to recognize micro-gestures (MGs) from skeleton sequences for the purpose of hidden emotion understanding. MGs are characterized by their subtlety, short duration, and low motion amplitude, making them particularly challenging to model and classify. We adopt PoseC3D as the baseline framework and introduce three key enhancements: (1) a topology-aware skeleton representation specifically designed for the iMiGUE dataset to better capture fine-grained motion patterns; (2) an improved temporal processing strategy that facilitates smoother and more temporally consistent motion modeling; and (3) the incorporation of semantic label embeddings as auxiliary supervision to improve the model generalization. Our method achieves a Top-1 accuracy of 67.01\% on the iMiGUE test set. As a result of these contributions, our approach ranks third on the official MiGA Challenge leaderboard. The source code is available at \href{https://github.com/EGO-False-Sleep/Miga25_track1}{https://github.com/EGO-False-Sleep/Miga25\_track1}.
Authors: Qi Yan, Brian Zhang, Yutong Zhang, Daniel Yang, Joshua White, Di Chen, Jiachao Liu, Langechuan Liu, Binnan Zhuang, Shaoshuai Shi, Renjie Liao
Abstract:
Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
Authors: Wei Yao, Yunlian Sun, Chang Liu, Hongwen Zhang, Jinhui Tang
Abstract:
Driven by advancements in motion capture and generative artificial intelligence, leveraging large-scale MoCap datasets to train generative models for synthesizing diverse, realistic human motions has become a promising research direction. However, existing motion-capture techniques and generative models often neglect physical constraints, leading to artifacts such as interpenetration, sliding, and floating. These issues are exacerbated in multi-person motion generation, where complex interactions are involved. To address these limitations, we introduce physical mapping, integrated throughout the human interaction generation pipeline. Specifically, motion imitation within a physics-based simulation environment is used to project target motions into a physically valid space. The resulting motions are adjusted to adhere to real-world physics constraints while retaining their original semantic meaning. This mapping not only improves MoCap data quality but also directly informs post-processing of generated motions. Given the unique interactivity of multi-person scenarios, we propose a tailored motion representation framework. Motion Consistency (MC) and Marker-based Interaction (MI) loss functions are introduced to improve model performance. Experiments show our method achieves impressive results in generated human motion quality, with a 3%-89% improvement in physical fidelity. Project page http://yw0208.github.io/physiinter
Authors: Nada Aboudeshish, Dmitry Ignatov, Radu Timofte
Abstract:
Data augmentation is a crucial technique in deep learning, particularly for tasks with limited dataset diversity, such as skeleton-based datasets. This paper proposes a comprehensive data augmentation framework that integrates geometric transformations, random cropping, rotation, zooming and intensity-based transformations, brightness and contrast adjustments to simulate real-world variations. Random cropping ensures the preservation of spatio-temporal integrity while addressing challenges such as viewpoint bias and occlusions. The augmentation pipeline generates three augmented versions for each sample in addition to the data set sample, thus quadrupling the data set size and enriching the diversity of gesture representations. The proposed augmentation strategy is evaluated on three models: multi-stream e2eET, FPPR point cloud-based hand gesture recognition (HGR), and DD-Network. Experiments are conducted on benchmark datasets including DHG14/28, SHREC'17, and JHMDB. The e2eET model, recognized as the state-of-the-art for hand gesture recognition on DHG14/28 and SHREC'17. The FPPR-PCD model, the second-best performing model on SHREC'17, excels in point cloud-based gesture recognition. DD-Net, a lightweight and efficient architecture for skeleton-based action recognition, is evaluated on SHREC'17 and the Human Motion Data Base (JHMDB). The results underline the effectiveness and versatility of the proposed augmentation strategy, significantly improving model generalization and robustness across diverse datasets and architectures. This framework not only establishes state-of-the-art results on all three evaluated models but also offers a scalable solution to advance HGR and action recognition applications in real-world scenarios. The framework is available at https://github.com/NadaAbodeshish/Random-Cropping-augmentation-HGR
Authors: Yi Xu, Ruining Yang, Yitian Zhang, Yizhou Wang, Jianglin Lu, Mingyuan Zhang, Lili Su, Yun Fu
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in integrating language-driven techniques into trajectory prediction. By leveraging their semantic and reasoning capabilities, LLMs are reshaping how autonomous systems perceive, model, and predict trajectories. This survey provides a comprehensive overview of this emerging field, categorizing recent work into five directions: (1) Trajectory prediction via language modeling paradigms, (2) Direct trajectory prediction with pretrained language models, (3) Language-guided scene understanding for trajectory prediction, (4) Language-driven data generation for trajectory prediction, (5) Language-based reasoning and interpretability for trajectory prediction. For each, we analyze representative methods, highlight core design choices, and identify open challenges. This survey bridges natural language processing and trajectory prediction, offering a unified perspective on how language can enrich trajectory prediction.
Authors: Di Wen, Lei Qi, Kunyu Peng, Kailun Yang, Fei Teng, Ao Luo, Jia Fu, Yufan Chen, Ruiping Liu, Yitian Shi, M. Saquib Sarfraz, Rainer Stiefelhagen
Abstract:
Despite substantial progress in video understanding, most existing datasets are limited to Earth's gravitational conditions. However, microgravity alters human motion, interactions, and visual semantics, revealing a critical gap for real-world vision systems. This presents a challenge for domain-robust video understanding in safety-critical space applications. To address this, we introduce MicroG-4M, the first benchmark for spatio-temporal and semantic understanding of human activities in microgravity. Constructed from real-world space missions and cinematic simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-rich captions, and over 7,000 question-answer pairs on astronaut activities and scene understanding. MicroG-4M supports three core tasks: fine-grained multi-label action recognition, temporal video captioning, and visual question answering, enabling a comprehensive evaluation of both spatial localization and semantic reasoning in microgravity contexts. We establish baselines using state-of-the-art models. All data, annotations, and code are available at https://github.com/LEI-QI-233/HAR-in-Space.
Authors: Andy Bonnetto, Haozhe Qi, Franklin Leong, Matea Tashkovska, Mahdi Rad, Solaiman Shokur, Friedhelm Hummel, Silvestro Micera, Marc Pollefeys, Alexander Mathis
Abstract:
Understanding behavior requires datasets that capture humans while carrying out complex tasks. The kitchen is an excellent environment for assessing human motor and cognitive function, as many complex actions are naturally exhibited in kitchens from chopping to cleaning. Here, we introduce the EPFL-Smart-Kitchen-30 dataset, collected in a noninvasive motion capture platform inside a kitchen environment. Nine static RGB-D cameras, inertial measurement units (IMUs) and one head-mounted HoloLens~2 headset were used to capture 3D hand, body, and eye movements. The EPFL-Smart-Kitchen-30 dataset is a multi-view action dataset with synchronized exocentric, egocentric, depth, IMUs, eye gaze, body and hand kinematics spanning 29.7 hours of 16 subjects cooking four different recipes. Action sequences were densely annotated with 33.78 action segments per minute. Leveraging this multi-modal dataset, we propose four benchmarks to advance behavior understanding and modeling through 1) a vision-language benchmark, 2) a semantic text-to-motion generation benchmark, 3) a multi-modal action recognition benchmark, 4) a pose-based action segmentation benchmark. We expect the EPFL-Smart-Kitchen-30 dataset to pave the way for better methods as well as insights to understand the nature of ecologically-valid human behavior. Code and data are available at https://github.com/amathislab/EPFL-Smart-Kitchen
Authors: Mingyi Shi, Wei Liu, Jidong Mei, Wangpok Tse, Rui Chen, Xuelin Chen, Taku Komura
Abstract:
We present MotionPersona, a novel real-time character controller that allows users to characterize a character by specifying attributes such as physical traits, mental states, and demographics, and projects these properties into the generated motions for animating the character. In contrast to existing deep learning-based controllers, which typically produce homogeneous animations tailored to a single, predefined character, MotionPersona accounts for the impact of various traits on human motion as observed in the real world. To achieve this, we develop a block autoregressive motion diffusion model conditioned on SMPLX parameters, textual prompts, and user-defined locomotion control signals. We also curate a comprehensive dataset featuring a wide range of locomotion types and actor traits to enable the training of this characteristic-aware controller. Unlike prior work, MotionPersona is the first method capable of generating motion that faithfully reflects user-specified characteristics (e.g., an elderly person's shuffling gait) while responding in real time to dynamic control inputs. Additionally, we introduce a few-shot characterization technique as a complementary conditioning mechanism, enabling customization via short motion clips when language prompts fall short. Through extensive experiments, we demonstrate that MotionPersona outperforms existing methods in characteristics-aware locomotion control, achieving superior motion quality and diversity. Results, code, and demo can be found at: https://motionpersona25.github.io/.
Authors: Angtian Wang, Haibin Huang, Jacob Zhiyuan Fang, Yiding Yang, Chongyang Ma
Abstract:
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
Authors: Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, Tao Mei
Abstract:
Animating images with interactive motion control has garnered popularity for image-to-video (I2V) generation. Modern approaches typically rely on large Gaussian kernels to extend motion trajectories as condition without explicitly defining movement region, leading to coarse motion control and failing to disentangle object and camera moving. To alleviate these, we present MotionPro, a precise motion controller that novelly leverages region-wise trajectory and motion mask to regulate fine-grained motion synthesis and identify target motion category (i.e., object or camera moving), respectively. Technically, MotionPro first estimates the flow maps on each training video via a tracking model, and then samples the region-wise trajectories to simulate inference scenario. Instead of extending flow through large Gaussian kernels, our region-wise trajectory approach enables more precise control by directly utilizing trajectories within local regions, thereby effectively characterizing fine-grained movements. A motion mask is simultaneously derived from the predicted flow maps to capture the holistic motion dynamics of the movement regions. To pursue natural motion control, MotionPro further strengthens video denoising by incorporating both region-wise trajectories and motion mask through feature modulation. More remarkably, we meticulously construct a benchmark, i.e., MC-Bench, with 1.1K user-annotated image-trajectory pairs, for the evaluation of both fine-grained and object-level I2V motion control. Extensive experiments conducted on WebVid-10M and MC-Bench demonstrate the effectiveness of MotionPro. Please refer to our project page for more results: https://zhw-zhang.github.io/MotionPro-page/.
Authors: Muyao Niu, Mingdeng Cao, Yifan Zhan, Qingtian Zhu, Mingze Ma, Jiancheng Zhao, Yanhong Zeng, Zhihang Zhong, Xiao Sun, Yinqiang Zheng
Abstract:
Recent advances in video diffusion models have significantly improved character animation techniques. However, current approaches rely on basic structural conditions such as DWPose or SMPL-X to animate character images, limiting their effectiveness in open-domain scenarios with dynamic backgrounds or challenging human poses. In this paper, we introduce \textbf{AniCrafter}, a diffusion-based human-centric animation model that can seamlessly integrate and animate a given character into open-domain dynamic backgrounds while following given human motion sequences. Built on cutting-edge Image-to-Video (I2V) diffusion architectures, our model incorporates an innovative ''avatar-background'' conditioning mechanism that reframes open-domain human-centric animation as a restoration task, enabling more stable and versatile animation outputs. Experimental results demonstrate the superior performance of our method. Codes are available at https://github.com/MyNiuuu/AniCrafter.
Authors: Hongsong Wang, Yin Zhu, Qiuxia Lai, Yang Zhang, Guo-Sen Xie, Xin Geng
Abstract:
Computational dance generation is crucial in many areas, such as art, human-computer interaction, virtual reality, and digital entertainment, particularly for generating coherent and expressive long dance sequences. Diffusion-based music-to-dance generation has made significant progress, yet existing methods still struggle to produce physically plausible motions. To address this, we propose Plausibility-Aware Motion Diffusion (PAMD), a framework for generating dances that are both musically aligned and physically realistic. The core of PAMD lies in the Plausible Motion Constraint (PMC), which leverages Neural Distance Fields (NDFs) to model the actual pose manifold and guide generated motions toward a physically valid pose manifold. To provide more effective guidance during generation, we incorporate Prior Motion Guidance (PMG), which uses standing poses as auxiliary conditions alongside music features. To further enhance realism for complex movements, we introduce the Motion Refinement with Foot-ground Contact (MRFC) module, which addresses foot-skating artifacts by bridging the gap between the optimization objective in linear joint position space and the data representation in nonlinear rotation space. Extensive experiments show that PAMD significantly improves musical alignment and enhances the physical plausibility of generated motions. This project page is available at: https://mucunzhuzhu.github.io/PAMD-page/.
Authors: Jue Gong, Tingyu Yang, Jingkai Wang, Zheng Chen, Xing Liu, Hong Gu, Yulun Zhang, Xiaokang Yang
Abstract:
Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
Authors: Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao
Abstract:
With the rapid advancement of low-altitude remote sensing and Vision-Language Models (VLMs), Embodied Agents based on Unmanned Aerial Vehicles (UAVs) have shown significant potential in autonomous tasks. However, current evaluation methods for UAV-Embodied Agents (UAV-EAs) remain constrained by the lack of standardized benchmarks, diverse testing scenarios and open system interfaces. To address these challenges, we propose BEDI (Benchmark for Embodied Drone Intelligence), a systematic and standardized benchmark designed for evaluating UAV-EAs. Specifically, we introduce a novel Dynamic Chain-of-Embodied-Task paradigm based on the perception-decision-action loop, which decomposes complex UAV tasks into standardized, measurable subtasks. Building on this paradigm, we design a unified evaluation framework encompassing five core sub-skills: semantic perception, spatial perception, motion control, tool utilization, and task planning. Furthermore, we construct a hybrid testing platform that integrates static real-world environments with dynamic virtual scenarios, enabling comprehensive performance assessment of UAV-EAs across varied contexts. The platform also offers open and standardized interfaces, allowing researchers to customize tasks and extend scenarios, thereby enhancing flexibility and scalability in the evaluation process. Finally, through empirical evaluations of several state-of-the-art (SOTA) VLMs, we reveal their limitations in embodied UAV tasks, underscoring the critical role of the BEDI benchmark in advancing embodied intelligence research and model optimization. By filling the gap in systematic and standardized evaluation within this field, BEDI facilitates objective model comparison and lays a robust foundation for future development in this field. Our benchmark will be released at https://github.com/lostwolves/BEDI .
Authors: Wenning Xu, Shiyu Fan, Paul Henderson, Edmond S. L. Ho
Abstract:
Generating realistic human motion with high-level controls is a crucial task for social understanding, robotics, and animation. With high-quality MOCAP data becoming more available recently, a wide range of data-driven approaches have been presented. However, modelling multi-person interactions still remains a less explored area. In this paper, we present Graph-driven Interaction Sampling, a method that can generate realistic and diverse multi-person interactions by leveraging existing two-person motion diffusion models as motion priors. Instead of training a new model specific to multi-person interaction synthesis, our key insight is to spatially and temporally separate complex multi-person interactions into a graph structure of two-person interactions, which we name the Pairwise Interaction Graph. We thus decompose the generation task into simultaneous single-person motion generation conditioned on one other's motion. In addition, to reduce artifacts such as interpenetrations of body parts in generated multi-person interactions, we introduce two graph-dependent guidance terms into the diffusion sampling scheme. Unlike previous work, our method can produce various high-quality multi-person interactions without having repetitive individual motions. Extensive experiments demonstrate that our approach consistently outperforms existing methods in reducing artifacts when generating a wide range of two-person and multi-person interactions.
Authors: Nisarga Nilavadi, Andrey Rudenko, Timm Linder
Abstract:
We introduce a unified approach to forecast the dynamics of human keypoints along with the motion trajectory based on a short sequence of input poses. While many studies address either full-body pose prediction or motion trajectory prediction, only a few attempt to merge them. We propose a motion transformation technique to simultaneously predict full-body pose and trajectory key-points in a global coordinate frame. We utilize an off-the-shelf 3D human pose estimation module, a graph attention network to encode the skeleton structure, and a compact, non-autoregressive transformer suitable for real-time motion prediction for human-robot interaction and human-aware navigation. We introduce a human navigation dataset ``DARKO'' with specific focus on navigational activities that are relevant for human-aware mobile robot navigation. We perform extensive evaluation on Human3.6M, CMU-Mocap, and our DARKO dataset. In comparison to prior work, we show that our approach is compact, real-time, and accurate in predicting human navigation motion across all datasets. Result animations, our dataset, and code will be available at https://nisarganc.github.io/UPTor-page/
Authors: Wanjing Huang, Weixiang Yan, Zhen Zhang, Ambuj Singh
Abstract:
Large Language Models (LLMs) demonstrate strong reasoning and task planning capabilities but remain fundamentally limited in physical interaction modeling. Existing approaches integrate perception via Vision-Language Models (VLMs) or adaptive decision-making through Reinforcement Learning (RL), but they fail to capture dynamic object interactions or require task-specific training, limiting their real-world applicability. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework that equips LLMs with physics-driven foresight for real-time task planning. APEX constructs structured graphs to identify and model the most relevant dynamic interactions in the environment, providing LLMs with explicit physical state updates. Simultaneously, APEX provides low-latency forward simulations of physically feasible actions, allowing LLMs to select optimal strategies based on predictive outcomes rather than static observations. We evaluate APEX on three benchmarks designed to assess perception, prediction, and decision-making: (1) Physics Reasoning Benchmark, testing causal inference and object motion prediction; (2) Tetris, evaluating whether physics-informed prediction enhances decision-making performance in long-horizon planning tasks; (3) Dynamic Obstacle Avoidance, assessing the immediate integration of perception and action feasibility analysis. APEX significantly outperforms standard LLMs and VLM-based models, demonstrating the necessity of explicit physics reasoning for bridging the gap between language-based intelligence and real-world task execution. The source code and experiment setup are publicly available at https://github.com/hwj20/APEX_EXP .
Authors: Zongye Zhang, Bohan Kong, Qingjie Liu, Yunhong Wang
Abstract:
Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence. The code is available at: https://github.com/zzysteve/MoMADiff
Authors: William Xie, Max Conway, Yutong Zhang, Nikolaus Correll
Abstract:
Vision language models (VLMs) exhibit vast knowledge of the physical world, including intuition of physical and spatial properties, affordances, and motion. With fine-tuning, VLMs can also natively produce robot trajectories. We demonstrate that eliciting wrenches, not trajectories, allows VLMs to explicitly reason about forces and leads to zero-shot generalization in a series of manipulation tasks without pretraining. We achieve this by overlaying a consistent visual representation of relevant coordinate frames on robot-attached camera images to augment our query. First, we show how this addition enables a versatile motion control framework evaluated across four tasks (opening and closing a lid, pushing a cup or chair) spanning prismatic and rotational motion, an order of force and position magnitude, different camera perspectives, annotation schemes, and two robot platforms over 220 experiments, resulting in 51% success across the four tasks. Then, we demonstrate that the proposed framework enables VLMs to continually reason about interaction feedback to recover from task failure or incompletion, with and without human supervision. Finally, we observe that prompting schemes with visual annotation and embodied reasoning can bypass VLM safeguards. We characterize prompt component contribution to harmful behavior elicitation and discuss its implications for developing embodied reasoning. Our code, videos, and data are available at: https://scalingforce.github.io/.
Authors: Letian Wang, Marc-Antoine Lavoie, Sandro Papais, Barza Nisar, Yuxiao Chen, Wenhao Ding, Boris Ivanovic, Hao Shao, Abulikemu Abuduweili, Evan Cook, Yang Zhou, Peter Karkus, Jiachen Li, Changliu Liu, Marco Pavone, Steven Waslander
Abstract:
Motion prediction, the anticipation of future agent states or scene evolution, is rooted in human cognition, bridging perception and decision-making. It enables intelligent systems, such as robots and self-driving cars, to act safely in dynamic, human-involved environments, and informs broader time-series reasoning challenges. With advances in methods, representations, and datasets, the field has seen rapid progress, reflected in quickly evolving benchmark results. Yet, when state-of-the-art methods are deployed in the real world, they often struggle to generalize to open-world conditions and fall short of deployment standards. This reveals a gap between research benchmarks, which are often idealized or ill-posed, and real-world complexity.
To address this gap, this survey revisits the generalization and deployability of motion prediction models, with an emphasis on the applications of robotics, autonomous driving, and human motion. We first offer a comprehensive taxonomy of motion prediction methods, covering representations, modeling strategies, application domains, and evaluation protocols. We then study two key challenges: (1) how to push motion prediction models to be deployable to realistic deployment standards, where motion prediction does not act in a vacuum, but functions as one module of closed-loop autonomy stacks - it takes input from the localization and perception, and informs downstream planning and control. 2) how to generalize motion prediction models from limited seen scenarios/datasets to the open-world settings. Throughout the paper, we highlight critical open challenges to guide future work, aiming to recalibrate the community's efforts, fostering progress that is not only measurable but also meaningful for real-world applications. The project webpage corresponding to this paper can be found here https://trends-in-motion-prediction-2025.github.io/.
Authors: Hao Li, Sicheng Li, Xiang Gao, Abudouaihati Batuer, Lu Yu, Yiyi Liao
Abstract:
Immersive video offers a 6-Dof-free viewing experience, potentially playing a key role in future video technology. Recently, 4D Gaussian Splatting has gained attention as an effective approach for immersive video due to its high rendering efficiency and quality, though maintaining quality with manageable storage remains challenging. To address this, we introduce GIFStream, a novel 4D Gaussian representation using a canonical space and a deformation field enhanced with time-dependent feature streams. These feature streams enable complex motion modeling and allow efficient compression by leveraging temporal correspondence and motion-aware pruning. Additionally, we incorporate both temporal and spatial compression networks for end-to-end compression. Experimental results show that GIFStream delivers high-quality immersive video at 30 Mbps, with real-time rendering and fast decoding on an RTX 4090. Project page: https://xdimlab.github.io/GIFStream
Authors: Prithwish Dan, Kushal Kedia, Angela Chao, Edward Weiyi Duan, Maximus Adrian Pace, Wei-Chiu Ma, Sanjiban Choudhury
Abstract:
Human videos offer a scalable way to train robot manipulation policies, but lack the action labels needed by standard imitation learning algorithms. Existing cross-embodiment approaches try to map human motion to robot actions, but often fail when the embodiments differ significantly. We propose X-Sim, a real-to-sim-to-real framework that uses object motion as a dense and transferable signal for learning robot policies. X-Sim starts by reconstructing a photorealistic simulation from an RGBD human video and tracking object trajectories to define object-centric rewards. These rewards are used to train a reinforcement learning (RL) policy in simulation. The learned policy is then distilled into an image-conditioned diffusion policy using synthetic rollouts rendered with varied viewpoints and lighting. To transfer to the real world, X-Sim introduces an online domain adaptation technique that aligns real and simulated observations during deployment. Importantly, X-Sim does not require any robot teleoperation data. We evaluate it across 5 manipulation tasks in 2 environments and show that it: (1) improves task progress by 30% on average over hand-tracking and sim-to-real baselines, (2) matches behavior cloning with 10x less data collection time, and (3) generalizes to new camera viewpoints and test-time changes. Code and videos are available at https://portal-cornell.github.io/X-Sim/.
Authors: Mohamed-Khalil Bouzidi, Christian Schlauch, Nicole Scheuerer, Yue Yao, Nadja Klein, Daniel Göhring, Jörg Reichardt
Abstract:
Fueled by motion prediction competitions and benchmarks, recent years have seen the emergence of increasingly large learning based prediction models, many with millions of parameters, focused on improving open-loop prediction accuracy by mere centimeters. However, these benchmarks fail to assess whether such improvements translate to better performance when integrated into an autonomous driving stack. In this work, we systematically evaluate the interplay between state-of-the-art motion predictors and motion planners. Our results show that higher open-loop accuracy does not always correlate with better closed-loop driving behavior and that other factors, such as temporal consistency of predictions and planner compatibility, also play a critical role. Furthermore, we investigate downsized variants of these models, and, surprisingly, find that in some cases models with up to 86% fewer parameters yield comparable or even superior closed-loop driving performance. Our code is available at https://github.com/continental/pred2plan.
Authors: Xinyu Yi, Shaohua Pan, Feng Xu
Abstract:
By learning human motion priors, motion capture can be achieved by 6 inertial measurement units (IMUs) in recent years with the development of deep learning techniques, even though the sensor inputs are sparse and noisy. However, human global motions are still challenging to be reconstructed by IMUs. This paper aims to solve this problem by involving physics. It proposes a physical optimization scheme based on multiple contacts to enable physically plausible translation estimation in the full 3D space where the z-directional motion is usually challenging for previous works. It also considers gravity in local pose estimation which well constrains human global orientations and refines local pose estimation in a joint estimation manner. Experiments demonstrate that our method achieves more accurate motion capture for both local poses and global motions. Furthermore, by deeply integrating physics, we can also estimate 3D contact, contact forces, joint torques, and interacting proxy surfaces.
Authors: Wanjiang Weng, Xiaofeng Tan, Hongsong Wang, Pan Zhou
Abstract:
Bilingual text-to-motion generation, which synthesizes 3D human motions from bilingual text inputs, holds immense potential for cross-linguistic applications in gaming, film, and robotics. However, this task faces critical challenges: the absence of bilingual motion-language datasets and the misalignment between text and motion distributions in diffusion models, leading to semantically inconsistent or low-quality motions. To address these challenges, we propose BiHumanML3D, a novel bilingual human motion dataset, which establishes a crucial benchmark for bilingual text-to-motion generation models. Furthermore, we propose a Bilingual Motion Diffusion model (BiMD), which leverages cross-lingual aligned representations to capture semantics, thereby achieving a unified bilingual model. Building upon this, we propose Reward-guided sampling Alignment (ReAlign) method, comprising a step-aware reward model to assess alignment quality during sampling and a reward-guided strategy that directs the diffusion process toward an optimally aligned distribution. This reward model integrates step-aware tokens and combines a text-aligned module for semantic consistency and a motion-aligned module for realism, refining noisy motions at each timestep to balance probability density and alignment. Experiments demonstrate that our approach significantly improves text-motion alignment and motion quality compared to existing state-of-the-art methods. Project page: https://wengwanjiang.github.io/ReAlign-page/.
Authors: Ziyan Guo, Haoxuan Qu, Hossein Rahmani, Dewen Soh, Ping Hu, Qiuhong Ke, Jun Liu
Abstract:
Text-to-motion generation has recently garnered significant research interest, primarily focusing on generating human motion sequences in blank backgrounds. However, human motions commonly occur within diverse 3D scenes, which has prompted exploration into scene-aware text-to-motion generation methods. Yet, existing scene-aware methods often rely on large-scale ground-truth motion sequences in diverse 3D scenes, which poses practical challenges due to the expensive cost. To mitigate this challenge, we are the first to propose a \textbf{T}raining-free \textbf{S}cene-aware \textbf{T}ext-to-\textbf{Motion} framework, dubbed as \textbf{TSTMotion}, that efficiently empowers pre-trained blank-background motion generators with the scene-aware capability. Specifically, conditioned on the given 3D scene and text description, we adopt foundation models together to reason, predict and validate a scene-aware motion guidance. Then, the motion guidance is incorporated into the blank-background motion generators with two modifications, resulting in scene-aware text-driven motion sequences. Extensive experiments demonstrate the efficacy and generalizability of our proposed framework. We release our code in \href{https://tstmotion.github.io/}{Project Page}.
Authors: Mengting Wei, Yante Li, Tuomas Varanka, Yan Jiang, Guoying Zhao
Abstract:
In this study, we propose a method for video face reenactment that integrates a 3D face parametric model into a latent diffusion framework, aiming to improve shape consistency and motion control in existing video-based face generation approaches. Our approach employs the FLAME (Faces Learned with an Articulated Model and Expressions) model as the 3D face parametric representation, providing a unified framework for modeling face expressions and head pose. This not only enables precise extraction of motion features from driving videos, but also contributes to the faithful preservation of face shape and geometry. Specifically, we enhance the latent diffusion model with rich 3D expression and detailed pose information by incorporating depth maps, normal maps, and rendering maps derived from FLAME sequences. These maps serve as motion guidance and are encoded into the denoising UNet through a specifically designed Geometric Guidance Encoder (GGE). A multi-layer feature fusion module with integrated self-attention mechanisms is used to combine facial appearance and motion latent features within the spatial domain. By utilizing the 3D face parametric model as motion guidance, our method enables parametric alignment of face identity between the reference image and the motion captured from the driving video. Experimental results on benchmark datasets show that our method excels at generating high-quality face animations with precise expression and head pose variation modeling. In addition, it demonstrates strong generalization performance on out-of-domain images. Code is publicly available at https://github.com/weimengting/MagicPortrait.
Authors: Lei Zhong, Chuan Guo, Yiming Xie, Jiawei Wang, Changjian Li
Abstract:
Storyboarding is widely used for creating 3D animations. Animators use the 2D sketches in storyboards as references to craft the desired 3D animations through a trial-and-error process. The traditional approach requires exceptional expertise and is both labor-intensive and time-consuming. Consequently, there is a high demand for automated methods that can directly translate 2D storyboard sketches into 3D animations. This task is under-explored to date and inspired by the significant advancements of motion diffusion models, we propose to address it from the perspective of conditional motion synthesis. We thus present Sketch2Anim, composed of two key modules for sketch constraint understanding and motion generation. Specifically, due to the large domain gap between the 2D sketch and 3D motion, instead of directly conditioning on 2D inputs, we design a 3D conditional motion generator that simultaneously leverages 3D keyposes, joint trajectories, and action words, to achieve precise and fine-grained motion control. Then, we invent a neural mapper dedicated to aligning user-provided 2D sketches with their corresponding 3D keyposes and trajectories in a shared embedding space, enabling, for the first time, direct 2D control of motion generation. Our approach successfully transfers storyboards into high-quality 3D motions and inherently supports direct 3D animation editing, thanks to the flexibility of our multi-conditional motion generator. Comprehensive experiments and evaluations, and a user perceptual study demonstrate the effectiveness of our approach.
Authors: Mohammad Mahdi Abootorabi, Omid Ghahroodi, Pardis Sadat Zahraei, Hossein Behzadasl, Alireza Mirrokni, Mobina Salimipanah, Arash Rasouli, Bahar Behzadipour, Sara Azarnoush, Benyamin Maleki, Erfan Sadraiye, Kiarash Kiani Feriz, Mahdi Teymouri Nahad, Ali Moghadasi, Abolfazl Eshagh Abianeh, Nizi Nazar, Hamid R. Rabiee, Mahdieh Soleymani Baghshah, Meisam Ahmadi, Ehsaneddin Asgari
Abstract:
Generative AI is reshaping art, gaming, and most notably animation. Recent breakthroughs in foundation and diffusion models have reduced the time and cost of producing animated content. Characters are central animation components, involving motion, emotions, gestures, and facial expressions. The pace and breadth of advances in recent months make it difficult to maintain a coherent view of the field, motivating the need for an integrative review. Unlike earlier overviews that treat avatars, gestures, or facial animation in isolation, this survey offers a single, comprehensive perspective on all the main generative AI applications for character animation. We begin by examining the state-of-the-art in facial animation, expression rendering, image synthesis, avatar creation, gesture modeling, motion synthesis, object generation, and texture synthesis. We highlight leading research, practical deployments, commonly used datasets, and emerging trends for each area. To support newcomers, we also provide a comprehensive background section that introduces foundational models and evaluation metrics, equipping readers with the knowledge needed to enter the field. We discuss open challenges and map future research directions, providing a roadmap to advance AI-driven character-animation technologies. This survey is intended as a resource for researchers and developers entering the field of generative AI animation or adjacent fields. Resources are available at: https://github.com/llm-lab-org/Generative-AI-for-Character-Animation-Survey.
Authors: Minh-Quan Viet Bui, Jongmin Park, Juan Luis Gonzalez Bello, Jaeho Moon, Jihyong Oh, Munchurl Kim
Abstract:
We present MoBGS, a novel deblurring dynamic 3D Gaussian Splatting (3DGS) framework capable of reconstructing sharp and high-quality novel spatio-temporal views from blurry monocular videos in an end-to-end manner. Existing dynamic novel view synthesis (NVS) methods are highly sensitive to motion blur in casually captured videos, resulting in significant degradation of rendering quality. While recent approaches address motion-blurred inputs for NVS, they primarily focus on static scene reconstruction and lack dedicated motion modeling for dynamic objects. To overcome these limitations, our MoBGS introduces a novel Blur-adaptive Latent Camera Estimation (BLCE) method for effective latent camera trajectory estimation, improving global camera motion deblurring. In addition, we propose a physically-inspired Latent Camera-induced Exposure Estimation (LCEE) method to ensure consistent deblurring of both global camera and local object motion. Our MoBGS framework ensures the temporal consistency of unseen latent timestamps and robust motion decomposition of static and dynamic regions. Extensive experiments on the Stereo Blur dataset and real-world blurry videos show that our MoBGS significantly outperforms the very recent advanced methods (DyBluRF and Deblur4DGS), achieving state-of-the-art performance for dynamic NVS under motion blur.
Authors: Chenjie Cao, Jingkai Zhou, Shikai Li, Jingyun Liang, Chaohui Yu, Fan Wang, Xiangyang Xue, Yanwei Fu
Abstract:
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
Authors: Jiwei Li, Bi Zhang, Xiaowei Tan, Wanxin Chen, Zhaoyuan Liu, Juanjuan Zhang, Weiguang Huo, Jian Huang, Lianqing Liu, Xingang Zhao
Abstract:
The natural interaction and control performance of lower limb rehabilitation robots are closely linked to biomechanical information from various human locomotion activities. Multidimensional human motion data significantly deepen the understanding of the complex mechanisms governing neuromuscular alterations, thereby facilitating the development and application of rehabilitation robots in multifaceted real-world environments. However, currently available lower limb datasets are inadequate for supplying the essential multimodal data and large-scale gait samples necessary for effective data-driven approaches, and they neglect the significant effects of acquisition interference in real applications.To fill this gap, we present the K2MUSE dataset, which includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements. The proposed dataset includes lower limb multimodal data from 30 able-bodied participants walking under different inclines (0$^\circ$, $\pm$5$^\circ$, and $\pm$10$^\circ$), various speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s), and different nonideal acquisition conditions (muscle fatigue, electrode shifts, and inter-day differences). The kinematic and ground reaction force data were collected via a Vicon motion capture system and an instrumented treadmill with embedded force plates, whereas the sEMG and AUS data were synchronously recorded for thirteen muscles on the bilateral lower limbs. This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion. The dataset is available at https://k2muse.github.io/.
Authors: Jiyuan Shi, Xinzhe Liu, Dewei Wang, Ouyang Lu, Sören Schwertfeger, Fuchun Sun, Chenjia Bai, Xuelong Li
Abstract:
Humans exhibit diverse and expressive whole-body movements. However, attaining human-like whole-body coordination in humanoid robots remains challenging, as conventional approaches that mimic whole-body motions often neglect the distinct roles of upper and lower body. This oversight leads to computationally intensive policy learning and frequently causes robot instability and falls during real-world execution. To address these issues, we propose Adversarial Locomotion and Motion Imitation (ALMI), a novel framework that enables adversarial policy learning between upper and lower body. Specifically, the lower body aims to provide robust locomotion capabilities to follow velocity commands while the upper body tracks various motions. Conversely, the upper-body policy ensures effective motion tracking when the robot executes velocity-based movements. Through iterative updates, these policies achieve coordinated whole-body control, which can be extended to loco-manipulation tasks with teleoperation systems. Extensive experiments demonstrate that our method achieves robust locomotion and precise motion tracking in both simulation and on the full-size Unitree H1 robot. Additionally, we release a large-scale whole-body motion control dataset featuring high-quality episodic trajectories from MuJoCo simulations deployable on real robots. The project page is https://almi-humanoid.github.io.
Authors: Pengxuan Yang, Yupeng Zheng, Qichao Zhang, Kefei Zhu, Zebin Xing, Qiao Lin, Yun-Fu Liu, Zhiguo Su, Dongbin Zhao
Abstract:
End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.
Authors: Zihao Liu, Mingwen Ou, Zunnan Xu, Jiaqi Huang, Haonan Han, Ronghui Li, Xiu Li
Abstract:
Automating the synthesis of coordinated bimanual piano performances poses significant challenges, particularly in capturing the intricate choreography between the hands while preserving their distinct kinematic signatures. In this paper, we propose a dual-stream neural framework designed to generate synchronized hand gestures for piano playing from audio input, addressing the critical challenge of modeling both hand independence and coordination. Our framework introduces two key innovations: (i) a decoupled diffusion-based generation framework that independently models each hand's motion via dual-noise initialization, sampling distinct latent noise for each while leveraging a shared positional condition, and (ii) a Hand-Coordinated Asymmetric Attention (HCAA) mechanism suppresses symmetric (common-mode) noise to highlight asymmetric hand-specific features, while adaptively enhancing inter-hand coordination during denoising. Comprehensive evaluations demonstrate that our framework outperforms existing state-of-the-art methods across multiple metrics. Our project is available at https://monkek123king.github.io/S2C_page/.
Authors: Zengyuan Lai, Jiarui Yang, Songpengcheng Xia, Lizhou Lin, Lan Sun, Renwen Wang, Jianran Liu, Qi Wu, Ling Pei
Abstract:
Millimeter-wave radar provides a privacy-preserving solution for human motion analysis, yet its sparse point clouds pose significant challenges for semantic understanding. We present Radar-LLM, the first framework that leverages large language models (LLMs) for human motion understanding using millimeter-wave radar as the sensing modality. Our approach introduces two key innovations: (1) a motion-guided radar tokenizer based on our Aggregate VQ-VAE architecture that incorporates deformable body templates and masked trajectory modeling to encode spatiotemporal point clouds into compact semantic tokens, and (2) a radar-aware language model that establishes cross-modal alignment between radar and text in a shared embedding space. To address data scarcity, we introduce a physics-aware synthesis pipeline that generates realistic radar-text pairs from motion-text datasets. Extensive experiments demonstrate that Radar-LLM achieves state-of-the-art performance across both synthetic and real-world benchmarks, enabling accurate translation of millimeter-wave signals to natural language descriptions. This breakthrough facilitates comprehensive motion understanding in privacy-sensitive applications like healthcare and smart homes. We will release the full implementation to support further research on https://inowlzy.github.io/RadarLLM/.
Authors: Xiaohang Yang, Qing Wang, Jiahao Yang, Gregory Slabaugh, Shanxin Yuan
Abstract:
Motion retargeting seeks to faithfully replicate the spatio-temporal motion characteristics of a source character onto a target character with a different body shape. Apart from motion semantics preservation, ensuring geometric plausibility and maintaining temporal consistency are also crucial for effective motion retargeting. However, many existing methods prioritize either geometric plausibility or temporal consistency. Neglecting geometric plausibility results in interpenetration while neglecting temporal consistency leads to motion jitter. In this paper, we propose a novel sequence-to-sequence model for seamless Spatial-Temporal aware motion Retargeting (STaR), with penetration and consistency constraints. STaR consists of two modules: (1) a spatial module that incorporates dense shape representation and a novel limb penetration constraint to ensure geometric plausibility while preserving motion semantics, and (2) a temporal module that utilizes a temporal transformer and a novel temporal consistency constraint to predict the entire motion sequence at once while enforcing multi-level trajectory smoothness. The seamless combination of the two modules helps us achieve a good balance between the semantic, geometric, and temporal targets. Extensive experiments on the Mixamo and ScanRet datasets demonstrate that our method produces plausible and coherent motions while significantly reducing interpenetration rates compared with other approaches. Code page: https://github.com/XiaohangYang829/STaR.
Authors: Shenghao Ren, Yi Lu, Jiayi Huang, Jiayi Zhao, He Zhang, Tao Yu, Qiu Shen, Xun Cao
Abstract:
Existing human Motion Capture (MoCap) methods mostly focus on the visual similarity while neglecting the physical plausibility. As a result, downstream tasks such as driving virtual human in 3D scene or humanoid robots in real world suffer from issues such as timing drift and jitter, spatial problems like sliding and penetration, and poor global trajectory accuracy. In this paper, we revisit human MoCap from the perspective of interaction between human body and physical world by exploring the role of pressure. Firstly, we construct a large-scale human Motion capture dataset with Pressure, RGB and Optical sensors (named MotionPRO), which comprises 70 volunteers performing 400 types of motion, encompassing a total of 12.4M pose frames. Secondly, we examine both the necessity and effectiveness of the pressure signal through two challenging tasks: (1) pose and trajectory estimation based solely on pressure: We propose a network that incorporates a small kernel decoder and a long-short-term attention module, and proof that pressure could provide accurate global trajectory and plausible lower body pose. (2) pose and trajectory estimation by fusing pressure and RGB: We impose constraints on orthographic similarity along the camera axis and whole-body contact along the vertical axis to enhance the cross-attention strategy to fuse pressure and RGB feature maps. Experiments demonstrate that fusing pressure with RGB features not only significantly improves performance in terms of objective metrics, but also plausibly drives virtual humans (SMPL) in 3D scene. Furthermore, we demonstrate that incorporating physical perception enables humanoid robots to perform more precise and stable actions, which is highly beneficial for the development of embodied artificial intelligence. Project page is available at: https://nju-cite-mocaphumanoid.github.io/MotionPRO/
Authors: Jihyun Lee, Weipeng Xu, Alexander Richard, Shih-En Wei, Shunsuke Saito, Shaojie Bai, Te-Li Wang, Minhyuk Sung, Tae-Kyun Kim, Jason Saragih
Abstract:
We present REWIND (Real-Time Egocentric Whole-Body Motion Diffusion), a one-step diffusion model for real-time, high-fidelity human motion estimation from egocentric image inputs. While an existing method for egocentric whole-body (i.e., body and hands) motion estimation is non-real-time and acausal due to diffusion-based iterative motion refinement to capture correlations between body and hand poses, REWIND operates in a fully causal and real-time manner. To enable real-time inference, we introduce (1) cascaded body-hand denoising diffusion, which effectively models the correlation between egocentric body and hand motions in a fast, feed-forward manner, and (2) diffusion distillation, which enables high-quality motion estimation with a single denoising step. Our denoising diffusion model is based on a modified Transformer architecture, designed to causally model output motions while enhancing generalizability to unseen motion lengths. Additionally, REWIND optionally supports identity-conditioned motion estimation when identity prior is available. To this end, we propose a novel identity conditioning method based on a small set of pose exemplars of the target identity, which further enhances motion estimation quality. Through extensive experiments, we demonstrate that REWIND significantly outperforms the existing baselines both with and without exemplar-based identity conditioning.
Authors: Mengchao Wang, Qiang Wang, Fan Jiang, Yaqi Fan, Yunpeng Zhang, Yonggang Qi, Kun Zhao, Mu Xu
Abstract:
Creating a realistic animatable avatar from a single static portrait remains challenging. Existing approaches often struggle to capture subtle facial expressions, the associated global body movements, and the dynamic background. To address these limitations, we propose a novel framework that leverages a pretrained video diffusion transformer model to generate high-fidelity, coherent talking portraits with controllable motion dynamics. At the core of our work is a dual-stage audio-visual alignment strategy. In the first stage, we employ a clip-level training scheme to establish coherent global motion by aligning audio-driven dynamics across the entire scene, including the reference portrait, contextual objects, and background. In the second stage, we refine lip movements at the frame level using a lip-tracing mask, ensuring precise synchronization with audio signals. To preserve identity without compromising motion flexibility, we replace the commonly used reference network with a facial-focused cross-attention module that effectively maintains facial consistency throughout the video. Furthermore, we integrate a motion intensity modulation module that explicitly controls expression and body motion intensity, enabling controllable manipulation of portrait movements beyond mere lip motion. Extensive experimental results show that our proposed approach achieves higher quality with better realism, coherence, motion intensity, and identity preservation. Ours project page: https://fantasy-amap.github.io/fantasy-talking/.
Authors: Jiayi Gao, Zijin Yin, Changcheng Hua, Yuxin Peng, Kongming Liang, Zhanyu Ma, Jun Guo, Yang Liu
Abstract:
The development of Text-to-Video (T2V) generation has made motion transfer possible, enabling the control of video motion based on existing footage. However, current methods have two limitations: 1) struggle to handle multi-subjects videos, failing to transfer specific subject motion; 2) struggle to preserve the diversity and accuracy of motion as transferring to subjects with varying shapes. To overcome these, we introduce \textbf{ConMo}, a zero-shot framework that disentangle and recompose the motions of subjects and camera movements. ConMo isolates individual subject and background motion cues from complex trajectories in source videos using only subject masks, and reassembles them for target video generation. This approach enables more accurate motion control across diverse subjects and improves performance in multi-subject scenarios. Additionally, we propose soft guidance in the recomposition stage which controls the retention of original motion to adjust shape constraints, aiding subject shape adaptation and semantic transformation. Unlike previous methods, ConMo unlocks a wide range of applications, including subject size and position editing, subject removal, semantic modifications, and camera motion simulation. Extensive experiments demonstrate that ConMo significantly outperforms state-of-the-art methods in motion fidelity and semantic consistency. The code is available at https://github.com/Andyplus1/ConMo.
Authors: Mingshuai Yao, Mengting Chen, Qinye Zhou, Yabo Zhang, Ming Liu, Xiaoming Li, Shaohui Liu, Chen Ju, Shuai Xiao, Qingwen Liu, Jinsong Lan, Wangmeng Zuo
Abstract:
In this paper, we investigate the generation of new video backgrounds given a human foreground video, a camera pose, and a reference scene image. This task presents three key challenges. First, the generated background should precisely follow the camera movements corresponding to the human foreground. Second, as the camera shifts in different directions, newly revealed content should appear seamless and natural. Third, objects within the video frame should maintain consistent textures as the camera moves to ensure visual coherence. To address these challenges, we propose DynaScene, a new framework that uses camera poses extracted from the original video as an explicit control to drive background motion. Specifically, we design a multi-task learning paradigm that incorporates auxiliary tasks, namely background outpainting and scene variation, to enhance the realism of the generated backgrounds. Given the scarcity of suitable data, we constructed a large-scale, high-quality dataset tailored for this task, comprising video foregrounds, reference scene images, and corresponding camera poses. This dataset contains 200K video clips, ten times larger than existing real-world human video datasets, providing a significantly richer and more diverse training resource. Project page: https://yaomingshuai.github.io/Beyond-Static-Scenes.github.io/
Authors: Yuxuan Luo, Zhengkun Rong, Lizhen Wang, Longhao Zhang, Tianshu Hu, Yongming Zhu
Abstract:
While recent image-based human animation methods achieve realistic body and facial motion synthesis, critical gaps remain in fine-grained holistic controllability, multi-scale adaptability, and long-term temporal coherence, which leads to their lower expressiveness and robustness. We propose a diffusion transformer (DiT) based framework, DreamActor-M1, with hybrid guidance to overcome these limitations. For motion guidance, our hybrid control signals that integrate implicit facial representations, 3D head spheres, and 3D body skeletons achieve robust control of facial expressions and body movements, while producing expressive and identity-preserving animations. For scale adaptation, to handle various body poses and image scales ranging from portraits to full-body views, we employ a progressive training strategy using data with varying resolutions and scales. For appearance guidance, we integrate motion patterns from sequential frames with complementary visual references, ensuring long-term temporal coherence for unseen regions during complex movements. Experiments demonstrate that our method outperforms the state-of-the-art works, delivering expressive results for portraits, upper-body, and full-body generation with robust long-term consistency. Project Page: https://grisoon.github.io/DreamActor-M1/.
Authors: Chong Li, Jingyang Huo, Weikang Gong, Yanwei Fu, Xiangyang Xue, Jianfeng Feng
Abstract:
Decoding visual experiences from brain activity is a significant challenge. Existing fMRI-to-video methods often focus on semantic content while overlooking spatial and motion information. However, these aspects are all essential and are processed through distinct pathways in the brain. Motivated by this, we propose DecoFuse, a novel brain-inspired framework for decoding videos from fMRI signals. It first decomposes the video into three components - semantic, spatial, and motion - then decodes each component separately before fusing them to reconstruct the video. This approach not only simplifies the complex task of video decoding by decomposing it into manageable sub-tasks, but also establishes a clearer connection between learned representations and their biological counterpart, as supported by ablation studies. Further, our experiments show significant improvements over previous state-of-the-art methods, achieving 82.4% accuracy for semantic classification, 70.6% accuracy in spatial consistency, a 0.212 cosine similarity for motion prediction, and 21.9% 50-way accuracy for video generation. Additionally, neural encoding analyses for semantic and spatial information align with the two-streams hypothesis, further validating the distinct roles of the ventral and dorsal pathways. Overall, DecoFuse provides a strong and biologically plausible framework for fMRI-to-video decoding. Project page: https://chongjg.github.io/DecoFuse/.
Authors: Shuai Shen, Wanhua Li, Yunpeng Zhang, Yap-Peng Tan, Jiwen Lu
Abstract:
Talking head synthesis has emerged as a prominent research topic in computer graphics and multimedia, yet most existing methods often struggle to strike a balance between generation quality and computational efficiency, particularly under real-time constraints. In this paper, we propose a novel framework that integrates Gaussian Splatting with a structured Audio Factorization Plane (Audio-Plane) to enable high-quality, audio-synchronized, and real-time talking head generation. For modeling a dynamic talking head, a 4D volume representation, which consists of three axes in 3D space and one temporal axis aligned with audio progression, is typically required. However, directly storing and processing a dense 4D grid is impractical due to the high memory and computation cost, and lack of scalability for longer durations. We address this challenge by decomposing the 4D volume representation into a set of audio-independent spatial planes and audio-dependent planes, forming a compact and interpretable representation for talking head modeling that we refer to as the Audio-Plane. This factorized design allows for efficient and fine-grained audio-aware spatial encoding, and significantly enhances the model's ability to capture complex lip dynamics driven by speech signals. To further improve region-specific motion modeling, we introduce an audio-guided saliency splatting mechanism based on region-aware modulation, which adaptively emphasizes highly dynamic regions such as the mouth area. This allows the model to focus its learning capacity on where it matters most for accurate speech-driven animation. Extensive experiments on both the self-driven and the cross-driven settings demonstrate that our method achieves state-of-the-art visual quality, precise audio-lip synchronization, and real-time performance, outperforming prior approaches across both 2D- and 3D-based paradigms.
Authors: Yiren Lu, Yunlai Zhou, Yiran Qiao, Chaoda Song, Tuo Liang, Jing Ma, Yu Yin
Abstract:
Open-vocabulary querying in 3D space is crucial for enabling more intelligent perception in applications such as robotics, autonomous systems, and augmented reality. However, most existing methods rely on 2D pixel-level parsing, leading to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are limited to static scenes and struggle with dynamic scenes due to the complexities of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware open vocabulary segmentation approach for both static and dynamic scenes based on Gaussian Splatting. Segment then Splat reverses the long established approach of "segmentation after reconstruction" by dividing Gaussians into distinct object sets before reconstruction. Once the reconstruction is complete, the scene is naturally segmented into individual objects, achieving true 3D segmentation. This approach not only eliminates Gaussian-object misalignment issues in dynamic scenes but also accelerates the optimization process, as it eliminates the need for learning a separate language field. After optimization, a CLIP embedding is assigned to each object to enable open-vocabulary querying. Extensive experiments on various datasets demonstrate the effectiveness of our proposed method in both static and dynamic scenarios.
Authors: Yong Xie, Yunlian Sun, Hongwen Zhang, Yebin Liu, Jinhui Tang
Abstract:
We present ReCoM, an efficient framework for generating high-fidelity and generalizable human body motions synchronized with speech. The core innovation lies in the Recurrent Embedded Transformer (RET), which integrates Dynamic Embedding Regularization (DER) into a Vision Transformer (ViT) core architecture to explicitly model co-speech motion dynamics. This architecture enables joint spatial-temporal dependency modeling, thereby enhancing gesture naturalness and fidelity through coherent motion synthesis. To enhance model robustness, we incorporate the proposed DER strategy, which equips the model with dual capabilities of noise resistance and cross-domain generalization, thereby improving the naturalness and fluency of zero-shot motion generation for unseen speech inputs. To mitigate inherent limitations of autoregressive inference, including error accumulation and limited self-correction, we propose an iterative reconstruction inference (IRI) strategy. IRI refines motion sequences via cyclic pose reconstruction, driven by two key components: (1) classifier-free guidance improves distribution alignment between generated and real gestures without auxiliary supervision, and (2) a temporal smoothing process eliminates abrupt inter-frame transitions while ensuring kinematic continuity. Extensive experiments on benchmark datasets validate ReCoM's effectiveness, achieving state-of-the-art performance across metrics. Notably, it reduces the Fréchet Gesture Distance (FGD) from 18.70 to 2.48, demonstrating an 86.7% improvement in motion realism. Our project page is https://yong-xie-xy.github.io/ReCoM/.
Authors: Weihao Yu, Yuanhao Cai, Ruyi Zha, Zhiwen Fan, Chenxin Li, Yixuan Yuan
Abstract:
Four-dimensional computed tomography (4D CT) reconstruction is crucial for capturing dynamic anatomical changes but faces inherent limitations from conventional phase-binning workflows. Current methods discretize temporal resolution into fixed phases with respiratory gating devices, introducing motion misalignment and restricting clinical practicality. In this paper, We propose X$^2$-Gaussian, a novel framework that enables continuous-time 4D-CT reconstruction by integrating dynamic radiative Gaussian splatting with self-supervised respiratory motion learning. Our approach models anatomical dynamics through a spatiotemporal encoder-decoder architecture that predicts time-varying Gaussian deformations, eliminating phase discretization. To remove dependency on external gating devices, we introduce a physiology-driven periodic consistency loss that learns patient-specific breathing cycles directly from projections via differentiable optimization. Extensive experiments demonstrate state-of-the-art performance, achieving a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior Gaussian splatting techniques. By unifying continuous motion modeling with hardware-free period learning, X$^2$-Gaussian advances high-fidelity 4D CT reconstruction for dynamic clinical imaging. Project website at: https://x2-gaussian.github.io/.
Authors: Ming Yan, Xincheng Lin, Yuhua Luo, Shuqi Fan, Yudi Dai, Qixin Zhong, Lincai Zhong, Yuexin Ma, Lan Xu, Chenglu Wen, Siqi Shen, Cheng Wang
Abstract:
Human Motion Recovery (HMR) research mainly focuses on ground-based motions such as running. The study on capturing climbing motion, an off-ground motion, is sparse. This is partly due to the limited availability of climbing motion datasets, especially large-scale and challenging 3D labeled datasets. To address the insufficiency of climbing motion datasets, we collect AscendMotion, a large-scale well-annotated, and challenging climbing motion dataset. It consists of 412k RGB, LiDAR frames, and IMU measurements, including the challenging climbing motions of 22 skilled climbing coaches across 12 different rock walls. Capturing the climbing motions is challenging as it requires precise recovery of not only the complex pose but also the global position of climbers. Although multiple global HMR methods have been proposed, they cannot faithfully capture climbing motions. To address the limitations of HMR methods for climbing, we propose ClimbingCap, a motion recovery method that reconstructs continuous 3D human climbing motion in a global coordinate system. One key insight is to use the RGB and LiDAR modalities to separately reconstruct motions in camera coordinates and global coordinates and to optimize them jointly. We demonstrate the quality of the AscendMotion dataset and present promising results from ClimbingCap. The AscendMotion dataset and source code release publicly at \href{this link}{http://www.lidarhumanmotion.net/climbingcap/}
Authors: Haiyang Liu, Zhan Xu, Fa-Ting Hong, Hsin-Ping Huang, Yi Zhou, Yang Zhou
Abstract:
We present Video Motion Graphs, a system designed to generate realistic human motion videos. Using a reference video and conditional signals such as music or motion tags, the system synthesizes new videos by first retrieving video clips with gestures matching the conditions and then generating interpolation frames to seamlessly connect clip boundaries. The core of our approach is HMInterp, a robust Video Frame Interpolation (VFI) model that enables seamless interpolation of discontinuous frames, even for complex motion scenarios like dancing. HMInterp i) employs a dual-branch interpolation approach, combining a Motion Diffusion Model for human skeleton motion interpolation with a diffusion-based video frame interpolation model for final frame generation. ii) adopts condition progressive training to effectively leverage identity strong and weak conditions, such as images and pose. These designs ensure both high video texture quality and accurate motion trajectory. Results show that our Video Motion Graphs outperforms existing generative- and retrieval-based methods for multi-modal conditioned human motion video generation. Project page can be found at https://h-liu1997.github.io/Video-Motion-Graphs/
Authors: Sangwon Baik, Hyeonwoo Kim, Hanbyul Joo
Abstract:
We present a method for learning 3D spatial relationships between object pairs, referred to as object-object spatial relationships (OOR), by leveraging synthetically generated 3D samples from pre-trained 2D diffusion models. We hypothesize that images synthesized by 2D diffusion models inherently capture realistic OOR cues, enabling efficient collection of a 3D dataset to learn OOR for various unbounded object categories. Our approach synthesizes diverse images that capture plausible OOR cues, which we then uplift into 3D samples. Leveraging our diverse collection of 3D samples for the object pairs, we train a score-based OOR diffusion model to learn the distribution of their relative spatial relationships. Additionally, we extend our pairwise OOR to multi-object OOR by enforcing consistency across pairwise relations and preventing object collisions. Extensive experiments demonstrate the robustness of our method across various object-object spatial relationships, along with its applicability to 3D scene arrangement tasks and human motion synthesis using our OOR diffusion model.
Authors: Haim Sawdayee, Chuan Guo, Guy Tevet, Bing Zhou, Jian Wang, Amit H. Bermano
Abstract:
Text-to-motion generative models span a wide range of 3D human actions but struggle with nuanced stylistic attributes such as a "Chicken" style. Due to the scarcity of style-specific data, existing approaches pull the generative prior towards a reference style, which often results in out-of-distribution low quality generations. In this work, we introduce LoRA-MDM, a lightweight framework for motion stylization that generalizes to complex actions while maintaining editability. Our key insight is that adapting the generative prior to include the style, while preserving its overall distribution, is more effective than modifying each individual motion during generation. Building on this idea, LoRA-MDM learns to adapt the prior to include the reference style using only a few samples. The style can then be used in the context of different textual prompts for generation. The low-rank adaptation shifts the motion manifold in a semantically meaningful way, enabling realistic style infusion even for actions not present in the reference samples. Moreover, preserving the distribution structure enables advanced operations such as style blending and motion editing. We compare LoRA-MDM to state-of-the-art stylized motion generation methods and demonstrate a favorable balance between text fidelity and style consistency.
Authors: Taeksoo Kim, Hanbyul Joo
Abstract:
We present a target-aware video diffusion model that generates videos from an input image in which an actor interacts with a specified target while performing a desired action. The target is defined by a segmentation mask and the desired action is described via a text prompt. Unlike existing controllable image-to-video diffusion models that often rely on dense structural or motion cues to guide the actor's movements toward the target, our target-aware model requires only a simple mask to indicate the target, leveraging the generalization capabilities of pretrained models to produce plausible actions. This makes our method particularly effective for human-object interaction (HOI) scenarios, where providing precise action guidance is challenging, and further enables the use of video diffusion models for high-level action planning in applications such as robotics. We build our target-aware model by extending a baseline model to incorporate the target mask as an additional input. To enforce target awareness, we introduce a special token that encodes the target's spatial information within the text prompt. We then fine-tune the model with our curated dataset using a novel cross-attention loss that aligns the cross-attention maps associated with this token with the input target mask. To further improve performance, we selectively apply this loss to the most semantically relevant transformer blocks and attention regions. Experimental results show that our target-aware model outperforms existing solutions in generating videos where actors interact accurately with the specified targets. We further demonstrate its efficacy in two downstream applications: video content creation and zero-shot 3D HOI motion synthesis.
Authors: Edoardo De Matteis, Matteo Migliarini, Alessio Sampieri, Indro Spinelli, Fabio Galasso
Abstract:
We introduce the task of human motion unlearning to prevent the synthesis of toxic animations while preserving the general text-to-motion generative performance. Unlearning toxic motions is challenging as those can be generated from explicit text prompts and from implicit toxic combinations of safe motions (e.g., ``kicking" is ``loading and swinging a leg"). We propose the first motion unlearning benchmark by filtering toxic motions from the large and recent text-to-motion datasets of HumanML3D and Motion-X. We propose baselines, by adapting state-of-the-art image unlearning techniques to process spatio-temporal signals. Finally, we propose a novel motion unlearning model based on Latent Code Replacement, which we dub LCR. LCR is training-free and suitable to the discrete latent spaces of state-of-the-art text-to-motion diffusion models. LCR is simple and consistently outperforms baselines qualitatively and quantitatively. Project page: \href{https://www.pinlab.org/hmu}{https://www.pinlab.org/hmu}.
Authors: Zhengyuan Li, Kai Cheng, Anindita Ghosh, Uttaran Bhattacharya, Liangyan Gui, Aniket Bera
Abstract:
Text-based 3D human motion editing is a critical yet challenging task in computer vision and graphics. While training-free approaches have been explored, the recent release of the MotionFix dataset, which includes source-text-motion triplets, has opened new avenues for training, yielding promising results. However, existing methods struggle with precise control, often leading to misalignment between motion semantics and language instructions. In this paper, we introduce a related task, motion similarity prediction, and propose a multi-task training paradigm, where we train the model jointly on motion editing and motion similarity prediction to foster the learning of semantically meaningful representations. To complement this task, we design an advanced Diffusion-Transformer-based architecture that separately handles motion similarity prediction and motion editing. Extensive experiments demonstrate the state-of-the-art performance of our approach in both editing alignment and fidelity.
Authors: Yan Zhang, Yao Feng, Alpár Cseke, Nitin Saini, Nathan Bajandas, Nicolas Heron, Michael J. Black
Abstract:
We formulate the motor system of an interactive avatar as a generative motion model that can drive the body to move through 3D space in a perpetual, realistic, controllable, and responsive manner. Although human motion generation has been extensively studied, many existing methods lack the responsiveness and realism of real human movements. Inspired by recent advances in foundation models, we propose PRIMAL, which is learned with a two-stage paradigm. In the pretraining stage, the model learns body movements from a large number of sub-second motion segments, providing a generative foundation from which more complex motions are built. This training is fully unsupervised without annotations. Given a single-frame initial state during inference, the pretrained model not only generates unbounded, realistic, and controllable motion, but also enables the avatar to be responsive to induced impulses in real time. In the adaptation phase, we employ a novel ControlNet-like adaptor to fine-tune the base model efficiently, adapting it to new tasks such as few-shot personalized action generation and spatial target reaching. Evaluations show that our proposed method outperforms state-of-the-art baselines. We leverage the model to create a real-time character animation system in Unreal Engine that feels highly responsive and natural. Code, models, and more results are available at: https://yz-cnsdqz.github.io/eigenmotion/PRIMAL
Authors: Quanhao Li, Zhen Xing, Rui Wang, Hui Zhang, Qi Dai, Zuxuan Wu
Abstract:
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
Authors: Merkourios Simos, Alberto Silvio Chiappa, Alexander Mathis
Abstract:
How do humans move? The quest to understand human motion has broad applications in numerous fields, ranging from computer animation and motion synthesis to neuroscience, human prosthetics and rehabilitation. Although advances in reinforcement learning (RL) have produced impressive results in capturing human motion using simplified humanoids, controlling physiologically accurate models of the body remains an open challenge. In this work, we present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control. Using a musculoskeletal model of the lower body with 80 muscle actuators and 20 DoF, we demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data, is controllable by natural language through pre-trained text-to-motion generative models, and can be fine-tuned to carry out high-level tasks such as target goal reaching. Importantly, KINESIS generates muscle activity patterns that correlate well with human EMG activity. The physiological plausibility makes KINESIS a promising model for tackling challenging problems in human motor control theory, which we highlight by investigating Bernstein's redundancy problem in the context of locomotion. Code, videos and benchmarks will be available at https://github.com/amathislab/Kinesis.
Authors: Susung Hong, Ira Kemelmacher-Shlizerman, Brian Curless, Steven M. Seitz
Abstract:
We introduce MusicInfuser, an approach for generating high-quality dance videos that are synchronized to a specified music track. Rather than attempting to design and train a new multimodal audio-video model, we show how existing video diffusion models can be adapted to align with musical inputs by introducing lightweight music-video cross-attention and a low-rank adapter. Unlike prior work requiring motion capture data, our approach fine-tunes only on dance videos. MusicInfuser achieves high-quality music-driven video generation while preserving the flexibility and generative capabilities of the underlying models. We introduce an evaluation framework using Video-LLMs to assess multiple dimensions of dance generation quality. The project page and code are available at https://susunghong.github.io/MusicInfuser.
Authors: Seokhyeon Hong, Chaelin Kim, Serin Yoon, Junghyun Nam, Sihun Cha, Junyong Noh
Abstract:
Text-driven motion generation has advanced significantly with the rise of denoising diffusion models. However, previous methods often oversimplify representations for the skeletal joints, temporal frames, and textual words, limiting their ability to fully capture the information within each modality and their interactions. Moreover, when using pre-trained models for downstream tasks, such as editing, they typically require additional efforts, including manual interventions, optimization, or fine-tuning. In this paper, we introduce a skeleton-aware latent diffusion (SALAD), a model that explicitly captures the intricate inter-relationships between joints, frames, and words. Furthermore, by leveraging cross-attention maps produced during the generation process, we enable attention-based zero-shot text-driven motion editing using a pre-trained SALAD model, requiring no additional user input beyond text prompts. Our approach significantly outperforms previous methods in terms of text-motion alignment without compromising generation quality, and demonstrates practical versatility by providing diverse editing capabilities beyond generation. Code is available at project page.
Authors: Ling-An Zeng, Gaojie Wu, Ancong Wu, Jian-Fang Hu, Wei-Shi Zheng
Abstract:
Although existing text-to-motion (T2M) methods can produce realistic human motion from text description, it is still difficult to align the generated motion with the desired postures since using text alone is insufficient for precisely describing diverse postures. To achieve more controllable generation, an intuitive way is to allow the user to input a few motion frames describing precise desired postures. Thus, we explore a new Text-Frame-to-Motion (TF2M) generation task that aims to generate motions from text and very few given frames. Intuitively, the closer a frame is to a given frame, the lower the uncertainty of this frame is when conditioned on this given frame. Hence, we propose a novel Progressive Motion Generation (PMG) method to progressively generate a motion from the frames with low uncertainty to those with high uncertainty in multiple stages. During each stage, new frames are generated by a Text-Frame Guided Generator conditioned on frame-aware semantics of the text, given frames, and frames generated in previous stages. Additionally, to alleviate the train-test gap caused by multi-stage accumulation of incorrectly generated frames during testing, we propose a Pseudo-frame Replacement Strategy for training. Experimental results show that our PMG outperforms existing T2M generation methods by a large margin with even one given frame, validating the effectiveness of our PMG. Code is available at https://github.com/qinghuannn/PMG.
Authors: Yongkang Cheng, Shaoli Huang
Abstract:
Animating virtual characters with holistic co-speech gestures is a challenging but critical task. Previous systems have primarily focused on the weak correlation between audio and gestures, leading to physically unnatural outcomes that degrade the user experience. To address this problem, we introduce HoleGest, a novel neural network framework based on decoupled diffusion and motion priors for the automatic generation of high-quality, expressive co-speech gestures. Our system leverages large-scale human motion datasets to learn a robust prior with low audio dependency and high motion reliance, enabling stable global motion and detailed finger movements. To improve the generation efficiency of diffusion-based models, we integrate implicit joint constraints with explicit geometric and conditional constraints, capturing complex motion distributions between large strides. This integration significantly enhances generation speed while maintaining high-quality motion. Furthermore, we design a shared embedding space for gesture-transcription text alignment, enabling the generation of semantically correct gesture actions. Extensive experiments and user feedback demonstrate the effectiveness and potential applications of our model, with our method achieving a level of realism close to the ground truth, providing an immersive user experience. Our code, model, and demo are are available at https://cyk990422.github.io/HoloGest.github.io/.
Authors: Ruiqi Song, Xianda Guo, Hangbin Wu, Qinggong Wei, Long Chen
Abstract:
Directly generating planning results from raw sensors has become increasingly prevalent due to its adaptability and robustness in complex scenarios. Scene representation, as a key module in the pipeline, has traditionally relied on conventional perception, which focus on the global scene. However, in driving scenarios, human drivers typically focus only on regions that directly impact driving, which often coincide with those required for end-to-end autonomous driving. In this paper, a novel end-to-end autonomous driving method called InsightDrive is proposed, which organizes perception by language-guided scene representation. We introduce an instance-centric scene tokenizer that transforms the surrounding environment into map- and object-aware instance tokens. Scene attention language descriptions, which highlight key regions and obstacles affecting the ego vehicle's movement, are generated by a vision-language model that leverages the cognitive reasoning capabilities of foundation models. We then align scene descriptions with visual features using the vision-language model, guiding visual attention through these descriptions to give effectively scene representation. Furthermore, we employ self-attention and cross-attention mechanisms to model the ego-agents and ego-map relationships to comprehensively build the topological relationships of the scene. Finally, based on scene understanding, we jointly perform motion prediction and planning. Extensive experiments on the widely used nuScenes benchmark demonstrate that the proposed InsightDrive achieves state-of-the-art performance in end-to-end autonomous driving. The code is available at https://github.com/songruiqi/InsightDrive
Authors: Jiahe Zhao, Ruibing Hou, Zejie Tian, Hong Chang, Shiguang Shan
Abstract:
We propose a new task to benchmark human-in-scene understanding for embodied agents: Human-In-Scene Question Answering (HIS-QA). Given a human motion within a 3D scene, HIS-QA requires the agent to comprehend human states and behaviors, reason about its surrounding environment, and answer human-related questions within the scene. To support this new task, we present HIS-Bench, a multimodal benchmark that systematically evaluates HIS understanding across a broad spectrum, from basic perception to commonsense reasoning and planning. Our evaluation of various vision-language models on HIS-Bench reveals significant limitations in their ability to handle HIS-QA tasks. To this end, we propose HIS-GPT, the first foundation model for HIS understanding. HIS-GPT integrates 3D scene context and human motion dynamics into large language models while incorporating specialized mechanisms to capture human-scene interactions. Extensive experiments demonstrate that HIS-GPT sets a new state-of-the-art on HIS-QA tasks. We hope this work inspires future research on human behavior analysis in 3D scenes, advancing embodied AI and world models. The codes and data: https://github.com/ZJHTerry18/HumanInScene.
Authors: Mingjie Wei, Xuemei Xie, Guangming Shi
Abstract:
Attributes such as style, fine-grained text, and trajectory are specific conditions for describing motion. However, existing methods often lack precise user control over motion attributes and suffer from limited generalizability to unseen motions. This work introduces an Attribute Controllable Motion generation architecture, to address these challenges via decouple any conditions and control them separately. Firstly, we explored the Attribute Diffusion Model to imporve text-to-motion performance via decouple text and motion learning, as the controllable model relies heavily on the pre-trained model. Then, we introduce Motion Adpater to quickly finetune previously unseen motion patterns. Its motion prompts inputs achieve multimodal text-to-motion generation that captures user-specified styles. Finally, we propose a LLM Planner to bridge the gap between unseen attributes and dataset-specific texts via local knowledage for user-friendly interaction. Our approach introduces the capability for motion prompts for stylize generation, enabling fine-grained and user-friendly attribute control while providing performance comparable to state-of-the-art methods. Project page: https://mjwei3d.github.io/ACMo/
Authors: Chengshu Zhao, Yunyang Ge, Xinhua Cheng, Bin Zhu, Yatian Pang, Bin Lin, Fan Yang, Feng Gao, Li Yuan
Abstract:
Video body-swapping aims to replace the body in an existing video with a new body from arbitrary sources, which has garnered more attention in recent years. Existing methods treat video body-swapping as a composite of multiple tasks instead of an independent task and typically rely on various models to achieve video body-swapping sequentially. However, these methods fail to achieve end-to-end optimization for the video body-swapping which causes issues such as variations in luminance among frames, disorganized occlusion relationships, and the noticeable separation between bodies and background. In this work, we define video body-swapping as an independent task and propose three critical consistencies: identity consistency, motion consistency, and environment consistency. We introduce an end-to-end model named SwapAnyone, treating video body-swapping as a video inpainting task with reference fidelity and motion control. To improve the ability to maintain environmental harmony, particularly luminance harmony in the resulting video, we introduce a novel EnvHarmony strategy for training our model progressively. Additionally, we provide a dataset named HumanAction-32K covering various videos about human actions. Extensive experiments demonstrate that our method achieves State-Of-The-Art (SOTA) performance among open-source methods while approaching or surpassing closed-source models across multiple dimensions. All code, model weights, and the HumanAction-32K dataset will be open-sourced at https://github.com/PKU-YuanGroup/SwapAnyone.
Authors: Yuhan Wang, Fangzhou Hong, Shuai Yang, Liming Jiang, Wayne Wu, Chen Change Loy
Abstract:
Multiview diffusion models have shown considerable success in image-to-3D generation for general objects. However, when applied to human data, existing methods have yet to deliver promising results, largely due to the challenges of scaling multiview attention to higher resolutions. In this paper, we explore human multiview diffusion models at the megapixel level and introduce a solution called mesh attention to enable training at 1024x1024 resolution. Using a clothed human mesh as a central coarse geometric representation, the proposed mesh attention leverages rasterization and projection to establish direct cross-view coordinate correspondences. This approach significantly reduces the complexity of multiview attention while maintaining cross-view consistency. Building on this foundation, we devise a mesh attention block and combine it with keypoint conditioning to create our human-specific multiview diffusion model, MEAT. In addition, we present valuable insights into applying multiview human motion videos for diffusion training, addressing the longstanding issue of data scarcity. Extensive experiments show that MEAT effectively generates dense, consistent multiview human images at the megapixel level, outperforming existing multiview diffusion methods.
Authors: Chengjun Yu, Wei Zhai, Yuhang Yang, Yang Cao, Zheng-Jun Zha
Abstract:
Human reaction generation represents a significant research domain for interactive AI, as humans constantly interact with their surroundings. Previous works focus mainly on synthesizing the reactive motion given a human motion sequence. This paradigm limits interaction categories to human-human interactions and ignores emotions that may influence reaction generation. In this work, we propose to generate 3D human reactions from RGB videos, which involves a wider range of interaction categories and naturally provides information about expressions that may reflect the subject's emotions. To cope with this task, we present HERO, a simple yet powerful framework for Human rEaction geneRation from videOs. HERO considers both global and frame-level local representations of the video to extract the interaction intention, and then uses the extracted interaction intention to guide the synthesis of the reaction. Besides, local visual representations are continuously injected into the model to maximize the exploitation of the dynamic properties inherent in videos. Furthermore, the ViMo dataset containing paired Video-Motion data is collected to support the task. In addition to human-human interactions, these video-motion pairs also cover animal-human interactions and scene-human interactions. Extensive experiments demonstrate the superiority of our methodology. The code and dataset will be publicly available at https://jackyu6.github.io/HERO.
Authors: Yuhong Zhang, Guanlin Wu, Ling-Hao Chen, Zhuokai Zhao, Jing Lin, Xiaoke Jiang, Jiamin Wu, Zhuoheng Li, Hao Frank Yang, Haoqian Wang, Lei Zhang
Abstract:
In this paper, we present a novel framework designed to reconstruct long-sequence 3D human motion in the world coordinates from in-the-wild videos with multiple shot transitions. Such long-sequence in-the-wild motions are highly valuable to applications such as motion generation and motion understanding, but are of great challenge to be recovered due to abrupt shot transitions, partial occlusions, and dynamic backgrounds presented in such videos. Existing methods primarily focus on single-shot videos, where continuity is maintained within a single camera view, or simplify multi-shot alignment in camera space only. In this work, we tackle the challenges by integrating an enhanced camera pose estimation with Human Motion Recovery (HMR) by incorporating a shot transition detector and a robust alignment module for accurate pose and orientation continuity across shots. By leveraging a custom motion integrator, we effectively mitigate the problem of foot sliding and ensure temporal consistency in human pose. Extensive evaluations on our created multi-shot dataset from public 3D human datasets demonstrate the robustness of our method in reconstructing realistic human motion in world coordinates.
Authors: Wonkwang Lee, Jongwon Jeong, Taehong Moon, Hyeon-Jong Kim, Jaehyeon Kim, Gunhee Kim, Byeong-Uk Lee
Abstract:
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available at: $\href{https://t2m4lvo.github.io}{https://t2m4lvo.github.io}$.
Authors: Zhumei Wang, Zechen Hu, Ruoxi Guo, Huaijin Pi, Ziyong Feng, Sida Peng, Xiaowei Zhou, Mingtao Pei, Siyuan Huang
Abstract:
Recovering absolute human motion from monocular inputs is challenging due to two main issues. First, existing methods depend on 3D training data collected from limited environments, constraining out-of-distribution generalization. The second issue is the difficulty of estimating metric-scale poses from monocular input. To address these challenges, we introduce Mocap-2-to-3, a novel framework that performs multi-view lifting from monocular input by leveraging 2D data pre-training, enabling the reconstruction of metrically accurate 3D motions with absolute positions. To leverage abundant 2D data, we decompose complex 3D motion into multi-view syntheses. We first pretrain a single-view diffusion model on extensive 2D datasets, then fine-tune a multi-view model using public 3D data to enable view-consistent motion generation from monocular input, allowing the model to acquire action priors and diversity through 2D data. Furthermore, to recover absolute poses, we propose a novel human motion representation that decouples the learning of local pose and global movements, while encoding geometric priors of the ground to accelerate convergence. This enables progressive recovery of motion in absolute space during inference. Experimental results on in-the-wild benchmarks demonstrate that our method surpasses state-of-the-art approaches in both camera-space motion realism and world-grounded human positioning, while exhibiting superior generalization capability. Our code will be made publicly available.
Authors: Haichao Liu, Sikai Guo, Pengfei Mai, Jiahang Cao, Haoang Li, Jun Ma
Abstract:
This paper introduces RoboDexVLM, an innovative framework for robot task planning and grasp detection tailored for a collaborative manipulator equipped with a dexterous hand. Previous methods focus on simplified and limited manipulation tasks, which often neglect the complexities associated with grasping a diverse array of objects in a long-horizon manner. In contrast, our proposed framework utilizes a dexterous hand capable of grasping objects of varying shapes and sizes while executing tasks based on natural language commands. The proposed approach has the following core components: First, a robust task planner with a task-level recovery mechanism that leverages vision-language models (VLMs) is designed, which enables the system to interpret and execute open-vocabulary commands for long sequence tasks. Second, a language-guided dexterous grasp perception algorithm is presented based on robot kinematics and formal methods, tailored for zero-shot dexterous manipulation with diverse objects and commands. Comprehensive experimental results validate the effectiveness, adaptability, and robustness of RoboDexVLM in handling long-horizon scenarios and performing dexterous grasping. These results highlight the framework's ability to operate in complex environments, showcasing its potential for open-vocabulary dexterous manipulation. Our open-source project page can be found at https://henryhcliu.github.io/robodexvlm.
Authors: Peishan Cong, Ziyi Wang, Yuexin Ma, Xiangyu Yue
Abstract:
Generating reasonable and high-quality human interactive motions in a given dynamic environment is crucial for understanding, modeling, transferring, and applying human behaviors to both virtual and physical robots. In this paper, we introduce an effective method, SemGeoMo, for dynamic contextual human motion generation, which fully leverages the text-affordance-joint multi-level semantic and geometric guidance in the generation process, improving the semantic rationality and geometric correctness of generative motions. Our method achieves state-of-the-art performance on three datasets and demonstrates superior generalization capability for diverse interaction scenarios. The project page and code can be found at https://4dvlab.github.io/project_page/semgeomo/.
Authors: Sirui Xu, Hung Yu Ling, Yu-Xiong Wang, Liang-Yan Gui
Abstract:
Achieving realistic simulations of humans interacting with a wide range of objects has long been a fundamental goal. Extending physics-based motion imitation to complex human-object interactions (HOIs) is challenging due to intricate human-object coupling, variability in object geometries, and artifacts in motion capture data, such as inaccurate contacts and limited hand detail. We introduce InterMimic, a framework that enables a single policy to robustly learn from hours of imperfect MoCap data covering diverse full-body interactions with dynamic and varied objects. Our key insight is to employ a curriculum strategy -- perfect first, then scale up. We first train subject-specific teacher policies to mimic, retarget, and refine motion capture data. Next, we distill these teachers into a student policy, with the teachers acting as online experts providing direct supervision, as well as high-quality references. Notably, we incorporate RL fine-tuning on the student policy to surpass mere demonstration replication and achieve higher-quality solutions. Our experiments demonstrate that InterMimic produces realistic and diverse interactions across multiple HOI datasets. The learned policy generalizes in a zero-shot manner and seamlessly integrates with kinematic generators, elevating the framework from mere imitation to generative modeling of complex human-object interactions.
Authors: Yuhao Li, Mirana Claire Angel, Salman Khan, Yu Zhu, Jinqiu Sun, Yanning Zhang, Fahad Shahbaz Khan
Abstract:
Trajectory-based motion control has emerged as an intuitive and efficient approach for controllable video generation. However, the existing trajectory-based approaches are usually limited to only generating the motion trajectory of the controlled object and ignoring the dynamic interactions between the controlled object and its surroundings. To address this limitation, we propose a Chain-of-Thought-based motion controller for controllable video generation, named C-Drag. Instead of directly generating the motion of some objects, our C-Drag first performs object perception and then reasons the dynamic interactions between different objects according to the given motion control of the objects. Specifically, our method includes an object perception module and a Chain-of-Thought-based motion reasoning module. The object perception module employs visual language models to capture the position and category information of various objects within the image. The Chain-of-Thought-based motion reasoning module takes this information as input and conducts a stage-wise reasoning process to generate motion trajectories for each of the affected objects, which are subsequently fed to the diffusion model for video synthesis. Furthermore, we introduce a new video object interaction (VOI) dataset to evaluate the generation quality of motion controlled video generation methods. Our VOI dataset contains three typical types of interactions and provides the motion trajectories of objects that can be used for accurate performance evaluation. Experimental results show that C-Drag achieves promising performance across multiple metrics, excelling in object motion control. Our benchmark, codes, and models will be available at https://github.com/WesLee88524/C-Drag-Official-Repo.
Authors: Inbar Gat, Sigal Raab, Guy Tevet, Yuval Reshef, Amit H. Bermano, Daniel Cohen-Or
Abstract:
Generating motion for arbitrary skeletons is a longstanding challenge in computer graphics, remaining largely unexplored due to the scarcity of diverse datasets and the irregular nature of the data. In this work, we introduce AnyTop, a diffusion model that generates motions for diverse characters with distinct motion dynamics, using only their skeletal structure as input. Our work features a transformer-based denoising network, tailored for arbitrary skeleton learning, integrating topology information into the traditional attention mechanism. Additionally, by incorporating textual joint descriptions into the latent feature representation, AnyTop learns semantic correspondences between joints across diverse skeletons. Our evaluation demonstrates that AnyTop generalizes well, even with as few as three training examples per topology, and can produce motions for unseen skeletons as well. Furthermore, our model's latent space is highly informative, enabling downstream tasks such as joint correspondence, temporal segmentation and motion editing. Our webpage, https://anytop2025.github.io/Anytop-page, includes links to videos and code.
Authors: Ziwei Shan, Yaoyu He, Chengfeng Zhao, Jiashen Du, Jingyan Zhang, Qixuan Zhang, Jingyi Yu, Lan Xu
Abstract:
Human bodily movements convey critical insights into action intentions and cognitive processes, yet existing multimodal systems primarily focused on understanding human motion via language, vision, and audio, which struggle to capture the dynamic forces and torques inherent in 3D motion. Inertial measurement units (IMUs) present a promising alternative, offering lightweight, wearable, and privacy-conscious motion sensing. However, processing of streaming IMU data faces challenges such as wireless transmission instability, sensor noise, and drift, limiting their utility for long-term real-time motion capture (MoCap), and more importantly, online motion analysis. To address these challenges, we introduce Mojito, an intelligent motion agent that integrates inertial sensing with large language models (LLMs) for interactive motion capture and behavioral analysis.
Authors: Zhexiong Wan, Bin Fan, Le Hui, Yuchao Dai, Gim Hee Lee
Abstract:
Moving object segmentation plays a crucial role in understanding dynamic scenes involving multiple moving objects, while the difficulties lie in taking into account both spatial texture structures and temporal motion cues. Existing methods based on video frames encounter difficulties in distinguishing whether pixel displacements of an object are caused by camera motion or object motion due to the complexities of accurate image-based motion modeling. Recent advances exploit the motion sensitivity of novel event cameras to counter conventional images' inadequate motion modeling capabilities, but instead lead to challenges in segmenting pixel-level object masks due to the lack of dense texture structures in events. To address these two limitations imposed by unimodal settings, we propose the first instance-level moving object segmentation framework that integrates complementary texture and motion cues. Our model incorporates implicit cross-modal masked attention augmentation, explicit contrastive feature learning, and flow-guided motion enhancement to exploit dense texture information from a single image and rich motion information from events, respectively. By leveraging the augmented texture and motion features, we separate mask segmentation from motion classification to handle varying numbers of independently moving objects. Through extensive evaluations on multiple datasets, as well as ablation experiments with different input settings and real-time efficiency analysis of the proposed framework, we believe that our first attempt to incorporate image and event data for practical deployment can provide new insights for future work in event-based motion related works. The source code with model training and pre-trained weights is released at https://npucvr.github.io/EvInsMOS
Authors: Habib Larian, Faramarz Safi-Esfahani
Abstract:
With the rapid expansion of the Internet of Things (IoT), sensors, smartphones, and wearables have become integral to daily life, powering smart applications in home automation, healthcare, and intelligent transportation. However, these advancements face significant challenges due to latency and bandwidth constraints imposed by traditional cloud based machine learning (ML) frameworks. The need for innovative solutions is evident as cloud computing struggles with increased latency and network congestion. Previous attempts to offload parts of the ML pipeline to edge and cloud layers have yet to fully resolve these issues, often worsening system response times and network congestion due to the computational limitations of edge devices. In response to these challenges, this study introduces the InTec (Integrated Things Edge Computing) framework, a groundbreaking innovation in IoT architecture. Unlike existing methods, InTec fully leverages the potential of a three tier architecture by strategically distributing ML tasks across the Things, Edge, and Cloud layers. This comprehensive approach enables real time data processing at the point of data generation, significantly reducing latency, optimizing network traffic, and enhancing system reliability. InTec effectiveness is validated through empirical evaluation using the MHEALTH dataset for human motion detection in smart homes, demonstrating notable improvements in key metrics: an 81.56 percent reduction in response time, a 10.92 percent decrease in network traffic, a 9.82 percent improvement in throughput, a 21.86 percent reduction in edge energy consumption, and a 25.83 percent reduction in cloud energy consumption. These advancements establish InTec as a new benchmark for scalable, responsive, and energy efficient IoT applications, demonstrating its potential to revolutionize how the ML pipeline is integrated into Edge AI (EI) systems.
Authors: Wonjoon Jin, Qi Dai, Chong Luo, Seung-Hwan Baek, Sunghyun Cho
Abstract:
We present FloVD, a novel video diffusion model for camera-controllable video generation. FloVD leverages optical flow to represent the motions of the camera and moving objects. This approach offers two key benefits. Since optical flow can be directly estimated from videos, our approach allows for the use of arbitrary training videos without ground-truth camera parameters. Moreover, as background optical flow encodes 3D correlation across different viewpoints, our method enables detailed camera control by leveraging the background motion. To synthesize natural object motion while supporting detailed camera control, our framework adopts a two-stage video synthesis pipeline consisting of optical flow generation and flow-conditioned video synthesis. Extensive experiments demonstrate the superiority of our method over previous approaches in terms of accurate camera control and natural object motion synthesis.
Authors: Sixiao Zheng, Zimian Peng, Yanpeng Zhou, Yi Zhu, Hang Xu, Xiangru Huang, Yanwei Fu
Abstract:
Controllable image-to-video (I2V) generation transforms a reference image into a coherent video guided by user-specified control signals. In content creation workflows, precise and simultaneous control over camera motion, object motion, and lighting direction enhances both accuracy and flexibility. However, existing approaches typically treat these control signals separately, largely due to the scarcity of datasets with high-quality joint annotations and mismatched control spaces across modalities. We present VidCRAFT3, a unified and flexible I2V framework that supports both independent and joint control over camera motion, object motion, and lighting direction by integrating three core components. Image2Cloud reconstructs a 3D point cloud from the reference image to enable precise camera motion control. ObjMotionNet encodes sparse object trajectories into multi-scale optical flow features to guide object motion. The Spatial Triple-Attention Transformer integrates lighting direction embeddings via parallel cross-attention. To address the scarcity of jointly annotated data, we curate the VideoLightingDirection (VLD) dataset of synthetic static-scene video clips with per-frame lighting-direction labels, and adopt a three-stage training strategy that enables robust learning without fully joint annotations. Extensive experiments show that VidCRAFT3 outperforms existing methods in control precision and visual coherence. Code and data will be released. Project page: https://sixiaozheng.github.io/VidCRAFT3/.
Authors: Zhe Huang, Tianchen Ji, Heling Zhang, Fatemeh Cheraghi Pouria, Katherine Driggs-Campbell, Roy Dong
Abstract:
During crowd navigation, robot motion plan needs to consider human motion uncertainty, and the human motion uncertainty is dependent on the robot motion plan. We introduce Interaction-aware Conformal Prediction (ICP) to alternate uncertainty-aware robot motion planning and decision-dependent human motion uncertainty quantification. ICP is composed of a trajectory predictor to predict human trajectories, a model predictive controller to plan robot motion with confidence interval radii added for probabilistic safety, a human simulator to collect human trajectory calibration dataset conditioned on the planned robot motion, and a conformal prediction module to quantify trajectory prediction error on the decision-dependent calibration dataset. Crowd navigation simulation experiments show that ICP strikes a good balance of performance among navigation efficiency, social awareness, and uncertainty quantification compared to previous works. ICP generalizes well to navigation tasks under various crowd densities. The fast runtime and efficient memory usage make ICP practical for real-world applications. Code is available at https://github.com/tedhuang96/icp.
Authors: Lu Chen, Yizhou Wang, Shixiang Tang, Qianhong Ma, Tong He, Wanli Ouyang, Xiaowei Zhou, Hujun Bao, Sida Peng
Abstract:
Learning an agent model that behaves like humans-capable of jointly perceiving the environment, predicting the future, and taking actions from a first-person perspective-is a fundamental challenge in computer vision. Existing methods typically train separate models for these abilities, which fail to capture their intrinsic relationships and prevent them from learning from each other. Inspired by how humans learn through the perception-action loop, we propose EgoAgent, a unified agent model that simultaneously learns to represent, predict, and act within a single transformer. EgoAgent explicitly models the causal and temporal dependencies among these abilities by formulating the task as an interleaved sequence of states and actions. It further introduces a joint embedding-action-prediction architecture with temporally asymmetric predictor and observer branches, enabling synergistic optimization across all three capabilities. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction demonstrate the superiority of our method. The code and trained models will be publicly available at https://github.com/zju3dv/EgoAgent.
Authors: Yuwen Liao, Muqing Cao, Xinhang Xu, Lihua Xie
Abstract:
Humans learn from observations and experiences to adjust their behaviours towards better performance. Interacting with such dynamic humans is challenging, as the robot needs to predict the humans accurately for safe and efficient operations. Long-term interactions with dynamic humans have not been extensively studied by prior works. We propose an adaptive human prediction model based on the Theory-of-Mind (ToM), a fundamental social-cognitive ability that enables humans to infer others' behaviours and intentions. We formulate the human internal belief about others using a game-theoretic model, which predicts the future motions of all agents in a navigation scenario. To estimate an evolving belief, we use an Unscented Kalman Filter to update the behavioural parameters in the human internal model. Our formulation provides unique interpretability to dynamic human behaviours by inferring how the human predicts the robot. We demonstrate through long-term experiments in both simulations and real-world settings that our prediction effectively promotes safety and efficiency in downstream robot planning. Code will be available at https://github.com/centiLinda/AToM-human-prediction.git.
Authors: Qijun Gan, Yi Ren, Chen Zhang, Zhenhui Ye, Pan Xie, Xiang Yin, Zehuan Yuan, Bingyue Peng, Jianke Zhu
Abstract:
Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
Authors: Hao Yin, Paritosh Parmar, Daoliang Xu, Yang Zhang, Tianyou Zheng, Weiwei Fu
Abstract:
Action Quality Assessment (AQA) -- the ability to quantify the quality of human motion, actions, or skill levels and provide feedback -- has far-reaching implications in areas such as low-cost physiotherapy, sports training, and workforce development. As such, it has become a critical field in computer vision & video understanding over the past decade. Significant progress has been made in AQA methodologies, datasets, & applications, yet a pressing need remains for a comprehensive synthesis of this rapidly evolving field. In this paper, we present a thorough survey of the AQA landscape, systematically reviewing over 200 research papers using the preferred reporting items for systematic reviews & meta-analyses (PRISMA) framework. We begin by covering foundational concepts & definitions, then move to general frameworks & performance metrics, & finally discuss the latest advances in methodologies & datasets. This survey provides a detailed analysis of research trends, performance comparisons, challenges, & future directions. Through this work, we aim to offer a valuable resource for both newcomers & experienced researchers, promoting further exploration & progress in AQA. Data are available at https://haoyin116.github.io/Survey_of_AQA/
Authors: Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam Polyak, Yaniv Taigman, Lior Wolf, Shelly Sheynin
Abstract:
Despite tremendous recent progress, generative video models still struggle to capture real-world motion, dynamics, and physics. We show that this limitation arises from the conventional pixel reconstruction objective, which biases models toward appearance fidelity at the expense of motion coherence. To address this, we introduce VideoJAM, a novel framework that instills an effective motion prior to video generators, by encouraging the model to learn a joint appearance-motion representation. VideoJAM is composed of two complementary units. During training, we extend the objective to predict both the generated pixels and their corresponding motion from a single learned representation. During inference, we introduce Inner-Guidance, a mechanism that steers the generation toward coherent motion by leveraging the model's own evolving motion prediction as a dynamic guidance signal. Notably, our framework can be applied to any video model with minimal adaptations, requiring no modifications to the training data or scaling of the model. VideoJAM achieves state-of-the-art performance in motion coherence, surpassing highly competitive proprietary models while also enhancing the perceived visual quality of the generations. These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation. Project website: https://hila-chefer.github.io/videojam-paper.github.io/
Authors: Ziyan Guo, Zeyu Hu, De Wen Soh, Na Zhao
Abstract:
Human motion generation and editing are key components of computer vision. However, current approaches in this field tend to offer isolated solutions tailored to specific tasks, which can be inefficient and impractical for real-world applications. While some efforts have aimed to unify motion-related tasks, these methods simply use different modalities as conditions to guide motion generation. Consequently, they lack editing capabilities, fine-grained control, and fail to facilitate knowledge sharing across tasks. To address these limitations and provide a versatile, unified framework capable of handling both human motion generation and editing, we introduce a novel paradigm: \textbf{Motion-Condition-Motion}, which enables the unified formulation of diverse tasks with three concepts: source motion, condition, and target motion. Based on this paradigm, we propose a unified framework, \textbf{MotionLab}, which incorporates rectified flows to learn the mapping from source motion to target motion, guided by the specified conditions. In MotionLab, we introduce the 1) MotionFlow Transformer to enhance conditional generation and editing without task-specific modules; 2) Aligned Rotational Position Encoding to guarantee the time synchronization between source motion and target motion; 3) Task Specified Instruction Modulation; and 4) Motion Curriculum Learning for effective multi-task learning and knowledge sharing across tasks. Notably, our MotionLab demonstrates promising generalization capabilities and inference efficiency across multiple benchmarks for human motion. Our code and additional video results are available at: https://diouo.github.io/motionlab.github.io/.
Authors: Maximilian Leitenstern, Marko Alten, Christian Bolea-Schaser, Dominik Kulmer, Marcel Weinmann, Markus Lienkamp
Abstract:
Current software stacks for real-world applications of autonomous driving leverage map information to ensure reliable localization, path planning, and motion prediction. An important field of research is the generation of point cloud maps, referring to the topic of simultaneous localization and mapping (SLAM). As most recent developments do not include global position data, the resulting point cloud maps suffer from internal distortion and missing georeferencing, preventing their use for map-based localization approaches. Therefore, we propose FlexCloud for an automatic georeferencing of point cloud maps created from SLAM. Our approach is designed to work modularly with different SLAM methods, utilizing only the generated local point cloud map and its odometry. Using the corresponding GNSS positions enables direct georeferencing without additional control points. By leveraging a 3D rubber-sheet transformation, we can correct distortions within the map caused by long-term drift while maintaining its structure. Our approach enables the creation of consistent, globally referenced point cloud maps from data collected by a mobile mapping system (MMS). The source code of our work is available at https://github.com/TUMFTM/FlexCloud.
Authors: Vaclav Knapp, Matyas Bohacek
Abstract:
Recent pose-transfer methods aim to generate temporally consistent and fully controllable videos of human action where the motion from a reference video is reenacted by a new identity. We evaluate three state-of-the-art pose-transfer methods -- AnimateAnyone, MagicAnimate, and ExAvatar -- by generating videos with actions and identities outside the training distribution and conducting a participant study about the quality of these videos. In a controlled environment of 20 distinct human actions, we find that participants, presented with the pose-transferred videos, correctly identify the desired action only 42.92% of the time. Moreover, the participants find the actions in the generated videos consistent with the reference (source) videos only 36.46% of the time. These results vary by method: participants find the splatting-based ExAvatar more consistent and photorealistic than the diffusion-based AnimateAnyone and MagicAnimate.
Authors: Tuo Feng, Wenguan Wang, Yi Yang
Abstract:
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, multimodal fusion, and advanced simulation to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.
Authors: Claire Chen, Zhongchun Yu, Hojung Choi, Mark Cutkosky, Jeannette Bohg
Abstract:
Imitation learning requires high-quality demonstrations consisting of sequences of state-action pairs. For contact-rich dexterous manipulation tasks that require dexterity, the actions in these state-action pairs must produce the right forces. Current widely-used methods for collecting dexterous manipulation demonstrations are difficult to use for demonstrating contact-rich tasks due to unintuitive human-to-robot motion retargeting and the lack of direct haptic feedback. Motivated by these concerns, we propose DexForce. DexForce leverages contact forces, measured during kinesthetic demonstrations, to compute force-informed actions for policy learning. We collect demonstrations for six tasks and show that policies trained on our force-informed actions achieve an average success rate of 76% across all tasks. In contrast, policies trained directly on actions that do not account for contact forces have near-zero success rates. We also conduct a study ablating the inclusion of force data in policy observations. We find that while using force data never hurts policy performance, it helps most for tasks that require advanced levels of precision and coordination, like opening an AirPods case and unscrewing a nut.
Authors: Di Chang, Hongyi Xu, You Xie, Yipeng Gao, Zhengfei Kuang, Shengqu Cai, Chenxu Zhang, Guoxian Song, Chao Wang, Yichun Shi, Zeyuan Chen, Shijie Zhou, Linjie Luo, Gordon Wetzstein, Mohammad Soleymani
Abstract:
We introduce X-Dyna, a novel zero-shot, diffusion-based pipeline for animating a single human image using facial expressions and body movements derived from a driving video, that generates realistic, context-aware dynamics for both the subject and the surrounding environment. Building on prior approaches centered on human pose control, X-Dyna addresses key shortcomings causing the loss of dynamic details, enhancing the lifelike qualities of human video animations. At the core of our approach is the Dynamics-Adapter, a lightweight module that effectively integrates reference appearance context into the spatial attentions of the diffusion backbone while preserving the capacity of motion modules in synthesizing fluid and intricate dynamic details. Beyond body pose control, we connect a local control module with our model to capture identity-disentangled facial expressions, facilitating accurate expression transfer for enhanced realism in animated scenes. Together, these components form a unified framework capable of learning physical human motion and natural scene dynamics from a diverse blend of human and scene videos. Comprehensive qualitative and quantitative evaluations demonstrate that X-Dyna outperforms state-of-the-art methods, creating highly lifelike and expressive animations. The code is available at https://github.com/bytedance/X-Dyna.
Authors: Hyeonwoo Kim, Sangwon Baik, Hanbyul Joo
Abstract:
Modeling how humans interact with objects is crucial for AI to effectively assist or mimic human behaviors. Existing studies for learning such ability primarily focus on static human-object interaction (HOI) patterns, such as contact and spatial relationships, while dynamic HOI patterns, capturing the movement of humans and objects over time, remain relatively underexplored. In this paper, we present a novel framework for learning Dynamic Affordance across various target object categories. To address the scarcity of 4D HOI datasets, our method learns the 3D dynamic affordance from synthetically generated 4D HOI samples. Specifically, we propose a pipeline that first generates 2D HOI videos from a given 3D target object using a pre-trained video diffusion model, then lifts them into 3D to generate 4D HOI samples. Leveraging these synthesized 4D HOI samples, we train DAViD, our generative 4D human-object interaction model, which is composed of two key components: (1) a human motion diffusion model (MDM) with Low-Rank Adaptation (LoRA) module to fine-tune a pre-trained MDM to learn the HOI motion concepts from limited HOI motion samples, (2) a motion diffusion model for 4D object poses conditioned by produced human interaction motions. Interestingly, DAViD can integrate newly learned HOI motion concepts with pre-trained human motions to create novel HOI motions, even for multiple HOI motion concepts, demonstrating the advantage of our pipeline with LoRA in integrating dynamic HOI concepts. Through extensive experiments, we demonstrate that DAViD outperforms baselines in synthesizing HOI motion.
Authors: Ryan Burgert, Yuancheng Xu, Wenqi Xian, Oliver Pilarski, Pascal Clausen, Mingming He, Li Ma, Yitong Deng, Lingxiao Li, Mohsen Mousavi, Michael Ryoo, Paul Debevec, Ning Yu
Abstract:
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://eyeline-labs.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/Eyeline-Labs/Go-with-the-Flow.
Authors: Xinyu Zhang, Zicheng Duan, Dong Gong, Lingqiao Liu
Abstract:
In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
Authors: Cecilia Curreli, Dominik Muhle, Abhishek Saroha, Zhenzhang Ye, Riccardo Marin, Daniel Cremers
Abstract:
Probabilistic human motion prediction aims to forecast multiple possible future movements from past observations. While current approaches report high diversity and realism, they often generate motions with undetected limb stretching and jitter. To address this, we introduce SkeletonDiffusion, a latent diffusion model that embeds an explicit inductive bias on the human body within its architecture and training. Our model is trained with a novel nonisotropic Gaussian diffusion formulation that aligns with the natural kinematic structure of the human skeleton. Results show that our approach outperforms conventional isotropic alternatives, consistently generating realistic predictions while avoiding artifacts such as limb distortion. Additionally, we identify a limitation in commonly used diversity metrics, which may inadvertently favor models that produce inconsistent limb lengths within the same sequence. SkeletonDiffusion sets a new benchmark on real-world datasets, outperforming various baselines across multiple evaluation metrics. Visit our project page at https://ceveloper.github.io/publications/skeletondiffusion/ .
Authors: Yingjie Chen, Yifang Men, Yuan Yao, Miaomiao Cui, Liefeng Bo
Abstract:
Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user instructions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive and consistent visual changes. Then, our framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed approach. For more details and qualitative results, please refer to our anonymous project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
Authors: Sungjae Park, Seungho Lee, Mingi Choi, Jiye Lee, Jeonghwan Kim, Jisoo Kim, Hanbyul Joo
Abstract:
We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations. Unlike existing approaches that solely rely on kinematics information without taking into account the plausibility of robot and object interaction, our method directly infers plausible robot manipulation actions from human motion demonstrations. To address the embodiment gap between the human hand and the robot system, our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion component from others. Our key idea is the generation of pseudo-supervision triplets, which pair human, object, and robot motion trajectories synthetically. Through real-world experiments with robot hand manipulation, we demonstrate that our data-driven retargeting method significantly outperforms conventional retargeting techniques, effectively bridging the embodiment gap between human and robotic hands. Website at https://rureadyo.github.io/MocapRobot/.
Authors: Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yijin Li, Fu-Yun Wang, Hongsheng Li
Abstract:
4D video control is essential in video generation as it enables the use of sophisticated lens techniques, such as multi-camera shooting and dolly zoom, which are currently unsupported by existing methods. Training a video Diffusion Transformer (DiT) directly to control 4D content requires expensive multi-view videos. Inspired by Monocular Dynamic novel View Synthesis (MDVS) that optimizes a 4D representation and renders videos according to different 4D elements, such as camera pose and object motion editing, we bring pseudo 4D Gaussian fields to video generation. Specifically, we propose a novel framework that constructs a pseudo 4D Gaussian field with dense 3D point tracking and renders the Gaussian field for all video frames. Then we finetune a pretrained DiT to generate videos following the guidance of the rendered video, dubbed as GS-DiT. To boost the training of the GS-DiT, we also propose an efficient Dense 3D Point Tracking (D3D-PT) method for the pseudo 4D Gaussian field construction. Our D3D-PT outperforms SpatialTracker, the state-of-the-art sparse 3D point tracking method, in accuracy and accelerates the inference speed by two orders of magnitude. During the inference stage, GS-DiT can generate videos with the same dynamic content while adhering to different camera parameters, addressing a significant limitation of current video generation models. GS-DiT demonstrates strong generalization capabilities and extends the 4D controllability of Gaussian splatting to video generation beyond just camera poses. It supports advanced cinematic effects through the manipulation of the Gaussian field and camera intrinsics, making it a powerful tool for creative video production. Demos are available at https://wkbian.github.io/Projects/GS-DiT/.
Authors: Haichao Liu, Kai Chen, Yulin Li, Zhenmin Huang, Ming Liu, Jun Ma
Abstract:
Current autonomous driving systems often struggle to balance decision-making and motion control while ensuring safety and traffic rule compliance, especially in complex urban environments. Existing methods may fall short due to separate handling of these functionalities, leading to inefficiencies and safety compromises. To address these challenges, we introduce UDMC, an interpretable and unified Level 4 autonomous driving framework. UDMC integrates decision-making and motion control into a single optimal control problem (OCP), considering the dynamic interactions with surrounding vehicles, pedestrians, road lanes, and traffic signals. By employing innovative potential functions to model traffic participants and regulations, and incorporating a specialized motion prediction module, our framework enhances on-road safety and rule adherence. The integrated design allows for real-time execution of flexible maneuvers suited to diverse driving scenarios. High-fidelity simulations conducted in CARLA exemplify the framework's computational efficiency, robustness, and safety, resulting in superior driving performance when compared against various baseline models. Our open-source project is available at https://github.com/henryhcliu/udmc_carla.git.
Authors: Zhizheng Liu, Joe Lin, Wayne Wu, Bolei Zhou
Abstract:
Reconstructing human motion and its surrounding environment is crucial for understanding human-scene interaction and predicting human movements in the scene. While much progress has been made in capturing human-scene interaction in constrained environments, those prior methods can hardly reconstruct the natural and diverse human motion and scene context from web videos. In this work, we propose JOSH, a novel optimization-based method for 4D human-scene reconstruction in the wild from monocular videos. JOSH uses techniques in both dense scene reconstruction and human mesh recovery as initialization, and then it leverages the human-scene contact constraints to jointly optimize the scene, the camera poses, and the human motion. Experiment results show JOSH achieves better results on both global human motion estimation and dense scene reconstruction by joint optimization of scene geometry and human motion. We further design a more efficient model, JOSH3R, and directly train it with pseudo-labels from web videos. JOSH3R outperforms other optimization-free methods by only training with labels predicted from JOSH, further demonstrating its accuracy and generalization ability.
Authors: Xincheng Shuai, Henghui Ding, Zhenyuan Qin, Hao Luo, Xingjun Ma, Dacheng Tao
Abstract:
Controlling the movements of dynamic objects and the camera within generated videos is a meaningful yet challenging task. Due to the lack of datasets with comprehensive 6D pose annotations, existing text-to-video methods can not simultaneously control the motions of both camera and objects in 3D-aware manner, resulting in limited controllability over generated contents. To address this issue and facilitate the research in this field, we introduce a Synthetic Dataset for Free-Form Motion Control (SynFMC). The proposed SynFMC dataset includes diverse object and environment categories and covers various motion patterns according to specific rules, simulating common and complex real-world scenarios. The complete 6D pose information facilitates models learning to disentangle the motion effects from objects and the camera in a video.~To provide precise 3D-aware motion control, we further propose a method trained on SynFMC, Free-Form Motion Control (FMC). FMC can control the 6D poses of objects and camera independently or simultaneously, producing high-fidelity videos. Moreover, it is compatible with various personalized text-to-image (T2I) models for different content styles. Extensive experiments demonstrate that the proposed FMC outperforms previous methods across multiple scenarios.
Authors: Hongjie Li, Hong-Xing Yu, Jiaman Li, Jiajun Wu
Abstract:
Human-scene interaction (HSI) generation is crucial for applications in embodied AI, virtual reality, and robotics. Yet, existing methods cannot synthesize interactions in unseen environments such as in-the-wild scenes or reconstructed scenes, as they rely on paired 3D scenes and captured human motion data for training, which are unavailable for unseen environments. We present ZeroHSI, a novel approach that enables zero-shot 4D human-scene interaction synthesis, eliminating the need for training on any MoCap data. Our key insight is to distill human-scene interactions from state-of-the-art video generation models, which have been trained on vast amounts of natural human movements and interactions, and use differentiable rendering to reconstruct human-scene interactions. ZeroHSI can synthesize realistic human motions in both static scenes and environments with dynamic objects, without requiring any ground-truth motion data. We evaluate ZeroHSI on a curated dataset of different types of various indoor and outdoor scenes with different interaction prompts, demonstrating its ability to generate diverse and contextually appropriate human-scene interactions.
Authors: Hongsong Wang, Andi Xu, Pinle Ding, Jie Gui
Abstract:
Video Anomaly Detection (VAD) is essential for computer vision research. Existing VAD methods utilize either reconstruction-based or prediction-based frameworks. The former excels at detecting irregular patterns or structures, whereas the latter is capable of spotting abnormal deviations or trends. We address pose-based video anomaly detection and introduce a novel framework called Dual Conditioned Motion Diffusion (DCMD), which enjoys the advantages of both approaches. The DCMD integrates conditioned motion and conditioned embedding to comprehensively utilize the pose characteristics and latent semantics of observed movements, respectively. In the reverse diffusion process, a motion transformer is proposed to capture potential correlations from multi-layered characteristics within the spectrum space of human motion. To enhance the discriminability between normal and abnormal instances, we design a novel United Association Discrepancy (UAD) regularization that primarily relies on a Gaussian kernel-based time association and a self-attention-based global association. Finally, a mask completion strategy is introduced during the inference stage of the reverse diffusion process to enhance the utilization of conditioned motion for the prediction branch of anomaly detection. Extensive experiments on four datasets demonstrate that our method dramatically outperforms state-of-the-art methods and exhibits superior generalization performance.
Authors: Jianrong Zhang, Hehe Fan, Yi Yang
Abstract:
Diffusion models, particularly latent diffusion models, have demonstrated remarkable success in text-driven human motion generation. However, it remains challenging for latent diffusion models to effectively compose multiple semantic concepts into a single, coherent motion sequence. To address this issue, we propose EnergyMoGen, which includes two spectrums of Energy-Based Models: (1) We interpret the diffusion model as a latent-aware energy-based model that generates motions by composing a set of diffusion models in latent space; (2) We introduce a semantic-aware energy model based on cross-attention, which enables semantic composition and adaptive gradient descent for text embeddings. To overcome the challenges of semantic inconsistency and motion distortion across these two spectrums, we introduce Synergistic Energy Fusion. This design allows the motion latent diffusion model to synthesize high-quality, complex motions by combining multiple energy terms corresponding to textual descriptions. Experiments show that our approach outperforms existing state-of-the-art models on various motion generation tasks, including text-to-motion generation, compositional motion generation, and multi-concept motion generation. Additionally, we demonstrate that our method can be used to extend motion datasets and improve the text-to-motion task.
Authors: Tong Chen, Shuya Yang, Junyi Wang, Long Bai, Hongliang Ren, Luping Zhou
Abstract:
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
Authors: Tiago Rodrigues de Almeida, Tim Schreiter, Andrey Rudenko, Luigi Palmieiri, Johannes A. Stork, Achim J. Lilienthal
Abstract:
Accurate human activity and trajectory prediction are crucial for ensuring safe and reliable human-robot interactions in dynamic environments, such as industrial settings, with mobile robots. Datasets with fine-grained action labels for moving people in industrial environments with mobile robots are scarce, as most existing datasets focus on social navigation in public spaces. This paper introduces the THÃR-MAGNI Act dataset, a substantial extension of the THÃR-MAGNI dataset, which captures participant movements alongside robots in diverse semantic and spatial contexts. THÃR-MAGNI Act provides 8.3 hours of manually labeled participant actions derived from egocentric videos recorded via eye-tracking glasses. These actions, aligned with the provided THÃR-MAGNI motion cues, follow a long-tailed distribution with diversified acceleration, velocity, and navigation distance profiles. We demonstrate the utility of THÃR-MAGNI Act for two tasks: action-conditioned trajectory prediction and joint action and trajectory prediction. We propose two efficient transformer-based models that outperform the baselines to address these tasks. These results underscore the potential of THÃR-MAGNI Act to develop predictive models for enhanced human-robot interaction in complex environments.
Authors: Hsin-Ping Huang, Yang Zhou, Jui-Hsien Wang, Difan Liu, Feng Liu, Ming-Hsuan Yang, Zhan Xu
Abstract:
Generating realistic human videos remains a challenging task, with the most effective methods currently relying on a human motion sequence as a control signal. Existing approaches often use existing motion extracted from other videos, which restricts applications to specific motion types and global scene matching. We propose Move-in-2D, a novel approach to generate human motion sequences conditioned on a scene image, allowing for diverse motion that adapts to different scenes. Our approach utilizes a diffusion model that accepts both a scene image and text prompt as inputs, producing a motion sequence tailored to the scene. To train this model, we collect a large-scale video dataset featuring single-human activities, annotating each video with the corresponding human motion as the target output. Experiments demonstrate that our method effectively predicts human motion that aligns with the scene image after projection. Furthermore, we show that the generated motion sequence improves human motion quality in video synthesis tasks.
Authors: Huaijin Pi, Ruoxi Guo, Zehong Shen, Qing Shuai, Zechen Hu, Zhumei Wang, Yajiao Dong, Ruizhen Hu, Taku Komura, Sida Peng, Xiaowei Zhou
Abstract:
Text-driven human motion synthesis is capturing significant attention for its ability to effortlessly generate intricate movements from abstract text cues, showcasing its potential for revolutionizing motion design not only in film narratives but also in virtual reality experiences and computer game development. Existing methods often rely on 3D motion capture data, which require special setups resulting in higher costs for data acquisition, ultimately limiting the diversity and scope of human motion. In contrast, 2D human videos offer a vast and accessible source of motion data, covering a wider range of styles and activities. In this paper, we explore leveraging 2D human motion extracted from videos as an alternative data source to improve text-driven 3D motion generation. Our approach introduces a novel framework that disentangles local joint motion from global movements, enabling efficient learning of local motion priors from 2D data. We first train a single-view 2D local motion generator on a large dataset of text-motion pairs. To enhance this model to synthesize 3D motion, we fine-tune the generator with 3D data, transforming it into a multi-view generator that predicts view-consistent local joint motion and root dynamics. Experiments on the HumanML3D dataset and novel text prompts demonstrate that our method efficiently utilizes 2D data, supporting realistic 3D human motion generation and broadening the range of motion types it supports. Our code will be made publicly available at https://zju3dv.github.io/Motion-2-to-3/.
Authors: Dongyang Jin, Chao Fan, Weihua Chen, Shiqi Yu
Abstract:
The gait, as a kind of soft biometric characteristic, can reflect the distinct walking patterns of individuals at a distance, exhibiting a promising technique for unrestrained human identification. With largely excluding gait-unrelated cues hidden in RGB videos, the silhouette and skeleton, though visually compact, have acted as two of the most prevailing gait modalities for a long time. Recently, several attempts have been made to introduce more informative data forms like human parsing and optical flow images to capture gait characteristics, along with multi-branch architectures. However, due to the inconsistency within model designs and experiment settings, we argue that a comprehensive and fair comparative study among these popular gait modalities, involving the representational capacity and fusion strategy exploration, is still lacking. From the perspectives of fine vs. coarse-grained shape and whole vs. pixel-wise motion modeling, this work presents an in-depth investigation of three popular gait representations, i.e., silhouette, human parsing, and optical flow, with various fusion evaluations, and experimentally exposes their similarities and differences. Based on the obtained insights, we further develop a C$^2$Fusion strategy, consequently building our new framework MultiGait++. C$^2$Fusion preserves commonalities while highlighting differences to enrich the learning of gait features. To verify our findings and conclusions, extensive experiments on Gait3D, GREW, CCPG, and SUSTech1K are conducted. The code is available at https://github.com/ShiqiYu/OpenGait.
Authors: Ling-An Zeng, Guohong Huang, Gaojie Wu, Wei-Shi Zheng
Abstract:
Despite the significant role text-to-motion (T2M) generation plays across various applications, current methods involve a large number of parameters and suffer from slow inference speeds, leading to high usage costs. To address this, we aim to design a lightweight model to reduce usage costs. First, unlike existing works that focus solely on global information modeling, we recognize the importance of local information modeling in the T2M task by reconsidering the intrinsic properties of human motion, leading us to propose a lightweight Local Information Modeling Module. Second, we introduce Mamba to the T2M task, reducing the number of parameters and GPU memory demands, and we have designed a novel Pseudo-bidirectional Scan to replicate the effects of a bidirectional scan without increasing parameter count. Moreover, we propose a novel Adaptive Textual Information Injector that more effectively integrates textual information into the motion during generation. By integrating the aforementioned designs, we propose a lightweight and fast model named Light-T2M. Compared to the state-of-the-art method, MoMask, our Light-T2M model features just 10\% of the parameters (4.48M vs 44.85M) and achieves a 16\% faster inference time (0.152s vs 0.180s), while surpassing MoMask with an FID of \textbf{0.040} (vs. 0.045) on HumanML3D dataset and 0.161 (vs. 0.228) on KIT-ML dataset. The code is available at https://github.com/qinghuannn/light-t2m.
Authors: Weiqi Li, Shijie Zhao, Chong Mou, Xuhan Sheng, Zhenyu Zhang, Qian Wang, Junlin Li, Li Zhang, Jian Zhang
Abstract:
As virtual reality gains popularity, the demand for controllable creation of immersive and dynamic omnidirectional videos (ODVs) is increasing. While previous text-to-ODV generation methods achieve impressive results, they struggle with content inaccuracies and inconsistencies due to reliance solely on textual inputs. Although recent motion control techniques provide fine-grained control for video generation, directly applying these methods to ODVs often results in spatial distortion and unsatisfactory performance, especially with complex spherical motions. To tackle these challenges, we propose OmniDrag, the first approach enabling both scene- and object-level motion control for accurate, high-quality omnidirectional image-to-video generation. Building on pretrained video diffusion models, we introduce an omnidirectional control module, which is jointly fine-tuned with temporal attention layers to effectively handle complex spherical motion. In addition, we develop a novel spherical motion estimator that accurately extracts motion-control signals and allows users to perform drag-style ODV generation by simply drawing handle and target points. We also present a new dataset, named Move360, addressing the scarcity of ODV data with large scene and object motions. Experiments demonstrate the significant superiority of OmniDrag in achieving holistic scene-level and fine-grained object-level control for ODV generation. The project page is available at https://lwq20020127.github.io/OmniDrag.
Authors: Zixun Xie, Sicheng Zuo, Wenzhao Zheng, Yunpeng Zhang, Dalong Du, Jie Zhou, Jiwen Lu, Shanghang Zhang
Abstract:
Modeling the evolutions of driving scenarios is important for the evaluation and decision-making of autonomous driving systems. Most existing methods focus on one aspect of scene evolution such as map generation, motion prediction, and trajectory planning. In this paper, we propose a unified Generative Pre-training for Driving (GPD-1) model to accomplish all these tasks altogether without additional fine-tuning. We represent each scene with ego, agent, and map tokens and formulate autonomous driving as a unified token generation problem. We adopt the autoregressive transformer architecture and use a scene-level attention mask to enable intra-scene bi-directional interactions. For the ego and agent tokens, we propose a hierarchical positional tokenizer to effectively encode both 2D positions and headings. For the map tokens, we train a map vector-quantized autoencoder to efficiently compress ego-centric semantic maps into discrete tokens. We pre-train our GPD-1 on the large-scale nuPlan dataset and conduct extensive experiments to evaluate its effectiveness. With different prompts, our GPD-1 successfully generalizes to various tasks without finetuning, including scene generation, traffic simulation, closed-loop simulation, map prediction, and motion planning. Code: https://github.com/wzzheng/GPD.
Authors: Zhouxia Wang, Yushi Lan, Shangchen Zhou, Chen Change Loy
Abstract:
This study aims to achieve more precise and versatile object control in image-to-video (I2V) generation. Current methods typically represent the spatial movement of target objects with 2D trajectories, which often fail to capture user intention and frequently produce unnatural results. To enhance control, we present ObjCtrl-2.5D, a training-free object control approach that uses a 3D trajectory, extended from a 2D trajectory with depth information, as a control signal. By modeling object movement as camera movement, ObjCtrl-2.5D represents the 3D trajectory as a sequence of camera poses, enabling object motion control using an existing camera motion control I2V generation model (CMC-I2V) without training. To adapt the CMC-I2V model originally designed for global motion control to handle local object motion, we introduce a module to isolate the target object from the background, enabling independent local control. In addition, we devise an effective way to achieve more accurate object control by sharing low-frequency warped latent within the object's region across frames. Extensive experiments demonstrate that ObjCtrl-2.5D significantly improves object control accuracy compared to training-free methods and offers more diverse control capabilities than training-based approaches using 2D trajectories, enabling complex effects like object rotation. Code and results are available at https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/.
Authors: Shanlin Sun, Gabriel De Araujo, Jiaqi Xu, Shenghan Zhou, Hanwen Zhang, Ziheng Huang, Chenyu You, Xiaohui Xie
Abstract:
3D human motion generation has seen substantial advancement in recent years. While state-of-the-art approaches have improved performance significantly, they still struggle with complex and detailed motions unseen in training data, largely due to the scarcity of motion datasets and the prohibitive cost of generating new training examples. To address these challenges, we introduce CoMA, an agent-based solution for complex human motion generation, editing, and comprehension. CoMA leverages multiple collaborative agents powered by large language and vision models, alongside a mask transformer-based motion generator featuring body part-specific encoders and codebooks for fine-grained control. Our framework enables generation of both short and long motion sequences with detailed instructions, text-guided motion editing, and self-correction for improved quality. Evaluations on the HumanML3D dataset demonstrate competitive performance against state-of-the-art methods. Additionally, we create a set of context-rich, compositional, and long text prompts, where user studies show our method significantly outperforms existing approaches.
Authors: Xinpeng Liu, Junxuan Liang, Chenshuo Zhang, Zixuan Cai, Cewu Lu, Yong-Lu Li
Abstract:
Analyses of human motion kinematics have achieved tremendous advances. However, the production mechanism, known as human dynamics, is still undercovered. In this paper, we aim to push data-driven human dynamics understanding forward. We identify a major obstacle to this as the heterogeneity of existing human motion understanding efforts. Specifically, heterogeneity exists in not only the diverse kinematics representations and hierarchical dynamics representations but also in the data from different domains, namely biomechanics and reinforcement learning. With an in-depth analysis of the existing heterogeneity, we propose to emphasize the beneath homogeneity: all of them represent the homogeneous fact of human motion, though from different perspectives. Given this, we propose Homogeneous Dynamics Space (HDyS) as a fundamental space for human dynamics by aggregating heterogeneous data and training a homogeneous latent space with inspiration from the inverse-forward dynamics procedure. Leveraging the heterogeneous representations and datasets, HDyS achieves decent mapping between human kinematics and dynamics. We demonstrate the feasibility of HDyS with extensive experiments and applications. The project page is https://foruck.github.io/HDyS.
Authors: Xiaofeng Tan, Hongsong Wang, Xin Geng, Pan Zhou
Abstract:
Text-to-motion generation is essential for advancing the creative industry but often presents challenges in producing consistent, realistic motions. To address this, we focus on fine-tuning text-to-motion models to consistently favor high-quality, human-preferred motions, a critical yet largely unexplored problem. In this work, we theoretically investigate the DPO under both online and offline settings, and reveal their respective limitation: overfitting in offline DPO, and biased sampling in online DPO. Building on our theoretical insights, we introduce Semi-online Preference Optimization (SoPo), a DPO-based method for training text-to-motion models using "semi-online" data pair, consisting of unpreferred motion from online distribution and preferred motion in offline datasets. This method leverages both online and offline DPO, allowing each to compensate for the other's limitations. Extensive experiments demonstrate that SoPo outperforms other preference alignment methods, with an MM-Dist of 3.25% (vs e.g. 0.76% of MoDiPO) on the MLD model, 2.91% (vs e.g. 0.66% of MoDiPO) on MDM model, respectively. Additionally, the MLD model fine-tuned by our SoPo surpasses the SoTA model in terms of R-precision and MM Dist. Visualization results also show the efficacy of our SoPo in preference alignment. Project page: https://xiaofeng-tan.github.io/projects/SoPo/ .
Authors: Jingyu Gong, Chong Zhang, Fengqi Liu, Ke Fan, Qianyu Zhou, Xin Tan, Zhizhong Zhang, Yuan Xie, Lizhuang Ma
Abstract:
Human motion generation is a long-standing problem, and scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data whose quantity is limited. Meanwhile, it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this framework, we disentangle human-scene interaction from motion synthesis during training and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. The proposed implicit policy optimizes the intermediate noised motion in a GAN Inversion manner to maintain motion continuity and control keyframe poses though the ControlNet branch and motion inpainting. For long-term motion synthesis, we introduce motion blending for stable transitions between multiple sub-tasks, where motions are fused in rotation power space and translation linear space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. https://jingyugong.github.io/DiffusionImplicitPolicy/
Authors: Xiaomin Li, Xu Jia, Qinghe Wang, Haiwen Diao, Mengmeng Ge, Pengxiang Li, You He, Huchuan Lu
Abstract:
Existing pretrained text-to-video (T2V) models have demonstrated impressive abilities in generating realistic videos with basic motion or camera movement. However, these models exhibit significant limitations when generating intricate, human-centric motions. Current efforts primarily focus on fine-tuning models on a small set of videos containing a specific motion. They often fail to effectively decouple motion and the appearance in the limited reference videos, thereby weakening the modeling capability of motion patterns. To this end, we propose MoTrans, a customized motion transfer method enabling video generation of similar motion in new context. Specifically, we introduce a multimodal large language model (MLLM)-based recaptioner to expand the initial prompt to focus more on appearance and an appearance injection module to adapt appearance prior from video frames to the motion modeling process. These complementary multimodal representations from recaptioned prompt and video frames promote the modeling of appearance and facilitate the decoupling of appearance and motion. In addition, we devise a motion-specific embedding for further enhancing the modeling of the specific motion. Experimental results demonstrate that our method effectively learns specific motion pattern from singular or multiple reference videos, performing favorably against existing methods in customized video generation.
Authors: Tao Tang, Hong Liu, Yingxuan You, Ti Wang, Wenhao Li
Abstract:
Human Mesh Reconstruction (HMR) from monocular video plays an important role in human-robot interaction and collaboration. However, existing video-based human mesh reconstruction methods face a trade-off between accurate reconstruction and smooth motion. These methods design networks based on either RNNs or attention mechanisms to extract local temporal correlations or global temporal dependencies, but the lack of complementary long-term information and local details limits their performance. To address this problem, we propose a \textbf{D}ual-branch \textbf{G}raph \textbf{T}ransformer network for 3D human mesh \textbf{R}econstruction from video, named DGTR. DGTR employs a dual-branch network including a Global Motion Attention (GMA) branch and a Local Details Refine (LDR) branch to parallelly extract long-term dependencies and local crucial information, helping model global human motion and local human details (e.g., local motion, tiny movement). Specifically, GMA utilizes a global transformer to model long-term human motion. LDR combines modulated graph convolutional networks and the transformer framework to aggregate local information in adjacent frames and extract crucial information of human details. Experiments demonstrate that our DGTR outperforms state-of-the-art video-based methods in reconstruction accuracy and maintains competitive motion smoothness. Moreover, DGTR utilizes fewer parameters and FLOPs, which validate the effectiveness and efficiency of the proposed DGTR. Code is publicly available at \href{https://github.com/TangTao-PKU/DGTR}{\textcolor{myBlue}{https://github.com/TangTao-PKU/DGTR}}.
Authors: Weihang Li, Weirong Chen, Shenhan Qian, Jiajie Chen, Daniel Cremers, Haoang Li
Abstract:
Recent advances in 3D Gaussian Splatting have shown promising results. Existing methods typically assume static scenes and/or multiple images with prior poses. Dynamics, sparse views, and unknown poses significantly increase the problem complexity due to insufficient geometric constraints. To overcome this challenge, we propose a method that can use only two images without prior poses to fit Gaussians in dynamic environments. To achieve this, we introduce two technical contributions. First, we propose an object-level two-view bundle adjustment. This strategy decomposes dynamic scenes into piece-wise rigid components, and jointly estimates the camera pose and motions of dynamic objects. Second, we design an SE(3) field-driven Gaussian training method. It enables fine-grained motion modeling through learnable per-Gaussian transformations. Our method leads to high-fidelity novel view synthesis of dynamic scenes while accurately preserving temporal consistency and object motion. Experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms state-of-the-art approaches designed for the cases of static environments, multiple images, and/or known poses. Our project page is available at https://colin-de.github.io/DynSUP/.
Authors: Lan Feng, Fan Nie, Yuejiang Liu, Alexandre Alahi
Abstract:
We propose TAROT, a targeted data selection framework grounded in optimal transport theory. Previous targeted data selection methods primarily rely on influence-based greedy heuristics to enhance domain-specific performance. While effective on limited, unimodal data (i.e., data following a single pattern), these methods struggle as target data complexity increases. Specifically, in multimodal distributions, these heuristics fail to account for multiple inherent patterns, leading to suboptimal data selection. This work identifies two primary factors contributing to this limitation: (i) the disproportionate impact of dominant feature components in high-dimensional influence estimation, and (ii) the restrictive linear additive assumptions inherent in greedy selection strategies. To address these challenges, TAROT incorporates whitened feature distance to mitigate dominant feature bias, providing a more reliable measure of data influence. Building on this, TAROT uses whitened feature distance to quantify and minimize the optimal transport distance between the selected data and target domains. Notably, this minimization also facilitates the estimation of optimal selection ratios. We evaluate TAROT across multiple tasks, including semantic segmentation, motion prediction, and instruction tuning. Results consistently show that TAROT outperforms state-of-the-art methods, highlighting its versatility across various deep learning tasks. Code is available at https://github.com/vita-epfl/TAROT.
Authors: Hui Li, Mingwang Xu, Yun Zhan, Shan Mu, Jiaye Li, Kaihui Cheng, Yuxuan Chen, Tan Chen, Mao Ye, Jingdong Wang, Siyu Zhu
Abstract:
Recent advancements in visual generation technologies have markedly increased the scale and availability of video datasets, which are crucial for training effective video generation models. However, a significant lack of high-quality, human-centric video datasets presents a challenge to progress in this field. To bridge this gap, we introduce OpenHumanVid, a large-scale and high-quality human-centric video dataset characterized by precise and detailed captions that encompass both human appearance and motion states, along with supplementary human motion conditions, including skeleton sequences and speech audio. To validate the efficacy of this dataset and the associated training strategies, we propose an extension of existing classical diffusion transformer architectures and conduct further pretraining of our models on the proposed dataset. Our findings yield two critical insights: First, the incorporation of a large-scale, high-quality dataset substantially enhances evaluation metrics for generated human videos while preserving performance in general video generation tasks. Second, the effective alignment of text with human appearance, human motion, and facial motion is essential for producing high-quality video outputs. Based on these insights and corresponding methodologies, the straightforward extended network trained on the proposed dataset demonstrates an obvious improvement in the generation of human-centric videos. Project page https://fudan-generative-vision.github.io/OpenHumanVid
Authors: Jungbin Cho, Junwan Kim, Jisoo Kim, Minseo Kim, Mingu Kang, Sungeun Hong, Tae-Hyun Oh, Youngjae Yu
Abstract:
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this 'discord' between discrete and continuous representations we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations demonstrate that DisCoRD achieves state-of-the-art performance, with FID of 0.032 on HumanML3D and 0.169 on KIT-ML. These results establish DisCoRD as a robust solution for bridging the divide between discrete efficiency and continuous realism. Project website: https://whwjdqls.github.io/discord-motion/
Authors: Wanquan Feng, Tianhao Qi, Jiawei Liu, Mingzhen Sun, Pengqi Tu, Tianxiang Ma, Fei Dai, Songtao Zhao, Siyu Zhou, Qian He
Abstract:
Motion controllability is crucial in video synthesis. However, most previous methods are limited to single control types, and combining them often results in logical conflicts. In this paper, we propose a disentangled and unified framework, namely I2VControl, to overcome the logical conflicts. We rethink camera control, object dragging, and motion brush, reformulating all tasks into a consistent representation based on point trajectories, each managed by a dedicated formulation. Accordingly, we propose a spatial partitioning strategy, where each unit is assigned to a concomitant control category, enabling diverse control types to be dynamically orchestrated within a single synthesis pipeline without conflicts. Furthermore, we design an adapter structure that functions as a plug-in for pre-trained models and is agnostic to specific model architectures. We conduct extensive experiments, achieving excellent performance on various control tasks, and our method further facilitates user-driven creative combinations, enhancing innovation and creativity. Project page: https://wanquanf.github.io/I2VControl .
Authors: Ziyi Xu, Ziyao Huang, Juan Cao, Yong Zhang, Xiaodong Cun, Qing Shuai, Yuchen Wang, Linchao Bao, Jintao Li, Fan Tang
Abstract:
The generation of anchor-style product promotion videos presents promising opportunities in e-commerce, advertising, and consumer engagement. Despite advancements in pose-guided human video generation, creating product promotion videos remains challenging. In addressing this challenge, we identify the integration of human-object interactions (HOI) into pose-guided human video generation as a core issue. To this end, we introduce AnchorCrafter, a novel diffusion-based system designed to generate 2D videos featuring a target human and a customized object, achieving high visual fidelity and controllable interactions. Specifically, we propose two key innovations: the HOI-appearance perception, which enhances object appearance recognition from arbitrary multi-view perspectives and disentangles object and human appearance, and the HOI-motion injection, which enables complex human-object interactions by overcoming challenges in object trajectory conditioning and inter-occlusion management. Extensive experiments show that our system improves object appearance preservation by 7.5\% and doubles the object localization accuracy compared to existing state-of-the-art approaches. It also outperforms existing approaches in maintaining human motion consistency and high-quality video generation. Project page including data, code, and Huggingface demo: https://github.com/cangcz/AnchorCrafter.
Authors: Yuming Feng, Zhiyang Dou, Ling-Hao Chen, Yuan Liu, Tianyu Li, Jingbo Wang, Zeyu Cao, Wenping Wang, Taku Komura, Lingjie Liu
Abstract:
Modeling temporal characteristics and the non-stationary dynamics of body movement plays a significant role in predicting human future motions. However, it is challenging to capture these features due to the subtle transitions involved in the complex human motions. This paper introduces MotionWavelet, a human motion prediction framework that utilizes Wavelet Transformation and studies human motion patterns in the spatial-frequency domain. In MotionWavelet, a Wavelet Diffusion Model (WDM) learns a Wavelet Manifold by applying Wavelet Transformation on the motion data therefore encoding the intricate spatial and temporal motion patterns. Once the Wavelet Manifold is built, WDM trains a diffusion model to generate human motions from Wavelet latent vectors. In addition to the WDM, MotionWavelet also presents a Wavelet Space Shaping Guidance mechanism to refine the denoising process to improve conformity with the manifold structure. WDM also develops Temporal Attention-Based Guidance to enhance prediction accuracy. Extensive experiments validate the effectiveness of MotionWavelet, demonstrating improved prediction accuracy and enhanced generalization across various benchmarks. Our code and models will be released upon acceptance.
Authors: Lei Li, Sen Jia, Jianhao Wang, Zhongyu Jiang, Feng Zhou, Ju Dai, Tianfang Zhang, Zongkai Wu, Jenq-Neng Hwang
Abstract:
This paper presents LLaMo (Large Language and Human Motion Assistant), a multimodal framework for human motion instruction tuning. In contrast to conventional instruction-tuning approaches that convert non-linguistic inputs, such as video or motion sequences, into language tokens, LLaMo retains motion in its native form for instruction tuning. This method preserves motion-specific details that are often diminished in tokenization, thereby improving the model's ability to interpret complex human behaviors. By processing both video and motion data alongside textual inputs, LLaMo enables a flexible, human-centric analysis. Experimental evaluations across high-complexity domains, including human behaviors and professional activities, indicate that LLaMo effectively captures domain-specific knowledge, enhancing comprehension and prediction in motion-intensive scenarios. We hope LLaMo offers a foundation for future multimodal AI systems with broad applications, from sports analytics to behavioral prediction. Our code and models are available on the project website: https://github.com/ILGLJ/LLaMo.
Authors: Muyao Niu, Yifan Zhan, Qingtian Zhu, Zhuoxiao Li, Wei Wang, Zhihang Zhong, Xiao Sun, Yinqiang Zheng
Abstract:
The development of 3D human avatars from multi-view videos represents a significant yet challenging task in the field. Recent advancements, including 3D Gaussian Splattings (3DGS), have markedly progressed this domain. Nonetheless, existing techniques necessitate the use of high-quality sharp images, which are often impractical to obtain in real-world settings due to variations in human motion speed and intensity. In this study, we attempt to explore deriving sharp intrinsic 3D human Gaussian avatars from blurry video footage in an end-to-end manner. Our approach encompasses a 3D-aware, physics-oriented model of blur formation attributable to human movement, coupled with a 3D human motion model to clarify ambiguities found in motion-induced blurry images. This methodology facilitates the concurrent learning of avatar model parameters and the refinement of sub-frame motion parameters from a coarse initialization. We have established benchmarks for this task through a synthetic dataset derived from existing multi-view captures, alongside a real-captured dataset acquired through a 360-degree synchronous hybrid-exposure camera system. Comprehensive evaluations demonstrate that our model surpasses existing baselines.
Authors: Zun Wang, Jialu Li, Han Lin, Jaehong Yoon, Mohit Bansal
Abstract:
Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and muti-character customization. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
Authors: Xiaobao Wei, Qingpo Wuwu, Zhongyu Zhao, Zhuangzhe Wu, Nan Huang, Ming Lu, Ningning MA, Shanghang Zhang
Abstract:
Photorealistic reconstruction of street scenes is essential for developing real-world simulators in autonomous driving. While recent methods based on 3D/4D Gaussian Splatting (GS) have demonstrated promising results, they still encounter challenges in complex street scenes due to the unpredictable motion of dynamic objects. Current methods typically decompose street scenes into static and dynamic objects, learning the Gaussians in either a supervised manner (e.g., w/ 3D bounding-box) or a self-supervised manner (e.g., w/o 3D bounding-box). However, these approaches do not effectively model the motions of dynamic objects (e.g., the motion speed of pedestrians is clearly different from that of vehicles), resulting in suboptimal scene decomposition. To address this, we propose Explicit Motion Decomposition (EMD), which models the motions of dynamic objects by introducing learnable motion embeddings to the Gaussians, enhancing the decomposition in street scenes. The proposed plug-and-play EMD module compensates for the lack of motion modeling in self-supervised street Gaussian splatting methods. We also introduce tailored training strategies to extend EMD to supervised approaches. Comprehensive experiments demonstrate the effectiveness of our method, achieving state-of-the-art novel view synthesis performance in self-supervised settings. The code is available at: https://qingpowuwu.github.io/emd.
Authors: Pengfei Zhang, Pinxin Liu, Pablo Garrido, Hyeongwoo Kim, Bindita Chaudhuri
Abstract:
Current human motion synthesis frameworks rely on global action descriptions, creating a modality gap that limits both motion understanding and generation capabilities. A single coarse description, such as run, fails to capture details such as variations in speed, limb positioning, and kinematic dynamics, leading to ambiguities between text and motion modalities. To address this challenge, we introduce KinMo, a unified framework built on a hierarchical describable motion representation that extends beyond global actions by incorporating kinematic group movements and their interactions. We design an automated annotation pipeline to generate high-quality, fine-grained descriptions for this decomposition, resulting in the KinMo dataset and offering a scalable and cost-efficient solution for dataset enrichment. To leverage these structured descriptions, we propose Hierarchical Text-Motion Alignment that progressively integrates additional motion details, thereby improving semantic motion understanding. Furthermore, we introduce a coarse-to-fine motion generation procedure to leverage enhanced spatial understanding to improve motion synthesis. Experimental results show that KinMo significantly improves motion understanding, demonstrated by enhanced text-motion retrieval performance and enabling more fine-grained motion generation and editing capabilities. Project Page: https://andypinxinliu.github.io/KinMo
Authors: Feng Gao, Chao Yu, Yu Wang, Yi Wu
Abstract:
Accurate motion control in the face of disturbances within complex environments remains a major challenge in robotics. Classical model-based approaches often struggle with nonlinearities and unstructured disturbances, while RL-based methods can be fragile when encountering unseen scenarios. In this paper, we propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness. Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities. This internal model combines model-free RL algorithms with predictive error feedback. Such a design enables a closed-loop control structure to enhance the robustness and generalizability of the control system. We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods. Furthermore, real-world deployment on a quadrotor with rope-suspended payloads highlights the framework's robustness in sim-to-real transfer. Our code is released at https://github.com/thu-uav/NeuralIMC.
Authors: Qiang Zhou, Shaofeng Zhang, Nianzu Yang, Ye Qian, Hao Li
Abstract:
Existing text-to-video (T2V) models often struggle with generating videos with sufficiently pronounced or complex actions. A key limitation lies in the text prompt's inability to precisely convey intricate motion details. To address this, we propose a novel framework, MVideo, designed to produce long-duration videos with precise, fluid actions. MVideo overcomes the limitations of text prompts by incorporating mask sequences as an additional motion condition input, providing a clearer, more accurate representation of intended actions. Leveraging foundational vision models such as GroundingDINO and SAM2, MVideo automatically generates mask sequences, enhancing both efficiency and robustness. Our results demonstrate that, after training, MVideo effectively aligns text prompts with motion conditions to produce videos that simultaneously meet both criteria. This dual control mechanism allows for more dynamic video generation by enabling alterations to either the text prompt or motion condition independently, or both in tandem. Furthermore, MVideo supports motion condition editing and composition, facilitating the generation of videos with more complex actions. MVideo thus advances T2V motion generation, setting a strong benchmark for improved action depiction in current video diffusion models. Our project page is available at https://mvideo-v1.github.io/.
Authors: Zeyu Zhang, Hang Gao, Akide Liu, Qi Chen, Feng Chen, Yiran Wang, Danning Li, Rui Zhao, Zhenming Li, Zhongwen Zhou, Hao Tang, Bohan Zhuang
Abstract:
Human motion generation is a cut-edge area of research in generative computer vision, with promising applications in video creation, game development, and robotic manipulation. The recent Mamba architecture shows promising results in efficiently modeling long and complex sequences, yet two significant challenges remain: Firstly, directly applying Mamba to extended motion generation is ineffective, as the limited capacity of the implicit memory leads to memory decay. Secondly, Mamba struggles with multimodal fusion compared to Transformers, and lack alignment with textual queries, often confusing directions (left or right) or omitting parts of longer text queries. To address these challenges, our paper presents three key contributions: Firstly, we introduce KMM, a novel architecture featuring Key frame Masking Modeling, designed to enhance Mamba's focus on key actions in motion segments. This approach addresses the memory decay problem and represents a pioneering method in customizing strategic frame-level masking in SSMs. Additionally, we designed a contrastive learning paradigm for addressing the multimodal fusion problem in Mamba and improving the motion-text alignment. Finally, we conducted extensive experiments on the go-to dataset, BABEL, achieving state-of-the-art performance with a reduction of more than 57% in FID and 70% parameters compared to previous state-of-the-art methods. See project website: https://steve-zeyu-zhang.github.io/KMM
Authors: Li Zhao, Zhengmin Lu
Abstract:
This paper introduces DanceFusion, a novel framework for reconstructing and generating dance movements synchronized to music, utilizing a Spatio-Temporal Skeleton Diffusion Transformer. The framework adeptly handles incomplete and noisy skeletal data common in short-form dance videos on social media platforms like TikTok. DanceFusion incorporates a hierarchical Transformer-based Variational Autoencoder (VAE) integrated with a diffusion model, significantly enhancing motion realism and accuracy. Our approach introduces sophisticated masking techniques and a unique iterative diffusion process that refines the motion sequences, ensuring high fidelity in both motion generation and synchronization with accompanying audio cues. Comprehensive evaluations demonstrate that DanceFusion surpasses existing methods, providing state-of-the-art performance in generating dynamic, realistic, and stylistically diverse dance motions. Potential applications of this framework extend to content creation, virtual reality, and interactive entertainment, promising substantial advancements in automated dance generation. Visit our project page at https://th-mlab.github.io/DanceFusion/.
Authors: Ke Fan, Jiangning Zhang, Ran Yi, Jingyu Gong, Yabiao Wang, Yating Wang, Xin Tan, Chengjie Wang, Lizhuang Ma
Abstract:
Text-to-motion generation is a crucial task in computer vision, which generates the target 3D motion by the given text. The existing annotated datasets are limited in scale, resulting in most existing methods overfitting to the small datasets and unable to generalize to the motions of the open domain. Some methods attempt to solve the open-vocabulary motion generation problem by aligning to the CLIP space or using the Pretrain-then-Finetuning paradigm. However, the current annotated dataset's limited scale only allows them to achieve mapping from sub-text-space to sub-motion-space, instead of mapping between full-text-space and full-motion-space (full mapping), which is the key to attaining open-vocabulary motion generation. To this end, this paper proposes to leverage the atomic motion (simple body part motions over a short time period) as an intermediate representation, and leverage two orderly coupled steps, i.e., Textual Decomposition and Sub-motion-space Scattering, to address the full mapping problem. For Textual Decomposition, we design a fine-grained description conversion algorithm, and combine it with the generalization ability of a large language model to convert any given motion text into atomic texts. Sub-motion-space Scattering learns the compositional process from atomic motions to the target motions, to make the learned sub-motion-space scattered to form the full-motion-space. For a given motion of the open domain, it transforms the extrapolation into interpolation and thereby significantly improves generalization. Our network, $DSO$-Net, combines textual $d$ecomposition and sub-motion-space $s$cattering to solve the $o$pen-vocabulary motion generation. Extensive experiments demonstrate that our DSO-Net achieves significant improvements over the state-of-the-art methods on open-vocabulary motion generation. Code is available at https://vankouf.github.io/DSONet/.
Authors: Yuanpei Chen, Chen Wang, Yaodong Yang, C. Karen Liu
Abstract:
Manipulating objects to achieve desired goal states is a basic but important skill for dexterous manipulation. Human hand motions demonstrate proficient manipulation capability, providing valuable data for training robots with multi-finger hands. Despite this potential, substantial challenges arise due to the embodiment gap between human and robot hands. In this work, we introduce a hierarchical policy learning framework that uses human hand motion data for training object-centric dexterous robot manipulation. At the core of our method is a high-level trajectory generative model, learned with a large-scale human hand motion capture dataset, to synthesize human-like wrist motions conditioned on the desired object goal states. Guided by the generated wrist motions, deep reinforcement learning is further used to train a low-level finger controller that is grounded in the robot's embodiment to physically interact with the object to achieve the goal. Through extensive evaluation across 10 household objects, our approach not only demonstrates superior performance but also showcases generalization capability to novel object geometries and goal states. Furthermore, we transfer the learned policies from simulation to a real-world bimanual dexterous robot system, further demonstrating its applicability in real-world scenarios. Project website: https://cypypccpy.github.io/obj-dex.github.io/.
Authors: Yang Gao, Po-Chien Luan, Alexandre Alahi
Abstract:
The ability of intelligent systems to predict human behaviors is crucial, particularly in fields such as autonomous vehicle navigation and social robotics. However, the complexity of human motion have prevented the development of a standardized dataset for human motion prediction, thereby hindering the establishment of pre-trained models. In this paper, we address these limitations by integrating multiple datasets, encompassing both trajectory and 3D pose keypoints, to propose a pre-trained model for human motion prediction. We merge seven distinct datasets across varying modalities and standardize their formats. To facilitate multimodal pre-training, we introduce Multi-Transmotion, an innovative transformer-based model designed for cross-modality pre-training. Additionally, we present a novel masking strategy to capture rich representations. Our methodology demonstrates competitive performance across various datasets on several downstream tasks, including trajectory prediction in the NBA and JTA datasets, as well as pose prediction in the AMASS and 3DPW datasets. The code is publicly available: https://github.com/vita-epfl/multi-transmotion
Authors: Thanh Nguyen Canh, Xiem HoangVan, Nak Young Chong
Abstract:
Navigating safely in dynamic human environments is crucial for mobile service robots, and social navigation is a key aspect of this process. In this paper, we proposed an integrative approach that combines motion prediction and trajectory planning to enable safe and socially-aware robot navigation. The main idea of the proposed method is to leverage the advantages of Socially Acceptable trajectory prediction and Timed Elastic Band (TEB) by incorporating human interactive information including position, orientation, and motion into the objective function of the TEB algorithms. In addition, we designed social constraints to ensure the safety of robot navigation. The proposed system is evaluated through physical simulation using both quantitative and qualitative metrics, demonstrating its superior performance in avoiding human and dynamic obstacles, thereby ensuring safe navigation. The implementations are open source at: \url{https://github.com/thanhnguyencanh/SGan-TEB.git}
Authors: David Schneider, Simon ReiÃ, Marco Kugler, Alexander Jaus, Kunyu Peng, Susanne Sutschet, M. Saquib Sarfraz, Sven Matthiesen, Rainer Stiefelhagen
Abstract:
Exploring the intricate dynamics between muscular and skeletal structures is pivotal for understanding human motion. This domain presents substantial challenges, primarily attributed to the intensive resources required for acquiring ground truth muscle activation data, resulting in a scarcity of datasets. In this work, we address this issue by establishing Muscles in Time (MinT), a large-scale synthetic muscle activation dataset. For the creation of MinT, we enriched existing motion capture datasets by incorporating muscle activation simulations derived from biomechanical human body models using the OpenSim platform, a common approach in biomechanics and human motion research. Starting from simple pose sequences, our pipeline enables us to extract detailed information about the timing of muscle activations within the human musculoskeletal system. Muscles in Time contains over nine hours of simulation data covering 227 subjects and 402 simulated muscle strands. We demonstrate the utility of this dataset by presenting results on neural network-based muscle activation estimation from human pose sequences with two different sequence-to-sequence architectures. Data and code are provided under https://simplexsigil.github.io/mint.
Authors: Penghui Ruan, Pichao Wang, Divya Saxena, Jiannong Cao, Yuhui Shi
Abstract:
Despite advancements in Text-to-Video (T2V) generation, producing videos with realistic motion remains challenging. Current models often yield static or minimally dynamic outputs, failing to capture complex motions described by text. This issue stems from the internal biases in text encoding, which overlooks motions, and inadequate conditioning mechanisms in T2V generation models. To address this, we propose a novel framework called DEcomposed MOtion (DEMO), which enhances motion synthesis in T2V generation by decomposing both text encoding and conditioning into content and motion components. Our method includes a content encoder for static elements and a motion encoder for temporal dynamics, alongside separate content and motion conditioning mechanisms. Crucially, we introduce text-motion and video-motion supervision to improve the model's understanding and generation of motion. Evaluations on benchmarks such as MSR-VTT, UCF-101, WebVid-10M, EvalCrafter, and VBench demonstrate DEMO's superior ability to produce videos with enhanced motion dynamics while maintaining high visual quality. Our approach significantly advances T2V generation by integrating comprehensive motion understanding directly from textual descriptions. Project page: https://PR-Ryan.github.io/DEMO-project/
Authors: Zijie Ye, Jia-Wei Liu, Jia Jia, Shikun Sun, Mike Zheng Shou
Abstract:
Capturing and maintaining geometric interactions among different body parts is crucial for successful motion retargeting in skinned characters. Existing approaches often overlook body geometries or add a geometry correction stage after skeletal motion retargeting. This results in conflicts between skeleton interaction and geometry correction, leading to issues such as jittery, interpenetration, and contact mismatches. To address these challenges, we introduce a new retargeting framework, MeshRet, which directly models the dense geometric interactions in motion retargeting. Initially, we establish dense mesh correspondences between characters using semantically consistent sensors (SCS), effective across diverse mesh topologies. Subsequently, we develop a novel spatio-temporal representation called the dense mesh interaction (DMI) field. This field, a collection of interacting SCS feature vectors, skillfully captures both contact and non-contact interactions between body geometries. By aligning the DMI field during retargeting, MeshRet not only preserves motion semantics but also prevents self-interpenetration and ensures contact preservation. Extensive experiments on the public Mixamo dataset and our newly-collected ScanRet dataset demonstrate that MeshRet achieves state-of-the-art performance. Code available at https://github.com/abcyzj/MeshRet.
Authors: Ronghui Li, Hongwen Zhang, Yachao Zhang, Yuxiang Zhang, Youliang Zhang, Jie Guo, Yan Zhang, Xiu Li, Yebin Liu
Abstract:
We propose Lodge++, a choreography framework to generate high-quality, ultra-long, and vivid dances given the music and desired genre. To handle the challenges in computational efficiency, the learning of complex and vivid global choreography patterns, and the physical quality of local dance movements, Lodge++ adopts a two-stage strategy to produce dances from coarse to fine. In the first stage, a global choreography network is designed to generate coarse-grained dance primitives that capture complex global choreography patterns. In the second stage, guided by these dance primitives, a primitive-based dance diffusion model is proposed to further generate high-quality, long-sequence dances in parallel, faithfully adhering to the complex choreography patterns. Additionally, to improve the physical plausibility, Lodge++ employs a penetration guidance module to resolve character self-penetration, a foot refinement module to optimize foot-ground contact, and a multi-genre discriminator to maintain genre consistency throughout the dance. Lodge++ is validated by extensive experiments, which show that our method can rapidly generate ultra-long dances suitable for various dance genres, ensuring well-organized global choreography patterns and high-quality local motion.
Authors: Xinpeng Liu, Junxuan Liang, Zili Lin, Haowen Hou, Yong-Lu Li, Cewu Lu
Abstract:
Inverse dynamics (ID), which aims at reproducing the driven torques from human kinematic observations, has been a critical tool for gait analysis. However, it is hindered from wider application to general motion due to its limited scalability. Conventional optimization-based ID requires expensive laboratory setups, restricting its availability. To alleviate this problem, we propose to exploit the recently progressive human motion imitation algorithms to learn human inverse dynamics in a data-driven manner. The key insight is that the human ID knowledge is implicitly possessed by motion imitators, though not directly applicable. In light of this, we devise an efficient data collection pipeline with state-of-the-art motion imitation algorithms and physics simulators, resulting in a large-scale human inverse dynamics benchmark as Imitated Dynamics (ImDy). ImDy contains over 150 hours of motion with joint torque and full-body ground reaction force data. With ImDy, we train a data-driven human inverse dynamics solver ImDyS(olver) in a fully supervised manner, which conducts ID and ground reaction force estimation simultaneously. Experiments on ImDy and real-world data demonstrate the impressive competency of ImDyS in human inverse dynamics and ground reaction force estimation. Moreover, the potential of ImDy(-S) as a fundamental motion analysis tool is exhibited with downstream applications. The project page is https://foruck.github.io/ImDy/.
Authors: Dmytro Zabolotnii, Yar Muhammad, Naveed Muhammad
Abstract:
Pedestrian motion prediction is a key part of the modular-based autonomous driving pipeline, ensuring safe, accurate, and timely awareness of human agents' possible future trajectories. The autonomous vehicle can use this information to prevent any possible accidents and create a comfortable and pleasant driving experience for the passengers and pedestrians. A wealth of research was done on the topic from the authors of robotics, computer vision, intelligent transportation systems, and other fields. However, a relatively unexplored angle is the integration of the state-of-art solutions into existing autonomous driving stacks and evaluating them in real-life conditions rather than sanitized datasets. We analyze selected publications with provided open-source solutions and provide a perspective obtained by integrating them into existing Autonomous Driving framework - Autoware Mini and performing experiments in natural urban conditions in Tartu, Estonia to determine valuability of traditional motion prediction metrics. This perspective should be valuable to any potential autonomous driving or robotics engineer looking for the real-world performance of the existing state-of-art pedestrian motion prediction problem. The code with instructions on accessing the dataset is available at https://github.com/dmytrozabolotnii/autoware_mini.
Authors: Camiel Oerlemans, Bram Grooten, Michiel Braat, Alaa Alassi, Emilia Silvas, Decebal Constantin Mocanu
Abstract:
Predicting the behavior of road users accurately is crucial to enable the safe operation of autonomous vehicles in urban or densely populated areas. Therefore, there has been a growing interest in time series motion prediction research, leading to significant advancements in state-of-the-art techniques in recent years. However, the potential of using LiDAR data to capture more detailed local features, such as a person's gaze or posture, remains largely unexplored. To address this, we develop a novel multimodal approach for motion prediction based on the PointNet foundation model architecture, incorporating local LiDAR features. Evaluation on the Waymo Open Dataset shows a performance improvement of 6.20% and 1.58% in minADE and mAP respectively, when integrated and compared with the previous state-of-the-art MTR. We open-source the code of our LiMTR model.
Authors: Tao Tang, Hong Liu, Yingxuan You, Ti Wang, Wenhao Li
Abstract:
Although existing video-based 3D human mesh recovery methods have made significant progress, simultaneously estimating human pose and shape from low-resolution image features limits their performance. These image features lack sufficient spatial information about the human body and contain various noises (e.g., background, lighting, and clothing), which often results in inaccurate pose and inconsistent motion. Inspired by the rapid advance in human pose estimation, we discover that compared to image features, skeletons inherently contain accurate human pose and motion. Therefore, we propose a novel semiAnalytical Regressor using disenTangled Skeletal representations for human mesh recovery from videos, called ARTS. Specifically, a skeleton estimation and disentanglement module is proposed to estimate the 3D skeletons from a video and decouple them into disentangled skeletal representations (i.e., joint position, bone length, and human motion). Then, to fully utilize these representations, we introduce a semi-analytical regressor to estimate the parameters of the human mesh model. The regressor consists of three modules: Temporal Inverse Kinematics (TIK), Bone-guided Shape Fitting (BSF), and Motion-Centric Refinement (MCR). TIK utilizes joint position to estimate initial pose parameters and BSF leverages bone length to regress bone-aligned shape parameters. Finally, MCR combines human motion representation with image features to refine the initial human model parameters. Extensive experiments demonstrate that our ARTS surpasses existing state-of-the-art video-based methods in both per-frame accuracy and temporal consistency on popular benchmarks: 3DPW, MPI-INF-3DHP, and Human3.6M. Code is available at https://github.com/TangTao-PKU/ARTS.
Authors: Jean-Pierre Sleiman, Mayank Mittal, Marco Hutter
Abstract:
Reinforcement learning (RL) often necessitates a meticulous Markov Decision Process (MDP) design tailored to each task. This work aims to address this challenge by proposing a systematic approach to behavior synthesis and control for multi-contact loco-manipulation tasks, such as navigating spring-loaded doors and manipulating heavy dishwashers. We define a task-independent MDP to train RL policies using only a single demonstration per task generated from a model-based trajectory optimizer. Our approach incorporates an adaptive phase dynamics formulation to robustly track the demonstrations while accommodating dynamic uncertainties and external disturbances. We compare our method against prior motion imitation RL works and show that the learned policies achieve higher success rates across all considered tasks. These policies learn recovery maneuvers that are not present in the demonstration, such as re-grasping objects during execution or dealing with slippages. Finally, we successfully transfer the policies to a real robot, demonstrating the practical viability of our approach.
Authors: Liang Xu, Shaoyang Hua, Zili Lin, Yifan Liu, Feipeng Ma, Yichao Yan, Xin Jin, Xiaokang Yang, Wenjun Zeng
Abstract:
In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
Authors: Zhenyu Jiang, Yuqi Xie, Jinhan Li, Ye Yuan, Yifeng Zhu, Yuke Zhu
Abstract:
Humanoid robots, with their human-like embodiment, have the potential to integrate seamlessly into human environments. Critical to their coexistence and cooperation with humans is the ability to understand natural language communications and exhibit human-like behaviors. This work focuses on generating diverse whole-body motions for humanoid robots from language descriptions. We leverage human motion priors from extensive human motion datasets to initialize humanoid motions and employ the commonsense reasoning capabilities of Vision Language Models (VLMs) to edit and refine these motions. Our approach demonstrates the capability to produce natural, expressive, and text-aligned humanoid motions, validated through both simulated and real-world experiments. More videos can be found at https://ut-austin-rpl.github.io/Harmon/.
Authors: Jianqi Chen, Panwen Hu, Xiaojun Chang, Zhenwei Shi, Michael Kampffmeyer, Xiaodan Liang
Abstract:
Recent advancements in human motion synthesis have focused on specific types of motions, such as human-scene interaction, locomotion or human-human interaction, however, there is a lack of a unified system capable of generating a diverse combination of motion types. In response, we introduce Sitcom-Crafter, a comprehensive and extendable system for human motion generation in 3D space, which can be guided by extensive plot contexts to enhance workflow efficiency for anime and game designers. The system is comprised of eight modules, three of which are dedicated to motion generation, while the remaining five are augmentation modules that ensure consistent fusion of motion sequences and system functionality. Central to the generation modules is our novel 3D scene-aware human-human interaction module, which addresses collision issues by synthesizing implicit 3D Signed Distance Function (SDF) points around motion spaces, thereby minimizing human-scene collisions without additional data collection costs. Complementing this, our locomotion and human-scene interaction modules leverage existing methods to enrich the system's motion generation capabilities. Augmentation modules encompass plot comprehension for command generation, motion synchronization for seamless integration of different motion types, hand pose retrieval to enhance motion realism, motion collision revision to prevent human collisions, and 3D retargeting to ensure visual fidelity. Experimental evaluations validate the system's ability to generate high-quality, diverse, and physically realistic motions, underscoring its potential for advancing creative workflows. Project page: https://windvchen.github.io/Sitcom-Crafter.
Authors: Ekkasit Pinyoanuntapong, Muhammad Usama Saleem, Korrawe Karunratanakul, Pu Wang, Hongfei Xue, Chen Chen, Chuan Guo, Junli Cao, Jian Ren, Sergey Tulyakov
Abstract:
Recent advances in motion diffusion models have enabled spatially controllable text-to-motion generation. However, these models struggle to achieve high-precision control while maintaining high-quality motion generation. To address these challenges, we propose MaskControl, the first approach to introduce controllability to the generative masked motion model. Our approach introduces two key innovations. First, \textit{Logits Regularizer} implicitly perturbs logits at training time to align the distribution of motion tokens with the controlled joint positions, while regularizing the categorical token prediction to ensure high-fidelity generation. Second, \textit{Logit Optimization} explicitly optimizes the predicted logits during inference time, directly reshaping the token distribution that forces the generated motion to accurately align with the controlled joint positions. Moreover, we introduce \textit{Differentiable Expectation Sampling (DES)} to combat the non-differential distribution sampling process encountered by logits regularizer and optimization. Extensive experiments demonstrate that MaskControl outperforms state-of-the-art methods, achieving superior motion quality (FID decreases by ~77\%) and higher control precision (average error 0.91 vs. 1.08). Additionally, MaskControl enables diverse applications, including any-joint-any-frame control, body-part timeline control, and zero-shot objective control. Video visualization can be found at https://www.ekkasit.com/ControlMM-page/
Authors: Yang Zhou, Hao Shao, Letian Wang, Steven L. Waslander, Hongsheng Li, Yu Liu
Abstract:
Predicting the future motion of surrounding agents is essential for autonomous vehicles (AVs) to operate safely in dynamic, human-robot-mixed environments. However, the scarcity of large-scale driving datasets has hindered the development of robust and generalizable motion prediction models, limiting their ability to capture complex interactions and road geometries. Inspired by recent advances in natural language processing (NLP) and computer vision (CV), self-supervised learning (SSL) has gained significant attention in the motion prediction community for learning rich and transferable scene representations. Nonetheless, existing pre-training methods for motion prediction have largely focused on specific model architectures and single dataset, limiting their scalability and generalizability. To address these challenges, we propose SmartPretrain, a general and scalable SSL framework for motion prediction that is both model-agnostic and dataset-agnostic. Our approach integrates contrastive and reconstructive SSL, leveraging the strengths of both generative and discriminative paradigms to effectively represent spatiotemporal evolution and interactions without imposing architectural constraints. Additionally, SmartPretrain employs a dataset-agnostic scenario sampling strategy that integrates multiple datasets, enhancing data volume, diversity, and robustness. Extensive experiments on multiple datasets demonstrate that SmartPretrain consistently improves the performance of state-of-the-art prediction models across datasets, data splits and main metrics. For instance, SmartPretrain significantly reduces the MissRate of Forecast-MAE by 10.6%. These results highlight SmartPretrain's effectiveness as a unified, scalable solution for motion prediction, breaking free from the limitations of the small-data regime. Codes are available at https://github.com/youngzhou1999/SmartPretrain
Authors: Cuong Le, Viktor Johansson, Manon Kok, Bastian Wandt
Abstract:
Human motion capture from monocular videos has made significant progress in recent years. However, modern approaches often produce temporal artifacts, e.g. in form of jittery motion and struggle to achieve smooth and physically plausible motions. Explicitly integrating physics, in form of internal forces and exterior torques, helps alleviating these artifacts. Current state-of-the-art approaches make use of an automatic PD controller to predict torques and reaction forces in order to re-simulate the input kinematics, i.e. the joint angles of a predefined skeleton. However, due to imperfect physical models, these methods often require simplifying assumptions and extensive preprocessing of the input kinematics to achieve good performance. To this end, we propose a novel method to selectively incorporate the physics models with the kinematics observations in an online setting, inspired by a neural Kalman-filtering approach. We develop a control loop as a meta-PD controller to predict internal joint torques and external reaction forces, followed by a physics-based motion simulation. A recurrent neural network is introduced to realize a Kalman filter that attentively balances the kinematics input and simulated motion, resulting in an optimal-state dynamics prediction. We show that this filtering step is crucial to provide an online supervision that helps balancing the shortcoming of the respective input motions, thus being important for not only capturing accurate global motion trajectories but also producing physically plausible human poses. The proposed approach excels in the physics-based human pose estimation task and demonstrates the physical plausibility of the predictive dynamics, compared to state of the art. The code is available on https://github.com/cuongle1206/OSDCap
Authors: Rajmund Nagy, Hendric Voss, Youngwoo Yoon, Taras Kucherenko, Teodor Nikolov, Thanh Hoang-Minh, Rachel McDonnell, Stefan Kopp, Michael Neff, Gustav Eje Henter
Abstract:
Current evaluation practices in speech-driven gesture generation lack standardisation and focus on aspects that are easy to measure over aspects that actually matter. This leads to a situation where it is impossible to know what is the state of the art, or to know which method works better for which purpose when comparing two publications. In this position paper, we review and give details on issues with existing gesture-generation evaluation, and present a novel proposal for remedying them. Specifically, we announce an upcoming living leaderboard to benchmark progress in conversational motion synthesis. Unlike earlier gesture-generation challenges, the leaderboard will be updated with large-scale user studies of new gesture-generation systems multiple times per year, and systems on the leaderboard can be submitted to any publication venue that their authors prefer. By evolving the leaderboard evaluation data and tasks over time, the effort can keep driving progress towards the most important end goals identified by the community. We actively seek community involvement across the entire evaluation pipeline: from data and tasks for the evaluation, via tooling, to the systems evaluated. In other words, our proposal will not only make it easier for researchers to perform good evaluations, but their collective input and contributions will also help drive the future of gesture-generation research.
Authors: Yuta Sahara, Akihiro Miki, Yoshimoto Ribayashi, Shunnosuke Yoshimura, Kento Kawaharazuka, Kei Okada, Masayuki Inaba
Abstract:
The complex ways in which humans utilize their bodies in sports and martial arts are remarkable, and human motion analysis is one of the most effective tools for robot body design and control. On the other hand, motion analysis is not easy, and it is difficult to measure complex body motions in detail due to the influence of numerous muscles and soft tissues, mainly ligaments. In response, various musculoskeletal simulators have been developed and applied to motion analysis and robotics. However, none of them reproduce the ligaments but only the muscles, nor do they focus on the shoulder complex, including the clavicle and scapula, which is one of the most complex parts of the body. Therefore, in this study, a detailed simulation model of the shoulder complex including ligaments is constructed. The model will mimic not only the skeletal structure and muscle arrangement but also the ligament arrangement and maximum muscle strength. Through model predictive control based on the constructed simulation, we confirmed that the ligaments contribute to joint stabilization in the first movement and that the proper distribution of maximum muscle force contributes to the equalization of the load on each muscle, demonstrating the effectiveness of this simulation.
Authors: Kaifeng Zhao, Gen Li, Siyu Tang
Abstract:
Text-conditioned human motion generation, which allows for user interaction through natural language, has become increasingly popular. Existing methods typically generate short, isolated motions based on a single input sentence. However, human motions are continuous and can extend over long periods, carrying rich semantics. Creating long, complex motions that precisely respond to streams of text descriptions, particularly in an online and real-time setting, remains a significant challenge. Furthermore, incorporating spatial constraints into text-conditioned motion generation presents additional challenges, as it requires aligning the motion semantics specified by text descriptions with geometric information, such as goal locations and 3D scene geometry. To address these limitations, we propose DartControl, in short DART, a Diffusion-based Autoregressive motion primitive model for Real-time Text-driven motion control. Our model effectively learns a compact motion primitive space jointly conditioned on motion history and text inputs using latent diffusion models. By autoregressively generating motion primitives based on the preceding history and current text input, DART enables real-time, sequential motion generation driven by natural language descriptions. Additionally, the learned motion primitive space allows for precise spatial motion control, which we formulate either as a latent noise optimization problem or as a Markov decision process addressed through reinforcement learning. We present effective algorithms for both approaches, demonstrating our model's versatility and superior performance in various motion synthesis tasks. Experiments show our method outperforms existing baselines in motion realism, efficiency, and controllability. Video results are available on the project page: https://zkf1997.github.io/DART/.
Authors: Guy Tevet, Sigal Raab, Setareh Cohan, Daniele Reda, Zhengyi Luo, Xue Bin Peng, Amit H. Bermano, Michiel van de Panne
Abstract:
Motion diffusion models and Reinforcement Learning (RL) based control for physics-based simulations have complementary strengths for human motion generation. The former is capable of generating a wide variety of motions, adhering to intuitive control such as text, while the latter offers physically plausible motion and direct interaction with the environment. In this work, we present a method that combines their respective strengths. CLoSD is a text-driven RL physics-based controller, guided by diffusion generation for various tasks. Our key insight is that motion diffusion can serve as an on-the-fly universal planner for a robust RL controller. To this end, CLoSD maintains a closed-loop interaction between two modules -- a Diffusion Planner (DiP), and a tracking controller. DiP is a fast-responding autoregressive diffusion model, controlled by textual prompts and target locations, and the controller is a simple and robust motion imitator that continuously receives motion plans from DiP and provides feedback from the environment. CLoSD is capable of seamlessly performing a sequence of different tasks, including navigation to a goal location, striking an object with a hand or foot as specified in a text prompt, sitting down, and getting up. https://guytevet.github.io/CLoSD-page/
Authors: Ye Wang, Sipeng Zheng, Bin Cao, Qianshan Wei, Weishuai Zeng, Qin Jin, Zongqing Lu
Abstract:
Inspired by the recent success of LLMs, the field of human motion understanding has increasingly shifted toward developing large motion models. Despite some progress, current efforts remain far from achieving truly generalist models, primarily due to the lack of massive high-quality data. To address this gap, we present MotionLib, the first million-level dataset for motion generation, which is at least 15$\times$ larger than existing counterparts and enriched with hierarchical text descriptions. Using MotionLib, we train a large motion model named \projname, demonstrating robust performance across a wide range of human activities, including unseen ones. Through systematic investigation, for the first time, we highlight the importance of scaling both data and model size for advancing motion generation, along with key insights to achieve this goal. To better integrate the motion modality, we propose Motionbook, an innovative motion encoding approach including (1) a compact yet lossless feature to represent motions; (2) a novel 2D lookup-free motion tokenizer that preserves fine-grained motion details while expanding codebook capacity, significantly enhancing the representational power of motion tokens. We believe this work lays the groundwork for developing more versatile and powerful motion generation models in the future. For further details, visit https://beingbeyond.github.io/Being-M0/.
Authors: Bohong Chen, Yumeng Li, Yao-Xiang Ding, Tianjia Shao, Kun Zhou
Abstract:
Current co-speech motion generation approaches usually focus on upper body gestures following speech contents only, while lacking supporting the elaborate control of synergistic full-body motion based on text prompts, such as talking while walking. The major challenges lie in 1) the existing speech-to-motion datasets only involve highly limited full-body motions, making a wide range of common human activities out of training distribution; 2) these datasets also lack annotated user prompts. To address these challenges, we propose SynTalker, which utilizes the off-the-shelf text-to-motion dataset as an auxiliary for supplementing the missing full-body motion and prompts. The core technical contributions are two-fold. One is the multi-stage training process which obtains an aligned embedding space of motion, speech, and prompts despite the significant distributional mismatch in motion between speech-to-motion and text-to-motion datasets. Another is the diffusion-based conditional inference process, which utilizes the separate-then-combine strategy to realize fine-grained control of local body parts. Extensive experiments are conducted to verify that our approach supports precise and flexible control of synergistic full-body motion generation based on both speeches and user prompts, which is beyond the ability of existing approaches.
Authors: Xiang Wang, Shiwei Zhang, Haonan Qiu, Ruihang Chu, Zekun Li, Yingya Zhang, Changxin Gao, Yuehuan Wang, Chunhua Shen, Nong Sang
Abstract:
The field of controllable human-centric video generation has witnessed remarkable progress, particularly with the advent of diffusion models. However, achieving precise and localized control over human motion in videos, such as replacing or inserting individuals while preserving desired motion patterns, still remains a formidable challenge. In this work, we present the ReplaceAnyone framework, which focuses on localized human replacement and insertion featuring intricate backgrounds. Specifically, we formulate this task as an image-conditioned video inpainting paradigm with pose guidance, utilizing a unified end-to-end video diffusion architecture that facilitates image-conditioned video inpainting within masked regions. To prevent shape leakage and enable granular local control, we introduce diverse mask forms involving both regular and irregular shapes. Furthermore, we implement an enriched visual guidance mechanism to enhance appearance alignment, a hybrid inpainting encoder to further preserve the detailed background information in the masked video, and a two-phase optimization methodology to simplify the training difficulty. ReplaceAnyone enables seamless replacement or insertion of characters while maintaining the desired pose motion and reference appearance within a single framework. Extensive experimental results demonstrate the effectiveness of our method in generating realistic and coherent video content. The proposed ReplaceAnyone can be seamlessly applied not only to traditional 3D-UNet base models but also to DiT-based video models such as Wan2.1. The code will be available at https://github.com/ali-vilab/UniAnimate-DiT.
Authors: Lei Li, Zhifa Chen, Jian Wang, Bin Zhou, Guizhen Yu, Xiaoxuan Chen
Abstract:
Recently, the application of autonomous driving in open-pit mining has garnered increasing attention for achieving safe and efficient mineral transportation. Compared to urban structured roads, unstructured roads in mining sites have uneven boundaries and lack clearly defined lane markings. This leads to a lack of sufficient constraint information for predicting the trajectories of other human-driven vehicles, resulting in higher uncertainty in trajectory prediction problems. A method is proposed to predict multiple possible trajectories and their probabilities of the target vehicle. The surrounding environment and historical trajectories of the target vehicle are encoded as a rasterized image, which is used as input to our deep convolutional network to predict the target vehicle's multiple possible trajectories. The method underwent offline testing on a dataset specifically designed for autonomous driving scenarios in open-pit mining and was compared and evaluated against physics-based method. The open-source code and data are available at https://github.com/LLsxyc/mine_motion_prediction.git
Authors: Fangzhou Hong, Vladimir Guzov, Hyo Jin Kim, Yuting Ye, Richard Newcombe, Ziwei Liu, Lingni Ma
Abstract:
As the prevalence of wearable devices, learning egocentric motions becomes essential to develop contextual AI. In this work, we present EgoLM, a versatile framework that tracks and understands egocentric motions from multi-modal inputs, e.g., egocentric videos and motion sensors. EgoLM exploits rich contexts for the disambiguation of egomotion tracking and understanding, which are ill-posed under single modality conditions. To facilitate the versatile and multi-modal framework, our key insight is to model the joint distribution of egocentric motions and natural languages using large language models (LLM). Multi-modal sensor inputs are encoded and projected to the joint latent space of language models, and used to prompt motion generation or text generation for egomotion tracking or understanding, respectively. Extensive experiments on large-scale multi-modal human motion dataset validate the effectiveness of EgoLM as a generalist model for universal egocentric learning.
Authors: Aggelina Chatziagapi, Bindita Chaudhuri, Amit Kumar, Rakesh Ranjan, Dimitris Samaras, Nikolaos Sarafianos
Abstract:
We introduce a novel framework that learns a dynamic neural radiance field (NeRF) for full-body talking humans from monocular videos. Prior work represents only the body pose or the face. However, humans communicate with their full body, combining body pose, hand gestures, as well as facial expressions. In this work, we propose TalkinNeRF, a unified NeRF-based network that represents the holistic 4D human motion. Given a monocular video of a subject, we learn corresponding modules for the body, face, and hands, that are combined together to generate the final result. To capture complex finger articulation, we learn an additional deformation field for the hands. Our multi-identity representation enables simultaneous training for multiple subjects, as well as robust animation under completely unseen poses. It can also generalize to novel identities, given only a short video as input. We demonstrate state-of-the-art performance for animating full-body talking humans, with fine-grained hand articulation and facial expressions.
Authors: Chuqiao Li, Julian Chibane, Yannan He, Naama Pearl, Andreas Geiger, Gerard Pons-moll
Abstract:
We introduce Unimotion, the first unified multi-task human motion model capable of both flexible motion control and frame-level motion understanding. While existing works control avatar motion with global text conditioning, or with fine-grained per frame scripts, none can do both at once. In addition, none of the existing works can output frame-level text paired with the generated poses. In contrast, Unimotion allows to control motion with global text, or local frame-level text, or both at once, providing more flexible control for users. Importantly, Unimotion is the first model which by design outputs local text paired with the generated poses, allowing users to know what motion happens and when, which is necessary for a wide range of applications. We show Unimotion opens up new applications: 1.) Hierarchical control, allowing users to specify motion at different levels of detail, 2.) Obtaining motion text descriptions for existing MoCap data or YouTube videos 3.) Allowing for editability, generating motion from text, and editing the motion via text edits. Moreover, Unimotion attains state-of-the-art results for the frame-level text-to-motion task on the established HumanML3D dataset. The pre-trained model and code are available available on our project page at https://coral79.github.io/uni-motion/.
Authors: Zhuojun Li, Chun Yu, Chen Liang, Yuanchun Shi
Abstract:
The data scarcity problem is a crucial factor that hampers the model performance of IMU-based human motion capture. However, effective data augmentation for IMU-based motion capture is challenging, since it has to capture the physical relations and constraints of the human body, while maintaining the data distribution and quality. We propose PoseAugment, a novel pipeline incorporating VAE-based pose generation and physical optimization. Given a pose sequence, the VAE module generates infinite poses with both high fidelity and diversity, while keeping the data distribution. The physical module optimizes poses to satisfy physical constraints with minimal motion restrictions. High-quality IMU data are then synthesized from the augmented poses for training motion capture models. Experiments show that PoseAugment outperforms previous data augmentation and pose generation methods in terms of motion capture accuracy, revealing a strong potential of our method to alleviate the data collection burden for IMU-based motion capture and related tasks driven by human poses.
Authors: Han Ling, Yinghui Sun, Quansen Sun, Yuhui Zheng
Abstract:
Perceiving and understanding 3D motion is a core technology in fields such as autonomous driving, robots, and motion prediction. This paper proposes a 3D motion perception method called ScaleFlow++ that is easy to generalize. With just a pair of RGB images, ScaleFlow++ can robustly estimate optical flow and motion-in-depth (MID). Most existing methods directly regress MID from two RGB frames or optical flow, resulting in inaccurate and unstable results. Our key insight is cross-scale matching, which extracts deep motion clues by matching objects in pairs of images at different scales. Unlike previous methods, ScaleFlow++ integrates optical flow and MID estimation into a unified architecture, estimating optical flow and MID end-to-end based on feature matching. Moreover, we also proposed modules such as global initialization network, global iterative optimizer, and hybrid training pipeline to integrate global motion information, reduce the number of iterations, and prevent overfitting during training. On KITTI, ScaleFlow++ achieved the best monocular scene flow estimation performance, reducing SF-all from 6.21 to 5.79. The evaluation of MID even surpasses RGBD-based methods. In addition, ScaleFlow++ has achieved stunning zero-shot generalization performance in both rigid and nonrigid scenes. Code is available at \url{https://github.com/HanLingsgjk/CSCV}.
Authors: Felix B Mueller, Julian Tanke, Juergen Gall
Abstract:
Forecasting long-term 3D human motion is challenging: the stochasticity of human behavior makes it hard to generate realistic human motion from the input sequence alone. Information on the scene environment and the motion of nearby people can greatly aid the generation process. We propose a scene-aware social transformer model (SAST) to forecast long-term (10s) human motion motion. Unlike previous models, our approach can model interactions between both widely varying numbers of people and objects in a scene. We combine a temporal convolutional encoder-decoder architecture with a Transformer-based bottleneck that allows us to efficiently combine motion and scene information. We model the conditional motion distribution using denoising diffusion models. We benchmark our approach on the Humans in Kitchens dataset, which contains 1 to 16 persons and 29 to 50 objects that are visible simultaneously. Our model outperforms other approaches in terms of realism and diversity on different metrics and in a user study. Code is available at https://github.com/felixbmuller/SAST.
Authors: Keshu Wu, Yang Zhou, Haotian Shi, Dominique Lord, Bin Ran, Xinyue Ye
Abstract:
The intricate nature of real-world driving environments, characterized by dynamic and diverse interactions among multiple vehicles and their possible future states, presents considerable challenges in accurately predicting the motion states of vehicles and handling the uncertainty inherent in the predictions. Addressing these challenges requires comprehensive modeling and reasoning to capture the implicit relations among vehicles and the corresponding diverse behaviors. This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction to address these complexities, utilizing a novel Relational Hypergraph Interaction-informed Neural mOtion generator (RHINO). RHINO leverages hypergraph-based relational reasoning by integrating a multi-scale hypergraph neural network to model group-wise interactions among multiple vehicles and their multi-modal driving behaviors, thereby enhancing motion prediction accuracy and reliability. Experimental validation using real-world datasets demonstrates the superior performance of this framework in improving predictive accuracy and fostering socially aware automated driving in dynamic traffic scenarios. The source code is publicly available at https://github.com/keshuw95/RHINO-Hypergraph-Motion-Generation.
Authors: Yihong Xu, Victor Letzelter, Mickaël Chen, Ãloi Zablocki, Matthieu Cord
Abstract:
In autonomous driving, motion prediction aims at forecasting the future trajectories of nearby agents, helping the ego vehicle to anticipate behaviors and drive safely. A key challenge is generating a diverse set of future predictions, commonly addressed using data-driven models with Multiple Choice Learning (MCL) architectures and Winner-Takes-All (WTA) training objectives. However, these methods face initialization sensitivity and training instabilities. Additionally, to compensate for limited performance, some approaches rely on training with a large set of hypotheses, requiring a post-selection step during inference to significantly reduce the number of predictions. To tackle these issues, we take inspiration from annealed MCL, a recently introduced technique that improves the convergence properties of MCL methods through an annealed Winner-Takes-All loss (aWTA). In this paper, we demonstrate how the aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance using only a minimal set of hypotheses, eliminating the need for the cumbersome post-selection step. Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA and yields significant improvements. To facilitate the application of our approach to future motion forecasting models, the code is made publicly available: https://github.com/valeoai/MF_aWTA.
Authors: S. Rohollah Hosseyni, Ali Ahmad Rahmani, S. Jamal Seyedmohammadi, Sanaz Seyedin, Arash Mohammadi
Abstract:
Autoregressive models excel in modeling sequential dependencies by enforcing causal constraints, yet they struggle to capture complex bidirectional patterns due to their unidirectional nature. In contrast, mask-based models leverage bidirectional context, enabling richer dependency modeling. However, they often assume token independence during prediction, which undermines the modeling of sequential dependencies. Additionally, the corruption of sequences through masking or absorption can introduce unnatural distortions, complicating the learning process. To address these issues, we propose Bidirectional Autoregressive Diffusion (BAD), a novel approach that unifies the strengths of autoregressive and mask-based generative models. BAD utilizes a permutation-based corruption technique that preserves the natural sequence structure while enforcing causal dependencies through randomized ordering, enabling the effective capture of both sequential and bidirectional relationships. Comprehensive experiments show that BAD outperforms autoregressive and mask-based models in text-to-motion generation, suggesting a novel pre-training strategy for sequence modeling. The codebase for BAD is available on https://github.com/RohollahHS/BAD.
Authors: Esteve Valls Mascaro, Dongheui Lee
Abstract:
As humanoid robots transition from labs to real-world environments, it is essential to democratize robot control for non-expert users. Recent human-robot imitation algorithms focus on following a reference human motion with high precision, but they are susceptible to the quality of the reference motion and require the human operator to simplify its movements to match the robot's capabilities. Instead, we consider that the robot should understand and adapt the reference motion to its own abilities, facilitating the operator's task. For that, we introduce a deep-learning model that anticipates the robot's performance when imitating a given reference. Then, our system can generate multiple references given a high-level task command, assign a score to each of them, and select the best reference to achieve the desired robot behavior. Our Self-AWare model (SAW) ranks potential robot behaviors based on various criteria, such as fall likelihood, adherence to the reference motion, and smoothness. We integrate advanced motion generation, robot control, and SAW in one unique system, ensuring optimal robot behavior for any task command. For instance, SAW can anticipate falls with 99.29% accuracy. For more information check our project page: https://evm7.github.io/Self-AWare
Authors: Karim Radouane, Sylvie Ranwez, Julien Lagarde, Andon Tchechmedjiev
Abstract:
In this paper, we address a challenging task, synchronous motion captioning, that aim to generate a language description synchronized with human motion sequences. This task pertains to numerous applications, such as aligned sign language transcription, unsupervised action segmentation and temporal grounding. Our method introduces mechanisms to control self- and cross-attention distributions of the Transformer, allowing interpretability and time-aligned text generation. We achieve this through masking strategies and structuring losses that push the model to maximize attention only on the most important frames contributing to the generation of a motion word. These constraints aim to prevent undesired mixing of information in attention maps and to provide a monotonic attention distribution across tokens. Thus, the cross attentions of tokens are used for progressive text generation in synchronization with human motion sequences. We demonstrate the superior performance of our approach through evaluation on the two available benchmark datasets, KIT-ML and HumanML3D. As visual evaluation is essential for this task, we provide a comprehensive set of animated visual illustrations in the code repository: https://github.com/rd20karim/Synch-Transformer.
Authors: Yuheng Jiang, Zhehao Shen, Yu Hong, Chengcheng Guo, Yize Wu, Yingliang Zhang, Jingyi Yu, Lan Xu
Abstract:
Volumetric video represents a transformative advancement in visual media, enabling users to freely navigate immersive virtual experiences and narrowing the gap between digital and real worlds. However, the need for extensive manual intervention to stabilize mesh sequences and the generation of excessively large assets in existing workflows impedes broader adoption. In this paper, we present a novel Gaussian-based approach, dubbed \textit{DualGS}, for real-time and high-fidelity playback of complex human performance with excellent compression ratios. Our key idea in DualGS is to separately represent motion and appearance using the corresponding skin and joint Gaussians. Such an explicit disentanglement can significantly reduce motion redundancy and enhance temporal coherence. We begin by initializing the DualGS and anchoring skin Gaussians to joint Gaussians at the first frame. Subsequently, we employ a coarse-to-fine training strategy for frame-by-frame human performance modeling. It includes a coarse alignment phase for overall motion prediction as well as a fine-grained optimization for robust tracking and high-fidelity rendering. To integrate volumetric video seamlessly into VR environments, we efficiently compress motion using entropy encoding and appearance using codec compression coupled with a persistent codebook. Our approach achieves a compression ratio of up to 120 times, only requiring approximately 350KB of storage per frame. We demonstrate the efficacy of our representation through photo-realistic, free-view experiences on VR headsets, enabling users to immersively watch musicians in performance and feel the rhythm of the notes at the performers' fingertips.
Authors: Luo Ji, Runji Lin
Abstract:
Interactive artificial intelligence in the motion control field is an interesting topic, especially when universal knowledge is adaptive to multiple tasks and universal environments. Despite there being increasing efforts in the field of Reinforcement Learning (RL) with the aid of transformers, most of them might be limited by the offline training pipeline, which prohibits exploration and generalization abilities. To address this limitation, we propose the framework of Online Decision MetaMorphFormer (ODM) which aims to achieve self-awareness, environment recognition, and action planning through a unified model architecture. Motivated by cognitive and behavioral psychology, an ODM agent is able to learn from others, recognize the world, and practice itself based on its own experience. ODM can also be applied to any arbitrary agent with a multi-joint body, located in different environments, and trained with different types of tasks using large-scale pre-trained datasets. Through the use of pre-trained datasets, ODM can quickly warm up and learn the necessary knowledge to perform the desired task, while the target environment continues to reinforce the universal policy. Extensive online experiments as well as few-shot and zero-shot environmental tests are used to verify ODM's performance and generalization ability. The results of our study contribute to the study of general artificial intelligence in embodied and cognitive fields. Code, results, and video examples can be found on the website \url{https://rlodm.github.io/odm/}.
Authors: Zehong Shen, Huaijin Pi, Yan Xia, Zhi Cen, Sida Peng, Zechen Hu, Hujun Bao, Ruizhen Hu, Xiaowei Zhou
Abstract:
We present a novel method for recovering world-grounded human motion from monocular video. The main challenge lies in the ambiguity of defining the world coordinate system, which varies between sequences. Previous approaches attempt to alleviate this issue by predicting relative motion in an autoregressive manner, but are prone to accumulating errors. Instead, we propose estimating human poses in a novel Gravity-View (GV) coordinate system, which is defined by the world gravity and the camera view direction. The proposed GV system is naturally gravity-aligned and uniquely defined for each video frame, largely reducing the ambiguity of learning image-pose mapping. The estimated poses can be transformed back to the world coordinate system using camera rotations, forming a global motion sequence. Additionally, the per-frame estimation avoids error accumulation in the autoregressive methods. Experiments on in-the-wild benchmarks demonstrate that our method recovers more realistic motion in both the camera space and world-grounded settings, outperforming state-of-the-art methods in both accuracy and speed. The code is available at https://zju3dv.github.io/gvhmr/.
Authors: Yining Yao, Xi Guo, Chenjing Ding, Wei Wu
Abstract:
High-quality driving video generation is crucial for providing training data for autonomous driving models. However, current generative models rarely focus on enhancing camera motion control under multi-view tasks, which is essential for driving video generation. Therefore, we propose MyGo, an end-to-end framework for video generation, introducing motion of onboard cameras as conditions to make progress in camera controllability and multi-view consistency. MyGo employs additional plug-in modules to inject camera parameters into the pre-trained video diffusion model, which retains the extensive knowledge of the pre-trained model as much as possible. Furthermore, we use epipolar constraints and neighbor view information during the generation process of each view to enhance spatial-temporal consistency. Experimental results show that MyGo has achieved state-of-the-art results in both general camera-controlled video generation and multi-view driving video generation tasks, which lays the foundation for more accurate environment simulation in autonomous driving. Project page: https://metadrivescape.github.io/papers_project/MyGo/page.html
Authors: Vongani Maluleke, Lea Müller, Jathushan Rajasegaran, Georgios Pavlakos, Shiry Ginosar, Angjoo Kanazawa, Jitendra Malik
Abstract:
This paper asks to what extent social interaction influences one's behavior. We study this in the setting of two dancers dancing as a couple. We first consider a baseline in which we predict a dancer's future moves conditioned only on their past motion without regard to their partner. We then investigate the advantage of taking social information into account by conditioning also on the motion of their dancing partner. We focus our analysis on Swing, a dance genre with tight physical coupling for which we present an in-the-wild video dataset. We demonstrate that single-person future motion prediction in this context is challenging. Instead, we observe that prediction greatly benefits from considering the interaction partners' behavior, resulting in surprisingly compelling couple dance synthesis results (see supp. video). Our contributions are a demonstration of the advantages of socially conditioned future motion prediction and an in-the-wild, couple dance video dataset to enable future research in this direction. Video results are available on the project website: https://von31.github.io/synNsync
Authors: Shashank Tripathi, Omid Taheri, Christoph Lassner, Michael J. Black, Daniel Holden, Carsten Stoll
Abstract:
Generating realistic human motion is essential for many computer vision and graphics applications. The wide variety of human body shapes and sizes greatly impacts how people move. However, most existing motion models ignore these differences, relying on a standardized, average body. This leads to uniform motion across different body types, where movements don't match their physical characteristics, limiting diversity. To solve this, we introduce a new approach to develop a generative motion model based on body shape. We show that it's possible to train this model using unpaired data by applying cycle consistency, intuitive physics, and stability constraints, which capture the relationship between identity and movement. The resulting model generates diverse, physically plausible, and dynamically stable human motions that are both quantitatively and qualitatively more realistic than current state-of-the-art methods. More details are available on our project page https://CarstenEpic.github.io/humos/.
Authors: Junyi Ma, Xieyuanli Chen, Wentao Bao, Jingyi Xu, Hesheng Wang
Abstract:
Understanding human intentions and actions through egocentric videos is important on the path to embodied artificial intelligence. As a branch of egocentric vision techniques, hand trajectory prediction plays a vital role in comprehending human motion patterns, benefiting downstream tasks in extended reality and robot manipulation. However, capturing high-level human intentions consistent with reasonable temporal causality is challenging when only egocentric videos are available. This difficulty is exacerbated under camera egomotion interference and the absence of affordance labels to explicitly guide the optimization of hand waypoint distribution. In this work, we propose a novel hand trajectory prediction method dubbed MADiff, which forecasts future hand waypoints with diffusion models. The devised denoising operation in the latent space is achieved by our proposed motion-aware Mamba, where the camera wearer's egomotion is integrated to achieve motion-driven selective scan (MDSS). To discern the relationship between hands and scenarios without explicit affordance supervision, we leverage a foundation model that fuses visual and language features to capture high-level semantics from video clips. Comprehensive experiments conducted on five public datasets with the existing and our proposed new evaluation metrics demonstrate that MADiff predicts comparably reasonable hand trajectories compared to the state-of-the-art baselines, and achieves real-time performance. We will release our code and pretrained models of MADiff at the project page: https://irmvlab.github.io/madiff.github.io.
Authors: Yifei Yang, Zikai Huang, Chenshu Xu, Shengfeng He
Abstract:
Long-term motion generation is a challenging task that requires producing coherent and realistic sequences over extended durations. Current methods primarily rely on framewise motion representations, which capture only static spatial details and overlook temporal dynamics. This approach leads to significant redundancy across the temporal dimension, complicating the generation of effective long-term motion. To overcome these limitations, we introduce the novel concept of Lagrangian Motion Fields, specifically designed for long-term motion generation. By treating each joint as a Lagrangian particle with uniform velocity over short intervals, our approach condenses motion representations into a series of "supermotions" (analogous to superpixels). This method seamlessly integrates static spatial information with interpretable temporal dynamics, transcending the limitations of existing network architectures and motion sequence content types. Our solution is versatile and lightweight, eliminating the need for neural network preprocessing. Our approach excels in tasks such as long-term music-to-dance generation and text-to-motion generation, offering enhanced efficiency, superior generation quality, and greater diversity compared to existing methods. Additionally, the adaptability of Lagrangian Motion Fields extends to applications like infinite motion looping and fine-grained controlled motion generation, highlighting its broad utility. Video demonstrations are available at https://plyfager.github.io/LaMoG.
Authors: Luigi Capogrosso, Andrea Toaiari, Andrea Avogaro, Uzair Khan, Aditya Jivoji, Franco Fummi, Marco Cristani
Abstract:
Patterns of human motion in outdoor and indoor environments are substantially different due to the scope of the environment and the typical intentions of people therein. While outdoor trajectory forecasting has received significant attention, indoor forecasting is still an underexplored research area. This paper proposes SITUATE, a novel approach to cope with indoor human trajectory prediction by leveraging equivariant and invariant geometric features and a self-supervised vision representation. The geometric learning modules model the intrinsic symmetries and human movements inherent in indoor spaces. This concept becomes particularly important because self-loops at various scales and rapid direction changes often characterize indoor trajectories. On the other hand, the vision representation module is used to acquire spatial-semantic information about the environment to predict users' future locations more accurately. We evaluate our method through comprehensive experiments on the two most famous indoor trajectory forecasting datasets, i.e., THÃR and Supermarket, obtaining state-of-the-art performance. Furthermore, we also achieve competitive results in outdoor scenarios, showing that indoor-oriented forecasting models generalize better than outdoor-oriented ones. The source code is available at https://github.com/intelligolabs/SITUATE.
Authors: Bin Hu, Run Luo, Zelin Liu, Cheng Wang, Wenyu Liu
Abstract:
Temporal motion modeling has always been a key component in multiple object tracking (MOT) which can ensure smooth trajectory movement and provide accurate positional information to enhance association precision. However, current motion models struggle to be both efficient and effective across different application scenarios. To this end, we propose TrackSSM inspired by the recently popular state space models (SSM), a unified encoder-decoder motion framework that uses data-dependent state space model to perform temporal motion of trajectories. Specifically, we propose Flow-SSM, a module that utilizes the position and motion information from historical trajectories to guide the temporal state transition of object bounding boxes. Based on Flow-SSM, we design a flow decoder. It is composed of a cascaded motion decoding module employing Flow-SSM, which can use the encoded flow information to complete the temporal position prediction of trajectories. Additionally, we propose a Step-by-Step Linear (S$^2$L) training strategy. By performing linear interpolation between the positions of the object in the previous frame and the current frame, we construct the pseudo labels of step-by-step linear training, ensuring that the trajectory flow information can better guide the object bounding box in completing temporal transitions. TrackSSM utilizes a simple Mamba-Block to build a motion encoder for historical trajectories, forming a temporal motion model with an encoder-decoder structure in conjunction with the flow decoder. TrackSSM is applicable to various tracking scenarios and achieves excellent tracking performance across multiple benchmarks, further extending the potential of SSM-like temporal motion models in multi-object tracking tasks. Code and models are publicly available at \url{https://github.com/Xavier-Lin/TrackSSM}.
Authors: Bonan Liu, Handi Yin, Manuel Kaufmann, Jinhao He, Sammy Christen, Jie Song, Pan Hui
Abstract:
We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers dense scene mapping in near real-time. Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. Our key idea is integrating camera localization and mapping information with inertial human motion capture bidirectionally in our system. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild.
Authors: Kanchana Ranasinghe, Honglu Zhou, Yu Fang, Luyu Yang, Le Xue, Ran Xu, Caiming Xiong, Silvio Savarese, Michael S Ryoo, Juan Carlos Niebles
Abstract:
Future motion representations, such as optical flow, offer immense value for control and generative tasks. However, forecasting generalizable spatially dense motion representations remains a key challenge, and learning such forecasting from noisy, real-world data remains relatively unexplored. We introduce FOFPred, a novel language-conditioned optical flow forecasting model featuring a unified Vision-Language Model (VLM) and Diffusion architecture. This unique combination enables strong multimodal reasoning with pixel-level generative fidelity for future motion prediction. Our model is trained on web-scale human activity data-a highly scalable but unstructured source. To extract meaningful signals from this noisy video-caption data, we employ crucial data preprocessing techniques and our unified architecture with strong image pretraining. The resulting trained model is then extended to tackle two distinct downstream tasks in control and generation. Evaluations across robotic manipulation and video generation under language-driven settings establish the cross-domain versatility of FOFPred, confirming the value of a unified VLM-Diffusion architecture and scalable learning from diverse web data for future optical flow prediction.
Authors: Ruize Zhang, Sirui Xiang, Zelai Xu, Feng Gao, Shilong Ji, Wenhao Tang, Wenbo Ding, Chao Yu, Yu Wang
Abstract:
In this paper, we tackle the problem of learning to play 3v3 multi-drone volleyball, a new embodied competitive task that requires both high-level strategic coordination and low-level agile control. The task is turn-based, multi-agent, and physically grounded, posing significant challenges due to its long-horizon dependencies, tight inter-agent coupling, and the underactuated dynamics of quadrotors. To address this, we propose Hierarchical Co-Self-Play (HCSP), a hierarchical reinforcement learning framework that separates centralized high-level strategic decision-making from decentralized low-level motion control. We design a three-stage population-based training pipeline to enable both strategy and skill to emerge from scratch without expert demonstrations: (I) training diverse low-level skills, (II) learning high-level strategy via self-play with fixed low-level skills, and (III) joint fine-tuning through co-self-play. Experiments show that HCSP achieves superior performance, outperforming non-hierarchical self-play and rule-based hierarchical baselines with an average 82.9% win rate and a 71.5% win rate against the two-stage variant. Moreover, co-self-play leads to emergent team behaviors such as role switching and coordinated formations, demonstrating the effectiveness of our hierarchical design and training scheme. The project page is at https://sites.google.com/view/hi-co-self-play.
Authors: Zongyuan Chen, Yan Xia, Jiayuan Liu, Jijia Liu, Wenhao Tang, Jiayu Chen, Feng Gao, Longfei Ma, Hongen Liao, Yu Wang, Chao Yu, Boyu Zhang, Fei Xing
Abstract:
Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
Authors: Zelai Xu, Ruize Zhang, Chao Yu, Huining Yuan, Xiangmin Yi, Shilong Ji, Chuqi Wang, Wenhao Tang, Feng Gao, Wenbo Ding, Xinlei Chen, Yu Wang
Abstract:
Robot sports, characterized by well-defined objectives, explicit rules, and dynamic interactions, present ideal scenarios for demonstrating embodied intelligence. In this paper, we present VolleyBots, a novel robot sports testbed where multiple drones cooperate and compete in the sport of volleyball under physical dynamics. VolleyBots integrates three features within a unified platform: competitive and cooperative gameplay, turn-based interaction structure, and agile 3D maneuvering. Competitive and cooperative gameplay challenges each drone to coordinate with its teammates while anticipating and countering opposing teams' tactics. Turn-based interaction demands precise timing, accurate state prediction, and management of long-horizon temporal dependencies. Agile 3D maneuvering requires rapid accelerations, sharp turns, and precise 3D positioning despite the quadrotor's underactuated dynamics. These intertwined features yield a complex problem combining motion control and strategic play, with no available expert demonstrations. We provide a comprehensive suite of tasks ranging from single-drone drills to multi-drone cooperative and competitive tasks, accompanied by baseline evaluations of representative multi-agent reinforcement learning (MARL) and game-theoretic algorithms. Simulation results show that on-policy reinforcement learning (RL) methods outperform off-policy methods in single-agent tasks, but both approaches struggle in complex tasks that combine motion control and strategic play. We additionally design a hierarchical policy which achieves a 69.5% percent win rate against the strongest baseline in the 3 vs 3 task, underscoring its potential as an effective solution for tackling the complex interplay between low-level control and high-level strategy. The project page is at https://sites.google.com/view/thu-volleybots.
Authors: Xiaoyang Liu, Yunyao Mao, Wengang Zhou, Houqiang Li
Abstract:
We introduce MotionRL, the first approach to utilize Multi-Reward Reinforcement Learning (RL) for optimizing text-to-motion generation tasks and aligning them with human preferences. Previous works focused on improving numerical performance metrics on the given datasets, often neglecting the variability and subjectivity of human feedback. In contrast, our novel approach uses reinforcement learning to fine-tune the motion generator based on human preferences prior knowledge of the human perception model, allowing it to generate motions that better align human preferences. In addition, MotionRL introduces a novel multi-objective optimization strategy to approximate Pareto optimality between text adherence, motion quality, and human preferences. Extensive experiments and user studies demonstrate that MotionRL not only allows control over the generated results across different objectives but also significantly enhances performance across these metrics compared to other algorithms.
Authors: Sheng Liu, Yuanzhi Liang, Jiepeng Wang, Sidan Du, Chi Zhang, Xuelong Li
Abstract:
We present Uni-Inter, a unified framework for human motion generation that supports a wide range of interaction scenarios: including human-human, human-object, and human-scene-within a single, task-agnostic architecture. In contrast to existing methods that rely on task-specific designs and exhibit limited generalization, Uni-Inter introduces the Unified Interactive Volume (UIV), a volumetric representation that encodes heterogeneous interactive entities into a shared spatial field. This enables consistent relational reasoning and compound interaction modeling. Motion generation is formulated as joint-wise probabilistic prediction over the UIV, allowing the model to capture fine-grained spatial dependencies and produce coherent, context-aware behaviors. Experiments across three representative interaction tasks demonstrate that Uni-Inter achieves competitive performance and generalizes well to novel combinations of entities. These results suggest that unified modeling of compound interactions offers a promising direction for scalable motion synthesis in complex environments.
Authors: Yiyi Ma, Yuanzhi Liang, Xiu Li, Chi Zhang, Xuelong Li
Abstract:
We present Interleaved Learning for Motion Synthesis (InterSyn), a novel framework that targets the generation of realistic interaction motions by learning from integrated motions that consider both solo and multi-person dynamics. Unlike previous methods that treat these components separately, InterSyn employs an interleaved learning strategy to capture the natural, dynamic interactions and nuanced coordination inherent in real-world scenarios. Our framework comprises two key modules: the Interleaved Interaction Synthesis (INS) module, which jointly models solo and interactive behaviors in a unified paradigm from a first-person perspective to support multiple character interactions, and the Relative Coordination Refinement (REC) module, which refines mutual dynamics and ensures synchronized motions among characters. Experimental results show that the motion sequences generated by InterSyn exhibit higher text-to-motion alignment and improved diversity compared with recent methods, setting a new benchmark for robust and natural motion synthesis. Additionally, our code will be open-sourced in the future to promote further research and development in this area.
Authors: Feng-Lin Liu, Hongbo Fu, Xintao Wang, Weicai Ye, Pengfei Wan, Di Zhang, Lin Gao
Abstract:
Video generation and editing conditioned on text prompts or images have undergone significant advancements. However, challenges remain in accurately controlling global layout and geometry details solely by texts, and supporting motion control and local modification through images. In this paper, we aim to achieve sketch-based spatial and motion control for video generation and support fine-grained editing of real or synthetic videos. Based on the DiT video generation model, we propose a memory-efficient control structure with sketch control blocks that predict residual features of skipped DiT blocks. Sketches are drawn on one or two keyframes (at arbitrary time points) for easy interaction. To propagate such temporally sparse sketch conditions across all frames, we propose an inter-frame attention mechanism to analyze the relationship between the keyframes and each video frame. For sketch-based video editing, we design an additional video insertion module that maintains consistency between the newly edited content and the original video's spatial feature and dynamic motion. During inference, we use latent fusion for the accurate preservation of unedited regions. Extensive experiments demonstrate that our SketchVideo achieves superior performance in controllable video generation and editing.
Authors: Shenghai Yuan, Jason Wai Hao Yee, Weixiang Guo, Zhongyuan Liu, Thien-Minh Nguyen, Lihua Xie
Abstract:
Autonomous mobile robots increasingly rely on LiDAR-IMU odometry for navigation and mapping, yet horizontally mounted LiDARs such as the MID360 capture few near-ground returns, limiting terrain awareness and degrading performance in feature-scarce environments. Prior solutions - static tilt, active rotation, or high-density sensors - either sacrifice horizontal perception or incur added actuators, cost, and power. We introduce PERAL, a perception-aware motion control framework for spherical robots that achieves passive LiDAR excitation without dedicated hardware. By modeling the coupling between internal differential-drive actuation and sensor attitude, PERAL superimposes bounded, non-periodic oscillations onto nominal goal- or trajectory-tracking commands, enriching vertical scan diversity while preserving navigation accuracy. Implemented on a compact spherical robot, PERAL is validated across laboratory, corridor, and tactical environments. Experiments demonstrate up to 96 percent map completeness, a 27 percent reduction in trajectory tracking error, and robust near-ground human detection, all at lower weight, power, and cost compared with static tilt, active rotation, and fixed horizontal baselines. The design and code will be open-sourced upon acceptance.
Authors: Xukun Zhou, Fengxin Li, Ming Chen, Yan Zhou, Pengfei Wan, Di Zhang, Yeying Jin, Zhaoxin Fan, Hongyan Liu, Jun He
Abstract:
Audio-driven human gesture synthesis is a crucial task with broad applications in virtual avatars, human-computer interaction, and creative content generation. Despite notable progress, existing methods often produce gestures that are coarse, lack expressiveness, and fail to fully align with audio semantics. To address these challenges, we propose ExGes, a novel retrieval-enhanced diffusion framework with three key designs: (1) a Motion Base Construction, which builds a gesture library using training dataset; (2) a Motion Retrieval Module, employing constrative learning and momentum distillation for fine-grained reference poses retreiving; and (3) a Precision Control Module, integrating partial masking and stochastic masking to enable flexible and fine-grained control. Experimental evaluations on BEAT2 demonstrate that ExGes reduces Fréchet Gesture Distance by 6.2\% and improves motion diversity by 5.3\% over EMAGE, with user studies revealing a 71.3\% preference for its naturalness and semantic relevance. Code will be released upon acceptance.
Authors: Jie Tian, Xiaoye Qu, Zhenyi Lu, Wei Wei, Sichen Liu, Yu Cheng
Abstract:
Image-to-Video (I2V) generation aims to synthesize a video clip according to a given image and condition (e.g., text). The key challenge of this task lies in simultaneously generating natural motions while preserving the original appearance of the images. However, current I2V diffusion models (I2V-DMs) often produce videos with limited motion degrees or exhibit uncontrollable motion that conflicts with the textual condition. To address these limitations, we propose a novel Extrapolating and Decoupling framework, which introduces model merging techniques to the I2V domain for the first time. Specifically, our framework consists of three separate stages: (1) Starting with a base I2V-DM, we explicitly inject the textual condition into the temporal module using a lightweight, learnable adapter and fine-tune the integrated model to improve motion controllability. (2) We introduce a training-free extrapolation strategy to amplify the dynamic range of the motion, effectively reversing the fine-tuning process to enhance the motion degree significantly. (3) With the above two-stage models excelling in motion controllability and degree, we decouple the relevant parameters associated with each type of motion ability and inject them into the base I2V-DM. Since the I2V-DM handles different levels of motion controllability and dynamics at various denoising time steps, we adjust the motion-aware parameters accordingly over time. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of our framework over existing methods.
Authors: Jingqiao Xiu, Fangzhou Hong, Yicong Li, Mengze Li, Wentao Wang, Sirui Han, Liang Pan, Ziwei Liu
Abstract:
While exocentric video synthesis has achieved great progress, egocentric video generation remains largely underexplored, which requires modeling first-person view content along with camera motion patterns induced by the wearer's body movements. To bridge this gap, we introduce a novel task of joint egocentric video and human motion generation, characterized by two key challenges: 1) Viewpoint Alignment: the camera trajectory in the generated video must accurately align with the head trajectory derived from human motion; 2) Causal Interplay: the synthesized human motion must causally align with the observed visual dynamics across adjacent video frames. To address these challenges, we propose EgoTwin, a joint video-motion generation framework built on the diffusion transformer architecture. Specifically, EgoTwin introduces a head-centric motion representation that anchors the human motion to the head joint and incorporates a cybernetics-inspired interaction mechanism that explicitly captures the causal interplay between video and motion within attention operations. For comprehensive evaluation, we curate a large-scale real-world dataset of synchronized text-video-motion triplets and design novel metrics to assess video-motion consistency. Extensive experiments demonstrate the effectiveness of the EgoTwin framework.
Authors: Zhenghan Chen, Haodong Zhang, Dongqi Wang, Jiyu Yu, Haocheng Xu, Yue Wang, Rong Xiong
Abstract:
Motion imitation is a pivotal and effective approach for humanoid robots to achieve a more diverse range of complex and expressive movements, making their performances more human-like. However, the significant differences in kinematics and dynamics between humanoid robots and humans present a major challenge in accurately imitating motion while maintaining balance. In this paper, we propose a novel whole-body motion imitation framework for a full-size humanoid robot. The proposed method employs contact-aware whole-body motion retargeting to mimic human motion and provide initial values for reference trajectories, and the non-linear centroidal model predictive controller ensures the motion accuracy while maintaining balance and overcoming external disturbances in real time. The assistance of the whole-body controller allows for more precise torque control. Experiments have been conducted to imitate a variety of human motions both in simulation and in a real-world humanoid robot. These experiments demonstrate the capability of performing with accuracy and adaptability, which validates the effectiveness of our approach.
Authors: Haodong Zhang, Liang Zhang, Zhenghan Chen, Lu Chen, Yue Wang, Rong Xiong
Abstract:
Natural and lifelike locomotion remains a fundamental challenge for humanoid robots to interact with human society. However, previous methods either neglect motion naturalness or rely on unstable and ambiguous style rewards. In this paper, we propose a novel Generative Motion Prior (GMP) that provides fine-grained motion-level supervision for the task of natural humanoid robot locomotion. To leverage natural human motions, we first employ whole-body motion retargeting to effectively transfer them to the robot. Subsequently, we train a generative model offline to predict future natural reference motions for the robot based on a conditional variational auto-encoder. During policy training, the generative motion prior serves as a frozen online motion generator, delivering precise and comprehensive supervision at the trajectory level, including joint angles and keypoint positions. The generative motion prior significantly enhances training stability and improves interpretability by offering detailed and dense guidance throughout the learning process. Experimental results in both simulation and real-world environments demonstrate that our method achieves superior motion naturalness compared to existing approaches. Project page can be found at https://sites.google.com/view/humanoid-gmp
Authors: Mingqi Yuan, Tao Yu, Haolin Song, Bo Li, Xin Jin, Hua Chen, Wenjun Zeng
Abstract:
Achieving efficient and robust whole-body control (WBC) is essential for enabling humanoid robots to perform complex tasks in dynamic environments. Despite the success of reinforcement learning (RL) in this domain, its sample inefficiency remains a significant challenge due to the intricate dynamics and partial observability of humanoid robots. To address this limitation, we propose PvP, a Proprioceptive-Privileged contrastive learning framework that leverages the intrinsic complementarity between proprioceptive and privileged states. PvP learns compact and task-relevant latent representations without requiring hand-crafted data augmentations, enabling faster and more stable policy learning. To support systematic evaluation, we develop SRL4Humanoid, the first unified and modular framework that provides high-quality implementations of representative state representation learning (SRL) methods for humanoid robot learning. Extensive experiments on the LimX Oli robot across velocity tracking and motion imitation tasks demonstrate that PvP significantly improves sample efficiency and final performance compared to baseline SRL methods. Our study further provides practical insights into integrating SRL with RL for humanoid WBC, offering valuable guidance for data-efficient humanoid robot learning.
Authors: Pengxiang Ding, Jianfei Ma, Xinyang Tong, Binghong Zou, Xinxin Luo, Yiguo Fan, Ting Wang, Hongchao Lu, Panzhong Mo, Jinxin Liu, Yuefan Wang, Huaicheng Zhou, Wenshuo Feng, Jiacheng Liu, Siteng Huang, Donglin Wang
Abstract:
This paper addresses the limitations of current humanoid robot control frameworks, which primarily rely on reactive mechanisms and lack autonomous interaction capabilities due to data scarcity. We propose Humanoid-VLA, a novel framework that integrates language understanding, egocentric scene perception, and motion control, enabling universal humanoid control. Humanoid-VLA begins with language-motion pre-alignment using non-egocentric human motion datasets paired with textual descriptions, allowing the model to learn universal motion patterns and action semantics. We then incorporate egocentric visual context through a parameter efficient video-conditioned fine-tuning, enabling context-aware motion generation. Furthermore, we introduce a self-supervised data augmentation strategy that automatically generates pseudoannotations directly derived from motion data. This process converts raw motion sequences into informative question-answer pairs, facilitating the effective use of large-scale unlabeled video data. Built upon whole-body control architectures, extensive experiments show that Humanoid-VLA achieves object interaction and environment exploration tasks with enhanced contextual awareness, demonstrating a more human-like capacity for adaptive and intelligent engagement.
Authors: Zhenmin Huang, Ce Hao, Wei Zhan, Jun Ma, Masayoshi Tomizuka
Abstract:
Autonomous racing has gained significant attention as a platform for high-speed decision-making and motion control. While existing methods primarily focus on trajectory planning and overtaking strategies, the role of sportsmanship in ensuring fair competition remains largely unexplored. In human racing, rules such as the one-motion rule and the enough-space rule prevent dangerous and unsportsmanlike behavior. However, autonomous racing systems often lack mechanisms to enforce these principles, potentially leading to unsafe maneuvers. This paper introduces a bi-level game-theoretic framework to integrate sportsmanship (SPS) into versus racing. At the high level, we model racing intentions using a Stackelberg game, where Monte Carlo Tree Search (MCTS) is employed to derive optimal strategies. At the low level, vehicle interactions are formulated as a Generalized Nash Equilibrium Problem (GNEP), ensuring that all agents follow sportsmanship constraints while optimizing their trajectories. Simulation results demonstrate the effectiveness of the proposed approach in enforcing sportsmanship rules while maintaining competitive performance. We analyze different scenarios where attackers and defenders adhere to or disregard sportsmanship rules and show how knowledge of these constraints influences strategic decision-making. This work highlights the importance of balancing competition and fairness in autonomous racing and provides a foundation for developing ethical and safe AI-driven racing systems.
Authors: Weiliang Tang, Jia-Hui Pan, Wei Zhan, Jianshu Zhou, Huaxiu Yao, Yun-Hui Liu, Masayoshi Tomizuka, Mingyu Ding, Chi-Wing Fu
Abstract:
Observing that the key for robotic action planning is to understand the target-object motion when its associated part is manipulated by the end effector, we propose to generate the 3D object-part scene flow and extract its transformations to solve the action trajectories for diverse embodiments. The advantage of our approach is that it derives the robot action explicitly from object motion prediction, yielding a more robust policy by understanding the object motions. Also, beyond policies trained on embodiment-centric data, our method is embodiment-agnostic, generalizable across diverse embodiments, and being able to learn from human demonstrations. Our method comprises three components: an object-part predictor to locate the part for the end effector to manipulate, an RGBD video generator to predict future RGBD videos, and a trajectory planner to extract embodiment-agnostic transformation sequences and solve the trajectory for diverse embodiments. Trained on videos even without trajectory data, our method still outperforms existing works significantly by 27.7% and 26.2% on the prevailing virtual environments MetaWorld and Franka-Kitchen, respectively. Furthermore, we conducted real-world experiments, showing that our policy, trained only with human demonstration, can be deployed to various embodiments.
Authors: Shuyang Xu, Zhiyang Dou, Mingyi Shi, Liang Pan, Leo Ho, Jingbo Wang, Yuan Liu, Cheng Lin, Yuexin Ma, Wenping Wang, Taku Komura
Abstract:
Enabling virtual humans to dynamically and realistically respond to diverse auditory stimuli remains a key challenge in character animation, demanding the integration of perceptual modeling and motion synthesis. Despite its significance, this task remains largely unexplored. Most previous works have primarily focused on mapping modalities like speech, audio, and music to generate human motion. As of yet, these models typically overlook the impact of spatial features encoded in spatial audio signals on human motion. To bridge this gap and enable high-quality modeling of human movements in response to spatial audio, we introduce the first comprehensive Spatial Audio-Driven Human Motion (SAM) dataset, which contains diverse and high-quality spatial audio and motion data. For benchmarking, we develop a simple yet effective diffusion-based generative framework for human MOtion generation driven by SPatial Audio, termed MOSPA, which faithfully captures the relationship between body motion and spatial audio through an effective fusion mechanism. Once trained, MOSPA could generate diverse realistic human motions conditioned on varying spatial audio inputs. We perform a thorough investigation of the proposed dataset and conduct extensive experiments for benchmarking, where our method achieves state-of-the-art performance on this task. Our model and dataset will be open-sourced upon acceptance. Please refer to our supplementary video for more details.
Authors: Yu-Wei Zhan, Xin Wang, Hong Chen, Tongtong Feng, Wei Feng, Ren Wang, Guangyao Li, Qing Li, Wenwu Zhu
Abstract:
Video Large Language Models (Video LLMs) have shown impressive performance across a wide range of video-language tasks. However, they often fail in scenarios requiring a deeper understanding of physical dynamics. This limitation primarily arises from their reliance on appearance-based matching. Incorporating physical motion modeling is crucial for deeper video understanding, but presents three key challenges: (1) motion signals are often entangled with appearance variations, making it difficult to extract clean physical cues; (2) effective motion modeling requires not only continuous-time motion representations but also capturing physical dynamics; and (3) collecting accurate annotations for physical attributes is costly and often impractical. To address these issues, we propose PhyVLLM, a physical-guided video-language framework that explicitly incorporates physical motion into Video LLMs. Specifically, PhyVLLM disentangles visual appearance and object motion through a dual-branch encoder. To model physical dynamics over time, we incorporate a Neural Ordinary Differential Equation (Neural ODE) module, which generates differentiable physical dynamic representations. The resulting motion-aware representations are projected into the token space of a pretrained LLM, enabling physics reasoning without compromising the model's original multimodal capabilities. To circumvent the need for explicit physical labels, PhyVLLM employs a self-supervised manner to model the continuous evolution of object motion. Experimental results demonstrate that PhyVLLM significantly outperforms state-of-the-art Video LLMs on both physical reasoning and general video understanding tasks, highlighting the advantages of incorporating explicit physical modeling.
Authors: Junkun Jiang, Jie Chen, Ho Yin Au, Mingyuan Chen, Wei Xue, Yike Guo
Abstract:
Multi-person motion capture over sparse angular observations is a challenging problem under interference from both self- and mutual-occlusions. Existing works produce accurate 2D joint detection, however, when these are triangulated and lifted into 3D, available solutions all struggle in selecting the most accurate candidates and associating them to the correct joint type and target identity. As such, in order to fully utilize all accurate 2D joint location information, we propose to independently triangulate between all same-typed 2D joints from all camera views regardless of their target ID, forming the Joint Cloud. Joint Cloud consist of both valid joints lifted from the same joint type and target ID, as well as falsely constructed ones that are from different 2D sources. These redundant and inaccurate candidates are processed over the proposed Joint Cloud Selection and Aggregation Transformer (JCSAT) involving three cascaded encoders which deeply explore the trajectile, skeletal structural, and view-dependent correlations among all 3D point candidates in the cross-embedding space. An Optimal Token Attention Path (OTAP) module is proposed which subsequently selects and aggregates informative features from these redundant observations for the final prediction of human motion. To demonstrate the effectiveness of JCSAT, we build and publish a new multi-person motion capture dataset BUMocap-X with complex interactions and severe occlusions. Comprehensive experiments over the newly presented as well as benchmark datasets validate the effectiveness of the proposed framework, which outperforms all existing state-of-the-art methods, especially under challenging occlusion scenarios.
Authors: Gaurav Shetty, Mahya Ramezani, Hamed Habibi, Holger Voos, Jose Luis Sanchez-Lopez
Abstract:
This paper investigates the application of Deep Reinforcement (DRL) Learning to address motion control challenges in drones for additive manufacturing (AM). Drone-based additive manufacturing promises flexible and autonomous material deposition in large-scale or hazardous environments. However, achieving robust real-time control of a multi-rotor aerial robot under varying payloads and potential disturbances remains challenging. Traditional controllers like PID often require frequent parameter re-tuning, limiting their applicability in dynamic scenarios. We propose a DRL framework that learns adaptable control policies for multi-rotor drones performing waypoint navigation in AM tasks. We compare Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) within a curriculum learning scheme designed to handle increasing complexity. Our experiments show TD3 consistently balances training stability, accuracy, and success, particularly when mass variability is introduced. These findings provide a scalable path toward robust, autonomous drone control in additive manufacturing.
Authors: Patanjali Maithani, Aliasghar Arab, Farshad Khorrami, Prashanth Krishnamurthy
Abstract:
In collaborative human-robot environments, the unpredictable and dynamic nature of human motion can lead to situations where collisions become unavoidable. In such cases, it is essential for the robotic system to proactively mitigate potential harm through intelligent control strategies. This paper presents a hierarchical control framework based on Control Barrier Functions (CBFs) designed to ensure safe and adaptive operation of autonomous robotic manipulators during close-proximity human-robot interaction. The proposed method introduces a relaxation variable that enables real-time prioritization of safety constraints, allowing the robot to dynamically manage collision risks based on the criticality of different parts of the human body. A secondary constraint mechanism is incorporated to resolve infeasibility by increasing the priority of imminent threats. The framework is experimentally validated on a Franka Research 3 robot equipped with a ZED2i AI camera for real-time human pose and body detection. Experimental results confirm that the CBF-based controller, integrated with depth sensing, facilitates responsive and safe human-robot collaboration, while providing detailed risk analysis and maintaining robust performance in highly dynamic settings.
Authors: Zhe Li, Cheng Chi, Boan Zhu, Yangyang Wei, Shuanghao Bai, Yuheng Ji, Yibo Peng, Tao Huang, Pengwei Wang, Zhongyuan Wang, S. -H. Gary Chan, Chang Xu, Shanghang Zhang
Abstract:
Humans learn locomotion through visual observation, interpreting visual content first before imitating actions. However, state-of-the-art humanoid locomotion systems rely on either curated motion capture trajectories or sparse text commands, leaving a critical gap between visual understanding and control. Text-to-motion methods suffer from semantic sparsity and staged pipeline errors, while video-based approaches only perform mechanical pose mimicry without genuine visual understanding. We propose RoboMirror, the first retargeting-free video-to-locomotion framework embodying "understand before you imitate". Leveraging VLMs, it distills raw egocentric/third-person videos into visual motion intents, which directly condition a diffusion-based policy to generate physically plausible, semantically aligned locomotion without explicit pose reconstruction or retargeting. Extensive experiments validate the effectiveness of RoboMirror, it enables telepresence via egocentric videos, drastically reduces third-person control latency by 80%, and achieves a 3.7% higher task success rate than baselines. By reframing humanoid control around video understanding, we bridge the visual understanding and action gap.
Authors: Zhe Li, Cheng Chi, Yangyang Wei, Boan Zhu, Yibo Peng, Tao Huang, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang, Chang Xu
Abstract:
Natural language offers a natural interface for humanoid robots, but existing language-guided humanoid locomotion pipelines remain cumbersome and unreliable. They typically decode human motion, retarget it to robot morphology, and then track it with a physics-based controller. However, this multi-stage process is prone to cumulative errors, introduces high latency, and yields weak coupling between semantics and control. These limitations call for a more direct pathway from language to action, one that eliminates fragile intermediate stages. Therefore, we present RoboGhost, a retargeting-free framework that directly conditions humanoid policies on language-grounded motion latents. By bypassing explicit motion decoding and retargeting, RoboGhost enables a diffusion-based policy to denoise executable actions directly from noise, preserving semantic intent and supporting fast, reactive control. A hybrid causal transformer-diffusion motion generator further ensures long-horizon consistency while maintaining stability and diversity, yielding rich latent representations for precise humanoid behavior. Extensive experiments demonstrate that RoboGhost substantially reduces deployment latency, improves success rates and tracking accuracy, and produces smooth, semantically aligned locomotion on real humanoids. Beyond text, the framework naturally extends to other modalities such as images, audio, and music, providing a general foundation for vision-language-action humanoid systems.
Authors: Felix Divo, Maurice Kraus, Anh Q. Nguyen, Hao Xue, Imran Razzak, Flora D. Salim, Kristian Kersting, Devendra Singh Dhami
Abstract:
Text offers intuitive access to information. This can, in particular, complement the density of numerical time series, thereby allowing improved interactions with time series models to enhance accessibility and decision-making. While the creation of question-answering datasets and models has recently seen remarkable growth, most research focuses on question answering (QA) on vision and text, with time series receiving minute attention. To bridge this gap, we propose a challenging novel time series QA (TSQA) dataset, QuAnTS, for Question Answering on Time Series data. Specifically, we pose a wide variety of questions and answers about human motion in the form of tracked skeleton trajectories. We verify that the large-scale QuAnTS dataset is well-formed and comprehensive through extensive experiments. Thoroughly evaluating existing and newly proposed baselines then lays the groundwork for a deeper exploration of TSQA using QuAnTS. Additionally, we provide human performances as a key reference for gauging the practical usability of such models. We hope to encourage future research on interacting with time series models through text, enabling better decision-making and more transparent systems.
Authors: Hongsheng Wang, Zehui Feng, Tong Xiao, Genfan Yang, Shengyu Zhang, Fei Wu, Feng Lin
Abstract:
Current 3D human motion reconstruction methods from monocular videos rely on features within the current reconstruction window, leading to distortion and deformations in the human structure under local occlusions or blurriness in video frames. To estimate realistic 3D human mesh sequences based on incomplete features, we propose Temporally-alignable Probability Guided Graph Topological Modeling for 3D Human Reconstruction (ProGraph). For missing parts recovery, we exploit the explicit topological-aware probability distribution across the entire motion sequence. To restore the complete human, Graph Topological Modeling (GTM) learns the underlying topological structure, focusing on the relationships inherent in the individual parts. Next, to generate blurred motion parts, Temporal-alignable Probability Distribution (TPDist) utilizes the GTM to predict features based on distribution. This interactive mechanism facilitates motion consistency, allowing the restoration of human parts. Furthermore, Hierarchical Human Loss (HHLoss) constrains the probability distribution errors of inter-frame features during topological structure variation. Our Method achieves superior results than other SOTA methods in addressing occlusions and blurriness on 3DPW.
Authors: Kaiyang Ji, Ye Shi, Zichen Jin, Kangyi Chen, Lan Xu, Yuexin Ma, Jingyi Yu, Jingya Wang
Abstract:
Real-time synthesis of physically plausible human interactions remains a critical challenge for immersive VR/AR systems and humanoid robotics. While existing methods demonstrate progress in kinematic motion generation, they often fail to address the fundamental tension between real-time responsiveness, physical feasibility, and safety requirements in dynamic human-machine interactions. We introduce Human-X, a novel framework designed to enable immersive and physically plausible human interactions across diverse entities, including human-avatar, human-humanoid, and human-robot systems. Unlike existing approaches that focus on post-hoc alignment or simplified physics, our method jointly predicts actions and reactions in real-time using an auto-regressive reaction diffusion planner, ensuring seamless synchronization and context-aware responses. To enhance physical realism and safety, we integrate an actor-aware motion tracking policy trained with reinforcement learning, which dynamically adapts to interaction partners' movements while avoiding artifacts like foot sliding and penetration. Extensive experiments on the Inter-X and InterHuman datasets demonstrate significant improvements in motion quality, interaction continuity, and physical plausibility over state-of-the-art methods. Our framework is validated in real-world applications, including virtual reality interface for human-robot interaction, showcasing its potential for advancing human-robot collaboration.
Authors: Yuqin Dai, Wanlu Zhu, Ronghui Li, Xiu Li, Zhenyu Zhang, Jun Li, Jian Yang
Abstract:
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
Authors: Yixuan Dang, Qinyang Xu, Yu Zhang, Xiangtong Yao, Liding Zhang, Zhenshan Bing, Florian Roehrbein, Alois Knoll
Abstract:
Perception using whisker-inspired tactile sensors currently faces a major challenge: the lack of active control in robots based on direct contact information from the whisker. To accurately reconstruct object contours, it is crucial for the whisker sensor to continuously follow and maintain an appropriate relative touch pose on the surface. This is especially important for localization based on tip contact, which has a low tolerance for sharp surfaces and must avoid slipping into tangential contact. In this paper, we first construct a magnetically transduced whisker sensor featuring a compact and robust suspension system composed of three flexible spiral arms. We develop a method that leverages a characterized whisker deflection profile to directly extract the tip contact position using gradient descent, with a Bayesian filter applied to reduce fluctuations. We then propose an active motion control policy to maintain the optimal relative pose of the whisker sensor against the object surface. A B-Spline curve is employed to predict the local surface curvature and determine the sensor orientation. Results demonstrate that our algorithm can effectively track objects and reconstruct contours with sub-millimeter accuracy. Finally, we validate the method in simulations and real-world experiments where a robot arm drives the whisker sensor to follow the surfaces of three different objects.
Authors: Ayce Idil Aytekin, Chuqiao Li, Diogo Luvizon, Rishabh Dabral, Martin Oswald, Marc Habermann, Christian Theobalt
Abstract:
Most monocular and physics-based human pose tracking methods, while achieving state-of-the-art results, suffer from artifacts when the scene does not have a strictly flat ground plane or when the camera is moving. Moreover, these methods are often evaluated on in-the-wild real world videos without ground-truth data or on synthetic datasets, which fail to model the real world light transport, camera motion, and pose-induced appearance and geometry changes. To tackle these two problems, we introduce MoviCam, the first non-synthetic dataset containing ground-truth camera trajectories of a dynamically moving monocular RGB camera, scene geometry, and 3D human motion with human-scene contact labels. Additionally, we propose PhysDynPose, a physics-based method that incorporates scene geometry and physical constraints for more accurate human motion tracking in case of camera motion and non-flat scenes. More precisely, we use a state-of-the-art kinematics estimator to obtain the human pose and a robust SLAM method to capture the dynamic camera trajectory, enabling the recovery of the human pose in the world frame. We then refine the kinematic pose estimate using our scene-aware physics optimizer. From our new benchmark, we found that even state-of-the-art methods struggle with this inherently challenging setting, i.e. a moving camera and non-planar environments, while our method robustly estimates both human and camera poses in world coordinates.
Authors: Anindita Ghosh, Bing Zhou, Rishabh Dabral, Jian Wang, Vladislav Golyanik, Christian Theobalt, Philipp Slusallek, Chuan Guo
Abstract:
We present DuetGen, a novel framework for generating interactive two-person dances from music. The key challenge of this task lies in the inherent complexities of two-person dance interactions, where the partners need to synchronize both with each other and with the music. Inspired by the recent advances in motion synthesis, we propose a two-stage solution: encoding two-person motions into discrete tokens and then generating these tokens from music. To effectively capture intricate interactions, we represent both dancers' motions as a unified whole to learn the necessary motion tokens, and adopt a coarse-to-fine learning strategy in both the stages. Our first stage utilizes a VQ-VAE that hierarchically separates high-level semantic features at a coarse temporal resolution from low-level details at a finer resolution, producing two discrete token sequences at different abstraction levels. Subsequently, in the second stage, two generative masked transformers learn to map music signals to these dance tokens: the first producing high-level semantic tokens, and the second, conditioned on music and these semantic tokens, producing the low-level tokens. We train both transformers to learn to predict randomly masked tokens within the sequence, enabling them to iteratively generate motion tokens by filling an empty token sequence during inference. Through the hierarchical masked modeling and dedicated interaction representation, DuetGen achieves the generation of synchronized and interactive two-person dances across various genres. Extensive experiments and user studies on a benchmark duet dance dataset demonstrate state-of-the-art performance of DuetGen in motion realism, music-dance alignment, and partner coordination.
Authors: Jusheng Zhang, Jinzhou Tang, Sidi Liu, Mingyan Li, Sheng Zhang, Jian Wang, Keze Wang
Abstract:
Human motion generative modeling or synthesis aims to characterize complicated human motions of daily activities in diverse real-world environments. However, current research predominantly focuses on either low-level, short-period motions or high-level action planning, without taking into account the hierarchical goal-oriented nature of human activities. In this work, we take a step forward from human motion generation to human behavior modeling, which is inspired by cognitive science. We present a unified framework, dubbed Generative Behavior Control (GBC), to model diverse human motions driven by various high-level intentions by aligning motions with hierarchical behavior plans generated by large language models (LLMs). Our insight is that human motions can be jointly controlled by task and motion planning in robotics, but guided by LLMs to achieve improved motion diversity and physical fidelity. Meanwhile, to overcome the limitations of existing benchmarks, i.e., lack of behavioral plans, we propose GBC-100K dataset annotated with a hierarchical granularity of semantic and motion plans driven by target goals. Our experiments demonstrate that GBC can generate more diverse and purposeful high-quality human motions with 10* longer horizons compared with existing methods when trained on GBC-100K, laying a foundation for future research on behavioral modeling of human motions. Our dataset and source code will be made publicly available.
Authors: Alexander Naumann, Xunjiang Gu, Tolga Dimlioglu, Mariusz Bojarski, Alperen Degirmenci, Alexander Popov, Devansh Bisla, Marco Pavone, Urs Müller, Boris Ivanovic
Abstract:
Autonomous vehicle (AV) stacks have traditionally relied on decomposed approaches, with separate modules handling perception, prediction, and planning. However, this design introduces information loss during inter-module communication, increases computational overhead, and can lead to compounding errors. To address these challenges, recent works have proposed architectures that integrate all components into an end-to-end differentiable model, enabling holistic system optimization. This shift emphasizes data engineering over software integration, offering the potential to enhance system performance by simply scaling up training resources. In this work, we evaluate the performance of a simple end-to-end driving architecture on internal driving datasets ranging in size from 16 to 8192 hours with both open-loop metrics and closed-loop simulations. Specifically, we investigate how much additional training data is needed to achieve a target performance gain, e.g., a 5% improvement in motion prediction accuracy. By understanding the relationship between model performance and training dataset size, we aim to provide insights for data-driven decision-making in autonomous driving development.
Authors: Christen Millerdurai, Hiroyasu Akada, Jian Wang, Diogo Luvizon, Alain Pagani, Didier Stricker, Christian Theobalt, Vladislav Golyanik
Abstract:
Monocular egocentric 3D human motion capture remains a significant challenge, particularly under conditions of low lighting and fast movements, which are common in head-mounted device applications. Existing methods that rely on RGB cameras often fail under these conditions. To address these limitations, we introduce EventEgo3D++, the first approach that leverages a monocular event camera with a fisheye lens for 3D human motion capture. Event cameras excel in high-speed scenarios and varying illumination due to their high temporal resolution, providing reliable cues for accurate 3D human motion capture. EventEgo3D++ leverages the LNES representation of event streams to enable precise 3D reconstructions. We have also developed a mobile head-mounted device (HMD) prototype equipped with an event camera, capturing a comprehensive dataset that includes real event observations from both controlled studio environments and in-the-wild settings, in addition to a synthetic dataset. Additionally, to provide a more holistic dataset, we include allocentric RGB streams that offer different perspectives of the HMD wearer, along with their corresponding SMPL body model. Our experiments demonstrate that EventEgo3D++ achieves superior 3D accuracy and robustness compared to existing solutions, even in challenging conditions. Moreover, our method supports real-time 3D pose updates at a rate of 140Hz. This work is an extension of the EventEgo3D approach (CVPR 2024) and further advances the state of the art in egocentric 3D human motion capture. For more details, visit the project page at https://eventego3d.mpi-inf.mpg.de.
Authors: Lianlian Liu, YongKang He, Zhaojie Chu, Xiaofen Xing, Xiangmin Xu
Abstract:
Generating stylized 3D human motion from speech signals presents substantial challenges, primarily due to the intricate and fine-grained relationships among speech signals, individual styles, and the corresponding body movements. Current style encoding approaches either oversimplify stylistic diversity or ignore regional motion style differences (e.g., upper vs. lower body), limiting motion realism. Additionally, motion style should dynamically adapt to changes in speech rhythm and emotion, but existing methods often overlook this. To address these issues, we propose MimicParts, a novel framework designed to enhance stylized motion generation based on part-aware style injection and part-aware denoising network. It divides the body into different regions to encode localized motion styles, enabling the model to capture fine-grained regional differences. Furthermore, our part-aware attention block allows rhythm and emotion cues to guide each body region precisely, ensuring that the generated motion aligns with variations in speech rhythm and emotional state. Experimental results show that our method outperforming existing methods showcasing naturalness and expressive 3D human motion sequences.
Authors: Runqi Ouyang, Haoyun Li, Zhenyuan Zhang, Xiaofeng Wang, Zheng Zhu, Guan Huang, Xingang Wang
Abstract:
Recent advances in large language models, especially in natural language understanding and reasoning, have opened new possibilities for text-to-motion generation. Although existing approaches have made notable progress in semantic alignment and motion synthesis, they often rely on end-to-end mapping strategies that fail to capture deep linguistic structures and logical reasoning. Consequently, generated motions tend to lack controllability, consistency, and diversity. To address these limitations, we propose Motion-R1, a unified motion-language modeling framework that integrates a Chain-of-Thought mechanism. By explicitly decomposing complex textual instructions into logically structured action paths, Motion-R1 provides high-level semantic guidance for motion generation, significantly enhancing the model's ability to interpret and execute multi-step, long-horizon, and compositionally rich commands. To train our model, we adopt Group Relative Policy Optimization, a reinforcement learning algorithm designed for large models, which leverages motion quality feedback to optimize reasoning chains and motion synthesis jointly. Extensive experiments across multiple benchmark datasets demonstrate that Motion-R1 achieves competitive or superior performance compared to state-of-the-art methods, particularly in scenarios requiring nuanced semantic understanding and long-term temporal coherence. The code, model and data will be publicly available.
Authors: Boyuan Wang, Xiaofeng Wang, Chaojun Ni, Guosheng Zhao, Zhiqin Yang, Zheng Zhu, Muyang Zhang, Yukun Zhou, Xinze Chen, Guan Huang, Lihong Liu, Xingang Wang
Abstract:
Human-motion video generation has been a challenging task, primarily due to the difficulty inherent in learning human body movements. While some approaches have attempted to drive human-centric video generation explicitly through pose control, these methods typically rely on poses derived from existing videos, thereby lacking flexibility. To address this, we propose HumanDreamer, a decoupled human video generation framework that first generates diverse poses from text prompts and then leverages these poses to generate human-motion videos. Specifically, we propose MotionVid, the largest dataset for human-motion pose generation. Based on the dataset, we present MotionDiT, which is trained to generate structured human-motion poses from text prompts. Besides, a novel LAMA loss is introduced, which together contribute to a significant improvement in FID by 62.4%, along with respective enhancements in R-precision for top1, top2, and top3 by 41.8%, 26.3%, and 18.3%, thereby advancing both the Text-to-Pose control accuracy and FID metrics. Our experiments across various Pose-to-Video baselines demonstrate that the poses generated by our method can produce diverse and high-quality human-motion videos. Furthermore, our model can facilitate other downstream tasks, such as pose sequence prediction and 2D-3D motion lifting.
Authors: Qiang Zhang, Jiahang Cao, Jingkai Sun, Yecheng Shao, Gang Han, Wen Zhao, Yijie Guo, Renjing Xu
Abstract:
In recent years, quadruped robotics has advanced significantly, particularly in perception and motion control via reinforcement learning, enabling complex motions in challenging environments. Visual sensors like depth cameras enhance stability and robustness but face limitations, such as low operating frequencies relative to joint control and sensitivity to lighting, which hinder outdoor deployment. Additionally, deep neural networks in sensor and control systems increase computational demands. To address these issues, we introduce spiking neural networks (SNNs) and event cameras to perform a challenging quadruped parkour task. Event cameras capture dynamic visual data, while SNNs efficiently process spike sequences, mimicking biological perception. Experimental results demonstrate that this approach significantly outperforms traditional models, achieving excellent parkour performance with just 11.7% of the energy consumption of an artificial neural network (ANN)-based model, yielding an 88.3% energy reduction. By integrating event cameras with SNNs, our work advances robotic reinforcement learning and opens new possibilities for applications in demanding environments.
Authors: Jingkai Sun, Qiang Zhang, Gang Han, Wen Zhao, Zhe Yong, Yan He, Jiaxu Wang, Jiahang Cao, Yijie Guo, Renjing Xu
Abstract:
In recent years, research on humanoid robots has garnered increasing attention. With breakthroughs in various types of artificial intelligence algorithms, embodied intelligence, exemplified by humanoid robots, has been highly anticipated. The advancements in reinforcement learning (RL) algorithms have significantly improved the motion control and generalization capabilities of humanoid robots. Simultaneously, the groundbreaking progress in large language models (LLM) and visual language models (VLM) has brought more possibilities and imagination to humanoid robots. LLM enables humanoid robots to understand complex tasks from language instructions and perform long-term task planning, while VLM greatly enhances the robots' understanding and interaction with their environment. This paper introduces \textcolor{magenta}{Trinity}, a novel AI system for humanoid robots that integrates RL, LLM, and VLM. By combining these technologies, Trinity enables efficient control of humanoid robots in complex environments. This innovative approach not only enhances the capabilities but also opens new avenues for future research and applications of humanoid robotics.
Authors: Ruiyan Wang, Teng Hu, Kaihui Huang, Zihan Su, Ran Yi, Lizhuang Ma
Abstract:
Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
Authors: Zan Wang, Jingze Zhang, Yixin Chen, Baoxiong Jia, Wei Liang, Siyuan Huang
Abstract:
Despite significant advancements in human motion generation, current motion representations, typically formulated as discrete frame sequences, still face two critical limitations: (i) they fail to capture motion from a multi-scale perspective, limiting the capability in complex patterns modeling; (ii) they lack compositional flexibility, which is crucial for model's generalization in diverse generation tasks. To address these challenges, we introduce MSQ, a novel quantization method that compresses the motion sequence into multi-scale discrete tokens across spatial and temporal dimensions. MSQ employs distinct encoders to capture body parts at varying spatial granularities and temporally interpolates the encoded features into multiple scales before quantizing them into discrete tokens. Building on this representation, we establish a generative mask modeling model to effectively support motion editing, motion control, and conditional motion generation. Through quantitative and qualitative analysis, we show that our quantization method enables the seamless composition of motion tokens without requiring specialized design or re-training. Furthermore, extensive evaluations demonstrate that our approach outperforms existing baseline methods on various benchmarks.
Authors: Lala Shakti Swarup Ray, Mengxi Liu, Deepika Gurung, Bo Zhou, Sungho Suh, Paul Lukowicz
Abstract:
Human Activity Recognition (HAR) with wearable sensors is essential for applications in healthcare, fitness, and human-computer interaction. Bio-impedance sensing offers unique advantages for fine-grained motion capture but remains underutilized due to the scarcity of labeled data. We introduce SImpHAR, a novel framework addressing this limitation through two core contributions. First, we propose a simulation pipeline that generates realistic bio-impedance signals from 3D human meshes using shortest-path estimation, soft-body physics, and text-to-motion generation serving as a digital twin for data augmentation. Second, we design a two-stage training strategy with decoupled approach that enables broader activity coverage without requiring label-aligned synthetic data. We evaluate SImpHAR on our collected ImpAct dataset and two public benchmarks, showing consistent improvements over state-of-the-art methods, with gains of up to 22.3% and 21.8%, in terms of accuracy and macro F1 score, respectively. Our results highlight the promise of simulation-driven augmentation and modular training for impedance-based HAR.
Authors: Yuanpeng Tu, Hao Luo, Xi Chen, Xiang Bai, Fan Wang, Hengshuang Zhao
Abstract:
We introduce PlayerOne, the first egocentric realistic world simulator, facilitating immersive and unrestricted exploration within vividly dynamic environments. Given an egocentric scene image from the user, PlayerOne can accurately construct the corresponding world and generate egocentric videos that are strictly aligned with the real scene human motion of the user captured by an exocentric camera. PlayerOne is trained in a coarse-to-fine pipeline that first performs pretraining on large-scale egocentric text-video pairs for coarse-level egocentric understanding, followed by finetuning on synchronous motion-video data extracted from egocentric-exocentric video datasets with our automatic construction pipeline. Besides, considering the varying importance of different components, we design a part-disentangled motion injection scheme, enabling precise control of part-level movements. In addition, we devise a joint reconstruction framework that progressively models both the 4D scene and video frames, ensuring scene consistency in the long-form video generation. Experimental results demonstrate its great generalization ability in precise control of varying human movements and worldconsistent modeling of diverse scenarios. It marks the first endeavor into egocentric real-world simulation and can pave the way for the community to delve into fresh frontiers of world modeling and its diverse applications.
Authors: Dominique Nshimyimana, Vitor Fortes Rey, Sungho Suh, Bo Zhou, Paul Lukowicz
Abstract:
Human activity recognition (HAR) with deep learning models relies on large amounts of labeled data, often challenging to obtain due to associated cost, time, and labor. Self-supervised learning (SSL) has emerged as an effective approach to leverage unlabeled data through pretext tasks, such as masked reconstruction and multitask learning with signal processing-based data augmentations, to pre-train encoder models. However, such methods are often derived from computer vision approaches that disregard physical mechanisms and constraints that govern wearable sensor data and the phenomena they reflect. In this paper, we propose a physics-informed multi-task pre-training (PIM) framework for IMU-based HAR. PIM generates pre-text tasks based on the understanding of basic physical aspects of human motion: including movement speed, angles of movement, and symmetry between sensor placements. Given a sensor signal, we calculate corresponding features using physics-based equations and use them as pretext tasks for SSL. This enables the model to capture fundamental physical characteristics of human activities, which is especially relevant for multi-sensor systems. Experimental evaluations on four HAR benchmark datasets demonstrate that the proposed method outperforms existing state-of-the-art methods, including data augmentation and masked reconstruction, in terms of accuracy and F1 score. We have observed gains of almost 10\% in macro f1 score and accuracy with only 2 to 8 labeled examples per class and up to 3% when there is no reduction in the amount of training data.
Authors: Yuanpeng Tu, Hao Luo, Xi Chen, Sihui Ji, Xiang Bai, Hengshuang Zhao
Abstract:
Despite significant advancements in video generation, inserting a given object into videos remains a challenging task. The difficulty lies in preserving the appearance details of the reference object and accurately modeling coherent motions at the same time. In this paper, we propose VideoAnydoor, a zero-shot video object insertion framework with high-fidelity detail preservation and precise motion control. Starting from a text-to-video model, we utilize an ID extractor to inject the global identity and leverage a box sequence to control the overall motion. To preserve the detailed appearance and meanwhile support fine-grained motion control, we design a pixel warper. It takes the reference image with arbitrary key-points and the corresponding key-point trajectories as inputs. It warps the pixel details according to the trajectories and fuses the warped features with the diffusion U-Net, thus improving detail preservation and supporting users in manipulating the motion trajectories. In addition, we propose a training strategy involving both videos and static images with a weighted loss to enhance insertion quality. VideoAnydoor demonstrates significant superiority over existing methods and naturally supports various downstream applications (e.g., talking head generation, video virtual try-on, multi-region editing) without task-specific fine-tuning.
Authors: Zhi-Lin Huang, Yixuan Liu, Chujun Qin, Zhongdao Wang, Dong Zhou, Dong Li, Emad Barsoum
Abstract:
Recent advancements in diffusion models have significantly facilitated text-guided video editing. However, there is a relative scarcity of research on image-guided video editing, a method that empowers users to edit videos by merely indicating a target object in the initial frame and providing an RGB image as reference, without relying on the text prompts. In this paper, we propose a novel Image-guided Video Editing Diffusion model, termed IVEDiff for the image-guided video editing. IVEDiff is built on top of image editing models, and is equipped with learnable motion modules to maintain the temporal consistency of edited video. Inspired by self-supervised learning concepts, we introduce a masked motion modeling fine-tuning strategy that empowers the motion module's capabilities for capturing inter-frame motion dynamics, while preserving the capabilities for intra-frame semantic correlations modeling of the base image editing model. Moreover, an optical-flow-guided motion reference network is proposed to ensure the accurate propagation of information between edited video frames, alleviating the misleading effects of invalid information. We also construct a benchmark to facilitate further research. The comprehensive experiments demonstrate that our method is able to generate temporally smooth edited videos while robustly dealing with various editing objects with high quality.
Authors: Xiangyu Li, Mingwei Lai, Mengke Zhang, Junxiao Lin, Tiancheng Lai, Junping Zhi, Chao Xu, Fei Gao, Yanjun Cao
Abstract:
Triphibious robots capable of multi-domain motion and cross-domain transitions are promising to handle complex tasks across diverse environments. However, existing designs primarily focus on dual-mode platforms, and some designs suffer from high mechanical complexity or low propulsion efficiency, which limits their application. In this paper, we propose a novel triphibious robot capable of aerial, terrestrial, and aquatic motion, by a minimalist design combining a quadcopter structure with two passive wheels, without extra actuators. To address inefficiency of ground-support motion (moving on land/seabed) for quadcopter based designs, we introduce an eccentric Center of Gravity (CoG) design that inherently aligns thrust with motion, enhancing efficiency without specialized mechanical transformation designs. Furthermore, to address the drastic differences in motion control caused by different fluids (air and water), we develop a unified propulsion system based on Field-Oriented Control (FOC). This method resolves torque matching issues and enables precise, rapid bidirectional thrust across different mediums. Grounded in the perspective of living condition and ground support, we analyse the robot's dynamics and propose a Hybrid Nonlinear Model Predictive Control (HNMPC)-PID control system to ensure stable multi-domain motion and seamless transitions. Experimental results validate the robot's multi-domain motion and cross-mode transition capability, along with the efficiency and adaptability of the proposed propulsion system.
Authors: Yahao Fan, Tianxiang Gui, Kaiyang Ji, Shutong Ding, Chixuan Zhang, Jiayuan Gu, Jingyi Yu, Jingya Wang, Ye Shi
Abstract:
Humanoid locomotion faces a critical scalability challenge: traditional reinforcement learning (RL) methods require task-specific rewards and struggle to leverage growing datasets, even as more training terrains are introduced. We propose DreamPolicy, a unified framework that enables a single policy to master diverse terrains and generalize zero-shot to unseen scenarios by systematically integrating offline data and diffusion-driven motion synthesis. At its core, DreamPolicy introduces Humanoid Motion Imagery (HMI) - future state predictions synthesized through an autoregressive terrain-aware diffusion planner curated by aggregating rollouts from specialized policies across various distinct terrains. Unlike human motion datasets requiring laborious retargeting, our data directly captures humanoid kinematics, enabling the diffusion planner to synthesize "dreamed" trajectories that encode terrain-specific physical constraints. These trajectories act as dynamic objectives for our HMI-conditioned policy, bypassing manual reward engineering and enabling cross-terrain generalization. DreamPolicy addresses the scalability limitations of prior methods: while traditional RL fails to exploit growing datasets, our framework scales seamlessly with more offline data. As the dataset expands, the diffusion prior learns richer locomotion skills, which the policy leverages to master new terrains without retraining. Experiments demonstrate that DreamPolicy achieves average 90% success rates in training environments and an average of 20% higher success on unseen terrains than the prevalent method. It also generalizes to perturbed and composite scenarios where prior approaches collapse. By unifying offline data, diffusion-based trajectory synthesis, and policy optimization, DreamPolicy overcomes the "one task, one policy" bottleneck, establishing a paradigm for scalable, data-driven humanoid control.
Authors: Jinlin Wu, Felix Holm, Chuxi Chen, An Wang, Yaxin Hu, Xiaofan Ye, Zelin Zang, Miao Xu, Lihua Zhou, Huai Liao, Danny T. M. Chan, Ming Feng, Wai S. Poon, Hongliang Ren, Dong Yi, Nassir Navab, Gaofeng Meng, Jiebo Luo, Hongbin Liu, Zhen Lei
Abstract:
While foundation models have advanced surgical video analysis, current approaches rely predominantly on pixel-level reconstruction objectives that waste model capacity on low-level visual details - such as smoke, specular reflections, and fluid motion - rather than semantic structures essential for surgical understanding. We present UniSurg, a video-native foundation model that shifts the learning paradigm from pixel-level reconstruction to latent motion prediction. Built on the Video Joint Embedding Predictive Architecture (V-JEPA), UniSurg introduces three key technical innovations tailored to surgical videos: 1) motion-guided latent prediction to prioritize semantically meaningful regions, 2) spatiotemporal affinity self-distillation to enforce relational consistency, and 3) feature diversity regularization to prevent representation collapse in texture-sparse surgical scenes. To enable large-scale pretraining, we curate UniSurg-15M, the largest surgical video dataset to date, comprising 3,658 hours of video from 50 sources across 13 anatomical regions. Extensive experiments across 17 benchmarks demonstrate that UniSurg significantly outperforms state-of-the-art methods on surgical workflow recognition (+14.6% F1 on EgoSurgery, +10.3% on PitVis), action triplet recognition (39.54% mAP-IVT on CholecT50), skill assessment, polyp segmentation, and depth estimation. These results establish UniSurg as a new standard for universal, motion-oriented surgical video understanding.
Authors: Julian Tanke, Takashi Shibuya, Kengo Uchida, Koichi Saito, Yuki Mitsufuji
Abstract:
Generating realistic dyadic human motion from text descriptions presents significant challenges, particularly for extended interactions that exceed typical training sequence lengths. While recent transformer-based approaches have shown promising results for short-term dyadic motion synthesis, they struggle with longer sequences due to inherent limitations in positional encoding schemes. In this paper, we introduce Dyadic Mamba, a novel approach that leverages State-Space Models (SSMs) to generate high-quality dyadic human motion of arbitrary length. Our method employs a simple yet effective architecture that facilitates information flow between individual motion sequences through concatenation, eliminating the need for complex cross-attention mechanisms. We demonstrate that Dyadic Mamba achieves competitive performance on standard short-term benchmarks while significantly outperforming transformer-based approaches on longer sequences. Additionally, we propose a new benchmark for evaluating long-term motion synthesis quality, providing a standardized framework for future research. Our results demonstrate that SSM-based architectures offer a promising direction for addressing the challenging task of long-term dyadic human motion synthesis from text descriptions.
Authors: Renjie Lu, Xulong Zhang, Xiaoyang Qu, Jianzong Wang, Shangfei Wang
Abstract:
Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
Authors: Hao Wang, Xiaobao Wei, Ying Li, Qingpo Wuwu, Dongli Wu, Jiajun Cao, Ming Lu, Wenzhao Zheng, Shanghang Zhang
Abstract:
Building high-quality digital assets of robotic arms is crucial yet challenging for the Real2Sim2Real pipeline. Current approaches naively bind static 3D Gaussians according to URDF links, forcing them to follow an URDF-rigged motion passively. However, real-world arm motion is noisy, and the idealized URDF-rigged motion cannot accurately model it, leading to severe rendering artifacts in 3D Gaussians. To address these challenges, we propose RoboArmGS, a novel hybrid representation that refines the URDF-rigged motion with learnable Bézier curves, enabling more accurate real-world motion modeling. To be more specific, we present a learnable Bézier Curve motion refiner that corrects per-joint residuals to address mismatches between real-world motion and URDF-rigged motion. RoboArmGS enables the learning of more accurate real-world motion while achieving a coherent binding of 3D Gaussians across arm parts. To support future research, we contribute a carefully collected dataset named RoboArm4D, which comprises several widely used robotic arms for evaluating the quality of building high-quality digital assets. We evaluate our approach on RoboArm4D, and RoboArmGS achieves state-of-the-art performance in real-world motion modeling and rendering quality. The code and dataset will be released.
Authors: Zhengxuan Li, Qinhui Yang, Yiyu Zhuang, Chuan Guo, Xinxin Zuo, Xiaoxiao Long, Yao Yao, Xun Cao, Qiu Shen, Hao Zhu
Abstract:
We present Pressure2Motion, a novel motion capture algorithm that synthesizes human motion from a ground pressure sequence and text prompt. It eliminates the need for specialized lighting setups, cameras, or wearable devices, making it suitable for privacy-preserving, low-light, and low-cost motion capture scenarios. Such a task is severely ill-posed due to the indeterminate nature of the pressure signals to full-body motion. To address this issue, we introduce Pressure2Motion, a generative model that leverages pressure features as input and utilizes a text prompt as a high-level guiding constraint. Specifically, our model utilizes a dual-level feature extractor that accurately interprets pressure data, followed by a hierarchical diffusion model that discerns broad-scale movement trajectories and subtle posture adjustments. Both the physical cues gained from the pressure sequence and the semantic guidance derived from descriptive texts are leveraged to guide the motion generation with precision. To the best of our knowledge, Pressure2Motion is a pioneering work in leveraging both pressure data and linguistic priors for motion generation, and the established MPL benchmark is the first benchmark for this task. Experiments show our method generates high-fidelity, physically plausible motions, establishing a new state-of-the-art for this task. The codes and benchmarks will be publicly released upon publication.
Authors: Yiqun Duan, Qiang Zhang, Jinzhao Zhou, Jingkai Sun, Xiaowei Jiang, Jiahang Cao, Jiaxu Wang, Yiqian Yang, Wen Zhao, Gang Han, Yijie Guo, Chin-Teng Lin
Abstract:
Recent advancements in humanoid robotics, including the integration of hierarchical reinforcement learning-based control and the utilization of LLM planning, have significantly enhanced the ability of robots to perform complex tasks. In contrast to the highly developed humanoid robots, the human factors involved remain relatively unexplored. Directly controlling humanoid robots with the brain has already appeared in many science fiction novels, such as Pacific Rim and Gundam. In this work, we present E2H (EEG-to-Humanoid), an innovative framework that pioneers the control of humanoid robots using high-frequency non-invasive neural signals. As the none-invasive signal quality remains low in decoding precise spatial trajectory, we decompose the E2H framework in an innovative two-stage formation: 1) decoding neural signals (EEG) into semantic motion keywords, 2) utilizing LLM facilitated motion generation with a precise motion imitation control policy to realize humanoid robotics control. The method of directly driving robots with brainwave commands offers a novel approach to human-machine collaboration, especially in situations where verbal commands are impractical, such as in cases of speech impairments, space exploration, or underwater exploration, unlocking significant potential. E2H offers an exciting glimpse into the future, holding immense potential for human-computer interaction.
Authors: Yushuo Chen, Ruizhi Shao, Youxin Pang, Hongwen Zhang, Xinyi Wu, Rihui Wu, Yebin Liu
Abstract:
We present a novel framework to reconstruct human avatars from monocular videos. Recent approaches have struggled either to capture the fine-grained dynamic details from the input or to generate plausible details at novel viewpoints, which mainly stem from the limited representational capacity of the avatar model and insufficient observational data. To overcome these challenges, we propose to leverage the advanced video generative model, Human4DiT, to generate the human motions from alternative perspective as an additional supervision signal. This approach not only enriches the details in previously unseen regions but also effectively regularizes the avatar representation to mitigate artifacts. Furthermore, we introduce two complementary strategies to enhance video generation: To ensure consistent reproduction of human motion, we inject the physical identity into the model through video fine-tuning. For higher-resolution outputs with finer details, a patch-based denoising algorithm is employed. Experimental results demonstrate that our method outperforms recent state-of-the-art approaches and validate the effectiveness of our proposed strategies.
Authors: Shuolin Xu, Siming Zheng, Ziyi Wang, HC Yu, Jinwei Chen, Huaqi Zhang, Bo Li, Peng-Tao Jiang
Abstract:
Recent advances in diffusion models have significantly improved conditional video generation, particularly in the pose-guided human image animation task. Although existing methods are capable of generating high-fidelity and time-consistent animation sequences in regular motions and static scenes, there are still obvious limitations when facing complex human body motions (Hypermotion) that contain highly dynamic, non-standard motions, and the lack of a high-quality benchmark for evaluation of complex human motion animations. To address this challenge, we introduce the \textbf{Open-HyperMotionX Dataset} and \textbf{HyperMotionX Bench}, which provide high-quality human pose annotations and curated video clips for evaluating and improving pose-guided human image animation models under complex human motion conditions. Furthermore, we propose a simple yet powerful DiT-based video generation baseline and design spatial low-frequency enhanced RoPE, a novel module that selectively enhances low-frequency spatial feature modeling by introducing learnable frequency scaling. Our method significantly improves structural stability and appearance consistency in highly dynamic human motion sequences. Extensive experiments demonstrate the effectiveness of our dataset and proposed approach in advancing the generation quality of complex human motion image animations. Code and dataset will be made publicly available.
Authors: Guangyuan Li, Siming Zheng, Hao Zhang, Jinwei Chen, Junsheng Luan, Binkai Ou, Lei Zhao, Bo Li, Peng-Tao Jiang
Abstract:
Video Virtual Try-On (VVT) aims to simulate the natural appearance of garments across consecutive video frames, capturing their dynamic variations and interactions with human body motion. However, current VVT methods still face challenges in terms of spatiotemporal consistency and garment content preservation. First, they use diffusion models based on the U-Net, which are limited in their expressive capability and struggle to reconstruct complex details. Second, they adopt a separative modeling approach for spatial and temporal attention, which hinders the effective capture of structural relationships and dynamic consistency across frames. Third, their expression of garment details remains insufficient, affecting the realism and stability of the overall synthesized results, especially during human motion. To address the above challenges, we propose MagicTryOn, a video virtual try-on framework built upon the large-scale video diffusion Transformer. We replace the U-Net architecture with a diffusion Transformer and combine full self-attention to jointly model the spatiotemporal consistency of videos. We design a coarse-to-fine garment preservation strategy. The coarse strategy integrates garment tokens during the embedding stage, while the fine strategy incorporates multiple garment-based conditions, such as semantics, textures, and contour lines during the denoising stage. Moreover, we introduce a mask-aware loss to further optimize garment region fidelity. Extensive experiments on both image and video try-on datasets demonstrate that our method outperforms existing SOTA methods in comprehensive evaluations and generalizes to in-the-wild scenarios.
Authors: Chenxu Peng, Chenxu Wang, Minrui Zou, Danyang Li, Zhengpeng Yang, Yimian Dai, Ming-Ming Cheng, Xiang Li
Abstract:
Infrared object tracking plays a crucial role in Anti-Unmanned Aerial Vehicle (Anti-UAV) applications. Existing trackers often depend on cropped template regions and have limited motion modeling capabilities, which pose challenges when dealing with tiny targets. To address this, we propose a simple yet effective infrared tiny-object tracker that enhances tracking performance by integrating global detection and motion-aware learning with temporal priors. Our method is based on object detection and achieves significant improvements through two key innovations. First, we introduce frame dynamics, leveraging frame difference and optical flow to encode both prior target features and motion characteristics at the input level, enabling the model to better distinguish the target from background clutter. Second, we propose a trajectory constraint filtering strategy in the post-processing stage, utilizing spatio-temporal priors to suppress false positives and enhance tracking robustness. Extensive experiments show that our method consistently outperforms existing approaches across multiple metrics in challenging infrared UAV tracking scenarios. Notably, we achieve state-of-the-art performance in the 4th Anti-UAV Challenge, securing 1st place in Track 1 and 2nd place in Track 2.
Authors: Haozhe Jia, Wenshuo Chen, Yuqi Lin, Yang Yang, Lei Wang, Mang Ning, Bowen Tian, Songning Lai, Nanqian Jia, Yifan Chen, Yutao Yue
Abstract:
While current diffusion-based models, typically built on U-Net architectures, have shown promising results on the text-to-motion generation task, they still suffer from semantic misalignment and kinematic artifacts. Through analysis, we identify severe gradient attenuation in the deep layers of the network as a key bottleneck, leading to insufficient learning of high-level features. To address this issue, we propose \textbf{LUMA} (\textit{\textbf{L}ow-dimension \textbf{U}nified \textbf{M}otion \textbf{A}lignment}), a text-to-motion diffusion model that incorporates dual-path anchoring to enhance semantic alignment. The first path incorporates a lightweight MoCLIP model trained via contrastive learning without relying on external data, offering semantic supervision in the temporal domain. The second path introduces complementary alignment signals in the frequency domain, extracted from low-frequency DCT components known for their rich semantic content. These two anchors are adaptively fused through a temporal modulation mechanism, allowing the model to progressively transition from coarse alignment to fine-grained semantic refinement throughout the denoising process. Experimental results on HumanML3D and KIT-ML demonstrate that LUMA achieves state-of-the-art performance, with FID scores of 0.035 and 0.123, respectively. Furthermore, LUMA accelerates convergence by 1.4$\times$ compared to the baseline, making it an efficient and scalable solution for high-fidelity text-to-motion generation.
Authors: Wenshuo Chen, Kuimou Yu, Haozhe Jia, Kaishen Yuan, Zexu Huang, Bowen Tian, Songning Lai, Hongru Xiao, Erhang Zhang, Lei Wang, Yutao Yue
Abstract:
While diffusion models advance text-to-motion generation, their static semantic conditioning ignores temporal-frequency demands: early denoising requires structural semantics for motion foundations while later stages need localized details for text alignment. This mismatch mirrors biological morphogenesis where developmental phases demand distinct genetic programs. Inspired by epigenetic regulation governing morphological specialization, we propose **(ANT)**, an **A**daptive **N**eural **T**emporal-Aware architecture. ANT orchestrates semantic granularity through: **(i) Semantic Temporally Adaptive (STA) Module:** Automatically partitions denoising into low-frequency structural planning and high-frequency refinement via spectral analysis. **(ii) Dynamic Classifier-Free Guidance scheduling (DCFG):** Adaptively adjusts conditional to unconditional ratio enhancing efficiency while maintaining fidelity. Extensive experiments show that ANT can be applied to various baselines, significantly improving model performance, and achieving state-of-the-art semantic alignment on StableMoFusion.
Authors: Wenshuo Chen, Haozhe Jia, Songning Lai, Keming Wu, Hongru Xiao, Lijie Hu, Yutao Yue
Abstract:
Rapid progress in text-to-motion generation has been largely driven by diffusion models. However, existing methods focus solely on temporal modeling, thereby overlooking frequency-domain analysis. We identify two key phases in motion denoising: the **semantic planning stage** and the **fine-grained improving stage**. To address these phases effectively, we propose **Fre**quency **e**nhanced **t**ext-**to**-**m**otion diffusion model (**Free-T2M**), incorporating stage-specific consistency losses that enhance the robustness of static features and improve fine-grained accuracy. Extensive experiments demonstrate the effectiveness of our method. Specifically, on StableMoFusion, our method reduces the FID from **0.189** to **0.051**, establishing a new SOTA performance within the diffusion architecture. These findings highlight the importance of incorporating frequency-domain insights into text-to-motion generation for more precise and robust results.
Authors: Shuqi Zhao, Xinghao Zhu, Yuxin Chen, Chenran Li, Xiang Zhang, Mingyu Ding, Masayoshi Tomizuka
Abstract:
Dexterous manipulation is a critical aspect of human capability, enabling interaction with a wide variety of objects. Recent advancements in learning from human demonstrations and teleoperation have enabled progress for robots in such ability. However, these approaches either require complex data collection such as costly human effort for eye-robot contact, or suffer from poor generalization when faced with novel scenarios. To solve both challenges, we propose a framework, DexH2R, that combines human hand motion retargeting with a task-oriented residual action policy, improving task performance by bridging the embodiment gap between human and robotic dexterous hands. Specifically, DexH2R learns the residual policy directly from retargeted primitive actions and task-oriented rewards, eliminating the need for labor-intensive teleoperation systems. Moreover, we incorporate test-time guidance for novel scenarios by taking in desired trajectories of human hands and objects, allowing the dexterous hand to acquire new skills with high generalizability. Extensive experiments in both simulation and real-world environments demonstrate the effectiveness of our work, outperforming prior state-of-the-arts by 40% across various settings.
Authors: Fuming You, Minghui Fang, Li Tang, Rongjie Huang, Yongqi Wang, Zhou Zhao
Abstract:
Motion-to-music and music-to-motion have been studied separately, each attracting substantial research interest within their respective domains. The interaction between human motion and music is a reflection of advanced human intelligence, and establishing a unified relationship between them is particularly important. However, to date, there has been no work that considers them jointly to explore the modality alignment within. To bridge this gap, we propose a novel framework, termed MoMu-Diffusion, for long-term and synchronous motion-music generation. Firstly, to mitigate the huge computational costs raised by long sequences, we propose a novel Bidirectional Contrastive Rhythmic Variational Auto-Encoder (BiCoR-VAE) that extracts the modality-aligned latent representations for both motion and music inputs. Subsequently, leveraging the aligned latent spaces, we introduce a multi-modal Transformer-based diffusion model and a cross-guidance sampling strategy to enable various generation tasks, including cross-modal, multi-modal, and variable-length generation. Extensive experiments demonstrate that MoMu-Diffusion surpasses recent state-of-the-art methods both qualitatively and quantitatively, and can synthesize realistic, diverse, long-term, and beat-matched music or motion sequences. The generated samples and codes are available at https://momu-diffusion.github.io/
Authors: Ruiyan Wang, Lin Zuo, Zonghao Lin, Qiang Wang, Zhengxue Cheng, Rong Xie, Jun Ling, Li Song
Abstract:
The Human-Object Interaction (HOI) task explores the dynamic interactions between humans and objects in physical environments, providing essential biomechanical and cognitive-behavioral foundations for fields such as robotics, virtual reality, and human-computer interaction. However, existing HOI data sets focus on details of affordance, often neglecting the influence of physical properties of objects on human long-term motion. To bridge this gap, we introduce the PA-HOI Motion Capture dataset, which highlights the impact of objects' physical attributes on human motion dynamics, including human posture, moving velocity, and other motion characteristics. The dataset comprises 562 motion sequences of human-object interactions, with each sequence performed by subjects of different genders interacting with 35 3D objects that vary in size, shape, and weight. This dataset stands out by significantly extending the scope of existing ones for understanding how the physical attributes of different objects influence human posture, speed, motion scale, and interacting strategies. We further demonstrate the applicability of the PA-HOI dataset by integrating it with existing motion generation methods, validating its capacity to transfer realistic physical awareness.
Authors: Yining Shi, Kun Jiang, Xin Zhao, Kangan Qian, Chuchu Xie, Tuopu Wen, Mengmeng Yang, Diange Yang
Abstract:
LiDAR-based 3D object detection is a fundamental task in the field of autonomous driving. This paper explores the unique advantage of Frequency Modulated Continuous Wave (FMCW) LiDAR in autonomous perception. Given a single frame FMCW point cloud with radial velocity measurements, we expect that our object detector can detect the short-term future locations of objects using only the current frame sensor data and demonstrate a fast ability to respond to intermediate danger. To achieve this, we extend the standard object detection task to a novel task named predictive object detection (POD), which aims to predict the short-term future location and dimensions of objects based solely on current observations. Typically, a motion prediction task requires historical sensor information to process the temporal contexts of each object, while our detector's avoidance of multi-frame historical information enables a much faster response time to potential dangers. The core advantage of FMCW LiDAR lies in the radial velocity associated with every reflected point. We propose a novel POD framework, the core idea of which is to generate a virtual future point using a ray casting mechanism, create virtual two-frame point clouds with the current and virtual future frames, and encode these two-frame voxel features with a sparse 4D encoder. Subsequently, the 4D voxel features are separated by temporal indices and remapped into two Bird's Eye View (BEV) features: one decoded for standard current frame object detection and the other for future predictive object detection. Extensive experiments on our in-house dataset demonstrate the state-of-the-art standard and predictive detection performance of the proposed POD framework.
Authors: Kangan Qian, Jinyu Miao, Ziang Luo, Zheng Fu, and Jinchen Li, Yining Shi, Yunlong Wang, Kun Jiang, Mengmeng Yang, Diange Yang
Abstract:
Accurate and reliable spatial and motion information plays a pivotal role in autonomous driving systems. However, object-level perception models struggle with handling open scenario categories and lack precise intrinsic geometry. On the other hand, occupancy-based class-agnostic methods excel in representing scenes but fail to ensure physics consistency and ignore the importance of interactions between traffic participants, hindering the model's ability to learn accurate and reliable motion. In this paper, we introduce a novel occupancy-instance modeling framework for class-agnostic motion prediction tasks, named LEGO-Motion, which incorporates instance features into Bird's Eye View (BEV) space. Our model comprises (1) a BEV encoder, (2) an Interaction-Augmented Instance Encoder, and (3) an Instance-Enhanced BEV Encoder, improving both interaction relationships and physics consistency within the model, thereby ensuring a more accurate and robust understanding of the environment. Extensive experiments on the nuScenes dataset demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches. Furthermore, the effectiveness of our framework is validated on the advanced FMCW LiDAR benchmark, showcasing its practical applicability and generalization capabilities. The code will be made publicly available to facilitate further research.
Authors: Yujie Wei, Shiwei Zhang, Hangjie Yuan, Xiang Wang, Haonan Qiu, Rui Zhao, Yutong Feng, Feng Liu, Zhizhong Huang, Jiaxin Ye, Yingya Zhang, Hongming Shan
Abstract:
Recent advances in customized video generation have enabled users to create videos tailored to both specific subjects and motion trajectories. However, existing methods often require complicated test-time fine-tuning and struggle with balancing subject learning and motion control, limiting their real-world applications. In this paper, we present DreamVideo-2, a zero-shot video customization framework capable of generating videos with a specific subject and motion trajectory, guided by a single image and a bounding box sequence, respectively, and without the need for test-time fine-tuning. Specifically, we introduce reference attention, which leverages the model's inherent capabilities for subject learning, and devise a mask-guided motion module to achieve precise motion control by fully utilizing the robust motion signal of box masks derived from bounding boxes. While these two components achieve their intended functions, we empirically observe that motion control tends to dominate over subject learning. To address this, we propose two key designs: 1) the masked reference attention, which integrates a blended latent mask modeling scheme into reference attention to enhance subject representations at the desired positions, and 2) a reweighted diffusion loss, which differentiates the contributions of regions inside and outside the bounding boxes to ensure a balance between subject and motion control. Extensive experimental results on a newly curated dataset demonstrate that DreamVideo-2 outperforms state-of-the-art methods in both subject customization and motion control. The dataset, code, and models will be made publicly available.
Authors: Weiji Xie, Jinrui Han, Jiakun Zheng, Huanyu Li, Xinzhe Liu, Jiyuan Shi, Weinan Zhang, Chenjia Bai, Xuelong Li
Abstract:
Humanoid robots are promising to acquire various skills by imitating human behaviors. However, existing algorithms are only capable of tracking smooth, low-speed human motions, even with delicate reward and curriculum design. This paper presents a physics-based humanoid control framework, aiming to master highly-dynamic human behaviors such as Kungfu and dancing through multi-steps motion processing and adaptive motion tracking. For motion processing, we design a pipeline to extract, filter out, correct, and retarget motions, while ensuring compliance with physical constraints to the maximum extent. For motion imitation, we formulate a bi-level optimization problem to dynamically adjust the tracking accuracy tolerance based on the current tracking error, creating an adaptive curriculum mechanism. We further construct an asymmetric actor-critic framework for policy training. In experiments, we train whole-body control policies to imitate a set of highly-dynamic motions. Our method achieves significantly lower tracking errors than existing approaches and is successfully deployed on the Unitree G1 robot, demonstrating stable and expressive behaviors. The project page is https://kungfu-bot.github.io.
Authors: Dewei Wang, Xinmiao Wang, Xinzhe Liu, Jiyuan Shi, Yingnan Zhao, Chenjia Bai, Xuelong Li
Abstract:
Humanoid robots have demonstrated robust locomotion capabilities using Reinforcement Learning (RL)-based approaches. Further, to obtain human-like behaviors, existing methods integrate human motion-tracking or motion prior in the RL framework. However, these methods are limited in flat terrains with proprioception only, restricting their abilities to traverse challenging terrains with human-like gaits. In this work, we propose a novel framework using a mixture of latent residual experts with multi-discriminators to train an RL policy, which is capable of traversing complex terrains in controllable lifelike gaits with exteroception. Our two-stage training pipeline first teaches the policy to traverse complex terrains using a depth camera, and then enables gait-commanded switching between human-like gait patterns. We also design gait rewards to adjust human-like behaviors like robot base height. Simulation and real-world experiments demonstrate that our framework exhibits exceptional performance in traversing complex terrains, and achieves seamless transitions between multiple human-like gait patterns.
Authors: Subrata Kumer Paul, Abu Saleh Musa Miah, Rakhi Rani Paul, Md. Ekramul Hamid, Jungpil Shin, Md Abdur Rahim
Abstract:
The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing medical-related human activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions that are critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method for MRHA detection, leveraging multi-stage deep learning techniques integrated with IoT. The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions (MBConv) blocks, followed by ConvLSTM to capture spatio-temporal patterns. A classification module with global average pooling, a fully connected layer, and a dropout layer generates the final predictions. The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets, focusing on MRHA, such as sneezing, falling, walking, sitting, etc. It achieves 94.85% accuracy for cross-subject evaluations and 96.45% for cross-view evaluations on NTU RGB+D 120, along with 89.00% accuracy on HMDB51. Additionally, the system integrates IoT capabilities using a Raspberry Pi and GSM module, delivering real-time alerts via Twilios SMS service to caregivers and patients. This scalable and efficient solution bridges the gap between HMR and IoT, advancing patient monitoring, improving healthcare outcomes, and reducing costs.
Authors: Bolin Chen, Ru-Ling Liao, Yan Ye, Jie Chen, Shanzhi Yin, Xinrui Ju, Shiqi Wang, Yibo Fan
Abstract:
For bandwidth-constrained multimedia applications, simultaneously achieving ultra-low bitrate human video compression and accurate vertex prediction remains a critical challenge, as it demands the harmonization of dynamic motion modeling, detailed appearance synthesis, and geometric consistency. To address this challenge, we propose Sparse2Dense, a keypoint-driven generative framework that leverages extremely sparse 3D keypoints as compact transmitted symbols to enable ultra-low bitrate human video compression and precise human vertex prediction. The key innovation is the multi-task learning-based and keypoint-aware deep generative model, which could encode complex human motion via compact 3D keypoints and leverage these sparse keypoints to estimate dense motion for video synthesis with temporal coherence and realistic textures. Additionally, a vertex predictor is integrated to learn human vertex geometry through joint optimization with video generation, ensuring alignment between visual content and geometric structure. Extensive experiments demonstrate that the proposed Sparse2Dense framework achieves competitive compression performance for human video over traditional/generative video codecs, whilst enabling precise human vertex prediction for downstream geometry applications. As such, Sparse2Dense is expected to facilitate bandwidth-efficient human-centric media transmission, such as real-time motion analysis, virtual human animation, and immersive entertainment.
Authors: Caiyi Sun, Yujing Sun, Xiao Han, Zemin Yang, Jiawei Liu, Xinge Zhu, Siu Ming Yiu, Yuexin Ma
Abstract:
Complex scenes present significant challenges for predicting human behaviour due to the abundance of interaction information, such as human-human and humanenvironment interactions. These factors complicate the analysis and understanding of human behaviour, thereby increasing the uncertainty in forecasting human motions. Existing motion prediction methods thus struggle in these complex scenarios. In this paper, we propose an effective method for human motion forecasting in interactive scenes. To achieve a comprehensive representation of interactions, we design a hierarchical interaction feature representation so that high-level features capture the overall context of the interactions, while low-level features focus on fine-grained details. Besides, we propose a coarse-to-fine interaction reasoning module that leverages both spatial and frequency perspectives to efficiently utilize hierarchical features, thereby enhancing the accuracy of motion predictions. Our method achieves state-of-the-art performance across four public datasets. Code will be released when this paper is published.
Authors: Jing Lin, Ruisi Wang, Junzhe Lu, Ziqi Huang, Guorui Song, Ailing Zeng, Xian Liu, Chen Wei, Wanqi Yin, Qingping Sun, Zhongang Cai, Lei Yang, Ziwei Liu
Abstract:
Despite recent advances in 3D human motion generation (MoGen) on standard benchmarks, existing models still face a fundamental bottleneck in their generalization capability. In contrast, adjacent generative fields, most notably video generation (ViGen), have demonstrated remarkable generalization in modeling human behaviors, highlighting transferable insights that MoGen can leverage. Motivated by this observation, we present a comprehensive framework that systematically transfers knowledge from ViGen to MoGen across three key pillars: data, modeling, and evaluation. First, we introduce ViMoGen-228K, a large-scale dataset comprising 228,000 high-quality motion samples that integrates high-fidelity optical MoCap data with semantically annotated motions from web videos and synthesized samples generated by state-of-the-art ViGen models. The dataset includes both text-motion pairs and text-video-motion triplets, substantially expanding semantic diversity. Second, we propose ViMoGen, a flow-matching-based diffusion transformer that unifies priors from MoCap data and ViGen models through gated multimodal conditioning. To enhance efficiency, we further develop ViMoGen-light, a distilled variant that eliminates video generation dependencies while preserving strong generalization. Finally, we present MBench, a hierarchical benchmark designed for fine-grained evaluation across motion quality, prompt fidelity, and generalization ability. Extensive experiments show that our framework significantly outperforms existing approaches in both automatic and human evaluations. The code, data, and benchmark will be made publicly available.
Authors: Yiheng Huang, Junran Peng, Silei Shen, Jingwei Yang, ZeJi Wei, ChenCheng Bai, Yonghao He, Wei Sui, Muyi Sun, Yan Liu, Xu-Cheng Yin, Man Zhang, Zhaoxiang Zhang, Chuanchen Luo
Abstract:
The accompanying actions and gestures in dialogue are often closely linked to interactions with the environment, such as looking toward the interlocutor or using gestures to point to the described target at appropriate moments. Speech and semantics guide the production of gestures by determining their timing (WHEN) and style (HOW), while the spatial locations of interactive objects dictate their directional execution (WHERE). Existing approaches either rely solely on descriptive language to generate motions or utilize audio to produce non-interactive gestures, thereby lacking the characterization of interactive timing and spatial intent. This significantly limits the applicability of conversational gesture generation, whether in robotics or in the fields of game and animation production. To address this gap, we present a full-stack solution. We first established a unique data collection method to simultaneously capture high-precision human motion and spatial intent. We then developed a generation model driven by audio, language, and spatial data, alongside dedicated metrics for evaluating interaction timing and spatial accuracy. Finally, we deployed the solution on a humanoid robot, enabling rich, context-aware physical interactions.
Authors: Xianrui Luo, Juewen Peng, Zhongang Cai, Lei Yang, Fan Yang, Zhiguo Cao, Guosheng Lin
Abstract:
We introduce a novel framework for modeling high-fidelity, animatable 3D human avatars from motion-blurred monocular video inputs. Motion blur is prevalent in real-world dynamic video capture, especially due to human movements in 3D human avatar modeling. Existing methods either (1) assume sharp image inputs, failing to address the detail loss introduced by motion blur, or (2) mainly consider blur by camera movements, neglecting the human motion blur which is more common in animatable avatars. Our proposed approach integrates a human movement-based motion blur model into 3D Gaussian Splatting (3DGS). By explicitly modeling human motion trajectories during exposure time, we jointly optimize the trajectories and 3D Gaussians to reconstruct sharp, high-quality human avatars. We employ a pose-dependent fusion mechanism to distinguish moving body regions, optimizing both blurred and sharp areas effectively. Extensive experiments on synthetic and real-world datasets demonstrate that our method significantly outperforms existing methods in rendering quality and quantitative metrics, producing sharp avatar reconstructions and enabling real-time rendering under challenging motion blur conditions.
Authors: Xuetao Li, Wenke Huang, Nengyuan Pan, Kaiyan Zhao, Songhua Yang, Yiming Wang, Mengde Li, Mang Ye, Jifeng Xuan, Miao Li
Abstract:
Humanoid robots exhibit significant potential in executing diverse human-level skills. However, current research predominantly relies on data-driven approaches that necessitate extensive training datasets to achieve robust multimodal decision-making capabilities and generalizable visuomotor control. These methods raise concerns due to the neglect of geometric reasoning in unseen scenarios and the inefficient modeling of robot-target relationships within the training data, resulting in significant waste of training resources. To address these limitations, we present the Recurrent Geometric-prior Multimodal Policy (RGMP), an end-to-end framework that unifies geometric-semantic skill reasoning with data-efficient visuomotor control. For perception capabilities, we propose the Geometric-prior Skill Selector, which infuses geometric inductive biases into a vision language model, producing adaptive skill sequences for unseen scenes with minimal spatial common sense tuning. To achieve data-efficient robotic motion synthesis, we introduce the Adaptive Recursive Gaussian Network, which parameterizes robot-object interactions as a compact hierarchy of Gaussian processes that recursively encode multi-scale spatial relationships, yielding dexterous, data-efficient motion synthesis even from sparse demonstrations. Evaluated on both our humanoid robot and desktop dual-arm robot, the RGMP framework achieves 87% task success in generalization tests and exhibits 5x greater data efficiency than the state-of-the-art model. This performance underscores its superior cross-domain generalization, enabled by geometric-semantic reasoning and recursive-Gaussion adaptation.
Authors: Nan Jiang, Hongjie Li, Ziye Yuan, Zimo He, Yixin Chen, Tengyu Liu, Yixin Zhu, Siyuan Huang
Abstract:
Text-guided motion editing enables high-level semantic control and iterative modifications beyond traditional keyframe animation. Existing methods rely on limited pre-collected training triplets, which severely hinders their versatility in diverse editing scenarios. We introduce MotionCutMix, an online data augmentation technique that dynamically generates training triplets by blending body part motions based on input text. While MotionCutMix effectively expands the training distribution, the compositional nature introduces increased randomness and potential body part incoordination. To model such a rich distribution, we present MotionReFit, an auto-regressive diffusion model with a motion coordinator. The auto-regressive architecture facilitates learning by decomposing long sequences, while the motion coordinator mitigates the artifacts of motion composition. Our method handles both spatial and temporal motion edits directly from high-level human instructions, without relying on additional specifications or Large Language Models. Through extensive experiments, we show that MotionReFit achieves state-of-the-art performance in text-guided motion editing.
Authors: Ching-Chun Chang, Yijie Lin, Isao Echizen
Abstract:
Steganography, the art of information hiding, has continually evolved across visual, auditory and linguistic domains, adapting to the ceaseless interplay between steganographic concealment and steganalytic revelation. This study seeks to extend the horizons of what constitutes a viable steganographic medium by introducing a steganographic paradigm in robotic motion control. Based on the observation of the robot's inherent sensitivity to changes in its environment, we propose a methodology to encode messages as environmental stimuli influencing the motions of the robotic agent and to decode messages from the resulting motion trajectory. The constraints of maximal robot integrity and minimal motion deviation are established as fundamental principles underlying secrecy. As a proof of concept, we conduct experiments in simulated environments across various manipulation tasks, incorporating robotic embodiments equipped with generalist multimodal policies.
Authors: Xinyao Liao, Xianfang Zeng, Liao Wang, Gang Yu, Guosheng Lin, Chi Zhang
Abstract:
We propose MotionAgent, enabling fine-grained motion control for text-guided image-to-video generation. The key technique is the motion field agent that converts motion information in text prompts into explicit motion fields, providing flexible and precise motion guidance. Specifically, the agent extracts the object movement and camera motion described in the text and converts them into object trajectories and camera extrinsics, respectively. An analytical optical flow composition module integrates these motion representations in 3D space and projects them into a unified optical flow. An optical flow adapter takes the flow to control the base image-to-video diffusion model for generating fine-grained controlled videos. The significant improvement in the Video-Text Camera Motion metrics on VBench indicates that our method achieves precise control over camera motion. We construct a subset of VBench to evaluate the alignment of motion information in the text and the generated video, outperforming other advanced models on motion generation accuracy.
Authors: Jiaxu Zhang, Xianfang Zeng, Xin Chen, Wei Zuo, Gang Yu, Zhigang Tu
Abstract:
We propose MikuDance, a diffusion-based pipeline incorporating mixed motion dynamics to animate stylized character art. MikuDance consists of two key techniques: Mixed Motion Modeling and Mixed-Control Diffusion, to address the challenges of high-dynamic motion and reference-guidance misalignment in character art animation. Specifically, a Scene Motion Tracking strategy is presented to explicitly model the dynamic camera in pixel-wise space, enabling unified character-scene motion modeling. Building on this, the Mixed-Control Diffusion implicitly aligns the scale and body shape of diverse characters with motion guidance, allowing flexible control of local character motion. Subsequently, a Motion-Adaptive Normalization module is incorporated to effectively inject global scene motion, paving the way for comprehensive character art animation. Through extensive experiments, we demonstrate the effectiveness and generalizability of MikuDance across various character art and motion guidance, consistently producing high-quality animations with remarkable motion dynamics.
Authors: Yudong Liu, Spencer Hallyburton, Jiwoo Kim, Yueqian Lin, Yiming Li, Qinsi Wang, Hui Ye, Jingwei Sun, Miroslav Pajic, Yiran Chen, Hai Li
Abstract:
Trajectory planning is a fundamental yet challenging component of autonomous driving. End-to-end planners frequently falter under adverse weather, unpredictable human behavior, or complex road layouts, primarily because they lack strong generalization or few-shot capabilities beyond their training data. We propose LLaViDA, a Large Language Vision Driving Assistant that leverages a Vision-Language Model (VLM) for object motion prediction, semantic grounding, and chain-of-thought reasoning for trajectory planning in autonomous driving. A two-stage training pipeline--supervised fine-tuning followed by Trajectory Preference Optimization (TPO)--enhances scene understanding and trajectory planning by injecting regression-based supervision, produces a powerful "VLM Trajectory Planner for Autonomous Driving." On the NuScenes benchmark, LLaViDA surpasses state-of-the-art end-to-end and other recent VLM/LLM-based baselines in open-loop trajectory planning task, achieving an average L2 trajectory error of 0.31 m and a collision rate of 0.10% on the NuScenes test set. The code for this paper is available at GitHub.
Authors: Zhe Li, Weihao Yuan, Weichao Shen, Siyu Zhu, Zilong Dong, Chang Xu
Abstract:
Whole-body multi-modal human motion generation poses two primary challenges: creating an effective motion generation mechanism and integrating various modalities, such as text, speech, and music, into a cohesive framework. Unlike previous methods that usually employ discrete masked modeling or autoregressive modeling, we develop a continuous masked autoregressive motion transformer, where a causal attention is performed considering the sequential nature within the human motion. Within this transformer, we introduce a gated linear attention and an RMSNorm module, which drive the transformer to pay attention to the key actions and suppress the instability caused by either the abnormal movements or the heterogeneous distributions within multi-modalities. To further enhance both the motion generation and the multimodal generalization, we employ the DiT structure to diffuse the conditions from the transformer towards the targets. To fuse different modalities, AdaLN and cross-attention are leveraged to inject the text, speech, and music signals. Experimental results demonstrate that our framework outperforms previous methods across all modalities, including text-to-motion, speech-to-gesture, and music-to-dance. The code of our method will be made public.
Authors: Zhe Li, Weihao Yuan, Yisheng He, Lingteng Qiu, Shenhao Zhu, Xiaodong Gu, Weichao Shen, Yuan Dong, Zilong Dong, Laurence T. Yang
Abstract:
Language plays a vital role in the realm of human motion. Existing methods have largely depended on CLIP text embeddings for motion generation, yet they fall short in effectively aligning language and motion due to CLIP's pretraining on static image-text pairs. This work introduces LaMP, a novel Language-Motion Pretraining model, which transitions from a language-vision to a more suitable language-motion latent space. It addresses key limitations by generating motion-informative text embeddings, significantly enhancing the relevance and semantics of generated motion sequences. With LaMP, we advance three key tasks: text-to-motion generation, motion-text retrieval, and motion captioning through aligned language-motion representation learning. For generation, we utilize LaMP to provide the text condition instead of CLIP, and an autoregressive masked prediction is designed to achieve mask modeling without rank collapse in transformers. For retrieval, motion features from LaMP's motion transformer interact with query tokens to retrieve text features from the text transformer, and vice versa. For captioning, we finetune a large language model with the language-informative motion features to develop a strong motion captioning model. In addition, we introduce the LaMP-BertScore metric to assess the alignment of generated motions with textual descriptions. Extensive experimental results on multiple datasets demonstrate substantial improvements over previous methods across all three tasks. The code of our method will be made public.
Authors: Jiaming Zhang, Shengming Cao, Rui Li, Xiaotong Zhao, Yutao Cui, Xinglin Hou, Gangshan Wu, Haolan Chen, Yu Xu, Limin Wang, Kai Ma
Abstract:
Preserving first-frame identity while ensuring precise motion control is a fundamental challenge in human image animation. The Image-to-Motion Binding process of the dominant Reference-to-Video (R2V) paradigm overlooks critical spatio-temporal misalignments common in real-world applications, leading to failures such as identity drift and visual artifacts. We introduce SteadyDancer, an Image-to-Video (I2V) paradigm-based framework that achieves harmonized and coherent animation and is the first to ensure first-frame preservation robustly. Firstly, we propose a Condition-Reconciliation Mechanism to harmonize the two conflicting conditions, enabling precise control without sacrificing fidelity. Secondly, we design Synergistic Pose Modulation Modules to generate an adaptive and coherent pose representation that is highly compatible with the reference image. Finally, we employ a Staged Decoupled-Objective Training Pipeline that hierarchically optimizes the model for motion fidelity, visual quality, and temporal coherence. Experiments demonstrate that SteadyDancer achieves state-of-the-art performance in both appearance fidelity and motion control, while requiring significantly fewer training resources than comparable methods.
Authors: Yixuan Pan, Ruoyi Qiao, Li Chen, Kashyap Chitta, Liang Pan, Haoguang Mai, Qingwen Bu, Hao Zhao, Cunyuan Zheng, Ping Luo, Hongyang Li
Abstract:
Humanoid robots are envisioned to perform a wide range of tasks in human-centered environments, requiring controllers that combine agility with robust balance. Recent advances in locomotion and whole-body tracking have enabled impressive progress in either agile dynamic skills or stability-critical behaviors, but existing methods remain specialized, focusing on one capability while compromising the other. In this work, we introduce AMS (Agility Meets Stability), the first framework that unifies both dynamic motion tracking and extreme balance maintenance in a single policy. Our key insight is to leverage heterogeneous data sources: human motion capture datasets that provide rich, agile behaviors, and physically constrained synthetic balance motions that capture stability configurations. To reconcile the divergent optimization goals of agility and stability, we design a hybrid reward scheme that applies general tracking objectives across all data while injecting balance-specific priors only into synthetic motions. Further, an adaptive learning strategy with performance-driven sampling and motion-specific reward shaping enables efficient training across diverse motion distributions. We validate AMS extensively in simulation and on a real Unitree G1 humanoid. Experiments demonstrate that a single policy can execute agile skills such as dancing and running, while also performing zero-shot extreme balance motions like Ip Man's Squat, highlighting AMS as a versatile control paradigm for future humanoid applications.
Authors: Longyan Wu, Checheng Yu, Jieji Ren, Li Chen, Ran Huang, Guoying Gu, Hongyang Li
Abstract:
Enabling robots with contact-rich manipulation remains a pivotal challenge in robot learning, which is substantially hindered by the data collection gap, including its inefficiency and limited sensor setup. While prior work has explored handheld paradigms, their rod-based mechanical structures remain rigid and unintuitive, providing limited tactile feedback and posing challenges for human operators. Motivated by the dexterity and force feedback of human motion, we propose FreeTacMan, a human-centric and robot-free data collection system for accurate and efficient robot manipulation. Concretely, we design a wearable data collection device with dual visuo-tactile grippers, which can be worn by human fingers for intuitive and natural control. A high-precision optical tracking system is introduced to capture end-effector poses, while synchronizing visual and tactile feedback simultaneously. FreeTacMan achieves multiple improvements in data collection performance compared to prior works, and enables effective policy learning for contact-rich manipulation tasks with the help of the visuo-tactile information. We will release the work to facilitate reproducibility and accelerate research in visuo-tactile manipulation.
Authors: Shaofeng Yin, Yanjie Ze, Hong-Xing Yu, C. Karen Liu, Jiajun Wu
Abstract:
Humanoid loco-manipulation in unstructured environments demands tight integration of egocentric perception and whole-body control. However, existing approaches either depend on external motion capture systems or fail to generalize across diverse tasks. We introduce VisualMimic, a visual sim-to-real framework that unifies egocentric vision with hierarchical whole-body control for humanoid robots. VisualMimic combines a task-agnostic low-level keypoint tracker -- trained from human motion data via a teacher-student scheme -- with a task-specific high-level policy that generates keypoint commands from visual and proprioceptive input. To ensure stable training, we inject noise into the low-level policy and clip high-level actions using human motion statistics. VisualMimic enables zero-shot transfer of visuomotor policies trained in simulation to real humanoid robots, accomplishing a wide range of loco-manipulation tasks such as box lifting, pushing, football dribbling, and kicking. Beyond controlled laboratory settings, our policies also generalize robustly to outdoor environments. Videos are available at: https://visualmimic.github.io .
Authors: Shiyu Liu, Kui Jiang, Xianming Liu, Hongxun Yao, Xiaocheng Feng
Abstract:
Audio-driven talking head video generation enhances user engagement in human-computer interaction. However, current methods frequently produce videos with motion blur and lip jitter, primarily due to their reliance on implicit modeling of audio-facial motion correlations--an approach lacking explicit articulatory priors (i.e., anatomical guidance for speech-related facial movements). To overcome this limitation, we propose HM-Talker, a novel framework for generating high-fidelity, temporally coherent talking heads. HM-Talker leverages a hybrid motion representation combining both implicit and explicit motion cues. Explicit cues use Action Units (AUs), anatomically defined facial muscle movements, alongside implicit features to minimize phoneme-viseme misalignment. Specifically, our Cross-Modal Disentanglement Module (CMDM) extracts complementary implicit/explicit motion features while predicting AUs directly from audio input aligned to visual cues. To mitigate identity-dependent biases in explicit features and enhance cross-subject generalization, we introduce the Hybrid Motion Modeling Module (HMMM). This module dynamically merges randomly paired implicit/explicit features, enforcing identity-agnostic learning. Together, these components enable robust lip synchronization across diverse identities, advancing personalized talking head synthesis. Extensive experiments demonstrate HM-Talker's superiority over state-of-the-art methods in visual quality and lip-sync accuracy.
Authors: Ye Li, Yuan Meng, Zewen Sun, Kangye Ji, Chen Tang, Jiajun Fan, Xinzhu Ma, Shutao Xia, Zhi Wang, Wenwu Zhu
Abstract:
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Experimental results demonstrate that our method achieves up to 1.5$\times$ acceleration with less than 3% drop in accuracy, outperforming existing approaches in multiple tasks.
Authors: Jialiang Zhang, Haoran Geng, Yang You, Congyue Deng, Pieter Abbeel, Jitendra Malik, Leonidas Guibas
Abstract:
Understanding and predicting articulated actions is important in robot learning. However, common architectures such as MLPs and Transformers lack inductive biases that reflect the underlying kinematic structure of articulated systems. To this end, we propose the Neural Rodrigues Operator, a learnable generalization of the classical forward kinematics operation, designed to inject kinematics-aware inductive bias into neural computation. Building on this operator, we design the Rodrigues Network (RodriNet), a novel neural architecture specialized for processing actions. We evaluate the expressivity of our network on two synthetic tasks on kinematic and motion prediction, showing significant improvements compared to standard backbones. We further demonstrate its effectiveness in two realistic applications: (i) imitation learning on robotic benchmarks with the Diffusion Policy, and (ii) single-image 3D hand reconstruction. Our results suggest that integrating structured kinematic priors into the network architecture improves action learning in various domains.
Authors: Arthur Allshire, Hongsuk Choi, Junyi Zhang, David McAllister, Anthony Zhang, Chung Min Kim, Trevor Darrell, Pieter Abbeel, Jitendra Malik, Angjoo Kanazawa
Abstract:
How can we teach humanoids to climb staircases and sit on chairs using the surrounding environment context? Arguably, the simplest way is to just show them-casually capture a human motion video and feed it to humanoids. We introduce VIDEOMIMIC, a real-to-sim-to-real pipeline that mines everyday videos, jointly reconstructs the humans and the environment, and produces whole-body control policies for humanoid robots that perform the corresponding skills. We demonstrate the results of our pipeline on real humanoid robots, showing robust, repeatable contextual control such as staircase ascents and descents, sitting and standing from chairs and benches, as well as other dynamic whole-body skills-all from a single policy, conditioned on the environment and global root commands. VIDEOMIMIC offers a scalable path towards teaching humanoids to operate in diverse real-world environments.
Authors: Peng Zhang, Xin Li, Xin Lin, Liang He
Abstract:
Recent advancements in 3D multi-object tracking (3D MOT) have predominantly relied on tracking-by-detection pipelines. However, these approaches often neglect potential enhancements in 3D detection processes, leading to high false positives (FP), missed detections (FN), and identity switches (IDS), particularly in challenging scenarios such as crowded scenes, small-object configurations, and adverse weather conditions. Furthermore, limitations in data preprocessing, association mechanisms, motion modeling, and life-cycle management hinder overall tracking robustness. To address these issues, we present Easy-Poly, a real-time, filter-based 3D MOT framework for multiple object categories. Our contributions include: (1) An Augmented Proposal Generator utilizing multi-modal data augmentation and refined SpConv operations, significantly improving mAP and NDS on nuScenes; (2) A Dynamic Track-Oriented (DTO) data association algorithm that effectively manages uncertainties and occlusions through optimal assignment and multiple hypothesis handling; (3) A Dynamic Motion Modeling (DMM) incorporating a confidence-weighted Kalman filter and adaptive noise covariances, enhancing MOTA and AMOTA in challenging conditions; and (4) An extended life-cycle management system with adjustive thresholds to reduce ID switches and false terminations. Experimental results show that Easy-Poly outperforms state-of-the-art methods such as Poly-MOT and Fast-Poly, achieving notable gains in mAP (e.g., from 63.30% to 64.96% with LargeKernel3D) and AMOTA (e.g., from 73.1% to 74.5%), while also running in real-time. These findings highlight Easy-Poly's adaptability and robustness in diverse scenarios, making it a compelling choice for autonomous driving and related 3D MOT applications. The source code of this paper will be published upon acceptance.
Authors: Chenhui Dong, Haozhe Xu, Wenhao Feng, Zhipeng Wang, Yanmin Zhou, Yifei Zhao, Bin He
Abstract:
Reinforcement learning (RL) controllers have made impressive progress in humanoid locomotion and light-weight object manipulation. However, achieving robust and precise motion control with intense force interaction remains a significant challenge. To address these limitations, this paper proposes HAFO, a dual-agent reinforcement learning framework that concurrently optimizes both a robust locomotion strategy and a precise upper-body manipulation strategy via coupled training in environments with external disturbances. The external pulling disturbances are explicitly modeled using a spring-damper system, allowing for fine-grained force control through manipulation of the virtual spring. In this process, the reinforcement learning policy autonomously generates a disturbance-rejection response by utilizing environmental feedback. Furthermore, HAFO employs an asymmetric Actor-Critic framework in which the Critic network's access to privileged external forces guides the actor network to acquire generalizable force adaptation for resisting external disturbances. The experimental results demonstrate that HAFO achieves whole-body control for humanoid robots across diverse force-interaction environments, delivering outstanding performance in load-bearing tasks and maintaining stable operation even under rope suspension state.
Authors: Sen Wang, Jingyi Tian, Le Wang, Zhimin Liao, Jiayi Li, Huaiyi Dong, Kun Xia, Sanping Zhou, Wei Tang, Hua Gang
Abstract:
World models allow agents to simulate the consequences of actions in imagined environments for planning, control, and long-horizon decision-making. However, existing autoregressive world models struggle with visually coherent predictions due to disrupted spatial structure, inefficient decoding, and inadequate motion modeling. In response, we propose \textbf{S}cale-wise \textbf{A}utoregression with \textbf{M}otion \textbf{P}r\textbf{O}mpt (\textbf{SAMPO}), a hybrid framework that combines visual autoregressive modeling for intra-frame generation with causal modeling for next-frame generation. Specifically, SAMPO integrates temporal causal decoding with bidirectional spatial attention, which preserves spatial locality and supports parallel decoding within each scale. This design significantly enhances both temporal consistency and rollout efficiency. To further improve dynamic scene understanding, we devise an asymmetric multi-scale tokenizer that preserves spatial details in observed frames and extracts compact dynamic representations for future frames, optimizing both memory usage and model performance. Additionally, we introduce a trajectory-aware motion prompt module that injects spatiotemporal cues about object and robot trajectories, focusing attention on dynamic regions and improving temporal consistency and physical realism. Extensive experiments show that SAMPO achieves competitive performance in action-conditioned video prediction and model-based control, improving generation quality with 4.4$\times$ faster inference. We also evaluate SAMPO's zero-shot generalization and scaling behavior, demonstrating its ability to generalize to unseen tasks and benefit from larger model sizes.
Authors: Zheng Qin, Yabing Wang, Minghui Yang, Sanping Zhou, Ming Yang, Le Wang
Abstract:
Generating 3D human motions from text is a challenging yet valuable task. The key aspects of this task are ensuring text-motion consistency and achieving generation diversity. Although recent advancements have enabled the generation of precise and high-quality human motions from text, achieving diversity in the generated motions remains a significant challenge. In this paper, we aim to overcome the above challenge by designing a simple yet effective text-to-motion generation method, \textit{i.e.}, Diverse-T2M. Our method introduces uncertainty into the generation process, enabling the generation of highly diverse motions while preserving the semantic consistency of the text. Specifically, we propose a novel perspective that utilizes noise signals as carriers of diversity information in transformer-based methods, facilitating a explicit modeling of uncertainty. Moreover, we construct a latent space where text is projected into a continuous representation, instead of a rigid one-to-one mapping, and integrate a latent space sampler to introduce stochastic sampling into the generation process, thereby enhancing the diversity and uncertainty of the outputs. Our results on text-to-motion generation benchmark datasets~(HumanML3D and KIT-ML) demonstrate that our method significantly enhances diversity while maintaining state-of-the-art performance in text consistency.
Authors: Jiayi He, Xu Wang, Shengeng Tang, Yaxiong Wang, Lechao Cheng, Dan Guo
Abstract:
Sign language video generation requires producing natural signing motions with realistic appearances under precise semantic control, yet faces two critical challenges: excessive signer-specific data requirements and poor generalization. We propose a new paradigm for sign language video generation that decouples motion semantics from signer identity through a two-phase synthesis framework. First, we construct a signer-independent multimodal motion lexicon, where each gloss is stored as identity-agnostic pose, gesture, and 3D mesh sequences, requiring only one recording per sign. This compact representation enables our second key innovation: a discrete-to-continuous motion synthesis stage that transforms retrieved gloss sequences into temporally coherent motion trajectories, followed by identity-aware neural rendering to produce photorealistic videos of arbitrary signers. Unlike prior work constrained by signer-specific datasets, our method treats motion as a first-class citizen: the learned latent pose dynamics serve as a portable "choreography layer" that can be visually realized through different human appearances. Extensive experiments demonstrate that disentangling motion from identity is not just viable but advantageous - enabling both high-quality synthesis and unprecedented flexibility in signer personalization.
Authors: Pengteng Li, Yunfan Lu, Pinghao Song, Wuyang Li, Huizai Yao, Hui Xiong
Abstract:
The event-based Vision-Language Model (VLM) recently has made good progress for practical vision tasks. However, most of these works just utilize CLIP for focusing on traditional perception tasks, which obstruct model understanding explicitly the sufficient semantics and context from event streams. To address the deficiency, we propose EventVL, the first generative event-based MLLM (Multimodal Large Language Model) framework for explicit semantic understanding. Specifically, to bridge the data gap for connecting different modalities semantics, we first annotate a large event-image/video-text dataset, containing almost 1.4 million high-quality pairs of data, which enables effective learning across various scenes, e.g., drive scene or human motion. After that, we design Event Spatiotemporal Representation to fully explore the comprehensive information by diversely aggregating and segmenting the event stream. To further promote a compact semantic space, Dynamic Semantic Alignment is introduced to improve and complete sparse semantic spaces of events. Extensive experiments show that our EventVL can significantly surpass existing MLLM baselines in event captioning and scene description generation tasks. We hope our research could contribute to the development of the event vision community.
Authors: Sibo Tian, Minghui Zheng, Xiao Liang
Abstract:
Stochastic human motion prediction is critical for safe and effective human-robot collaboration (HRC) in industrial remanufacturing, as it captures human motion uncertainties and multi-modal behaviors that deterministic methods cannot handle. While earlier works emphasize highly diverse predictions, they often generate unrealistic human motions. More recent methods focus on accuracy and real-time performance, yet there remains potential to improve prediction quality further without exceeding time budgets. Additionally, current research on stochastic human motion prediction in HRC typically considers human motion in isolation, neglecting the influence of robot motion on human behavior. To address these research gaps and enable real-time, realistic, and interaction-aware human motion prediction, we propose a novel prediction-refinement framework that integrates both human and robot observed motion to refine the initial predictions produced by a pretrained state-of-the-art predictor. The refinement module employs a Flow Matching structure to account for uncertainty. Experimental studies on the HRC desktop disassembly dataset demonstrate that our method significantly improves prediction accuracy while preserving the uncertainties and multi-modalities of human motion. Moreover, the total inference time of the proposed framework remains within the time budget, highlighting the effectiveness and practicality of our approach.
Authors: James Ni, Zekai Wang, Wei Lin, Amir Bar, Yann LeCun, Trevor Darrell, Jitendra Malik, Roei Herzig
Abstract:
Video generation models are rapidly improving in their ability to synthesize human actions in novel contexts, holding the potential to serve as high-level planners for contextual robot control. To realize this potential, a key research question remains open: how can a humanoid execute the human actions from generated videos in a zero-shot manner? This challenge arises because generated videos are often noisy and exhibit morphological distortions that make direct imitation difficult compared to real video. To address this, we introduce a two-stage pipeline. First, we lift video pixels into a 4D human representation and then retarget to the humanoid morphology. Second, we propose GenMimic-a physics-aware reinforcement learning policy conditioned on 3D keypoints, and trained with symmetry regularization and keypoint-weighted tracking rewards. As a result, GenMimic can mimic human actions from noisy, generated videos. We curate GenMimicBench, a synthetic human-motion dataset generated using two video generation models across a spectrum of actions and contexts, establishing a benchmark for assessing zero-shot generalization and policy robustness. Extensive experiments demonstrate improvements over strong baselines in simulation and confirm coherent, physically stable motion tracking on a Unitree G1 humanoid robot without fine-tuning. This work offers a promising path to realizing the potential of video generation models as high-level policies for robot control.
Authors: Quang Nguyen, Nhat Le, Baoru Huang, Minh Nhat Vu, Chengcheng Tang, Van Nguyen, Ngan Le, Thieu Vo, Anh Nguyen
Abstract:
Estimating human dance motion is a challenging task with various industrial applications. Recently, many efforts have focused on predicting human dance motion using either egocentric video or music as input. However, the task of jointly estimating human motion from both egocentric video and music remains largely unexplored. In this paper, we aim to develop a new method that predicts human dance motion from both egocentric video and music. In practice, the egocentric view often obscures much of the body, making accurate full-pose estimation challenging. Additionally, incorporating music requires the generated head and body movements to align well with both visual and musical inputs. We first introduce EgoAIST++, a new large-scale dataset that combines both egocentric views and music with more than 36 hours of dancing motion. Drawing on the success of diffusion models and Mamba on modeling sequences, we develop an EgoMusic Motion Network with a core Skeleton Mamba that explicitly captures the skeleton structure of the human body. We illustrate that our approach is theoretically supportive. Intensive experiments show that our method clearly outperforms state-of-the-art approaches and generalizes effectively to real-world data.
Authors: Shujia Li, Haiyu Zhang, Xinyuan Chen, Yaohui Wang, Yutong Ban
Abstract:
While diffusion models and large-scale motion datasets have advanced text-driven human motion synthesis, extending these advances to 4D human-object interaction (HOI) remains challenging, mainly due to the limited availability of large-scale 4D HOI datasets. In our study, we introduce GenHOI, a novel two-stage framework aimed at achieving two key objectives: 1) generalization to unseen objects and 2) the synthesis of high-fidelity 4D HOI sequences. In the initial stage of our framework, we employ an Object-AnchorNet to reconstruct sparse 3D HOI keyframes for unseen objects, learning solely from 3D HOI datasets, thereby mitigating the dependence on large-scale 4D HOI datasets. Subsequently, we introduce a Contact-Aware Diffusion Model (ContactDM) in the second stage to seamlessly interpolate sparse 3D HOI keyframes into densely temporally coherent 4D HOI sequences. To enhance the quality of generated 4D HOI sequences, we propose a novel Contact-Aware Encoder within ContactDM to extract human-object contact patterns and a novel Contact-Aware HOI Attention to effectively integrate the contact signals into diffusion models. Experimental results show that we achieve state-of-the-art results on the publicly available OMOMO and 3D-FUTURE datasets, demonstrating strong generalization abilities to unseen objects, while enabling high-fidelity 4D HOI generation.
Authors: Le Ma, Ziyu Meng, Tengyu Liu, Yuhan Li, Ran Song, Wei Zhang, Siyuan Huang
Abstract:
Humanoid robots are anticipated to acquire a wide range of locomotion capabilities while ensuring natural movement across varying speeds and terrains. Existing methods encounter a fundamental dilemma in learning humanoid locomotion: reinforcement learning with handcrafted rewards can achieve agile locomotion but produces unnatural gaits, while Generative Adversarial Imitation Learning (GAIL) with motion capture data yields natural movements but suffers from unstable training processes and restricted agility. Integrating these approaches proves challenging due to the inherent heterogeneity between expert policies and human motion datasets. To address this, we introduce StyleLoco, a novel two-stage framework that bridges this gap through a Generative Adversarial Distillation (GAD) process. Our framework begins by training a teacher policy using reinforcement learning to achieve agile and dynamic locomotion. It then employs a multi-discriminator architecture, where distinct discriminators concurrently extract skills from both the teacher policy and motion capture data. This approach effectively combines the agility of reinforcement learning with the natural fluidity of human-like movements while mitigating the instability issues commonly associated with adversarial training. Through extensive simulation and real-world experiments, we demonstrate that StyleLoco enables humanoid robots to perform diverse locomotion tasks with the precision of expertly trained policies and the natural aesthetics of human motion, successfully transferring styles across different movement types while maintaining stable locomotion across a broad spectrum of command inputs.
Authors: Lei Li, Sen Jia, Jianhao Wang, Zhaochong An, Jiaang Li, Jenq-Neng Hwang, Serge Belongie
Abstract:
Advancements in Multimodal Large Language Models (MLLMs) have improved human motion understanding. However, these models remain constrained by their "instruct-only" nature, lacking interactivity and adaptability for diverse analytical perspectives. To address these challenges, we introduce ChatMotion, a multimodal multi-agent framework for human motion analysis. ChatMotion dynamically interprets user intent, decomposes complex tasks into meta-tasks, and activates specialized function modules for motion comprehension. It integrates multiple specialized modules, such as the MotionCore, to analyze human motion from various perspectives. Extensive experiments demonstrate ChatMotion's precision, adaptability, and user engagement for human motion understanding.
Authors: Zifan Wang, Ziqing Chen, Junyu Chen, Jilong Wang, Yuxin Yang, Yunze Liu, Xueyi Liu, He Wang, Li Yi
Abstract:
This paper introduces MobileH2R, a framework for learning generalizable vision-based human-to-mobile-robot (H2MR) handover skills. Unlike traditional fixed-base handovers, this task requires a mobile robot to reliably receive objects in a large workspace enabled by its mobility. Our key insight is that generalizable handover skills can be developed in simulators using high-quality synthetic data, without the need for real-world demonstrations. To achieve this, we propose a scalable pipeline for generating diverse synthetic full-body human motion data, an automated method for creating safe and imitation-friendly demonstrations, and an efficient 4D imitation learning method for distilling large-scale demonstrations into closed-loop policies with base-arm coordination. Experimental evaluations in both simulators and the real world show significant improvements (at least +15% success rate) over baseline methods in all cases. Experiments also validate that large-scale and diverse synthetic data greatly enhances robot learning, highlighting our scalable framework.
Authors: Yun Liu, Bowen Yang, Licheng Zhong, He Wang, Li Yi
Abstract:
Learning generic skills for humanoid robots interacting with 3D scenes by mimicking human data is a key research challenge with significant implications for robotics and real-world applications. However, existing methodologies and benchmarks are constrained by the use of small-scale, manually collected demonstrations, lacking the general dataset and benchmark support necessary to explore scene geometry generalization effectively. To address this gap, we introduce Mimicking-Bench, the first comprehensive benchmark designed for generalizable humanoid-scene interaction learning through mimicking large-scale human animation references. Mimicking-Bench includes six household full-body humanoid-scene interaction tasks, covering 11K diverse object shapes, along with 20K synthetic and 3K real-world human interaction skill references. We construct a complete humanoid skill learning pipeline and benchmark approaches for motion retargeting, motion tracking, imitation learning, and their various combinations. Extensive experiments highlight the value of human mimicking for skill learning, revealing key challenges and research directions.
Authors: David Eduardo Moreno-VillamarÃn, Anna Hilsmann, Peter Eisert
Abstract:
We present a generative model that learns to synthesize human motion from limited training sequences. Our framework provides conditional generation and blending across multiple temporal resolutions. The model adeptly captures human motion patterns by integrating skeletal convolution layers and a multi-scale architecture. Our model contains a set of generative and adversarial networks, along with embedding modules, each tailored for generating motions at specific frame rates while exerting control over their content and details. Notably, our approach also extends to the synthesis of co-speech gestures, demonstrating its ability to generate synchronized gestures from speech inputs, even with limited paired data. Through direct synthesis of SMPL pose parameters, our approach avoids test-time adjustments to fit human body meshes. Experimental results showcase our model's ability to achieve extensive coverage of training examples, while generating diverse motions, as indicated by local and global diversity metrics.
Authors: Sibo Tian, Minghui Zheng, Xiao Liang
Abstract:
Human motion prediction is a cornerstone of human-robot collaboration (HRC), as robots need to infer the future movements of human workers based on past motion cues to proactively plan their motion, ensuring safety in close collaboration scenarios. The diffusion model has demonstrated remarkable performance in predicting high-quality motion samples with reasonable diversity, but suffers from a slow generative process which necessitates multiple model evaluations, hindering real-world applications. To enable real-time prediction, in this work, we propose training a one-step multi-layer perceptron-based (MLP-based) diffusion model for motion prediction using knowledge distillation and Bayesian optimization. Our method contains two steps. First, we distill a pretrained diffusion-based motion predictor, TransFusion, directly into a one-step diffusion model with the same denoiser architecture. Then, to further reduce the inference time, we remove the computationally expensive components from the original denoiser and use knowledge distillation once again to distill the obtained one-step diffusion model into an even smaller model based solely on MLPs. Bayesian optimization is used to tune the hyperparameters for training the smaller diffusion model. Extensive experimental studies are conducted on benchmark datasets, and our model can significantly improve the inference speed, achieving real-time prediction without noticeable degradation in performance.
Authors: Francesco D'Orazio, Sepehr Samavi, Xintong Du, Siqi Zhou, Giuseppe Oriolo, Angela P. Schoellig
Abstract:
Mobile manipulators are designed to perform complex sequences of navigation and manipulation tasks in human-centered environments. While recent optimization-based methods such as Hierarchical Task Model Predictive Control (HTMPC) enable efficient multitask execution with strict task priorities, they have so far been applied mainly to static or structured scenarios. Extending these approaches to dynamic human-centered environments requires predictive models that capture how humans react to the actions of the robot. This work introduces Safe Mobile Manipulation with Interactive Human Prediction via Task-Hierarchical Bilevel Model Predictive Control (SM$^2$ITH), a unified framework that combines HTMPC with interactive human motion prediction through bilevel optimization that jointly accounts for robot and human dynamics. The framework is validated on two different mobile manipulators, the Stretch 3 and the Ridgeback-UR10, across three experimental settings: (i) delivery tasks with different navigation and manipulation priorities, (ii) sequential pick-and-place tasks with different human motion prediction models, and (iii) interactions involving adversarial human behavior. Our results highlight how interactive prediction enables safe and efficient coordination, outperforming baselines that rely on weighted objectives or open-loop human models.
Authors: Ruibing Hou, Mingshuang Luo, Hongyu Pan, Hong Chang, Shiguang Shan
Abstract:
This paper proposes MotionVerse, a unified framework that harnesses the capabilities of Large Language Models (LLMs) to comprehend, generate, and edit human motion in both single-person and multi-person scenarios. To efficiently represent motion data, we employ a motion tokenizer with residual quantization, which converts continuous motion sequences into multi-stream discrete tokens. Furthermore, we introduce a \textit{Delay Parallel} Modeling strategy, which temporally staggers the encoding of residual token streams. This design enables LLMs to effectively capture inter-stream dependencies while maintaining computational efficiency comparable to single-stream modeling. Moreover, to alleviate modality interference between motion and language, we design a \textit{dual-tower architecture} with modality-specific parameters, ensuring stable integration of motion information for both comprehension and generation tasks. Comprehensive ablation studies demonstrate the effectiveness of each component in MotionVerse, and extensive experiments showcase its superior performance across a wide range of motion-relevant tasks.
Authors: Wanjia Zhao, Jiaqi Han, Siyi Gu, Mingjian Jiang, James Zou, Stefano Ermon
Abstract:
Geometric diffusion models have shown remarkable success in molecular dynamics and structure generation. However, efficiently fine-tuning them for downstream tasks with varying geometric controls remains underexplored. In this work, we propose an SE(3)-equivariant adapter framework ( GeoAda) that enables flexible and parameter-efficient fine-tuning for controlled generative tasks without modifying the original model architecture. GeoAda introduces a structured adapter design: control signals are first encoded through coupling operators, then processed by a trainable copy of selected pretrained model layers, and finally projected back via decoupling operators followed by an equivariant zero-initialized convolution. By fine-tuning only these lightweight adapter modules, GeoAda preserves the model's geometric consistency while mitigating overfitting and catastrophic forgetting. We theoretically prove that the proposed adapters maintain SE(3)-equivariance, ensuring that the geometric inductive biases of the pretrained diffusion model remain intact during adaptation. We demonstrate the wide applicability of GeoAda across diverse geometric control types, including frame control, global control, subgraph control, and a broad range of application domains such as particle dynamics, molecular dynamics, human motion prediction, and molecule generation. Empirical results show that GeoAda achieves state-of-the-art fine-tuning performance while preserving original task accuracy, whereas other baselines experience significant performance degradation due to overfitting and catastrophic forgetting.
Authors: Xuan Li, Chang Yu, Wenxin Du, Ying Jiang, Tianyi Xie, Yunuo Chen, Yin Yang, Chenfanfu Jiang
Abstract:
Recent advances in large models have significantly advanced image-to-3D reconstruction. However, the generated models are often fused into a single piece, limiting their applicability in downstream tasks. This paper focuses on 3D garment generation, a key area for applications like virtual try-on with dynamic garment animations, which require garments to be separable and simulation-ready. We introduce Dress-1-to-3, a novel pipeline that reconstructs physics-plausible, simulation-ready separated garments with sewing patterns and humans from an in-the-wild image. Starting with the image, our approach combines a pre-trained image-to-sewing pattern generation model for creating coarse sewing patterns with a pre-trained multi-view diffusion model to produce multi-view images. The sewing pattern is further refined using a differentiable garment simulator based on the generated multi-view images. Versatile experiments demonstrate that our optimization approach substantially enhances the geometric alignment of the reconstructed 3D garments and humans with the input image. Furthermore, by integrating a texture generation module and a human motion generation module, we produce customized physics-plausible and realistic dynamic garment demonstrations. Project page: https://dress-1-to-3.github.io/
Authors: Zhuo Li, Mingshuang Luo, Ruibing Hou, Xin Zhao, Hao Liu, Hong Chang, Zimo Liu, Chen Li
Abstract:
Human motion generation has been widely studied due to its crucial role in areas such as digital humans and humanoid robot control. However, many current motion generation approaches disregard physics constraints, frequently resulting in physically implausible motions with pronounced artifacts such as floating and foot sliding. Meanwhile, training an effective motion physics optimizer with noisy motion data remains largely unexplored. In this paper, we propose \textbf{Morph}, a \textbf{Mo}tion-F\textbf{r}ee \textbf{ph}ysics optimization framework, consisting of a Motion Generator and a Motion Physics Refinement module, for enhancing physical plausibility without relying on expensive real-world motion data. Specifically, the motion generator is responsible for providing large-scale synthetic, noisy motion data, while the motion physics refinement module utilizes these synthetic data to learn a motion imitator within a physics simulator, enforcing physical constraints to project the noisy motions into a physically-plausible space. Additionally, we introduce a prior reward module to enhance the stability of the physics optimization process and generate smoother and more stable motions. These physically refined motions are then used to fine-tune the motion generator, further enhancing its capability. This collaborative training paradigm enables mutual enhancement between the motion generator and the motion physics refinement module, significantly improving practicality and robustness in real-world applications. Experiments on both text-to-motion and music-to-dance generation tasks demonstrate that our framework achieves state-of-the-art motion quality while improving physical plausibility drastically.
Authors: Mengge Liu, Yan Di, Gu Wang, Yun Qu, Dekai Zhu, Yanyan Li, Xiangyang Ji
Abstract:
Text-driven multi-human motion generation with complex interactions remains a challenging problem. Despite progress in performance, existing offline methods that generate fixed-length motions with a fixed number of agents, are inherently limited in handling long or variable text, and varying agent counts. These limitations naturally encourage autoregressive formulations, which predict future motions step by step conditioned on all past trajectories and current text guidance. In this work, we introduce HINT, the first autoregressive framework for multi-human motion generation with Hierarchical INTeraction modeling in diffusion. First, HINT leverages a disentangled motion representation within a canonicalized latent space, decoupling local motion semantics from inter-person interactions. This design facilitates direct adaptation to varying numbers of human participants without requiring additional refinement. Second, HINT adopts a sliding-window strategy for efficient online generation, and aggregates local within-window and global cross-window conditions to capture past human history, inter-person dependencies, and align with text guidance. This strategy not only enables fine-grained interaction modeling within each window but also preserves long-horizon coherence across all the long sequence. Extensive experiments on public benchmarks demonstrate that HINT matches the performance of strong offline models and surpasses autoregressive baselines. Notably, on InterHuman, HINT achieves an FID of 3.100, significantly improving over the previous state-of-the-art score of 5.154.
Authors: Junran Peng, Yiheng Huang, Silei Shen, Zeji Wei, Jingwei Yang, Baojie Wang, Yonghao He, Chuanchen Luo, Man Zhang, Xucheng Yin, Wei Sui
Abstract:
In this paper, we introduce RoleMotion, a large-scale human motion dataset that encompasses a wealth of role-playing and functional motion data tailored to fit various specific scenes. Existing text datasets are mainly constructed decentrally as amalgamation of assorted subsets that their data are nonfunctional and isolated to work together to cover social activities in various scenes. Also, the quality of motion data is inconsistent, and textual annotation lacks fine-grained details in these datasets. In contrast, RoleMotion is meticulously designed and collected with a particular focus on scenes and roles. The dataset features 25 classic scenes, 110 functional roles, over 500 behaviors, and 10296 high-quality human motion sequences of body and hands, annotated with 27831 fine-grained text descriptions. We build an evaluator stronger than existing counterparts, prove its reliability, and evaluate various text-to-motion methods on our dataset. Finally, we explore the interplay of motion generation of body and hands. Experimental results demonstrate the high-quality and functionality of our dataset on text-driven whole-body generation.
Authors: Cheng Guo, Giuseppe L'Erario, Giulio Romualdi, Mattia Leonori, Marta Lorenzini, Arash Ajoudani, Daniele Pucci
Abstract:
Accurate and physically feasible human motion prediction is crucial for safe and seamless human-robot collaboration. While recent advancements in human motion capture enable real-time pose estimation, the practical value of many existing approaches is limited by the lack of future predictions and consideration of physical constraints. Conventional motion prediction schemes rely heavily on past poses, which are not always available in real-world scenarios. To address these limitations, we present a physics-informed learning framework that integrates domain knowledge into both training and inference to predict human motion using inertial measurements from only 5 IMUs. We propose a network that accounts for the spatial characteristics of human movements. During training, we incorporate forward and differential kinematics functions as additional loss components to regularize the learned joint predictions. At the inference stage, we refine the prediction from the previous iteration to update a joint state buffer, which is used as extra inputs to the network. Experimental results demonstrate that our approach achieves high accuracy, smooth transitions between motions, and generalizes well to unseen subjects
Authors: Younggeol Cho, Gokhan Solak, Olivia Nocentini, Marta Lorenzini, Andrea Fortuna, Arash Ajoudani
Abstract:
Detecting and preventing falls in humans is a critical component of assistive robotic systems. While significant progress has been made in detecting falls, the prediction of falls before they happen, and analysis of the transient state between stability and an impending fall remain unexplored. In this paper, we propose a anticipatory fall detection method that utilizes a hybrid model combining Dynamic Graph Neural Networks (DGNN) with Long Short-Term Memory (LSTM) networks that decoupled the motion prediction and gait classification tasks to anticipate falls with high accuracy. Our approach employs real-time skeletal features extracted from video sequences as input for the proposed model. The DGNN acts as a classifier, distinguishing between three gait states: stable, transient, and fall. The LSTM-based network then predicts human movement in subsequent time steps, enabling early detection of falls. The proposed model was trained and validated using the OUMVLP-Pose and URFD datasets, demonstrating superior performance in terms of prediction error and recognition accuracy compared to models relying solely on DGNN and models from literature. The results indicate that decoupling prediction and classification improves performance compared to addressing the unified problem using only the DGNN. Furthermore, our method allows for the monitoring of the transient state, offering valuable insights that could enhance the functionality of advanced assistance systems.
Authors: Xin You, Runze Yang, Chuyan Zhang, Zhongliang Jiang, Jie Yang, Nassir Navab
Abstract:
The temporal interpolation task for 4D medical imaging, plays a crucial role in clinical practice of respiratory motion modeling. Following the simplified linear-motion hypothesis, existing approaches adopt optical flow-based models to interpolate intermediate frames. However, realistic respiratory motions should be nonlinear and quasi-periodic with specific frequencies. Intuited by this property, we resolve the temporal interpolation task from the frequency perspective, and propose a Fourier basis-guided Diffusion model, termed FB-Diff. Specifically, due to the regular motion discipline of respiration, physiological motion priors are introduced to describe general characteristics of temporal data distributions. Then a Fourier motion operator is elaborately devised to extract Fourier bases by incorporating physiological motion priors and case-specific spectral information in the feature space of Variational Autoencoder. Well-learned Fourier bases can better simulate respiratory motions with motion patterns of specific frequencies. Conditioned on starting and ending frames, the diffusion model further leverages well-learned Fourier bases via the basis interaction operator, which promotes the temporal interpolation task in a generative manner. Extensive results demonstrate that FB-Diff achieves state-of-the-art (SOTA) perceptual performance with better temporal consistency while maintaining promising reconstruction metrics. Codes are available.
Authors: Huitong Yang, Zhuoxiao Chen, Fengyi Zhang, Zi Huang, Yadan Luo
Abstract:
Maintaining robust 3D perception under dynamic and unpredictable test-time conditions remains a critical challenge for autonomous driving systems. Existing test-time adaptation (TTA) methods often fail in high-variance tasks like 3D object detection due to unstable optimization and sharp minima. While recent model merging strategies based on linear mode connectivity (LMC) offer improved stability by interpolating between fine-tuned checkpoints, they are computationally expensive, requiring repeated checkpoint access and multiple forward passes. In this paper, we introduce CodeMerge, a lightweight and scalable model merging framework that bypasses these limitations by operating in a compact latent space. Instead of loading full models, CodeMerge represents each checkpoint with a low-dimensional fingerprint derived from the source model's penultimate features and constructs a key-value codebook. We compute merging coefficients using ridge leverage scores on these fingerprints, enabling efficient model composition without compromising adaptation quality. Our method achieves strong performance across challenging benchmarks, improving end-to-end 3D detection 14.9% NDS on nuScenes-C and LiDAR-based detection by over 7.6% mAP on nuScenes-to-KITTI, while benefiting downstream tasks such as online mapping, motion prediction and planning even without training. Code and pretrained models are released in the supplementary material.
Authors: Jian Wang, Rishabh Dabral, Diogo Luvizon, Zhe Cao, Lingjie Liu, Thabo Beeler, Christian Theobalt
Abstract:
This work focuses on tracking and understanding human motion using consumer wearable devices, such as VR/AR headsets, smart glasses, cellphones, and smartwatches. These devices provide diverse, multi-modal sensor inputs, including egocentric images, and 1-3 sparse IMU sensors in varied combinations. Motion descriptions can also accompany these signals. The diverse input modalities and their intermittent availability pose challenges for consistent motion capture and understanding. In this work, we present Ego4o (o for omni), a new framework for simultaneous human motion capture and understanding from multi-modal egocentric inputs. This method maintains performance with partial inputs while achieving better results when multiple modalities are combined. First, the IMU sensor inputs, the optional egocentric image, and text description of human motion are encoded into the latent space of a motion VQ-VAE. Next, the latent vectors are sent to the VQ-VAE decoder and optimized to track human motion. When motion descriptions are unavailable, the latent vectors can be input into a multi-modal LLM to generate human motion descriptions, which can further enhance motion capture accuracy. Quantitative and qualitative evaluations demonstrate the effectiveness of our method in predicting accurate human motion and high-quality motion descriptions.
Authors: Zongzhao Li, Jiacheng Cen, Bing Su, Wenbing Huang, Tingyang Xu, Yu Rong, Deli Zhao
Abstract:
Accurately predicting 3D structures and dynamics of physical systems is crucial in scientific applications. Existing approaches that rely on geometric Graph Neural Networks (GNNs) effectively enforce $\mathrm{E}(3)$-equivariance, but they often fall in leveraging extensive broader information. While direct application of Large Language Models (LLMs) can incorporate external knowledge, they lack the capability for spatial reasoning with guaranteed equivariance. In this paper, we propose EquiLLM, a novel framework for representing 3D physical systems that seamlessly integrates E(3)-equivariance with LLM capabilities. Specifically, EquiLLM comprises four key components: geometry-aware prompting, an equivariant encoder, an LLM, and an equivariant adaptor. Essentially, the LLM guided by the instructive prompt serves as a sophisticated invariant feature processor, while 3D directional information is exclusively handled by the equivariant encoder and adaptor modules. Experimental results demonstrate that EquiLLM delivers significant improvements over previous methods across molecular dynamics simulation, human motion simulation, and antibody design, highlighting its promising generalizability.
Authors: Zhengru Fang, Yu Guo, Jingjing Wang, Yuang Zhang, Haonan An, Yinhai Wang, Yuguang Fang
Abstract:
Sharing and reconstructing a consistent spatial memory is a critical challenge in multi-agent systems, where partial observability and limited bandwidth often lead to catastrophic failures in coordination. We introduce a multi-agent predictive coding framework that formulate coordination as the minimization of mutual uncertainty among agents. Instantiated as an information bottleneck objective, it prompts agents to learn not only who and what to communicate but also when. At the foundation of this framework lies a grid-cell-like metric as internal spatial coding for self-localization, emerging spontaneously from self-supervised motion prediction. Building upon this internal spatial code, agents gradually develop a bandwidth-efficient communication mechanism and specialized neural populations that encode partners' locations: an artificial analogue of hippocampal social place cells (SPCs). These social representations are further enacted by a hierarchical reinforcement learning policy that actively explores to reduce joint uncertainty. On the Memory-Maze benchmark, our approach shows exceptional resilience to bandwidth constraints: success degrades gracefully from 73.5% to 64.4% as bandwidth shrinks from 128 to 4 bits/step, whereas a full-broadcast baseline collapses from 67.6% to 28.6%. Our findings establish a theoretically principled and biologically plausible basis for how complex social representations emerge from a unified predictive drive, leading to social collective intelligence.
Authors: Zhitao Wang, Hengyu Man, Wenrui Li, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Abstract:
Recent advances in video generation techniques have given rise to an emerging paradigm of generative video coding for Ultra-Low Bitrate (ULB) scenarios by leveraging powerful generative priors. However, most existing methods are limited by domain specificity (e.g., facial or human videos) or excessive dependence on high-level text guidance, which tend to inadequately capture fine-grained motion details, leading to unrealistic or incoherent reconstructions. To address these challenges, we propose Trajectory-Guided Generative Video Coding (dubbed T-GVC), a novel framework that bridges low-level motion tracking with high-level semantic understanding. T-GVC features a semantic-aware sparse motion sampling pipeline that extracts pixel-wise motion as sparse trajectory points based on their semantic importance, significantly reducing the bitrate while preserving critical temporal semantic information. In addition, by integrating trajectory-aligned loss constraints into diffusion processes, we introduce a training-free guidance mechanism in latent space to ensure physically plausible motion patterns without sacrificing the inherent capabilities of generative models. Experimental results demonstrate that T-GVC outperforms both traditional and neural video codecs under ULB conditions. Furthermore, additional experiments confirm that our framework achieves more precise motion control than existing text-guided methods, paving the way for a novel direction of generative video coding guided by geometric motion modeling.
Authors: Yue Ma, Yulong Liu, Qiyuan Zhu, Ayden Yang, Kunyu Feng, Xinhua Zhang, Zhifeng Li, Sirui Han, Chenyang Qi, Qifeng Chen
Abstract:
Recently, breakthroughs in the video diffusion transformer have shown remarkable capabilities in diverse motion generations. As for the motion-transfer task, current methods mainly use two-stage Low-Rank Adaptations (LoRAs) finetuning to obtain better performance. However, existing adaptation-based motion transfer still suffers from motion inconsistency and tuning inefficiency when applied to large video diffusion transformers. Naive two-stage LoRA tuning struggles to maintain motion consistency between generated and input videos due to the inherent spatial-temporal coupling in the 3D attention operator. Additionally, they require time-consuming fine-tuning processes in both stages. To tackle these issues, we propose Follow-Your-Motion, an efficient two-stage video motion transfer framework that finetunes a powerful video diffusion transformer to synthesize complex motion. Specifically, we propose a spatial-temporal decoupled LoRA to decouple the attention architecture for spatial appearance and temporal motion processing. During the second training stage, we design the sparse motion sampling and adaptive RoPE to accelerate the tuning speed. To address the lack of a benchmark for this field, we introduce MotionBench, a comprehensive benchmark comprising diverse motion, including creative camera motion, single object motion, multiple object motion, and complex human motion. We show extensive evaluations on MotionBench to verify the superiority of Follow-Your-Motion.
Authors: Xianqi Zhang, Hongliang Wei, Wenrui Wang, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Abstract:
Humanoid robots have attracted significant attention in recent years. Reinforcement Learning (RL) is one of the main ways to control the whole body of humanoid robots. RL enables agents to complete tasks by learning from environment interactions, guided by task rewards. However, existing RL methods rarely explicitly consider the impact of body stability on humanoid locomotion and manipulation. Achieving high performance in whole-body control remains a challenge for RL methods that rely solely on task rewards. In this paper, we propose a Foundation model-based method for humanoid Locomotion And Manipulation (FLAM for short). FLAM integrates a stabilizing reward function with a basic policy. The stabilizing reward function is designed to encourage the robot to learn stable postures, thereby accelerating the learning process and facilitating task completion. Specifically, the robot pose is first mapped to the 3D virtual human model. Then, the human pose is stabilized and reconstructed through a human motion reconstruction model. Finally, the pose before and after reconstruction is used to compute the stabilizing reward. By combining this stabilizing reward with the task reward, FLAM effectively guides policy learning. Experimental results on a humanoid robot benchmark demonstrate that FLAM outperforms state-of-the-art RL methods, highlighting its effectiveness in improving stability and overall performance.
Authors: Zifeng Zhuang, Diyuan Shi, Runze Suo, Xiao He, Hongyin Zhang, Ting Wang, Shangke Lyu, Donglin Wang
Abstract:
Complex high-dimensional spaces with high Degree-of-Freedom and complicated action spaces, such as humanoid robots equipped with dexterous hands, pose significant challenges for reinforcement learning (RL) algorithms, which need to wisely balance exploration and exploitation under limited sample budgets. In general, feasible regions for accomplishing tasks within complex high-dimensional spaces are exceedingly narrow. For instance, in the context of humanoid robot motion control, the vast majority of space corresponds to falling, while only a minuscule fraction corresponds to standing upright, which is conducive to the completion of downstream tasks. Once the robot explores into a potentially task-relevant region, it should place greater emphasis on the data within that region. Building on this insight, we propose the $\textbf{S}$elf-$\textbf{I}$mitative $\textbf{R}$einforcement $\textbf{L}$earning ($\textbf{SIRL}$) framework, where the RL algorithm also imitates potentially task-relevant trajectories. Specifically, trajectory return is utilized to determine its relevance to the task and an additional behavior cloning is adopted whose weight is dynamically adjusted based on the trajectory return. As a result, our proposed algorithm achieves 120% performance improvement on the challenging HumanoidBench with 5% extra computation overhead. With further visualization, we find the significant performance gain does lead to meaningful behavior improvement that several tasks are solved successfully.
Authors: Youliang Zhang, Zhengguang Zhou, Zhentao Yu, Ziyao Huang, Teng Hu, Sen Liang, Guozhen Zhang, Ziqiao Peng, Shunkai Li, Yi Chen, Zixiang Zhou, Yuan Zhou, Qinglin Lu, Xiu Li
Abstract:
Generating talking avatars is a fundamental task in video generation. Although existing methods can generate full-body talking avatars with simple human motion, extending this task to grounded human-object interaction (GHOI) remains an open challenge, requiring the avatar to perform text-aligned interactions with surrounding objects. This challenge stems from the need for environmental perception and the control-quality dilemma in GHOI generation. To address this, we propose a novel dual-stream framework, InteractAvatar, which decouples perception and planning from video synthesis for grounded human-object interaction. Leveraging detection to enhance environmental perception, we introduce a Perception and Interaction Module (PIM) to generate text-aligned interaction motions. Additionally, an Audio-Interaction Aware Generation Module (AIM) is proposed to synthesize vivid talking avatars performing object interactions. With a specially designed motion-to-video aligner, PIM and AIM share a similar network structure and enable parallel co-generation of motions and plausible videos, effectively mitigating the control-quality dilemma. Finally, we establish a benchmark, GroundedInter, for evaluating GHOI video generation. Extensive experiments and comparisons demonstrate the effectiveness of our method in generating grounded human-object interactions for talking avatars. Project page: https://interactavatar.github.io
Authors: Hanmo Chen, Guangtao Lyu, Chenghao Xu, Jiexi Yan, Xu Yang, Cheng Deng
Abstract:
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
Authors: Rui Zhong, Yizhe Sun, Junjie Wen, Jinming Li, Chuang Cheng, Wei Dai, Zhiwen Zeng, Huimin Lu, Yichen Zhu, Yi Xu
Abstract:
A significant bottleneck in humanoid policy learning is the acquisition of large-scale, diverse datasets, as collecting reliable real-world data remains both difficult and cost-prohibitive. To address this limitation, we introduce HumanoidExo, a novel system that transfers human motion to whole-body humanoid data. HumanoidExo offers a high-efficiency solution that minimizes the embodiment gap between the human demonstrator and the robot, thereby tackling the scarcity of whole-body humanoid data. By facilitating the collection of more voluminous and diverse datasets, our approach significantly enhances the performance of humanoid robots in dynamic, real-world scenarios. We evaluated our method across three challenging real-world tasks: table-top manipulation, manipulation integrated with stand-squat motions, and whole-body manipulation. Our results empirically demonstrate that HumanoidExo is a crucial addition to real-robot data, as it enables the humanoid policy to generalize to novel environments, learn complex whole-body control from only five real-robot demonstrations, and even acquire new skills (i.e., walking) solely from HumanoidExo data.
Authors: Jianxin Shi, Zengqi Peng, Xiaolong Chen, Tianyu Wo, Jun Ma
Abstract:
Trajectory prediction is a critical component of autonomous driving, essential for ensuring both safety and efficiency on the road. However, traditional approaches often struggle with the scarcity of labeled data and exhibit suboptimal performance in multi-agent prediction scenarios. To address these challenges, we introduce a disentangled context-aware pre-training framework for multi-agent motion prediction, named DECAMP. Unlike existing methods that entangle representation learning with pretext tasks, our framework decouples behavior pattern learning from latent feature reconstruction, prioritizing interpretable dynamics and thereby enhancing scene representation for downstream prediction. Additionally, our framework incorporates context-aware representation learning alongside collaborative spatial-motion pretext tasks, which enables joint optimization of structural and intentional reasoning while capturing the underlying dynamic intentions. Our experiments on the Argoverse 2 benchmark showcase the superior performance of our method, and the results attained underscore its effectiveness in multi-agent motion forecasting. To the best of our knowledge, this is the first context autoencoder framework for multi-agent motion forecasting in autonomous driving. The code and models will be made publicly available.
Authors: Tairan He, Wenli Xiao, Toru Lin, Zhengyi Luo, Zhenjia Xu, Zhenyu Jiang, Jan Kautz, Changliu Liu, Guanya Shi, Xiaolong Wang, Linxi Fan, Yuke Zhu
Abstract:
Humanoid whole-body control requires adapting to diverse tasks such as navigation, loco-manipulation, and tabletop manipulation, each demanding a different mode of control. For example, navigation relies on root velocity tracking, while tabletop manipulation prioritizes upper-body joint angle tracking. Existing approaches typically train individual policies tailored to a specific command space, limiting their transferability across modes. We present the key insight that full-body kinematic motion imitation can serve as a common abstraction for all these tasks and provide general-purpose motor skills for learning multiple modes of whole-body control. Building on this, we propose HOVER (Humanoid Versatile Controller), a multi-mode policy distillation framework that consolidates diverse control modes into a unified policy. HOVER enables seamless transitions between control modes while preserving the distinct advantages of each, offering a robust and scalable solution for humanoid control across a wide range of modes. By eliminating the need for policy retraining for each control mode, our approach improves efficiency and flexibility for future humanoid applications.
Authors: Simon Bultmann, Raphael Memmesheimer, Jan Nogga, Julian Hau, Sven Behnke
Abstract:
The anticipation of human behavior is a crucial capability for robots to interact with humans safely and efficiently. We employ a smart edge sensor network to provide global observations, future predictions, and goal information to integrate anticipatory behavior for the control of a mobile manipulation robot. We present approaches to anticipate human behavior in the context of safe navigation and collaborative mobile manipulation. First, we anticipate human motion by employing projections of predicted human trajectories from smart edge sensor observations into the planning map of a mobile robot. Second, we anticipate human intentions in a collaborative furniture-carrying task to achieve a given room layout. Our experiments indicate that anticipating human behavior allows for safer navigation and more efficient collaboration. Finally, we showcase an integrated robotic system that anticipates human behavior while collaborating with an operator to achieve a target room layout, including the placement of tables and chairs.
Authors: Yuxiang Lai, Jike Zhong, Ming Li, Yuheng Li, Xiaofeng Yang
Abstract:
Recent advances in large generative models have shown that simple autoregressive formulations, when scaled appropriately, can exhibit strong zero-shot generalization across domains. Motivated by this trend, we investigate whether autoregressive video modeling principles can be directly applied to medical imaging tasks, despite the model never being trained on medical data. Specifically, we evaluate a large vision model (LVM) in a zero-shot setting across four representative tasks: organ segmentation, denoising, super-resolution, and motion prediction. Remarkably, even without domain-specific fine-tuning, the LVM can delineate anatomical structures in CT scans and achieve competitive performance on segmentation, denoising, and super-resolution. Most notably, in radiotherapy motion prediction, the model forecasts future 3D CT phases directly from prior phases of a 4D CT scan, producing anatomically consistent predictions that capture patient-specific respiratory dynamics with realistic temporal coherence. We evaluate the LVM on 4D CT data from 122 patients, totaling over 1,820 3D CT volumes. Despite no prior exposure to medical data, the model achieves strong performance across all tasks and surpasses specialized DVF-based and generative baselines in motion prediction, achieving state-of-the-art spatial accuracy. These findings reveal the emergence of zero-shot capabilities in medical video modeling and highlight the potential of general-purpose video models to serve as unified learners and reasoners laying the groundwork for future medical foundation models built on video models.
Authors: Gabriel Maldonado, Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, Hamed Tabkhi
Abstract:
Human motion generation is essential for fields such as animation, robotics, and virtual reality, requiring models that effectively capture motion dynamics from text descriptions. Existing approaches often rely on Contrastive Language-Image Pretraining (CLIP)-based text encoders, but their training on text-image pairs constrains their ability to understand temporal and kinematic structures inherent in motion and motion generation. This work introduces MoCLIP, a fine-tuned CLIP model with an additional motion encoding head, trained on motion sequences using contrastive learning and tethering loss. By explicitly incorporating motion-aware representations, MoCLIP enhances motion fidelity while remaining compatible with existing CLIP-based pipelines and seamlessly integrating into various CLIP-based methods. Experiments demonstrate that MoCLIP improves Top-1, Top-2, and Top-3 accuracy while maintaining competitive FID, leading to improved text-to-motion alignment results. These results highlight MoCLIP's versatility and effectiveness, establishing it as a robust framework for enhancing motion generation.
Authors: Mohammadreza Baharani, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Gabriel Maldonado, Hamed Tabkhi
Abstract:
Foundation Models (FM) have increasingly drawn the attention of researchers due to their scalability and generalization across diverse tasks. Inspired by the success of FMs and the principles that have driven advancements in Large Language Models (LLMs), we introduce MoFM as a novel Motion Foundation Model. MoFM is designed for the semantic understanding of complex human motions in both time and space. To facilitate large-scale training, MotionBook, a comprehensive human motion dictionary of discretized motions is designed and employed. MotionBook utilizes Thermal Cubes to capture spatio-temporal motion heatmaps, applying principles from discrete variational models to encode human movements into discrete units for a more efficient and scalable representation. MoFM, trained on a large corpus of motion data, provides a foundational backbone adaptable to diverse downstream tasks, supporting paradigms such as one-shot, unsupervised, and supervised tasks. This versatility makes MoFM well-suited for a wide range of motion-based applications.
Authors: Jiageng Mao, Siheng Zhao, Siqi Song, Tianheng Shi, Junjie Ye, Mingtong Zhang, Haoran Geng, Jitendra Malik, Vitor Guizilini, Yue Wang
Abstract:
Scalable learning of humanoid robots is crucial for their deployment in real-world applications. While traditional approaches primarily rely on reinforcement learning or teleoperation to achieve whole-body control, they are often limited by the diversity of simulated environments and the high costs of demonstration collection. In contrast, human videos are ubiquitous and present an untapped source of semantic and motion information that could significantly enhance the generalization capabilities of humanoid robots. This paper introduces Humanoid-X, a large-scale dataset of over 20 million humanoid robot poses with corresponding text-based motion descriptions, designed to leverage this abundant data. Humanoid-X is curated through a comprehensive pipeline: data mining from the Internet, video caption generation, motion retargeting of humans to humanoid robots, and policy learning for real-world deployment. With Humanoid-X, we further train a large humanoid model, UH-1, which takes text instructions as input and outputs corresponding actions to control a humanoid robot. Extensive simulated and real-world experiments validate that our scalable training approach leads to superior generalization in text-based humanoid control, marking a significant step toward adaptable, real-world-ready humanoid robots.
Authors: Junqiao Fan, Haocong Rao, Jiarui Zhang, Jianfei Yang, Lihua Xie
Abstract:
Existing Human Motion Prediction (HMP) methods based on RGB-D cameras are sensitive to lighting conditions and raise privacy concerns, limiting their real-world applications such as firefighting and healthcare. Motivated by the robustness and privacy-preserving nature of millimeter-wave (mmWave) radar, this work introduces radar as a novel sensing modality for HMP, for the first time. Nevertheless, radar signals often suffer from specular reflections and multipath effects, resulting in noisy and temporally inconsistent measurements, such as body-part miss-detection. To address these radar-specific artifacts, we propose mmPred, the first diffusion-based framework tailored for radar-based HMP. mmPred introduces a dual-domain historical motion representation to guide the generation process, combining a Time-domain Pose Refinement (TPR) branch for learning fine-grained details and a Frequency-domain Dominant Motion (FDM) branch for capturing global motion trends and suppressing frame-level inconsistency. Furthermore, we design a Global Skeleton-relational Transformer (GST) as the diffusion backbone to model global inter-joint cooperation, enabling corrupted joints to dynamically aggregate information from others. Extensive experiments show that mmPred achieves state-of-the-art performance, outperforming existing methods by 8.6% on mmBody and 22% on mm-Fi.
Authors: Yunjiao Zhou, Xinyan Chen, Junlang Qian, Lihua Xie, Jianfei Yang
Abstract:
Understanding complex human activities demands the ability to decompose motion into fine-grained, semantic-aligned sub-actions. This motion grounding process is crucial for behavior analysis, embodied AI and virtual reality. Yet, most existing methods rely on dense supervision with predefined action classes, which are infeasible in open-vocabulary, real-world settings. In this paper, we propose ZOMG, a zero-shot, open-vocabulary framework that segments motion sequences into semantically meaningful sub-actions without requiring any annotations or fine-tuning. Technically, ZOMG integrates (1) language semantic partition, which leverages large language models to decompose instructions into ordered sub-action units, and (2) soft masking optimization, which learns instance-specific temporal masks to focus on frames critical to sub-actions, while maintaining intra-segment continuity and enforcing inter-segment separation, all without altering the pretrained encoder. Experiments on three motion-language datasets demonstrate state-of-the-art effectiveness and efficiency of motion grounding performance, outperforming prior methods by +8.7\% mAP on HumanML3D benchmark. Meanwhile, significant improvements also exist in downstream retrieval, establishing a new paradigm for annotation-free motion understanding.
Authors: Yufei Zhu, Shih-Min Yang, Andrey Rudenko, Tomasz P. Kucner, Achim J. Lilienthal, Martin Magnusson
Abstract:
Safe and efficient robot operation in complex human environments can benefit from good models of site-specific motion patterns. Maps of Dynamics (MoDs) provide such models by encoding statistical motion patterns in a map, but existing representations use discrete spatial sampling and typically require costly offline construction. We propose a continuous spatio-temporal MoD representation based on implicit neural functions that directly map coordinates to the parameters of a Semi-Wrapped Gaussian Mixture Model. This removes the need for discretization and imputation for unevenly sampled regions, enabling smooth generalization across both space and time. Evaluated on a large public dataset with long-term real-world people tracking data, our method achieves better accuracy of motion representation and smoother velocity distributions in sparse regions while still being computationally efficient, compared to available baselines. The proposed approach demonstrates a powerful and efficient way of modeling complex human motion patterns.
Authors: Tiago Rodrigues de Almeida, Yufei Zhu, Andrey Rudenko, Tomasz P. Kucner, Johannes A. Stork, Martin Magnusson, Achim J. Lilienthal
Abstract:
Robots and other intelligent systems navigating in complex dynamic environments should predict future actions and intentions of surrounding agents to reach their goals efficiently and avoid collisions. The dynamics of those agents strongly depends on their tasks, roles, or observable labels. Class-conditioned motion prediction is thus an appealing way to reduce forecast uncertainty and get more accurate predictions for heterogeneous agents. However, this is hardly explored in the prior art, especially for mobile robots and in limited data applications. In this paper, we analyse different class-conditioned trajectory prediction methods on two datasets. We propose a set of conditional pattern-based and efficient deep learning-based baselines, and evaluate their performance on robotics and outdoors datasets (THÖR-MAGNI and Stanford Drone Dataset). Our experiments show that all methods improve accuracy in most of the settings when considering class labels. More importantly, we observe that there are significant differences when learning from imbalanced datasets, or in new environments where sufficient data is not available. In particular, we find that deep learning methods perform better on balanced datasets, but in applications with limited data, e.g., cold start of a robot in a new environment, or imbalanced classes, pattern-based methods may be preferable.
Authors: Jiahao Luo, Chaoyang Wang, Michael Vasilkovsky, Vladislav Shakhrai, Di Liu, Peiye Zhuang, Sergey Tulyakov, Peter Wonka, Hsin-Ying Lee, James Davis, Jian Wang
Abstract:
We present T2Bs, a framework for generating high-quality, animatable character head morphable models from text by combining static text-to-3D generation with video diffusion. Text-to-3D models produce detailed static geometry but lack motion synthesis, while video diffusion models generate motion with temporal and multi-view geometric inconsistencies. T2Bs bridges this gap by leveraging deformable 3D Gaussian splatting to align static 3D assets with video outputs. By constraining motion with static geometry and employing a view-dependent deformation MLP, T2Bs (i) outperforms existing 4D generation methods in accuracy and expressiveness while reducing video artifacts and view inconsistencies, and (ii) reconstructs smooth, coherent, fully registered 3D geometries designed to scale for building morphable models with diverse, realistic facial motions. This enables synthesizing expressive, animatable character heads that surpass current 4D generation techniques.
Authors: Haidong Xu, Guangwei Xu, Zhedong Zheng, Xiatian Zhu, Wei Ji, Xiangtai Li, Ruijie Guo, Meishan Zhang, Min zhang, Hao Fei
Abstract:
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input.
Authors: Zihan Xu, Mengxian Hu, Kaiyan Xiao, Qin Fang, Chengju Liu, Qijun Chen
Abstract:
Human motion retargeting for humanoid robots, transferring human motion data to robots for imitation, presents significant challenges but offers considerable potential for real-world applications. Traditionally, this process relies on human demonstrations captured through pose estimation or motion capture systems. In this paper, we explore a text-driven approach to mapping human motion to humanoids. To address the inherent discrepancies between the generated motion representations and the kinematic constraints of humanoid robots, we propose an angle signal network based on norm-position and rotation loss (NPR Loss). It generates joint angles, which serve as inputs to a reinforcement learning-based whole-body joint motion control policy. The policy ensures tracking of the generated motions while maintaining the robot's stability during execution. Our experimental results demonstrate the efficacy of this approach, successfully transferring text-driven human motion to a real humanoid robot NAO.
Authors: Zhongyu Jiang, Wenhao Chai, Zhuoran Zhou, Cheng-Yen Yang, Hsiang-Wei Huang, Jenq-Neng Hwang
Abstract:
Human motion generation has advanced markedly with the advent of diffusion models. Most recent studies have concentrated on generating motion sequences based on text prompts, commonly referred to as text-to-motion generation. However, the bidirectional generation of motion and text, enabling tasks such as motion-to-text alongside text-to-motion, has been largely unexplored. This capability is essential for aligning diverse modalities and supports unconditional generation. In this paper, we introduce PackDiT, the first diffusion-based generative model capable of performing various tasks simultaneously, including motion generation, motion prediction, text generation, text-to-motion, motion-to-text, and joint motion-text generation. Our core innovation leverages mutual blocks to integrate multiple diffusion transformers (DiTs) across different modalities seamlessly. We train PackDiT on the HumanML3D dataset, achieving state-of-the-art text-to-motion performance with an FID score of 0.106, along with superior results in motion prediction and in-between tasks. Our experiments further demonstrate that diffusion models are effective for motion-to-text generation, achieving performance comparable to that of autoregressive models.
Authors: Andrew Bond, Jui-Hsien Wang, Long Mai, Erkut Erdem, Aykut Erdem
Abstract:
Efficient neural representations for dynamic video scenes are critical for applications ranging from video compression to interactive simulations. Yet, existing methods often face challenges related to high memory usage, lengthy training times, and temporal consistency. To address these issues, we introduce a novel neural video representation that combines 3D Gaussian splatting with continuous camera motion modeling. By leveraging Neural ODEs, our approach learns smooth camera trajectories while maintaining an explicit 3D scene representation through Gaussians. Additionally, we introduce a spatiotemporal hierarchical learning strategy, progressively refining spatial and temporal features to enhance reconstruction quality and accelerate convergence. This memory-efficient approach achieves high-quality rendering at impressive speeds. Experimental results show that our hierarchical learning, combined with robust camera motion modeling, captures complex dynamic scenes with strong temporal consistency, achieving state-of-the-art performance across diverse video datasets in both high- and low-motion scenarios.
Authors: Yufei Zhu, Andrey Rudenko, Luigi Palmieri, Lukas Heuer, Achim J. Lilienthal, Martin Magnusson
Abstract:
Maps of dynamics are effective representations of motion patterns learned from prior observations, with recent research demonstrating their ability to enhance various downstream tasks such as human-aware robot navigation, long-term human motion prediction, and robot localization. Current advancements have primarily concentrated on methods for learning maps of human flow in environments where the flow is static, i.e., not assumed to change over time. In this paper we propose an online update method of the CLiFF-map (an advanced map of dynamics type that models motion patterns as velocity and orientation mixtures) to actively detect and adapt to human flow changes. As new observations are collected, our goal is to update a CLiFF-map to effectively and accurately integrate them, while retaining relevant historic motion patterns. The proposed online update method maintains a probabilistic representation in each observed location, updating parameters by continuously tracking sufficient statistics. In experiments using both synthetic and real-world datasets, we show that our method is able to maintain accurate representations of human motion dynamics, contributing to high performance flow-compliant planning downstream tasks, while being orders of magnitude faster than the comparable baselines.
Authors: Hao Huang, Geeta Chandra Raju Bethala, Shuaihang Yuan, Congcong Wen, Anthony Tzes, Yi Fang
Abstract:
Whole-body humanoid motion represents a cornerstone challenge in robotics, integrating balance, coordination, and adaptability to enable human-like behaviors. However, existing methods typically require multiple training samples per motion category, rendering the collection of high-quality human motion datasets both labor-intensive and costly. To address this, we propose a novel approach that trains effective humanoid motion policies using only a single non-walking target motion sample alongside readily available walking motions. The core idea lies in leveraging order-preserving optimal transport to compute distances between walking and non-walking sequences, followed by interpolation along geodesics to generate new intermediate pose skeletons, which are then optimized for collision-free configurations and retargeted to the humanoid before integration into a simulated environment for policy training via reinforcement learning. Experimental evaluations on the CMU MoCap dataset demonstrate that our method consistently outperforms baselines, achieving superior performance across metrics. Code will be released upon acceptance.
Authors: Clinton Ansun Mo, Kun Hu, Chengjiang Long, Dong Yuan, Wan-Chi Siu, Zhiyong Wang
Abstract:
Motion skeletons drive 3D character animation by transforming bone hierarchies, but differences in proportions or structure make motion data hard to transfer across skeletons, posing challenges for data-driven motion synthesis. Temporal Point Clouds (TPCs) offer an unstructured, cross-compatible motion representation. Though reversible with skeletons, TPCs mainly serve for compatibility, not for direct motion task learning. Doing so would require data synthesis capabilities for the TPC format, which presents unexplored challenges regarding its unique temporal consistency and point identifiability. Therefore, we propose PUMPS, the primordial autoencoder architecture for TPC data. PUMPS independently reduces frame-wise point clouds into sampleable feature vectors, from which a decoder extracts distinct temporal points using latent Gaussian noise vectors as sampling identifiers. We introduce linear assignment-based point pairing to optimise the TPC reconstruction process, and negate the use of expensive point-wise attention mechanisms in the architecture. Using these latent features, we pre-train a motion synthesis model capable of performing motion prediction, transition generation, and keyframe interpolation. For these pre-training tasks, PUMPS performs remarkably well even without native dataset supervision, matching state-of-the-art performance. When fine-tuned for motion denoising or estimation, PUMPS outperforms many respective methods without deviating from its generalist architecture.
Authors: Janik Kaden, Maximilian Hilger, Tim Schreiter, Marius Schaab, Thomas Graichen, Andrey Rudenko, Ulrich Heinkel, Achim J. Lilienthal
Abstract:
With robots increasingly integrating into human environments, understanding and predicting human motion is essential for safe and efficient interactions. Modern human motion and activity prediction approaches require high quality and quantity of data for training and evaluation, usually collected from motion capture systems, onboard or stationary sensors. Setting up these systems is challenging due to the intricate setup of hardware components, extensive calibration procedures, occlusions, and substantial costs. These constraints make deploying such systems in new and large environments difficult and limit their usability for in-the-wild measurements. In this paper we investigate the possibility to apply the novel Ultra-Wideband (UWB) localization technology as a scalable alternative for human motion capture in crowded and occlusion-prone environments. We include additional sensing modalities such as eye-tracking, onboard robot LiDAR and radar sensors, and record motion capture data as ground truth for evaluation and comparison. The environment imitates a museum setup, with up to four active participants navigating toward random goals in a natural way, and offers more than 130 minutes of multi-modal data. Our investigation provides a step toward scalable and accurate motion data collection beyond vision-based systems, laying a foundation for evaluating sensing modalities like UWB in larger and complex environments like warehouses, airports, or convention centers.
Authors: Jiajie Liu, Mengyuan Liu, Hong Liu, Wenhao Li
Abstract:
Recent multi-frame lifting methods have dominated the 3D human pose estimation. However, previous methods ignore the intricate dependence within the 2D pose sequence and learn single temporal correlation. To alleviate this limitation, we propose TCPFormer, which leverages an implicit pose proxy as an intermediate representation. Each proxy within the implicit pose proxy can build one temporal correlation therefore helping us learn more comprehensive temporal correlation of human motion. Specifically, our method consists of three key components: Proxy Update Module (PUM), Proxy Invocation Module (PIM), and Proxy Attention Module (PAM). PUM first uses pose features to update the implicit pose proxy, enabling it to store representative information from the pose sequence. PIM then invocates and integrates the pose proxy with the pose sequence to enhance the motion semantics of each pose. Finally, PAM leverages the above mapping between the pose sequence and pose proxy to enhance the temporal correlation of the whole pose sequence. Experiments on the Human3.6M and MPI-INF-3DHP datasets demonstrate that our proposed TCPFormer outperforms the previous state-of-the-art methods.
Authors: Rui Yan, Jiajian Fu, Shiqi Yang, Lars Paulsen, Xuxin Cheng, Xiaolong Wang
Abstract:
Teleoperation systems are essential for efficiently collecting diverse and high-quality robot demonstration data, especially for complex, contact-rich tasks. However, current teleoperation platforms typically lack integrated force feedback, cross-embodiment generalization, and portable, user-friendly designs, limiting their practical deployment. To address these limitations, we introduce ACE-F, a cross embodiment foldable teleoperation system with integrated force feedback. Our approach leverages inverse kinematics (IK) combined with a carefully designed human-robot interface (HRI), enabling users to capture precise and high-quality demonstrations effortlessly. We further propose a generalized soft-controller pipeline integrating PD control and inverse dynamics to ensure robot safety and precise motion control across diverse robotic embodiments. Critically, to achieve cross-embodiment generalization of force feedback without additional sensors, we innovatively interpret end-effector positional deviations as virtual force signals, which enhance data collection and enable applications in imitation learning. Extensive teleoperation experiments confirm that ACE-F significantly simplifies the control of various robot embodiments, making dexterous manipulation tasks as intuitive as operating a computer mouse. The system is open-sourced at: https://acefoldable.github.io/
Authors: Simon Schaefer, Helen Oleynikova, Sandra Hirche, Stefan Leutenegger
Abstract:
Safe and efficient robotic navigation among humans is essential for integrating robots into everyday environments. Most existing approaches focus on simplified 2D crowd navigation and fail to account for the full complexity of human body dynamics beyond root motion. We present HumanMPC, a Model Predictive Control (MPC) framework for 3D Micro Air Vehicle (MAV) navigation among humans that combines theoretical safety guarantees with data-driven models for realistic human motion forecasting. Our approach introduces a novel twist to reachability-based safety formulation that constrains only the initial control input for safety while modeling its effects over the entire planning horizon, enabling safe yet efficient navigation. We validate HumanMPC in both simulated experiments using real human trajectories and in the real-world, demonstrating its effectiveness across tasks ranging from goal-directed navigation to visual servoing for human tracking. While we apply our method to MAVs in this work, it is generic and can be adapted by other platforms. Our results show that the method ensures safety without excessive conservatism and outperforms baseline approaches in both efficiency and reliability.
Authors: Chunxin Zheng, Kai Chen, Zhihai Bi, Yulin Li, Liang Pan, Jinni Zhou, Haoang Li, Jun Ma
Abstract:
Whole-body manipulation (WBM) for humanoid robots presents a promising approach for executing embracing tasks involving bulky objects, where traditional grasping relying on end-effectors only remains limited in such scenarios due to inherent stability and payload constraints. This paper introduces a reinforcement learning framework that integrates a pre-trained human motion prior with a neural signed distance field (NSDF) representation to achieve robust whole-body embracing. Our method leverages a teacher-student architecture to distill large-scale human motion data, generating kinematically natural and physically feasible whole-body motion patterns. This facilitates coordinated control across the arms and torso, enabling stable multi-contact interactions that enhance the robustness in manipulation and also the load capacity. The embedded NSDF further provides accurate and continuous geometric perception, improving contact awareness throughout long-horizon tasks. We thoroughly evaluate the approach through comprehensive simulations and real-world experiments. The results demonstrate improved adaptability to diverse shapes and sizes of objects and also successful sim-to-real transfer. These indicate that the proposed framework offers an effective and practical solution for multi-contact and long-horizon WBM tasks of humanoid robots.
Authors: Yueqi Zhang, Quancheng Qian, Taixian Hou, Peng Zhai, Xiaoyi Wei, Kangmai Hu, Jiafu Yi, Lihua Zhang
Abstract:
Vision-based locomotion in outdoor environments presents significant challenges for quadruped robots. Accurate environmental prediction and effective handling of depth sensor noise during real-world deployment remain difficult, severely restricting the outdoor applications of such algorithms. To address these deployment challenges in vision-based motion control, this letter proposes the Redundant Estimator Network (RENet) framework. The framework employs a dual-estimator architecture that ensures robust motion performance while maintaining deployment stability during onboard vision failures. Through an online estimator adaptation, our method enables seamless transitions between estimation modules when handling visual perception uncertainties. Experimental validation on a real-world robot demonstrates the framework's effectiveness in complex outdoor environments, showing particular advantages in scenarios with degraded visual perception. This framework demonstrates its potential as a practical solution for reliable robotic deployment in challenging field conditions. Project website: https://RENet-Loco.github.io/
Authors: Xiaotong Lin, Tianming Liang, Jian-Fang Hu, Kun-Yu Lin, Yulei Kang, Chunwei Tian, Jianhuang Lai, Wei-Shi Zheng
Abstract:
3D human-object interaction (HOI) anticipation aims to predict the future motion of humans and their manipulated objects, conditioned on the historical context. Generally, the articulated humans and rigid objects exhibit different motion patterns, due to their distinct intrinsic physical properties. However, this distinction is ignored by most of the existing works, which intend to capture the dynamics of both humans and objects within a single prediction model. In this work, we propose a novel contact-consistent decoupled diffusion framework CoopDiff, which employs two distinct branches to decouple human and object motion modeling, with the human-object contact points as shared anchors to bridge the motion generation across branches. The human dynamics branch is aimed to predict highly structured human motion, while the object dynamics branch focuses on the object motion with rigid translations and rotations. These two branches are bridged by a series of shared contact points with consistency constraint for coherent human-object motion prediction. To further enhance human-object consistency and prediction reliability, we propose a human-driven interaction module to guide object motion modeling. Extensive experiments on the BEHAVE and Human-object Interaction datasets demonstrate that our CoopDiff outperforms state-of-the-art methods.
Authors: Yuxiang Lai, Jike Zhong, Vanessa Su, Xiaofeng Yang
Abstract:
Radiotherapy often involves a prolonged treatment period. During this time, patients may experience organ motion due to breathing and other physiological factors. Predicting and modeling this motion before treatment is crucial for ensuring precise radiation delivery. However, existing pre-treatment organ motion prediction methods primarily rely on deformation analysis using principal component analysis (PCA), which is highly dependent on registration quality and struggles to capture periodic temporal dynamics for motion modeling.In this paper, we observe that organ motion prediction closely resembles an autoregressive process, a technique widely used in natural language processing (NLP). Autoregressive models predict the next token based on previous inputs, naturally aligning with our objective of predicting future organ motion phases. Building on this insight, we reformulate organ motion prediction as an autoregressive process to better capture patient-specific motion patterns. Specifically, we acquire 4D CT scans for each patient before treatment, with each sequence comprising multiple 3D CT phases. These phases are fed into the autoregressive model to predict future phases based on prior phase motion patterns. We evaluate our method on a real-world test set of 4D CT scans from 50 patients who underwent radiotherapy at our institution and a public dataset containing 4D CT scans from 20 patients (some with multiple scans), totaling over 1,300 3D CT phases. The performance in predicting the motion of the lung and heart surpasses existing benchmarks, demonstrating its effectiveness in capturing motion dynamics from CT images. These results highlight the potential of our method to improve pre-treatment planning in radiotherapy, enabling more precise and adaptive radiation delivery.
Authors: Jialong Li, Xuxin Cheng, Tianshu Huang, Shiqi Yang, Ri-Zhao Qiu, Xiaolong Wang
Abstract:
Humanoid robots derive much of their dexterity from hyper-dexterous whole-body movements, enabling tasks that require a large operational workspace: such as picking objects off the ground. However, achieving these capabilities on real humanoids remains challenging due to their high degrees of freedom (DoF) and nonlinear dynamics. We propose Adaptive Motion Optimization (AMO), a framework that integrates sim-to-real reinforcement learning (RL) with trajectory optimization for real-time, adaptive whole-body control. To mitigate distribution bias in motion imitation RL, we construct a hybrid AMO dataset and train a network capable of robust, on-demand adaptation to potentially O.O.D. commands. We validate AMO in simulation and on a 29-DoF Unitree G1 humanoid robot, demonstrating superior stability and an expanded workspace compared to strong baselines. Finally, we show that AMO's consistent performance supports autonomous task execution via imitation learning, underscoring the system's versatility and robustness.
Authors: Qihao Liu, Ju He, Qihang Yu, Liang-Chieh Chen, Alan Yuille
Abstract:
In recent years, video generation has seen significant advancements. However, challenges still persist in generating complex motions and interactions. To address these challenges, we introduce ReVision, a plug-and-play framework that explicitly integrates parameterized 3D model knowledge into a pretrained conditional video generation model, significantly enhancing its ability to generate high-quality videos with complex motion and interactions. Specifically, ReVision consists of three stages. First, a video diffusion model is used to generate a coarse video. Next, we extract a set of 2D and 3D features from the coarse video to construct a 3D object-centric representation, which is then refined by our proposed parameterized motion prior model to produce an accurate 3D motion sequence. Finally, this refined motion sequence is fed back into the same video diffusion model as additional conditioning, enabling the generation of motion-consistent videos, even in scenarios involving complex actions and interactions. We validate the effectiveness of our approach on Stable Video Diffusion, where ReVision significantly improves motion fidelity and coherence. Remarkably, with only 1.5B parameters, it even outperforms a state-of-the-art video generation model with over 13B parameters on complex video generation by a substantial margin. Our results suggest that, by incorporating 3D motion knowledge, even a relatively small video diffusion model can generate complex motions and interactions with greater realism and controllability, offering a promising solution for physically plausible video generation.
Authors: Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi He, Nikhil Sobanbab, Chaoyi Pan, Zeji Yi, Guannan Qu, Kris Kitani, Jessica Hodgins, Linxi "Jim" Fan, Yuke Zhu, Changliu Liu, Guanya Shi
Abstract:
Humanoid robots hold the potential for unparalleled versatility in performing human-like, whole-body skills. However, achieving agile and coordinated whole-body motions remains a significant challenge due to the dynamics mismatch between simulation and the real world. Existing approaches, such as system identification (SysID) and domain randomization (DR) methods, often rely on labor-intensive parameter tuning or result in overly conservative policies that sacrifice agility. In this paper, we present ASAP (Aligning Simulation and Real-World Physics), a two-stage framework designed to tackle the dynamics mismatch and enable agile humanoid whole-body skills. In the first stage, we pre-train motion tracking policies in simulation using retargeted human motion data. In the second stage, we deploy the policies in the real world and collect real-world data to train a delta (residual) action model that compensates for the dynamics mismatch. Then, ASAP fine-tunes pre-trained policies with the delta action model integrated into the simulator to align effectively with real-world dynamics. We evaluate ASAP across three transfer scenarios: IsaacGym to IsaacSim, IsaacGym to Genesis, and IsaacGym to the real-world Unitree G1 humanoid robot. Our approach significantly improves agility and whole-body coordination across various dynamic motions, reducing tracking error compared to SysID, DR, and delta dynamics learning baselines. ASAP enables highly agile motions that were previously difficult to achieve, demonstrating the potential of delta action learning in bridging simulation and real-world dynamics. These results suggest a promising sim-to-real direction for developing more expressive and agile humanoids.
Authors: Mazeyu Ji, Xuanbin Peng, Fangchen Liu, Jialong Li, Ge Yang, Xuxin Cheng, Xiaolong Wang
Abstract:
This paper tackles the challenge of enabling real-world humanoid robots to perform expressive and dynamic whole-body motions while maintaining overall stability and robustness. We propose Advanced Expressive Whole-Body Control (Exbody2), a method for producing whole-body tracking controllers that are trained on both human motion capture and simulated data and then transferred to the real world. We introduce a technique for decoupling the velocity tracking of the entire body from tracking body landmarks. We use a teacher policy to produce intermediate data that better conforms to the robot's kinematics and to automatically filter away infeasible whole-body motions. This two-step approach enabled us to produce a student policy that can be deployed on the robot that can walk, crouch, and dance. We also provide insight into the trade-off between versatility and the tracking performance on specific motions. We observed significant improvement of tracking performance after fine-tuning on a small amount of data, at the expense of the others.
Authors: Xuehai He, Shuohang Wang, Jianwei Yang, Xiaoxia Wu, Yiping Wang, Kuan Wang, Zheng Zhan, Olatunji Ruwase, Yelong Shen, Xin Eric Wang
Abstract:
Recent advancements in diffusion models have shown great promise in producing high-quality video content. However, efficiently training video diffusion models capable of integrating directional guidance and controllable motion intensity remains a challenging and under-explored area. To tackle these challenges, this paper introduces Mojito, a diffusion model that incorporates both motion trajectory and intensity control for text-to-video generation. Specifically, Mojito features a Directional Motion Control (DMC) module that leverages cross-attention to efficiently direct the generated object's motion without training, alongside a Motion Intensity Modulator (MIM) that uses optical flow maps generated from videos to guide varying levels of motion intensity. Extensive experiments demonstrate Mojito's effectiveness in achieving precise trajectory and intensity control with high computational efficiency, generating motion patterns that closely match specified directions and intensities, providing realistic dynamics that align well with natural motion in real-world scenarios.
Authors: Chenhao Lu, Xuxin Cheng, Jialong Li, Shiqi Yang, Mazeyu Ji, Chengjing Yuan, Ge Yang, Sha Yi, Xiaolong Wang
Abstract:
Humanoid robots require both robust lower-body locomotion and precise upper-body manipulation. While recent Reinforcement Learning (RL) approaches provide whole-body loco-manipulation policies, they lack precise manipulation with high DoF arms. In this paper, we propose decoupling upper-body control from locomotion, using inverse kinematics (IK) and motion retargeting for precise manipulation, while RL focuses on robust lower-body locomotion. We introduce PMP (Predictive Motion Priors), trained with Conditional Variational Autoencoder (CVAE) to effectively represent upper-body motions. The locomotion policy is trained conditioned on this upper-body motion representation, ensuring that the system remains robust with both manipulation and locomotion. We show that CVAE features are crucial for stability and robustness, and significantly outperforms RL-based whole-body control in precise manipulation. With precise upper-body motion and robust lower-body locomotion control, operators can remotely control the humanoid to walk around and explore different environments, while performing diverse manipulation tasks.
Authors: Can Cui, Zichong Yang, Yupeng Zhou, Juntong Peng, Sung-Yeon Park, Cong Zhang, Yunsheng Ma, Xu Cao, Wenqian Ye, Yiheng Feng, Jitesh Panchal, Lingxi Li, Yaobin Chen, Ziran Wang
Abstract:
Personalized driving refers to an autonomous vehicle's ability to adapt its driving behavior or control strategies to match individual users' preferences and driving styles while maintaining safety and comfort standards. However, existing works either fail to capture every individual preference precisely or become computationally inefficient as the user base expands. Vision-Language Models (VLMs) offer promising solutions to this front through their natural language understanding and scene reasoning capabilities. In this work, we propose a lightweight yet effective on-board VLM framework that provides low-latency personalized driving performance while maintaining strong reasoning capabilities. Our solution incorporates a Retrieval-Augmented Generation (RAG)-based memory module that enables continuous learning of individual driving preferences through human feedback. Through comprehensive real-world vehicle deployment and experiments, our system has demonstrated the ability to provide safe, comfortable, and personalized driving experiences across various scenarios and significantly reduce takeover rates by up to 76.9%. To the best of our knowledge, this work represents the first end-to-end VLM-based motion control system in real-world autonomous vehicles.
Authors: Chenghao Xu, Guangtao Lyu, Qi Liu, Jiexi Yan, Muli Yang, Cheng Deng
Abstract:
Physical motions are inherently continuous, and higher camera frame rates typically contribute to improved smoothness and temporal coherence. For the first time, we explore continuous representations of human motion sequences, featuring the ability to interpolate, inbetween, and even extrapolate any input motion sequences at arbitrary frame rates. To achieve this, we propose a novel parametric activation-induced hierarchical implicit representation framework, referred to as NAME, based on Implicit Neural Representations (INRs). Our method introduces a hierarchical temporal encoding mechanism that extracts features from motion sequences at multiple temporal scales, enabling effective capture of intricate temporal patterns. Additionally, we integrate a custom parametric activation function, powered by Fourier transformations, into the MLP-based decoder to enhance the expressiveness of the continuous representation. This parametric formulation significantly augments the model's ability to represent complex motion behaviors with high accuracy. Extensive evaluations across several benchmark datasets demonstrate the effectiveness and robustness of our proposed approach.
Authors: Guangtao Lyu, Chenghao Xu, Qi Liu, Jiexi Yan, Muli Yang, Fen Fang, Cheng Deng
Abstract:
Music to 3D dance generation aims to synthesize realistic and rhythmically synchronized human dance from music. While existing methods often rely on additional genre labels to further improve dance generation, such labels are typically noisy, coarse, unavailable, or insufficient to capture the diversity of real-world music, which can result in rhythm misalignment or stylistic drift. In contrast, we observe that tempo, a core property reflecting musical rhythm and pace, remains relatively consistent across datasets and genres, typically ranging from 60 to 200 BPM. Based on this finding, we propose TempoMoE, a hierarchical tempo-aware Mixture-of-Experts module that enhances the diffusion model and its rhythm perception. TempoMoE organizes motion experts into tempo-structured groups for different tempo ranges, with multi-scale beat experts capturing fine- and long-range rhythmic dynamics. A Hierarchical Rhythm-Adaptive Routing dynamically selects and fuses experts from music features, enabling flexible, rhythm-aligned generation without manual genre labels. Extensive experiments demonstrate that TempoMoE achieves state-of-the-art results in dance quality and rhythm alignment.
Authors: Renjie Li, Ruijie Ye, Mingyang Wu, Hao Frank Yang, Zhiwen Fan, Hezhen Hu, Zhengzhong Tu
Abstract:
Humans are integral components of the transportation ecosystem, and understanding their behaviors is crucial to facilitating the development of safe driving systems. Although recent progress has explored various aspects of human behavior$\unicode{x2014}$such as motion, trajectories, and intention$\unicode{x2014}$a comprehensive benchmark for evaluating human behavior understanding in autonomous driving remains unavailable. In this work, we propose $\textbf{MMHU}$, a large-scale benchmark for human behavior analysis featuring rich annotations, such as human motion and trajectories, text description for human motions, human intention, and critical behavior labels relevant to driving safety. Our dataset encompasses 57k human motion clips and 1.73M frames gathered from diverse sources, including established driving datasets such as Waymo, in-the-wild videos from YouTube, and self-collected data. A human-in-the-loop annotation pipeline is developed to generate rich behavior captions. We provide a thorough dataset analysis and benchmark multiple tasks$\unicode{x2014}$ranging from motion prediction to motion generation and human behavior question answering$\unicode{x2014}$thereby offering a broad evaluation suite. Project page : https://MMHU-Benchmark.github.io.
Authors: Amazon AGI, Aaron Langford, Aayush Shah, Abhanshu Gupta, Abhimanyu Bhatter, Abhinav Goyal, Abhinav Mathur, Abhinav Mohanty, Abhishek Kumar, Abhishek Sethi, Abi Komma, Abner Pena, Achin Jain, Adam Kunysz, Adam Opyrchal, Adarsh Singh, Aditya Rawal, Adok Achar Budihal Prasad, Adrià de Gispert, Agnika Kumar, Aishwarya Aryamane, Ajay Nair, Akilan M, Akshaya Iyengar, Akshaya Vishnu Kudlu Shanbhogue, Alan He, Alessandra Cervone, Alex Loeb, Alex Zhang, Alexander Fu, Alexander Lisnichenko, Alexander Zhipa, Alexandros Potamianos, Ali Kebarighotbi, Aliakbar Daronkolaei, Alok Parmesh, Amanjot Kaur Samra, Ameen Khan, Amer Rez, Amir Saffari, Amit Agarwalla, Amit Jhindal, Amith Mamidala, Ammar Asmro, Amulya Ballakur, Anand Mishra, Anand Sridharan, Anastasiia Dubinina, Andre Lenz, Andreas Doerr, Andrew Keating, Andrew Leaver, Andrew Smith, Andrew Wirth, Andy Davey, Andy Rosenbaum, Andy Sohn, Angela Chan, Aniket Chakrabarti, Anil Ramakrishna, Anirban Roy, Anita Iyer, Anjali Narayan-Chen, Ankith Yennu, Anna Dabrowska, Anna Gawlowska, Anna Rumshisky, Anna Turek, Anoop Deoras, Anton Bezruchkin, Anup Prasad, Anupam Dewan, Anwith Kiran, Apoorv Gupta, Aram Galstyan, Aravind Manoharan, Arijit Biswas, Arindam Mandal, Arpit Gupta, Arsamkhan Pathan, Arun Nagarajan, Arushan Rajasekaram, Arvind Sundararajan, Ashwin Ganesan, Ashwin Swaminathan, Athanasios Mouchtaris, Audrey Champeau, Avik Ray, Ayush Jaiswal, Ayush Sharma, Bailey Keefer, Balamurugan Muthiah, Beatriz Leon-Millan, Ben Koopman, Ben Li, Benjamin Biggs, Benjamin Ott, Bhanu Vinzamuri, Bharath Venkatesh, Bhavana Ganesh, Bhoomit Vasani, Bill Byrne, Bill Hsu, Bincheng Wang, Blake King, Blazej Gorny, Bo Feng, Bo Zheng, Bodhisattwa Paul, Bofan Sun, Bofeng Luo, Bowen Chen, Bowen Xie, Boya Yu, Brendan Jugan, Brett Panosh, Brian Collins, Brian Thompson, Can Karakus, Can Liu, Carl Lambrecht, Carly Lin, Carolyn Wang, Carrie Yuan, Casey Loyda, Cezary Walczak, Chalapathi Choppa, Chandana Satya Prakash, Chankrisna Richy Meas, Charith Peris, Charles Recaido, Charlie Xu, Charul Sharma, Chase Kernan, Chayut Thanapirom, Chengwei Su, Chenhao Xu, Chenhao Yin, Chentao Ye, Chenyang Tao, Chethan Parameshwara, Ching-Yun Chang, Chong Li, Chris Hench, Chris Tran, Christophe Dupuy, Christopher Davis, Christopher DiPersio, Christos Christodoulopoulos, Christy Li, Chun Chen, Claudio Delli Bovi, Clement Chung, Cole Hawkins, Connor Harris, Corey Ropell, Cynthia He, DK Joo, Dae Yon Hwang, Dan Rosen, Daniel Elkind, Daniel Pressel, Daniel Zhang, Danielle Kimball, Daniil Sorokin, Dave Goodell, Davide Modolo, Dawei Zhu, Deepikaa Suresh, Deepti Ragha, Denis Filimonov, Denis Foo Kune, Denis Romasanta Rodriguez, Devamanyu Hazarika, Dhananjay Ram, Dhawal Parkar, Dhawal Patel, Dhwanil Desai, Dinesh Singh Rajput, Disha Sule, Diwakar Singh, Dmitriy Genzel, Dolly Goldenberg, Dongyi He, Dumitru Hanciu, Dushan Tharmal, Dzmitry Siankovich, Edi Cikovic, Edwin Abraham, Ekraam Sabir, Elliott Olson, Emmett Steven, Emre Barut, Eric Jackson, Ethan Wu, Evelyn Chen, Ezhilan Mahalingam, Fabian Triefenbach, Fan Yang, Fangyu Liu, Fanzi Wu, Faraz Tavakoli, Farhad Khozeimeh, Feiyang Niu, Felix Hieber, Feng Li, Firat Elbey, Florian Krebs, Florian Saupe, Florian Sprünken, Frank Fan, Furqan Khan, Gabriela De Vincenzo, Gagandeep Kang, George Ding, George He, George Yeung, Ghada Qaddoumi, Giannis Karamanolakis, Goeric Huybrechts, Gokul Maddali, Gonzalo Iglesias, Gordon McShane, Gozde Sahin, Guangtai Huang, Gukyeong Kwon, Gunnar A. Sigurdsson, Gurpreet Chadha, Gururaj Kosuru, Hagen Fuerstenau, Hah Hah, Haja Maideen, Hajime Hosokawa, Han Liu, Han-Kai Hsu, Hann Wang, Hao Li, Hao Yang, Haofeng Zhu, Haozheng Fan, Harman Singh, Harshavardhan Kaluvala, Hashim Saeed, He Xie, Helian Feng, Hendrix Luo, Hengzhi Pei, Henrik Nielsen, Hesam Ilati, Himanshu Patel, Hongshan Li, Hongzhou Lin, Hussain Raza, Ian Cullinan, Imre Kiss, Inbarasan Thangamani, Indrayani Fadnavis, Ionut Teodor Sorodoc, Irem Ertuerk, Iryna Yemialyanava, Ishan Soni, Ismail Jelal, Ivan Tse, Jack FitzGerald, Jack Zhao, Jackson Rothgeb, Jacky Lee, Jake Jung, Jakub Debski, Jakub Tomczak, James Jeun, James Sanders, Jason Crowley, Jay Lee, Jayakrishna Anvesh Paidy, Jayant Tiwari, Jean Farmer, Jeff Solinsky, Jenna Lau, Jeremy Savareese, Jerzy Zagorski, Ji Dai, Jiacheng, Gu, Jiahui Li, Jian, Zheng, Jianhua Lu, Jianhua Wang, Jiawei Dai, Jiawei Mo, Jiaxi Xu, Jie Liang, Jie Yang, Jim Logan, Jimit Majmudar, Jing Liu, Jinghong Miao, Jingru Yi, Jingyang Jin, Jiun-Yu Kao, Jixuan Wang, Jiyang Wang, Joe Pemberton, Joel Carlson, Joey Blundell, John Chin-Jew, John He, Jonathan Ho, Jonathan Hueser, Jonathan Lunt, Jooyoung Lee, Joshua Tan, Joyjit Chatterjee, Judith Gaspers, Jue Wang, Jun Fang, Jun Tang, Jun Wan, Jun Wu, Junlei Wang, Junyi Shi, Justin Chiu, Justin Satriano, Justin Yee, Jwala Dhamala, Jyoti Bansal, Kai Zhen, Kai-Wei Chang, Kaixiang Lin, Kalyan Raman, Kanthashree Mysore Sathyendra, Karabo Moroe, Karan Bhandarkar, Karan Kothari, Karolina Owczarzak, Karthick Gopalswamy, Karthick Ravi, Karthik Ramakrishnan, Karthika Arumugam, Kartik Mehta, Katarzyna Konczalska, Kavya Ravikumar, Ke Tran, Kechen Qin, Kelin Li, Kelvin Li, Ketan Kulkarni, Kevin Angelo Rodrigues, Keyur Patel, Khadige Abboud, Kiana Hajebi, Klaus Reiter, Kris Schultz, Krishna Anisetty, Krishna Kotnana, Kristen Li, Kruthi Channamallikarjuna, Krzysztof Jakubczyk, Kuba Pierewoj, Kunal Pal, Kunwar Srivastav, Kyle Bannerman, Lahari Poddar, Lakshmi Prasad, Larry Tseng, Laxmikant Naik, Leena Chennuru Vankadara, Lenon Minorics, Leo Liu, Leonard Lausen, Leonardo F. R. Ribeiro, Li Zhang, Lili Gehorsam, Ling Qi, Lisa Bauer, Lori Knapp, Lu Zeng, Lucas Tong, Lulu Wong, Luoxin Chen, Maciej Rudnicki, Mahdi Namazifar, Mahesh Jaliminche, Maira Ladeira Tanke, Manasi Gupta, Mandeep Ahlawat, Mani Khanuja, Mani Sundaram, Marcin Leyk, Mariusz Momotko, Markus Boese, Markus Dreyer, Markus Mueller, Mason Fu, Mateusz Górski, Mateusz Mastalerczyk, Matias Mora, Matt Johnson, Matt Scott, Matthew Wen, Max Barysau, Maya Boumerdassi, Maya Krishnan, Mayank Gupta, Mayank Hirani, Mayank Kulkarni, Meganathan Narayanasamy, Melanie Bradford, Melanie Gens, Melissa Burke, Meng Jin, Miao Chen, Michael Denkowski, Michael Heymel, Michael Krestyaninov, Michal Obirek, Michalina Wichorowska, MichaŠMiotk, Milosz Watroba, Mingyi Hong, Mingzhi Yu, Miranda Liu, Mohamed Gouda, Mohammad El-Shabani, Mohammad Ghavamzadeh, Mohit Bansal, Morteza Ziyadi, Nan Xia, Nathan Susanj, Nav Bhasin, Neha Goswami, Nehal Belgamwar, Nicolas Anastassacos, Nicolas Bergeron, Nidhi Jain, Nihal Jain, Niharika Chopparapu, Nik Xu, Nikko Strom, Nikolaos Malandrakis, Nimisha Mishra, Ninad Parkhi, Ninareh Mehrabi, Nishita Sant, Nishtha Gupta, Nitesh Sekhar, Nithin Rajeev, Nithish Raja Chidambaram, Nitish Dhar, Noor Bhagwagar, Noy Konforty, Omar Babu, Omid Razavi, Orchid Majumder, Osama Dar, Oscar Hsu, Pablo Kvitca, Pallavi Pandey, Parker Seegmiller, Patrick Lange, Paul Ferraro, Payal Motwani, Pegah Kharazmi, Pei Wang, Pengfei Liu, Peter Bradtke, Peter Götz, Peter Zhou, Pichao Wang, Piotr Poskart, Pooja Sonawane, Pradeep Natarajan, Pradyun Ramadorai, Pralam Shah, Prasad Nirantar, Prasanthi Chavali, Prashan Wanigasekara, Prashant Saraf, Prashun Dey, Pratyush Pant, Prerak Pradhan, Preyaa Patel, Priyanka Dadlani, Prudhvee Narasimha Sadha, Qi Dong, Qian Hu, Qiaozi, Gao, Qing Liu, Quinn Lam, Quynh Do, R. Manmatha, Rachel Willis, Rafael Liu, Rafal Ellert, Rafal Kalinski, Rafi Al Attrach, Ragha Prasad, Ragini Prasad, Raguvir Kunani, Rahul Gupta, Rahul Sharma, Rahul Tewari, Rajaganesh Baskaran, Rajan Singh, Rajiv Gupta, Rajiv Reddy, Rajshekhar Das, Rakesh Chada, Rakesh Vaideeswaran Mahesh, Ram Chandrasekaran, Ramesh Nallapati, Ran Xue, Rashmi Gangadharaiah, Ravi Rachakonda, Renxian Zhang, Rexhina Blloshmi, Rishabh Agrawal, Robert Enyedi, Robert Lowe, Robik Shrestha, Robinson Piramuthu, Rohail Asad, Rohan Khanna, Rohan Mukherjee, Rohit Mittal, Rohit Prasad, Rohith Mysore Vijaya Kumar, Ron Diamant, Ruchita Gupta, Ruiwen Li, Ruoying Li, Rushabh Fegade, Ruxu Zhang, Ryan Arbow, Ryan Chen, Ryan Gabbard, Ryan Hoium, Ryan King, Sabarishkumar Iyer, Sachal Malick, Sahar Movaghati, Sai Balakavi, Sai Jakka, Sai Kashyap Paruvelli, Sai Muralidhar Jayanthi, Saicharan Shriram Mujumdar, Sainyam Kapoor, Sajjad Beygi, Saket Dingliwal, Saleh Soltan, Sam Ricklin, Sam Tucker, Sameer Sinha, Samridhi Choudhary, Samson Tan, Samuel Broscheit, Samuel Schulter, Sanchit Agarwal, Sandeep Atluri, Sander Valstar, Sanjana Shankar, Sanyukta Sanyukta, Sarthak Khanna, Sarvpriye Khetrapal, Satish Janakiraman, Saumil Shah, Saurabh Akolkar, Saurabh Giri, Saurabh Khandelwal, Saurabh Pawar, Saurabh Sahu, Sean Huang, Sejun Ra, Senthilkumar Gopal, Sergei Dobroshinsky, Shadi Saba, Shamik Roy, Shamit Lal, Shankar Ananthakrishnan, Sharon Li, Shashwat Srijan, Shekhar Bhide, Sheng Long Tang, Sheng Zha, Shereen Oraby, Sherif Mostafa, Shiqi Li, Shishir Bharathi, Shivam Prakash, Shiyuan Huang, Shreya Yembarwar, Shreyas Pansare, Shreyas Subramanian, Shrijeet Joshi, Shuai Liu, Shuai Tang, Shubham Chandak, Shubham Garg, Shubham Katiyar, Shubham Mehta, Shubham Srivastav, Shuo Yang, Siddalingesha D S, Siddharth Choudhary, Siddharth Singh Senger, Simon Babb, Sina Moeini, Siqi Deng, Siva Loganathan, Slawomir Domagala, Sneha Narkar, Sneha Wadhwa, Songyang Zhang, Songyao Jiang, Sony Trenous, Soumajyoti Sarkar, Soumya Saha, Sourabh Reddy, Sourav Dokania, Spurthideepika Sandiri, Spyros Matsoukas, Sravan Bodapati, Sri Harsha Reddy Wdaru, Sridevi Yagati Venkateshdatta, Srikanth Ronanki, Srinivasan R Veeravanallur, Sriram Venkatapathy, Sriramprabhu Sankaraguru, Sruthi Gorantla, Sruthi Karuturi, Stefan Schroedl, Subendhu Rongali, Subhasis Kundu, Suhaila Shakiah, Sukriti Tiwari, Sumit Bharti, Sumita Sami, Sumith Mathew, Sunny Yu, Sunwoo Kim, Suraj Bajirao Malode, Susana Cumplido Riel, Swapnil Palod, Swastik Roy, Syed Furqhan, Tagyoung Chung, Takuma Yoshitani, Taojiannan Yang, Tejaswi Chillakura, Tejwant Bajwa, Temi Lajumoke, Thanh Tran, Thomas Gueudre, Thomas Jung, Tianhui Li, Tim Seemman, Timothy Leffel, Tingting Xiang, Tirth Patel, Tobias Domhan, Tobias Falke, Toby Guo, Tom Li, Tomasz Horszczaruk, Tomasz Jedynak, Tushar Kulkarni, Tyst Marin, Tytus Metrycki, Tzu-Yen Wang, Umang Jain, Upendra Singh, Utkarsh Chirimar, Vaibhav Gupta, Vanshil Shah, Varad Deshpande, Varad Gunjal, Varsha Srikeshava, Varsha Vivek, Varun Bharadwaj, Varun Gangal, Varun Kumar, Venkatesh Elango, Vicente Ordonez, Victor Soto, Vignesh Radhakrishnan, Vihang Patel, Vikram Singh, Vinay Varma Kolanuvada, Vinayshekhar Bannihatti Kumar, Vincent Auvray, Vincent Cartillier, Vincent Ponzo, Violet Peng, Vishal Khandelwal, Vishal Naik, Vishvesh Sahasrabudhe, Vitaliy Korolev, Vivek Gokuladas, Vivek Madan, Vivek Subramanian, Volkan Cevher, Vrinda Gupta, Wael Hamza, Wei Zhang, Weitong Ruan, Weiwei Cheng, Wen Zhang, Wenbo Zhao, Wenyan Yao, Wenzhuo Ouyang, Wesley Dashner, William Campbell, William Lin, Willian Martin, Wyatt Pearson, Xiang Jiang, Xiangxing Lu, Xiangyang Shi, Xianwen Peng, Xiaofeng Gao, Xiaoge Jiang, Xiaohan Fei, Xiaohui Wang, Xiaozhou Joey Zhou, Xin Feng, Xinyan Zhao, Xinyao Wang, Xinyu Li, Xu Zhang, Xuan Wang, Xuandi Fu, Xueling Yuan, Xuning Wang, Yadunandana Rao, Yair Tavizon, Yan Rossiytsev, Yanbei Chen, Yang Liu, Yang Zou, Yangsook Park, Yannick Versley, Yanyan Zhang, Yash Patel, Yen-Cheng Lu, Yi Pan, Yi-Hsiang, Lai, Yichen Hu, Yida Wang, Yiheng Zhou, Yilin Xiang, Ying Shi, Ying Wang, Yishai Galatzer, Yongxin Wang, Yorick Shen, Yuchen Sun, Yudi Purwatama, Yue, Wu, Yue Gu, Yuechun Wang, Yujun Zeng, Yuncong Chen, Yunke Zhou, Yusheng Xie, Yvon Guy, Zbigniew Ambrozinski, Zhaowei Cai, Zhen Zhang, Zheng Wang, Zhenghui Jin, Zhewei Zhao, Zhiheng Li, Zhiheng Luo, Zhikang Zhang, Zhilin Fang, Zhiqi Bu, Zhiyuan Wang, Zhizhong Li, Zijian Wang, Zimeng, Qiu, Zishi Li
Abstract:
We present Amazon Nova, a new generation of state-of-the-art foundation models that deliver frontier intelligence and industry-leading price performance. Amazon Nova Pro is a highly-capable multimodal model with the best combination of accuracy, speed, and cost for a wide range of tasks. Amazon Nova Lite is a low-cost multimodal model that is lightning fast for processing images, video, documents and text. Amazon Nova Micro is a text-only model that delivers our lowest-latency responses at very low cost. Amazon Nova Canvas is an image generation model that creates professional grade images with rich customization controls. Amazon Nova Reel is a video generation model offering high-quality outputs, customization, and motion control. Our models were built responsibly and with a commitment to customer trust, security, and reliability. We report benchmarking results for core capabilities, agentic performance, long context, functional adaptation, runtime performance, and human evaluation.
Authors: Zhefeng Cao, Ben Liu, Sen Li, Wei Zhang, Hua Chen
Abstract:
Motion retargeting for specific robot from existing motion datasets is one critical step in transferring motion patterns from human behaviors to and across various robots. However, inconsistencies in topological structure, geometrical parameters as well as joint correspondence make it difficult to handle diverse embodiments with a unified retargeting architecture. In this work, we propose a novel unified graph-conditioned diffusion-based motion generation framework for retargeting reference motions across diverse embodiments. The intrinsic characteristics of heterogeneous embodiments are represented with graph structure that effectively captures topological and geometrical features of different robots. Such a graph-based encoding further allows for knowledge exploitation at the joint level with a customized attention mechanisms developed in this work. For lacking ground truth motions of the desired embodiment, we utilize an energy-based guidance formulated as retargeting losses to train the diffusion model. As one of the first cross-embodiment motion retargeting methods in robotics, our experiments validate that the proposed model can retarget motions across heterogeneous embodiments in a unified manner. Moreover, it demonstrates a certain degree of generalization to both diverse skeletal structures and similar motion patterns.
Authors: Lin Liu, Caiyan Jia, Ziying Song, Hongyu Pan, Bencheng Liao, Wenchao Sun, Yongchang Zhang, Lei Yang, Yandan Luo
Abstract:
Current end-to-end autonomous driving methods typically learn only from expert planning data collected from a single ego vehicle, severely limiting the diversity of learnable driving policies and scenarios. However, a critical yet overlooked fact is that in any driving scenario, multiple high-quality trajectories from other vehicles coexist with a specific ego vehicle's trajectory. Existing methods fail to fully exploit this valuable resource, missing important opportunities to improve the models' performance (including long-tail scenarios) through learning from other experts. Intuitively, Jointly learning from both ego and other vehicles' expert data is beneficial for planning tasks. However, this joint learning faces two critical challenges. (1) Different scene observation perspectives across vehicles hinder inter-vehicle alignment of scene feature representations; (2) The absence of partial modality in other vehicles' data (e.g., vehicle states) compared to ego-vehicle data introduces learning bias. To address these challenges, we propose FUMP (Fully Unified Motion Planning), a novel two-stage trajectory generation framework. Building upon probabilistic decomposition, we model the planning task as a specialized subtask of motion prediction. Specifically, our approach decouples trajectory planning into two stages. In Stage 1, a shared decoder jointly generates initial trajectories for both tasks. In Stage 2, the model performs planning-specific refinement conditioned on an ego-vehicle's state. The transition between the two stages is bridged by a state predictor trained exclusively on ego-vehicle data. To address the cross-vehicle discrepancy in observational perspectives, we propose an Equivariant Context-Sharing Adapter (ECSA) before Stage 1 for improving cross-vehicle generalization of scene representations.
Authors: Haonan Han, Xiangzuo Wu, Huan Liao, Zunnan Xu, Zhongyuan Hu, Ronghui Li, Yachao Zhang, Xiu Li
Abstract:
Recently, text-to-motion models have opened new possibilities for creating realistic human motion with greater efficiency and flexibility. However, aligning motion generation with event-level textual descriptions presents unique challenges due to the complex relationship between textual prompts and desired motion outcomes. To address this, we introduce AToM, a framework that enhances the alignment between generated motion and text prompts by leveraging reward from GPT-4Vision. AToM comprises three main stages: Firstly, we construct a dataset MotionPrefer that pairs three types of event-level textual prompts with generated motions, which cover the integrity, temporal relationship and frequency of motion. Secondly, we design a paradigm that utilizes GPT-4Vision for detailed motion annotation, including visual data formatting, task-specific instructions and scoring rules for each sub-task. Finally, we fine-tune an existing text-to-motion model using reinforcement learning guided by this paradigm. Experimental results demonstrate that AToM significantly improves the event-level alignment quality of text-to-motion generation.
Authors: Ling-Hao Chen, Shunlin Lu, Wenxun Dai, Zhiyang Dou, Xuan Ju, Jingbo Wang, Taku Komura, Lei Zhang
Abstract:
This research delves into the problem of interactive editing of human motion generation. Previous motion diffusion models lack explicit modeling of the word-level text-motion correspondence and good explainability, hence restricting their fine-grained editing ability. To address this issue, we propose an attention-based motion diffusion model, namely MotionCLR, with CLeaR modeling of attention mechanisms. Technically, MotionCLR models the in-modality and cross-modality interactions with self-attention and cross-attention, respectively. More specifically, the self-attention mechanism aims to measure the sequential similarity between frames and impacts the order of motion features. By contrast, the cross-attention mechanism works to find the fine-grained word-sequence correspondence and activate the corresponding timesteps in the motion sequence. Based on these key properties, we develop a versatile set of simple yet effective motion editing methods via manipulating attention maps, such as motion (de-)emphasizing, in-place motion replacement, and example-based motion generation, etc. For further verification of the explainability of the attention mechanism, we additionally explore the potential of action-counting and grounded motion generation ability via attention maps. Our experimental results show that our method enjoys good generation and editing ability with good explainability.
Authors: Ziqiang Dang, Tianxing Fan, Boming Zhao, Xujie Shen, Lei Wang, Guofeng Zhang, Zhaopeng Cui
Abstract:
Incorporating temporal information effectively is important for accurate 3D human motion estimation and generation which have wide applications from human-computer interaction to AR/VR. In this paper, we present MoManifold, a novel human motion prior, which models plausible human motion in continuous high-dimensional motion space. Different from existing mathematical or VAE-based methods, our representation is designed based on the neural distance field, which makes human dynamics explicitly quantified to a score and thus can measure human motion plausibility. Specifically, we propose novel decoupled joint acceleration manifolds to model human dynamics from existing limited motion data. Moreover, we introduce a novel optimization method using the manifold distance as guidance, which facilitates a variety of motion-related tasks. Extensive experiments demonstrate that MoManifold outperforms existing SOTAs as a prior in several downstream tasks such as denoising real-world human mocap data, recovering human motion from partial 3D observations, mitigating jitters for SMPL-based pose estimators, and refining the results of motion in-betweening.
Authors: Kaixing Yang, Jiashu Zhu, Xulong Tang, Ziqiao Peng, Xiangyue Zhang, Puwei Wang, Jiahong Wu, Xiangxiang Chu, Hongyan Liu, Jun He
Abstract:
With the rise of online dance-video platforms and rapid advances in AI-generated content (AIGC), music-driven dance generation has emerged as a compelling research direction. Despite substantial progress in related domains such as music-driven 3D dance generation, pose-driven image animation, and audio-driven talking-head synthesis, existing methods cannot be directly adapted to this task. Moreover, the limited studies in this area still struggle to jointly achieve high-quality visual appearance and realistic human motion. Accordingly, we present MACE-Dance, a music-driven dance video generation framework with cascaded Mixture-of-Experts (MoE). The Motion Expert performs music-to-3D motion generation while enforcing kinematic plausibility and artistic expressiveness, whereas the Appearance Expert carries out motion- and reference-conditioned video synthesis, preserving visual identity with spatiotemporal coherence. Specifically, the Motion Expert adopts a diffusion model with a BiMamba-Transformer hybrid architecture and a Guidance-Free Training (GFT) strategy, achieving state-of-the-art (SOTA) performance in 3D dance generation. The Appearance Expert employs a decoupled kinematic-aesthetic fine-tuning strategy, achieving state-of-the-art (SOTA) performance in pose-driven image animation. To better benchmark this task, we curate a large-scale and diverse dataset and design a motion-appearance evaluation protocol. Based on this protocol, MACE-Dance also achieves state-of-the-art performance. Project page: https://macedance.github.io/
Authors: Kaixing Yang, Xulong Tang, Ziqiao Peng, Xiangyue Zhang, Puwei Wang, Jun He, Hongyan Liu
Abstract:
Music-to-dance generation aims to translate auditory signals into expressive human motion, with broad applications in virtual reality, choreography, and digital entertainment. Despite promising progress, the limited generation efficiency of existing methods leaves insufficient computational headroom for high-fidelity 3D rendering, thereby constraining the expressiveness of 3D characters during real-world applications. Thus, we propose FlowerDance, which not only generates refined motion with physical plausibility and artistic expressiveness, but also achieves significant generation efficiency on inference speed and memory utilization . Specifically, FlowerDance combines MeanFlow with Physical Consistency Constraints, which enables high-quality motion generation with only a few sampling steps. Moreover, FlowerDance leverages a simple but efficient model architecture with BiMamba-based backbone and Channel-Level Cross-Modal Fusion, which generates dance with efficient non-autoregressive manner. Meanwhile, FlowerDance supports motion editing, enabling users to interactively refine dance sequences. Extensive experiments on AIST++ and FineDance show that FlowerDance achieves state-of-the-art results in both motion quality and generation efficiency. Code will be released upon acceptance.
Authors: Xuanyu Tian, Lixuan Chen, Qing Wu, Xiao Wang, Jie Feng, Yuyao Zhang, Hongjiang Wei
Abstract:
Cardiac magnetic resonance (CMR) imaging is widely used to characterize cardiac morphology and function. To accelerate CMR imaging, various methods have been proposed to recover high-quality spatiotemporal CMR images from highly undersampled k-t space data. However, current CMR reconstruction techniques either fail to achieve satisfactory image quality or are restricted by the scarcity of ground truth data, leading to limited applicability in clinical scenarios. In this work, we proposed MoCo-INR, a new unsupervised method that integrates implicit neural representations (INR) with the conventional motion-compensated (MoCo) framework. Using explicit motion modeling and the continuous prior of INRs, MoCo-INR can produce accurate cardiac motion decomposition and high-quality CMR reconstruction. Furthermore, we introduce a new INR network architecture tailored to the CMR problem, which significantly stabilizes model optimization. Experiments on retrospective (simulated) datasets demonstrate the superiority of MoCo-INR over state-of-the-art methods, achieving fast convergence and fine-detailed reconstructions at ultra-high acceleration factors (e.g., 20x in VISTA sampling). Additionally, evaluations on prospective (real-acquired) free-breathing CMR scans highlight the clinical practicality of MoCo-INR for real-time imaging. Several ablation studies further confirm the effectiveness of the critical components of MoCo-INR.
Authors: Zhi Su, Bike Zhang, Nima Rahmanian, Yuman Gao, Qiayuan Liao, Caitlin Regan, Koushil Sreenath, S. Shankar Sastry
Abstract:
Humanoid robots have recently achieved impressive progress in locomotion and whole-body control, yet they remain constrained in tasks that demand rapid interaction with dynamic environments through manipulation. Table tennis exemplifies such a challenge: with ball speeds exceeding 5 m/s, players must perceive, predict, and act within sub-second reaction times, requiring both agility and precision. To address this, we present a hierarchical framework for humanoid table tennis that integrates a model-based planner for ball trajectory prediction and racket target planning with a reinforcement learning-based whole-body controller. The planner determines striking position, velocity and timing, while the controller generates coordinated arm and leg motions that mimic human strikes and maintain stability and agility across consecutive rallies. Moreover, to encourage natural movements, human motion references are incorporated during training. We validate our system on a general-purpose humanoid robot, achieving up to 106 consecutive shots with a human opponent and sustained exchanges against another humanoid. These results demonstrate real-world humanoid table tennis with sub-second reactive control, marking a step toward agile and interactive humanoid behaviors.
Authors: Kaixing Yang, Xulong Tang, Ziqiao Peng, Yuxuan Hu, Jun He, Hongyan Liu
Abstract:
Music-driven 3D dance generation has attracted increasing attention in recent years, with promising applications in choreography, virtual reality, and creative content creation. Previous research has generated promising realistic dance movement from audio signals. However, traditional methods underutilize genre conditioning, often treating it as auxiliary modifiers rather than core semantic drivers. This oversight compromises music-motion synchronization and disrupts dance genre continuity, particularly during complex rhythmic transitions, thereby leading to visually unsatisfactory effects. To address the challenge, we propose MEGADance, a novel architecture for music-driven 3D dance generation. By decoupling choreographic consistency into dance generality and genre specificity, MEGADance demonstrates significant dance quality and strong genre controllability. It consists of two stages: (1) High-Fidelity Dance Quantization Stage (HFDQ), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) and reconstructs them with kinematic-dynamic constraints, and (2) Genre-Aware Dance Generation Stage (GADG), which maps music into the latent representation by synergistic utilization of Mixture-of-Experts (MoE) mechanism with Mamba-Transformer hybrid backbone. Extensive experiments on the FineDance and AIST++ dataset demonstrate the state-of-the-art performance of MEGADance both qualitatively and quantitatively. Code will be released upon acceptance.
Authors: Kaixing Yang, Xulong Tang, Yuxuan Hu, Jiahao Yang, Hongyan Liu, Qinnan Zhang, Jun He, Zhaoxin Fan
Abstract:
Music-to-dance generation represents a challenging yet pivotal task at the intersection of choreography, virtual reality, and creative content generation. Despite its significance, existing methods face substantial limitation in achieving choreographic consistency. To address the challenge, we propose MatchDance, a novel framework for music-to-dance generation that constructs a latent representation to enhance choreographic consistency. MatchDance employs a two-stage design: (1) a Kinematic-Dynamic-based Quantization Stage (KDQS), which encodes dance motions into a latent representation by Finite Scalar Quantization (FSQ) with kinematic-dynamic constraints and reconstructs them with high fidelity, and (2) a Hybrid Music-to-Dance Generation Stage(HMDGS), which uses a Mamba-Transformer hybrid architecture to map music into the latent representation, followed by the KDQS decoder to generate 3D dance motions. Additionally, a music-dance retrieval framework and comprehensive metrics are introduced for evaluation. Extensive experiments on the FineDance dataset demonstrate state-of-the-art performance. Code will be released upon acceptance.
Authors: Yuhong Zhang, Jing Lin, Ailing Zeng, Guanlin Wu, Shunlin Lu, Yurong Fu, Yuanhao Cai, Ruimao Zhang, Haoqian Wang, Lei Zhang
Abstract:
In this paper, we introduce Motion-X++, a large-scale multimodal 3D expressive whole-body human motion dataset. Existing motion datasets predominantly capture body-only poses, lacking facial expressions, hand gestures, and fine-grained pose descriptions, and are typically limited to lab settings with manually labeled text descriptions, thereby restricting their scalability. To address this issue, we develop a scalable annotation pipeline that can automatically capture 3D whole-body human motion and comprehensive textural labels from RGB videos and build the Motion-X dataset comprising 81.1K text-motion pairs. Furthermore, we extend Motion-X into Motion-X++ by improving the annotation pipeline, introducing more data modalities, and scaling up the data quantities. Motion-X++ provides 19.5M 3D whole-body pose annotations covering 120.5K motion sequences from massive scenes, 80.8K RGB videos, 45.3K audios, 19.5M frame-level whole-body pose descriptions, and 120.5K sequence-level semantic labels. Comprehensive experiments validate the accuracy of our annotation pipeline and highlight Motion-X++'s significant benefits for generating expressive, precise, and natural motion with paired multimodal labels supporting several downstream tasks, including text-driven whole-body motion generation,audio-driven motion generation, 3D whole-body human mesh recovery, and 2D whole-body keypoints estimation, etc.
Authors: Can Cui, Yunsheng Ma, Sung-Yeon Park, Zichong Yang, Yupeng Zhou, Juanwu Lu, Juntong Peng, Jiaru Zhang, Ruqi Zhang, Lingxi Li, Yaobin Chen, Jitesh H. Panchal, Amr Abdelraouf, Rohit Gupta, Kyungtae Han, Ziran Wang
Abstract:
With the broader adoption and highly successful development of Large Language Models (LLMs), there has been growing interest and demand for applying LLMs to autonomous driving technology. Driven by their natural language understanding and reasoning capabilities, LLMs have the potential to enhance various aspects of autonomous driving systems, from perception and scene understanding to interactive decision-making. In this paper, we first introduce the novel concept of designing Large Language Models for Autonomous Driving (LLM4AD), followed by a review of existing LLM4AD studies. Then, we propose a comprehensive benchmark for evaluating the instruction-following and reasoning abilities of LLM4AD systems, which includes LaMPilot-Bench, CARLA Leaderboard 1.0 Benchmark in simulation and NuPlanQA for multi-view visual question answering. Furthermore, we conduct extensive real-world experiments on autonomous vehicle platforms, examining both on-cloud and on-edge LLM deployment for personalized decision-making and motion control. Next, we explore the future trends of integrating language diffusion models into autonomous driving, exemplified by the proposed ViLaD (Vision-Language Diffusion) framework. Finally, we discuss the main challenges of LLM4AD, including latency, deployment, security and privacy, safety, trust and transparency, and personalization.
Authors: Christopher Diehl, Peter Karkus, Sushant Veer, Marco Pavone, Torsten Bertram
Abstract:
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
Authors: Giulio Romualdi, Paolo Maria Viceconte, Lorenzo Moretti, Ines Sorrentino, Stefano Dafarra, Silvio Traversaro, Daniele Pucci
Abstract:
This paper presents a three-layered architecture that enables stylistic locomotion with online contact location adjustment. Our method combines an autoregressive Deep Neural Network (DNN) acting as a trajectory generation layer with a model-based trajectory adjustment and trajectory control layers. The DNN produces centroidal and postural references serving as an initial guess and regularizer for the other layers. Being the DNN trained on human motion capture data, the resulting robot motion exhibits locomotion patterns, resembling a human walking style. The trajectory adjustment layer utilizes non-linear optimization to ensure dynamically feasible center of mass (CoM) motion while addressing step adjustments. We compare two implementations of the trajectory adjustment layer: one as a receding horizon planner (RHP) and the other as a model predictive controller (MPC). To enhance MPC performance, we introduce a Kalman filter to reduce measurement noise. The filter parameters are automatically tuned with a Genetic Algorithm. Experimental results on the ergoCub humanoid robot demonstrate the system's ability to prevent falls, replicate human walking styles, and withstand disturbances up to 68 Newton.
Website: https://sites.google.com/view/dnn-mpc-walking
Youtube video: https://www.youtube.com/watch?v=x3tzEfxO-xQ
Authors: Younggyo Seo, Carmelo Sferrazza, Juyue Chen, Guanya Shi, Rocky Duan, Pieter Abbeel
Abstract:
Massively parallel simulation has reduced reinforcement learning (RL) training time for robots from days to minutes. However, achieving fast and reliable sim-to-real RL for humanoid control remains difficult due to the challenges introduced by factors such as high dimensionality and domain randomization. In this work, we introduce a simple and practical recipe based on off-policy RL algorithms, i.e., FastSAC and FastTD3, that enables rapid training of humanoid locomotion policies in just 15 minutes with a single RTX 4090 GPU. Our simple recipe stabilizes off-policy RL algorithms at massive scale with thousands of parallel environments through carefully tuned design choices and minimalist reward functions. We demonstrate rapid end-to-end learning of humanoid locomotion controllers on Unitree G1 and Booster T1 robots under strong domain randomization, e.g., randomized dynamics, rough terrain, and push perturbations, as well as fast training of whole-body human-motion tracking policies. We provide videos and open-source implementation at: https://younggyo.me/fastsac-humanoid.
Authors: Qiao Feng, Yiming Huang, Yufu Wang, Jiatao Gu, Lingjie Liu
Abstract:
Reconstructing physically plausible human motion from monocular videos remains a challenging problem in computer vision and graphics. Existing methods primarily focus on kinematics-based pose estimation, often leading to unrealistic results due to the lack of physical constraints. To address such artifacts, prior methods have typically relied on physics-based post-processing following the initial kinematics-based motion estimation. However, this two-stage design introduces error accumulation, ultimately limiting the overall reconstruction quality. In this paper, we present PhysHMR, a unified framework that directly learns a visual-to-action policy for humanoid control in a physics-based simulator, enabling motion reconstruction that is both physically grounded and visually aligned with the input video. A key component of our approach is the pixel-as-ray strategy, which lifts 2D keypoints into 3D spatial rays and transforms them into global space. These rays are incorporated as policy inputs, providing robust global pose guidance without depending on noisy 3D root predictions. This soft global grounding, combined with local visual features from a pretrained encoder, allows the policy to reason over both detailed pose and global positioning. To overcome the sample inefficiency of reinforcement learning, we further introduce a distillation scheme that transfers motion knowledge from a mocap-trained expert to the vision-conditioned policy, which is then refined using physically motivated reinforcement learning rewards. Extensive experiments demonstrate that PhysHMR produces high-fidelity, physically plausible motion across diverse scenarios, outperforming prior approaches in both visual accuracy and physical realism.
Authors: Jiahui Li, Shengeng Tang, Jingxuan He, Gang Huang, Zhangye Wang, Yantao Pan, Lechao Cheng
Abstract:
Reconstructing dynamic 3D scenes from monocular video remains fundamentally challenging due to the need to jointly infer motion, structure, and appearance from limited observations. Existing dynamic scene reconstruction methods based on Gaussian Splatting often entangle static and dynamic elements in a shared representation, leading to motion leakage, geometric distortions, and temporal flickering. We identify that the root cause lies in the coupled modeling of geometry and appearance across time, which hampers both stability and interpretability. To address this, we propose \textbf{SplitGaussian}, a novel framework that explicitly decomposes scene representations into static and dynamic components. By decoupling motion modeling from background geometry and allowing only the dynamic branch to deform over time, our method prevents motion artifacts in static regions while supporting view- and time-dependent appearance refinement. This disentangled design not only enhances temporal consistency and reconstruction fidelity but also accelerates convergence. Extensive experiments demonstrate that SplitGaussian outperforms prior state-of-the-art methods in rendering quality, geometric stability, and motion separation.
Authors: Xuanchen Wang, Heng Wang, Weidong Cai
Abstract:
Modern artistic productions increasingly demand automated choreography generation that adapts to diverse musical styles and individual dancer characteristics. Existing approaches often fail to produce high-quality dance videos that harmonize with both musical rhythm and user-defined choreography styles, limiting their applicability in real-world creative contexts. To address this gap, we introduce ChoreoMuse, a diffusion-based framework that uses SMPL format parameters and their variation version as intermediaries between music and video generation, thereby overcoming the usual constraints imposed by video resolution. Critically, ChoreoMuse supports style-controllable, high-fidelity dance video generation across diverse musical genres and individual dancer characteristics, including the flexibility to handle any reference individual at any resolution. Our method employs a novel music encoder MotionTune to capture motion cues from audio, ensuring that the generated choreography closely follows the beat and expressive qualities of the input music. To quantitatively evaluate how well the generated dances match both musical and choreographic styles, we introduce two new metrics that measure alignment with the intended stylistic cues. Extensive experiments confirm that ChoreoMuse achieves state-of-the-art performance across multiple dimensions, including video quality, beat alignment, dance diversity, and style adherence, demonstrating its potential as a robust solution for a wide range of creative applications. Video results can be found on our project page: https://choreomuse.github.io.
Authors: Shanshan Zhang, Qi Zhang, Siyue Wang, Tianshui Wen, Ziheng Zhou, Lingxiang Zheng, Yu Yang
Abstract:
Inertial odometry (IO) directly estimates the position of a carrier from inertial sensor measurements and serves as a core technology for the widespread deployment of consumer grade localization systems. While existing IO methods can accurately reconstruct simple and near linear motion trajectories, they often fail to account for drift errors caused by complex motion patterns such as turning. This limitation significantly degrades localization accuracy and restricts the applicability of IO systems in real world scenarios. To address these challenges, we propose a lightweight IO framework. Specifically, inertial data is projected into a high dimensional implicit nonlinear feature space using the Star Operation method, enabling the extraction of complex motion features that are typically overlooked. We further introduce a collaborative attention mechanism that jointly models global motion dynamics across both channel and temporal dimensions. In addition, we design Multi Scale Gated Convolution Units to capture fine grained dynamic variations throughout the motion process, thereby enhancing the model's ability to learn rich and expressive motion representations. Extensive experiments demonstrate that our proposed method consistently outperforms SOTA baselines across six widely used inertial datasets. Compared to baseline models on the RoNIN dataset, it achieves reductions in ATE ranging from 2.26% to 65.78%, thereby establishing a new benchmark in the field.
Authors: Sisi Dai, Xinxin Su, Boyan Wan, Ruizhen Hu, Kai Xu
Abstract:
Recent advancements in diffusion generative models significantly advanced image, video, and 3D content creation from user-provided text prompts. However, the challenging problem of dynamic 3D content generation (text-to-4D) with diffusion guidance remains largely unexplored. In this paper, we introduce TextMesh4D, a novel framework for high-quality text-to-4D generation. Our approach leverages per-face Jacobians as a differentiable mesh representation and decomposes 4D generation into two stages: static object creation and dynamic motion synthesis. We further propose a flexibility-rigidity regularization term to stabilize Jacobian optimization under video diffusion priors, ensuring robust geometric performance. Experiments demonstrate that TextMesh4D achieves state-of-the-art results in terms of temporal consistency, structural fidelity, and visual realism. Moreover, TextMesh4D operates with a low GPU memory overhead-requiring only a single 24GB GPU-offering a cost-effective yet high-quality solution for text-driven 4D mesh generation. The code will be released to facilitate future research in text-to-4D generation.
Authors: Chuhao Jin, Haosen Li, Bingzi Zhang, Che Liu, Xiting Wang, Ruihua Song, Wenbing Huang, Ying Qin, Fuzheng Zhang, Di Zhang
Abstract:
Recent advances in large language models (LLMs) have enabled breakthroughs in many multimodal generation tasks, but a significant performance gap still exists in text-to-motion generation, where LLM-based methods lag far behind non-LLM methods. We identify the granularity of motion tokenization as a critical bottleneck: fine-grained tokenization induces local dependency issues, where LLMs overemphasize short-term coherence at the expense of global semantic alignment, while coarse-grained tokenization sacrifices motion details. To resolve this issue, we propose PlanMoGPT, an LLM-based framework integrating progressive planning and flow-enhanced fine-grained motion tokenization. First, our progressive planning mechanism leverages LLMs' autoregressive capabilities to hierarchically generate motion tokens by starting from sparse global plans and iteratively refining them into full sequences. Second, our flow-enhanced tokenizer doubles the downsampling resolution and expands the codebook size by eight times, minimizing detail loss during discretization, while a flow-enhanced decoder recovers motion nuances. Extensive experiments on text-to-motion benchmarks demonstrate that it achieves state-of-the-art performance, improving FID scores by 63.8% (from 0.380 to 0.141) on long-sequence generation while enhancing motion diversity by 49.9% compared to existing methods. The proposed framework successfully resolves the diversity-quality trade-off that plagues current non-LLM approaches, establishing new standards for text-to-motion generation.
Authors: Sauradip Nag, Daniel Cohen-Or, Hao Zhang, Ali Mahdavi-Amiri
Abstract:
We pose a new problem, In-2-4D, for generative 4D (i.e., 3D + motion) inbetweening to interpolate two single-view images. In contrast to video/4D generation from only text or a single image, our interpolative task can leverage more precise motion control to better constrain the generation. Given two monocular RGB images representing the start and end states of an object in motion, our goal is to generate and reconstruct the motion in 4D, without making assumptions on the object category, motion type, length, or complexity. To handle such arbitrary and diverse motions, we utilize a foundational video interpolation model for motion prediction. However, large frame-to-frame motion gaps can lead to ambiguous interpretations. To this end, we employ a hierarchical approach to identify keyframes that are visually close to the input states while exhibiting significant motions, then generate smooth fragments between them. For each fragment, we construct a 3D representation of the keyframe using Gaussian Splatting (3DGS). The temporal frames within the fragment guide the motion, enabling their transformation into dynamic 3DGS through a deformation field. To improve temporal consistency and refine the 3D motion, we expand the self-attention of multi-view diffusion across timesteps and apply rigid transformation regularization. Finally, we merge the independently generated 3D motion segments by interpolating boundary deformation fields and optimizing them to align with the guiding video, ensuring smooth and flicker-free transitions. Through extensive qualitative and quantitive experiments as well as a user study, we demonstrate the effectiveness of our method and design choices.
Authors: Yiming Huang, Zhiyang Dou, Lingjie Liu
Abstract:
Human motion is highly diverse and dynamic, posing challenges for imitation learning algorithms that aim to generalize motor skills for controlling simulated characters. Previous methods typically rely on a universal full-body controller for tracking reference motion (tracking-based model) or a unified full-body skill embedding space (skill embedding). However, these approaches often struggle to generalize and scale to larger motion datasets. In this work, we introduce a novel skill learning framework, ModSkill, that decouples complex full-body skills into compositional, modular skills for independent body parts. Our framework features a skill modularization attention layer that processes policy observations into modular skill embeddings that guide low-level controllers for each body part. We also propose an Active Skill Learning approach with Generative Adaptive Sampling, using large motion generation models to adaptively enhance policy learning in challenging tracking scenarios. Our results show that this modularized skill learning framework, enhanced by generative sampling, outperforms existing methods in precise full-body motion tracking and enables reusable skill embeddings for diverse goal-driven tasks.
Authors: Placido Falqueto, Alberto Sanfeliu, Luigi Palopoli, Daniele Fontanelli
Abstract:
A clear understanding of where humans move in a scenario, their usual paths and speeds, and where they stop, is very important for different applications, such as mobility studies in urban areas or robot navigation tasks within human-populated environments. We propose in this article, a neural architecture based on Vision Transformers (ViTs) to provide this information. This solution can arguably capture spatial correlations more effectively than Convolutional Neural Networks (CNNs). In the paper, we describe the methodology and proposed neural architecture and show the experiments' results with a standard dataset. We show that the proposed ViT architecture improves the metrics compared to a method based on a CNN.
Authors: Kangning Yin, Zhe Cao, Wentao Dong, Weishuai Zeng, Tianyi Zhang, Qiang Zhang, Jingbo Wang, Jiangmiao Pang, Ming Zhou, Weinan Zhang
Abstract:
Achieving human-level competitive intelligence and physical agility in humanoid robots remains a major challenge, particularly in contact-rich and highly dynamic tasks such as boxing. While Multi-Agent Reinforcement Learning (MARL) offers a principled framework for strategic interaction, its direct application to humanoid control is hindered by high-dimensional contact dynamics and the absence of strong physical motion priors. We propose RoboStriker, a hierarchical three-stage framework that enables fully autonomous humanoid boxing by decoupling high-level strategic reasoning from low-level physical execution. The framework first learns a comprehensive repertoire of boxing skills by training a single-agent motion tracker on human motion capture data. These skills are subsequently distilled into a structured latent manifold, regularized by projecting the Gaussian-parameterized distribution onto a unit hypersphere. This topological constraint effectively confines exploration to the subspace of physically plausible motions. In the final stage, we introduce Latent-Space Neural Fictitious Self-Play (LS-NFSP), where competing agents learn competitive tactics by interacting within the latent action space rather than the raw motor space, significantly stabilizing multi-agent training. Experimental results demonstrate that RoboStriker achieves superior competitive performance in simulation and exhibits sim-to-real transfer. Our website is available at RoboStriker.
Authors: Kuanqi Cai, Liding Zhang, Xinwen Su, Kejia Chen, Chaoqun Wang, Sami Haddadin, Alois Knoll, Arash Ajoudani, Luis Figueredo
Abstract:
In high-dimensional robotic path planning, traditional sampling-based methods often struggle to efficiently identify both feasible and optimal paths in complex, multi-obstacle environments. This challenge is intensified in robotic manipulators, where the risk of kinematic singularities and self-collisions further complicates motion efficiency and safety. To address these issues, we introduce the Just-in-Time Informed Trees (JIT*) algorithm, an enhancement over Effort Informed Trees (EIT*), designed to improve path planning through two core modules: the Just-in-Time module and the Motion Performance module. The Just-in-Time module includes "Just-in-Time Edge," which dynamically refines edge connectivity, and "Just-in-Time Sample," which adjusts sampling density in bottleneck areas to enable faster initial path discovery. The Motion Performance module balances manipulability and trajectory cost through dynamic switching, optimizing motion control while reducing the risk of singularities. Comparative analysis shows that JIT* consistently outperforms traditional sampling-based planners across $\mathbb{R}^4$ to $\mathbb{R}^{16}$ dimensions. Its effectiveness is further demonstrated in single-arm and dual-arm manipulation tasks, with experimental results available in a video at https://youtu.be/nL1BMHpMR7c.
Authors: Maitrayee Keskar, Mohan Trivedi, Ross Greer
Abstract:
We present a method for trajectory planning for autonomous driving, learning image-based context embeddings that align with motion prediction frameworks and planning-based intention input. Within our method, a ViT encoder takes raw images and past kinematic state as input and is trained to produce context embeddings, drawing inspiration from those generated by the recent MTR (Motion Transformer) encoder, effectively substituting map-based features with learned visual representations. MTR provides a strong foundation for multimodal trajectory prediction by localizing agent intent and refining motion iteratively via motion query pairs; we name our approach MTR-VP (Motion Transformer for Vision-based Planning), and instead of the learnable intention queries used in the MTR decoder, we use cross attention on the intent and the context embeddings, which reflect a combination of information encoded from the driving scene and past vehicle states. We evaluate our methods on the Waymo End-to-End Driving Dataset, which requires predicting the agent's future 5-second trajectory in bird's-eye-view coordinates using prior camera images, agent pose history, and routing goals. We analyze our architecture using ablation studies, removing input images and multiple trajectory output. Our results suggest that transformer-based methods that are used to combine the visual features along with the kinetic features such as the past trajectory features are not effective at combining both modes to produce useful scene context embeddings, even when intention embeddings are augmented with foundation-model representations of scene context from CLIP and DINOv2, but that predicting a distribution over multiple futures instead of a single future trajectory boosts planning performance.
Authors: Jeonghwan Kim, Wontaek Kim, Yidan Lu, Jin Cheng, Fatemeh Zargarbashi, Zicheng Zeng, Zekun Qi, Zhiyang Dou, Nitish Sontakke, Donghoon Baek, Sehoon Ha, Tianyu Li
Abstract:
Recent advances in whole-body robot control have enabled humanoid and legged robots to perform increasingly agile and coordinated motions. However, standardized benchmarks for evaluating these capabilities in real-world settings, and in direct comparison to humans, remain scarce. Existing evaluations often rely on pre-collected human motion datasets or simulation-based experiments, which limit reproducibility, overlook hardware factors, and hinder fair human-robot comparisons. We present Switch-JustDance, a low-cost and reproducible benchmarking pipeline that leverages motion-sensing console games, Just Dance on the Nintendo Switch, to evaluate robot whole-body control. Using Just Dance on the Nintendo Switch as a representative platform, Switch-JustDance converts in-game choreography into robot-executable motions through streaming, motion reconstruction, and motion retargeting modules and enables users to evaluate controller performance through the game's built-in scoring system. We first validate the evaluation properties of Just Dance, analyzing its reliability, validity, sensitivity, and potential sources of bias. Our results show that the platform provides consistent and interpretable performance measures, making it a suitable tool for benchmarking embodied AI. Building on this foundation, we benchmark three state-of-the-art humanoid whole-body controllers on hardware and provide insights into their relative strengths and limitations.
Authors: Junli Ren, Junfeng Long, Tao Huang, Huayi Wang, Zirui Wang, Feiyu Jia, Wentao Zhang, Jingbo Wang, Ping Luo, Jiangmiao Pang
Abstract:
We present a reinforcement learning framework for autonomous goalkeeping with humanoid robots in real-world scenarios. While prior work has demonstrated similar capabilities on quadrupedal platforms, humanoid goalkeeping introduces two critical challenges: (1) generating natural, human-like whole-body motions, and (2) covering a wider guarding range with an equivalent response time. Unlike existing approaches that rely on separate teleoperation or fixed motion tracking for whole-body control, our method learns a single end-to-end RL policy, enabling fully autonomous, highly dynamic, and human-like robot-object interactions. To achieve this, we integrate multiple human motion priors conditioned on perceptual inputs into the RL training via an adversarial scheme. We demonstrate the effectiveness of our method through real-world experiments, where the humanoid robot successfully performs agile, autonomous, and naturalistic interceptions of fast-moving balls. In addition to goalkeeping, we demonstrate the generalization of our approach through tasks such as ball escaping and grabbing. Our work presents a practical and scalable solution for enabling highly dynamic interactions between robots and moving objects, advancing the field toward more adaptive and lifelike robotic behaviors.
Authors: David Romero, Ariana Bermudez, Hao Li, Fabio Pizzati, Ivan Laptev
Abstract:
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
Authors: Wontaek Kim, Tianyu Li, Sehoon Ha
Abstract:
Motion retargeting holds a premise of offering a larger set of motion data for characters and robots with different morphologies. Many prior works have approached this problem via either handcrafted constraints or paired motion datasets, limiting their applicability to humanoid characters or narrow behaviors such as locomotion. Moreover, they often assume a fixed notion of retargeting, overlooking domain-specific objectives like style preservation in animation or task-space alignment in robotics. In this work, we propose MoReFlow, Motion Retargeting via Flow Matching, an unsupervised framework that learns correspondences between characters' motion embedding spaces. Our method consists of two stages. First, we train tokenized motion embeddings for each character using a VQ-VAE, yielding compact latent representations. Then, we employ flow matching with conditional coupling to align the latent spaces across characters, which simultaneously learns conditioned and unconditioned matching to achieve robust but flexible retargeting. Once trained, MoReFlow enables flexible and reversible retargeting without requiring paired data. Experiments demonstrate that MoReFlow produces high-quality motions across diverse characters and tasks, offering improved controllability, generalization, and motion realism compared to the baselines.
Authors: Xiaojie Li, Ronghui Li, Shukai Fang, Shuzhao Xie, Xiaoyang Guo, Jiaqing Zhou, Junkun Peng, Zhi Wang
Abstract:
Well-coordinated, music-aligned holistic dance enhances emotional expressiveness and audience engagement. However, generating such dances remains challenging due to the scarcity of holistic 3D dance datasets, the difficulty of achieving cross-modal alignment between music and dance, and the complexity of modeling interdependent motion across the body, hands, and face. To address these challenges, we introduce SoulDance, a high-precision music-dance paired dataset captured via professional motion capture systems, featuring meticulously annotated holistic dance movements. Building on this dataset, we propose SoulNet, a framework designed to generate music-aligned, kinematically coordinated holistic dance sequences. SoulNet consists of three principal components: (1) Hierarchical Residual Vector Quantization, which models complex, fine-grained motion dependencies across the body, hands, and face; (2) Music-Aligned Generative Model, which composes these hierarchical motion units into expressive and coordinated holistic dance; (3) Music-Motion Retrieval Module, a pre-trained cross-modal model that functions as a music-dance alignment prior, ensuring temporal synchronization and semantic coherence between generated dance and input music throughout the generation process. Extensive experiments demonstrate that SoulNet significantly surpasses existing approaches in generating high-quality, music-coordinated, and well-aligned holistic 3D dance sequences.
Authors: Kangning Yin, Weishuai Zeng, Ke Fan, Minyue Dai, Zirui Wang, Qiang Zhang, Zheng Tian, Jingbo Wang, Jiangmiao Pang, Weinan Zhang
Abstract:
Achieving expressive and generalizable whole-body motion control is essential for deploying humanoid robots in real-world environments. In this work, we propose UniTracker, a three-stage training framework that enables robust and scalable motion tracking across a wide range of human behaviors. In the first stage, we train a teacher policy with privileged observations to generate high-quality actions. In the second stage, we introduce a Conditional Variational Autoencoder (CVAE) to model a universal student policy that can be deployed directly on real hardware. The CVAE structure allows the policy to learn a global latent representation of motion, enhancing generalization to unseen behaviors and addressing the limitations of standard MLP-based policies under partial observations. Unlike pure MLPs that suffer from drift in global attributes like orientation, our CVAE-student policy incorporates global intent during training by aligning a partial-observation prior to the full-observation encoder. In the third stage, we introduce a fast adaptation module that fine-tunes the universal policy on harder motion sequences that are difficult to track directly. This adaptation can be performed both for single sequences and in batch mode, further showcasing the flexibility and scalability of our approach. We evaluate UniTracker in both simulation and real-world settings using a Unitree G1 humanoid, demonstrating strong performance in motion diversity, tracking accuracy, and deployment robustness.
Authors: Zhirui Sun, Xingrong Diao, Yao Wang, Bi-Ke Zhu, Jiankun Wang
Abstract:
Navigation in human-robot shared crowded environments remains challenging, as robots are expected to move efficiently while respecting human motion conventions. However, many existing approaches emphasize safety or efficiency while overlooking social awareness. This article proposes Learning-Risk Model Predictive Control (LR-MPC), a data-driven navigation algorithm that balances efficiency, safety, and social awareness. LR-MPC consists of two phases: an offline risk learning phase, where a Probabilistic Ensemble Neural Network (PENN) is trained using risk data from a heuristic MPC-based baseline (HR-MPC), and an online adaptive inference phase, where local waypoints are sampled and globally guided by a Multi-RRT planner. Each candidate waypoint is evaluated for risk by PENN, and predictions are filtered using epistemic and aleatoric uncertainty to ensure robust decision-making. The safest waypoint is selected as the MPC input for real-time navigation. Extensive experiments demonstrate that LR-MPC outperforms baseline methods in success rate and social awareness, enabling robots to navigate complex crowds with high adaptability and low disruption. A website about this work is available at https://sites.google.com/view/lr-mpc.
Authors: Gokhan Solak, Gustavo J. G. Lahr, Idil Ozdamar, Arash Ajoudani
Abstract:
In physical human-robot interaction, force feedback has been the most common sensing modality to convey the human intention to the robot. It is widely used in admittance control to allow the human to direct the robot. However, it cannot be used in scenarios where direct force feedback is not available since manipulated objects are not always equipped with a force sensor. In this work, we study one such scenario: the collaborative pushing and pulling of heavy objects on frictional surfaces, a prevalent task in industrial settings. When humans do it, they communicate through verbal and non-verbal cues, where body poses, and movements often convey more than words. We propose a novel context-aware approach using Directed Graph Neural Networks to analyze spatio-temporal human posture data to predict human motion intention for non-verbal collaborative physical manipulation. Our experiments demonstrate that robot assistance significantly reduces human effort and improves task efficiency. The results indicate that incorporating posture-based context recognition, either together with or as an alternative to force sensing, enhances robot decision-making and control efficiency.
Authors: Yanjie Ze, Zixuan Chen, João Pedro Araújo, Zi-ang Cao, Xue Bin Peng, Jiajun Wu, C. Karen Liu
Abstract:
Teleoperating humanoid robots in a whole-body manner marks a fundamental step toward developing general-purpose robotic intelligence, with human motion providing an ideal interface for controlling all degrees of freedom. Yet, most current humanoid teleoperation systems fall short of enabling coordinated whole-body behavior, typically limiting themselves to isolated locomotion or manipulation tasks. We present the Teleoperated Whole-Body Imitation System (TWIST), a system for humanoid teleoperation through whole-body motion imitation. We first generate reference motion clips by retargeting human motion capture data to the humanoid robot. We then develop a robust, adaptive, and responsive whole-body controller using a combination of reinforcement learning and behavior cloning (RL+BC). Through systematic analysis, we demonstrate how incorporating privileged future motion frames and real-world motion capture (MoCap) data improves tracking accuracy. TWIST enables real-world humanoid robots to achieve unprecedented, versatile, and coordinated whole-body motor skills--spanning whole-body manipulation, legged manipulation, locomotion, and expressive movement--using a single unified neural network controller. Our project website: https://humanoid-teleop.github.io
Authors: Subhradip Chakraborty, Shay Snyder, Md Abdullah-Al Kaiser, Maryam Parsa, Gregory Schwartz, Akhilesh R. Jaiswal
Abstract:
The ability to predict motion in real time is fundamental to many maneuvering activities in animals, particularly those critical for survival, such as attack and escape responses. Given its significance, it is no surprise that motion prediction in animals begins in the retina. Similarly, autonomous systems utilizing computer vision could greatly benefit from the capability to predict motion in real time. Therefore, for computer vision applications, motion prediction should be integrated directly at the camera pixel level. Towards that end, we present a retina-inspired neuromorphic framework capable of performing real-time, energy-efficient MP directly within camera pixels. Our hardware-algorithm framework, implemented using GlobalFoundries 22nm FDSOI technology, integrates key retinal MP compute blocks, including a biphasic filter, spike adder, nonlinear circuit, and a 2D array for multi-directional motion prediction. Additionally, integrating the sensor and MP compute die using a 3D Cu-Cu hybrid bonding approach improves design compactness by minimizing area usage and simplifying routing complexity. Validated on real-world object stimuli, the model delivers efficient, low-latency MP for decision-making scenarios reliant on predictive visual computation, while consuming only 18.56 pJ/MP in our mixed-signal hardware implementation.
Authors: Xuan Li, Qianli Ma, Tsung-Yi Lin, Yongxin Chen, Chenfanfu Jiang, Ming-Yu Liu, Donglai Xiang
Abstract:
We present Articulated Kinematics Distillation (AKD), a framework for generating high-fidelity character animations by merging the strengths of skeleton-based animation and modern generative models. AKD uses a skeleton-based representation for rigged 3D assets, drastically reducing the Degrees of Freedom (DoFs) by focusing on joint-level control, which allows for efficient, consistent motion synthesis. Through Score Distillation Sampling (SDS) with pre-trained video diffusion models, AKD distills complex, articulated motions while maintaining structural integrity, overcoming challenges faced by 4D neural deformation fields in preserving shape consistency. This approach is naturally compatible with physics-based simulation, ensuring physically plausible interactions. Experiments show that AKD achieves superior 3D consistency and motion quality compared with existing works on text-to-4D generation. Project page: https://research.nvidia.com/labs/dir/akd/
Authors: Ziang Zheng, Guojian Zhan, Bin Shuai, Shengtao Qin, Jiangtao Li, Tao Zhang, Shengbo Eben Li
Abstract:
Reinforcement learning (RL) has demonstrated remarkable capability in acquiring robot skills, but learning each new skill still requires substantial data collection for training. The pretrain-and-finetune paradigm offers a promising approach for efficiently adapting to new robot entities and tasks. Inspired by the idea that acquired knowledge can accelerate learning new tasks with the same robot and help a new robot master a trained task, we propose a latent training framework where a transferable latent-to-latent locomotion policy is pretrained alongside diverse task-specific observation encoders and action decoders. This policy in latent space processes encoded latent observations to generate latent actions to be decoded, with the potential to learn general abstract motion skills. To retain essential information for decision-making and control, we introduce a diffusion recovery module that minimizes information reconstruction loss during pretrain stage. During fine-tune stage, the pretrained latent-to-latent locomotion policy remains fixed, while only the lightweight task-specific encoder and decoder are optimized for efficient adaptation. Our method allows a robot to leverage its own prior experience across different tasks as well as the experience of other morphologically diverse robots to accelerate adaptation. We validate our approach through extensive simulations and real-world experiments, demonstrating that the pretrained latent-to-latent locomotion policy effectively generalizes to new robot entities and tasks with improved efficiency.
Authors: Youliang Zhang, Ronghui Li, Yachao Zhang, Liang Pan, Jingbo Wang, Yebin Liu, Xiu Li
Abstract:
Extracting physically plausible 3D human motion from videos is a critical task. Although existing simulation-based motion imitation methods can enhance the physical quality of daily motions estimated from monocular video capture, extending this capability to high-difficulty motions remains an open challenge. This can be attributed to some flawed motion clips in video-based motion capture results and the inherent complexity in modeling high-difficulty motions. Therefore, sensing the advantage of segmentation in localizing human body, we introduce a mask-based motion correction module (MCM) that leverages motion context and video mask to repair flawed motions, producing imitation-friendly motions; and propose a physics-based motion transfer module (PTM), which employs a pretrain and adapt approach for motion imitation, improving physical plausibility with the ability to handle in-the-wild and challenging motions. Our approach is designed as a plug-and-play module to physically refine the video motion capture results, including high-difficulty in-the-wild motions. Finally, to validate our approach, we collected a challenging in-the-wild test set to establish a benchmark, and our method has demonstrated effectiveness on both the new benchmark and existing public datasets.https://physicalmotionrestoration.github.io
Authors: Ronghui Li, Youliang Zhang, Yachao Zhang, Yuxiang Zhang, Mingyang Su, Jie Guo, Ziwei Liu, Yebin Liu, Xiu Li
Abstract:
Humans perform a variety of interactive motions, among which duet dance is one of the most challenging interactions. However, in terms of human motion generative models, existing works are still unable to generate high-quality interactive motions, especially in the field of duet dance. On the one hand, it is due to the lack of large-scale high-quality datasets. On the other hand, it arises from the incomplete representation of interactive motion and the lack of fine-grained optimization of interactions. To address these challenges, we propose, InterDance, a large-scale duet dance dataset that significantly enhances motion quality, data scale, and the variety of dance genres. Built upon this dataset, we propose a new motion representation that can accurately and comprehensively describe interactive motion. We further introduce a diffusion-based framework with an interaction refinement guidance strategy to optimize the realism of interactions progressively. Extensive experiments demonstrate the effectiveness of our dataset and algorithm.
Authors: Kunpeng Song, Tingbo Hou, Zecheng He, Haoyu Ma, Jialiang Wang, Animesh Sinha, Sam Tsai, Yaqiao Luo, Xiaoliang Dai, Li Chen, Xide Xia, Peizhao Zhang, Peter Vajda, Ahmed Elgammal, Felix Juefei-Xu
Abstract:
In this paper, we introduce DirectorLLM, a novel video generation model that employs a large language model (LLM) to orchestrate human poses within videos. As foundational text-to-video models rapidly evolve, the demand for high-quality human motion and interaction grows. To address this need and enhance the authenticity of human motions, we extend the LLM from a text generator to a video director and human motion simulator. Utilizing open-source resources from Llama 3, we train the DirectorLLM to generate detailed instructional signals, such as human poses, to guide video generation. This approach offloads the simulation of human motion from the video generator to the LLM, effectively creating informative outlines for human-centric scenes. These signals are used as conditions by the video renderer, facilitating more realistic and prompt-following video generation. As an independent LLM module, it can be applied to different video renderers, including UNet and DiT, with minimal effort. Experiments on automatic evaluation benchmarks and human evaluations show that our model outperforms existing ones in generating videos with higher human motion fidelity, improved prompt faithfulness, and enhanced rendered subject naturalness.
Authors: Seyed Adel Alizadeh Kolagar, Mehdi Heydari Shahna, Jouni Mattila
Abstract:
Deep reinforcement learning (DRL) is emerging as a promising method for adaptive robotic motion and complex task automation, effectively addressing the limitations of traditional control methods. However, ensuring safety throughout both the learning process and policy deployment remains a key challenge due to the risky exploration inherent in DRL, as well as the discrete nature of actions taken at intervals. These discontinuities, despite being part of a continuous action space, can lead to abrupt changes between successive actions, causing instability and unsafe intermediate states. To address these challenges, this paper proposes an integrated framework that combines DRL with a jerk-bounded trajectory generator (JBTG) and a robust low-level control strategy, significantly enhancing the safety, stability, and reliability of robotic manipulators. The low-level controller ensures the precise execution of DRL-generated commands, while the JBTG refines these motions to produce smooth, continuous trajectories that prevent abrupt or unsafe actions. The framework also includes pre-calculated safe velocity zones for smooth braking, preventing joint limit violations and ensuring compliance with kinematic constraints. This approach not only guarantees the robustness and safety of the robotic system but also optimizes motion control, making it suitable for practical applications. The effectiveness of the proposed framework is demonstrated through its application to a highly complex heavy-duty manipulator.
Authors: Zhanwen Liu, Chao Li, Yang Wang, Nan Yang, Xing Fan, Jiaqi Ma, Xiangmo Zhao
Abstract:
Motion prediction plays an essential role in autonomous driving systems, enabling autonomous vehicles to achieve more accurate local-path planning and driving decisions based on predictions of the surrounding vehicles. However, existing methods neglect the potential missing values caused by object occlusion, perception failures, etc., which inevitably degrades the trajectory prediction performance in real traffic scenarios. To address this limitation, we propose a novel end-to-end framework for incomplete vehicle trajectory prediction, named Multi-scale Temporal Fusion Transformer (MTFT), which consists of the Multi-scale Attention Head (MAH) and the Continuity Representation-guided Multi-scale Fusion (CRMF) module. Specifically, the MAH leverages the multi-head attention mechanism to parallelly capture multi-scale motion representation of trajectory from different temporal granularities, thus mitigating the adverse effect of missing values on prediction. Furthermore, the multi-scale motion representation is input into the CRMF module for multi-scale fusion to obtain the robust temporal feature of the vehicle. During the fusion process, the continuity representation of vehicle motion is first extracted across time steps to guide the fusion, ensuring that the resulting temporal feature incorporates both detailed information and the overall trend of vehicle motion, which facilitates the accurate decoding of future trajectory that is consistent with the vehicle's motion trend. We evaluate the proposed model on four datasets derived from highway and urban traffic scenarios. The experimental results demonstrate its superior performance in the incomplete vehicle trajectory prediction task compared with state-of-the-art models, e.g., a comprehensive performance improvement of more than 39% on the HighD dataset.
Authors: Wanjiang Weng, Xiaofeng Tan, Junbo Wang, Guo-Sen Xie, Pan Zhou, Hongsong Wang
Abstract:
Text-to-motion generation, which synthesizes 3D human motions from text inputs, holds immense potential for applications in gaming, film, and robotics. Recently, diffusion-based methods have been shown to generate more diversity and realistic motion. However, there exists a misalignment between text and motion distributions in diffusion models, which leads to semantically inconsistent or low-quality motions. To address this limitation, we propose Reward-guided sampling Alignment (ReAlign), comprising a step-aware reward model to assess alignment quality during the denoising sampling and a reward-guided strategy that directs the diffusion process toward an optimally aligned distribution. This reward model integrates step-aware tokens and combines a text-aligned module for semantic consistency and a motion-aligned module for realism, refining noisy motions at each timestep to balance probability density and alignment. Extensive experiments of both motion generation and retrieval tasks demonstrate that our approach significantly improves text-motion alignment and motion quality compared to existing state-of-the-art methods.
Authors: Xiaohui Li, Xiaolong Liu, Zhongchen Shi, Wei Chen, Liang Xie, Meng Gai, Jun Cao, Suxia Zhang, Erwei Yin
Abstract:
Cave Automatic Virtual Environment (CAVE) is one of the virtual reality (VR) immersive devices currently used to present virtual environments. However, the locomotion methods in the CAVE are limited by unnatural interaction methods, severely hindering the user experience and immersion in the CAVE. We proposed a locomotion framework for CAVE environments aimed at enhancing the immersive locomotion experience through optimized human motion recognition technology. Firstly, we construct a four-sided display CAVE system, then through the dynamic method based on Perspective-n-Point to calibrate the camera, using the obtained camera intrinsics and extrinsic parameters, and an action recognition architecture to get the action category. At last, transform the action category to a graphical workstation that renders display effects on the screen. We designed a user study to validate the effectiveness of our method. Compared to the traditional methods, our method has significant improvements in realness and self-presence in the virtual environment, effectively reducing motion sickness.
Authors: Benjamin Stoler, Jonathan Francis, Jean Oh
Abstract:
Methods for trajectory prediction in Autonomous Driving must contend with rare, safety-critical scenarios that make reliance on real-world data collection alone infeasible. To assess robustness under such conditions, we propose new long-tail evaluation settings that repartition datasets to create challenging out-of-distribution (OOD) test sets. We first introduce a safety-informed scenario factorization framework, which disentangles scenarios into discrete ego and social contexts. Building on analogies to compositional zero-shot image-labeling in Computer Vision, we then hold out novel context combinations to construct challenging closed-world and open-world settings. This process induces OOD performance gaps in future motion prediction of 5.0% and 14.7% in closed-world and open-world settings, respectively, relative to in-distribution performance for a state-of-the-art baseline. To improve generalization, we extend task-modular gating networks to operate within trajectory prediction models, and develop an auxiliary, difficulty-prediction head to refine internal representations. Our strategies jointly reduce the OOD performance gaps to 2.8% and 11.5% in the two settings, respectively, while still improving in-distribution performance.
Authors: Mu Li, Yin Wang, Zhiying Leng, Jiapeng Liu, Frederick W. B. Li, Xiaohui Liang
Abstract:
Human interaction is inherently dynamic and hierarchical, where the dynamic refers to the motion changes with distance, and the hierarchy is from individual to inter-individual and ultimately to overall motion. Exploiting these properties is vital for dual-human motion generation, while existing methods almost model human interaction temporally invariantly, ignoring distance and hierarchy. To address it, we propose a fine-grained dual-human motion generation method, namely FineDual, a tri-stage method to model the dynamic hierarchical interaction from individual to inter-individual. The first stage, Self-Learning Stage, divides the dual-human overall text into individual texts through a Large Language Model, aligning text features and motion features at the individual level. The second stage, Adaptive Adjustment Stage, predicts interaction distance by an interaction distance predictor, modeling human interactions dynamically at the inter-individual level by an interaction-aware graph network. The last stage, Teacher-Guided Refinement Stage, utilizes overall text features as guidance to refine motion features at the overall level, generating fine-grained and high-quality dual-human motion. Extensive quantitative and qualitative evaluations on dual-human motion datasets demonstrate that our proposed FineDual outperforms existing approaches, effectively modeling dynamic hierarchical human interaction.
Authors: Masoumeh Chapariniya, Teodora Vukovic, Sarah Ebling, Volker Dellwo
Abstract:
This paper investigates the performance of transformer-based architectures for person identification in natural, face-to-face conversation scenario. We implement and evaluate a two-stream framework that separately models spatial configurations and temporal motion patterns of 133 COCO WholeBody keypoints, extracted from a subset of the CANDOR conversational corpus. Our experiments compare pre-trained and from-scratch training, investigate the use of velocity features, and introduce a multi-scale temporal transformer for hierarchical motion modeling. Results demonstrate that domain-specific training significantly outperforms transfer learning, and that spatial configurations carry more discriminative information than temporal dynamics. The spatial transformer achieves 95.74% accuracy, while the multi-scale temporal transformer achieves 93.90%. Feature-level fusion pushes performance to 98.03%, confirming that postural and dynamic information are complementary. These findings highlight the potential of transformer architectures for person identification in natural interactions and provide insights for future multimodal and cross-cultural studies.
Authors: Hua Yu, Jiao Liu, Xu Gui, Melvin Wong, Yaqing Hou, Yew-Soon Ong
Abstract:
In-betweening human motion generation aims to synthesize intermediate motions that transition between user-specified keyframes. In addition to maintaining smooth transitions, a crucial requirement of this task is to generate diverse motion sequences. It is still challenging to maintain diversity, particularly when it is necessary for the motions within a generated batch sampling to differ meaningfully from one another due to complex motion dynamics. In this paper, we propose a novel method, termed the Multi-Criteria Guidance with In-Betweening Motion Model (MCG-IMM), for in-betweening human motion generation. A key strength of MCG-IMM lies in its plug-and-play nature: it enhances the diversity of motions generated by pretrained models without introducing additional parameters This is achieved by providing a sampling process of pretrained generative models with multi-criteria guidance. Specifically, MCG-IMM reformulates the sampling process of pretrained generative model as a multi-criteria optimization problem, and introduces an optimization process to explore motion sequences that satisfy multiple criteria, e.g., diversity and smoothness. Moreover, our proposed plug-and-play multi-criteria guidance is compatible with different families of generative models, including denoised diffusion probabilistic models, variational autoencoders, and generative adversarial networks. Experiments on four popular human motion datasets demonstrate that MCG-IMM consistently state-of-the-art methods in in-betweening motion generation task.
Authors: Waseem Akram, Muhayy Ud Din, Abdelhaleem Saad, Irfan Hussain
Abstract:
Inspection of aquaculture net pens is essential for maintaining the structural integrity, biosecurity, and operational efficiency of fish farming systems. Traditional inspection approaches rely on pre-programmed missions or manual control, offering limited adaptability to dynamic underwater conditions and user-specific demands. In this study, we propose AquaChat, a novel Remotely Operated Vehicle (ROV) framework that integrates Large Language Models (LLMs) for intelligent and adaptive net pen inspection. The system features a multi-layered architecture: (1) a high-level planning layer that interprets natural language user commands using an LLM to generate symbolic task plans; (2) a mid-level task manager that translates plans into ROV control sequences; and (3) a low-level motion control layer that executes navigation and inspection tasks with precision. Real-time feedback and event-triggered replanning enhance robustness in challenging aquaculture environments. The framework is validated through experiments in both simulated and controlled aquatic environments representative of aquaculture net pens. Results demonstrate improved task flexibility, inspection accuracy, and operational efficiency. AquaChat illustrates the potential of integrating language-based AI with marine robotics to enable intelligent, user-interactive inspection systems for sustainable aquaculture operations.
Authors: Yue Ma, Kanglei Zhou, Fuyang Yu, Frederick W. B. Li, Xiaohui Liang
Abstract:
3D human motion forecasting aims to enable autonomous applications. Estimating uncertainty for each prediction (i.e., confidence based on probability density or quantile) is essential for safety-critical contexts like human-robot collaboration to minimize risks. However, existing diverse motion forecasting approaches struggle with uncertainty quantification due to implicit probabilistic representations hindering uncertainty modeling. We propose ProbHMI, which introduces invertible networks to parameterize poses in a disentangled latent space, enabling probabilistic dynamics modeling. A forecasting module then explicitly predicts future latent distributions, allowing effective uncertainty quantification. Evaluated on benchmarks, ProbHMI achieves strong performance for both deterministic and diverse prediction while validating uncertainty calibration, critical for risk-aware decision making.
Authors: Yin Wang, Mu li, Zhiying Leng, Frederick W. B. Li, Xiaohui Liang
Abstract:
We introduce MOST, a novel motion diffusion model via temporal clip Banzhaf interaction, aimed at addressing the persistent challenge of generating human motion from rare language prompts. While previous approaches struggle with coarse-grained matching and overlook important semantic cues due to motion redundancy, our key insight lies in leveraging fine-grained clip relationships to mitigate these issues. MOST's retrieval stage presents the first formulation of its kind - temporal clip Banzhaf interaction - which precisely quantifies textual-motion coherence at the clip level. This facilitates direct, fine-grained text-to-motion clip matching and eliminates prevalent redundancy. In the generation stage, a motion prompt module effectively utilizes retrieved motion clips to produce semantically consistent movements. Extensive evaluations confirm that MOST achieves state-of-the-art text-to-motion retrieval and generation performance by comprehensively addressing previous challenges, as demonstrated through quantitative and qualitative results highlighting its effectiveness, especially for rare prompts.
Authors: Zewei Zhang, Chenhao Li, Takahiro Miki, Marco Hutter
Abstract:
Reinforcement learning (RL)-based motion imitation methods trained on demonstration data can effectively learn natural and expressive motions with minimal reward engineering but often struggle to generalize to novel environments. We address this by proposing a hierarchical RL framework in which a low-level policy is first pre-trained to imitate animal motions on flat ground, thereby establishing motion priors. A subsequent high-level, goal-conditioned policy then builds on these priors, learning residual corrections that enable perceptive locomotion, local obstacle avoidance, and goal-directed navigation across diverse and rugged terrains. Simulation experiments illustrate the effectiveness of learned residuals in adapting to progressively challenging uneven terrains while still preserving the locomotion characteristics provided by the motion priors. Furthermore, our results demonstrate improvements in motion regularization over baseline models trained without motion priors under similar reward setups. Real-world experiments with an ANYmal-D quadruped robot confirm our policy's capability to generalize animal-like locomotion skills to complex terrains, demonstrating smooth and efficient locomotion and local navigation performance amidst challenging terrains with obstacles.
Authors: Tianle Wu, Mojtaba Esfandiari, Peiyao Zhang, Russell H. Taylor, Peter Gehlbach, Iulian Iordachita
Abstract:
Subretinal injection is a critical procedure for delivering therapeutic agents to treat retinal diseases such as age-related macular degeneration (AMD). However, retinal motion caused by physiological factors such as respiration and heartbeat significantly impacts precise needle positioning, increasing the risk of retinal pigment epithelium (RPE) damage. This paper presents a fully autonomous robotic subretinal injection system that integrates intraoperative optical coherence tomography (iOCT) imaging and deep learning-based motion prediction to synchronize needle motion with retinal displacement. A Long Short-Term Memory (LSTM) neural network is used to predict internal limiting membrane (ILM) motion, outperforming a Fast Fourier Transform (FFT)-based baseline model. Additionally, a real-time registration framework aligns the needle tip position with the robot's coordinate frame. Then, a dynamic proportional speed control strategy ensures smooth and adaptive needle insertion. Experimental validation in both simulation and ex vivo open-sky porcine eyes demonstrates precise motion synchronization and successful subretinal injections. The experiment achieves a mean tracking error below 16.4 μm in pre-insertion phases. These results show the potential of AI-driven robotic assistance to improve the safety and accuracy of retinal microsurgery.
Authors: Yifei Dong, Fengyi Wu, Qi He, Heng Li, Minghan Li, Zebang Cheng, Yuxuan Zhou, Jingdong Sun, Qi Dai, Zhi-Qi Cheng, Alexander G Hauptmann
Abstract:
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.
Authors: Siyuan Fan, Wenke Huang, Xiantao Cai, Bo Du
Abstract:
3D human interaction generation has emerged as a key research area, focusing on producing dynamic and contextually relevant interactions between humans and various interactive entities. Recent rapid advancements in 3D model representation methods, motion capture technologies, and generative models have laid a solid foundation for the growing interest in this domain. Existing research in this field can be broadly categorized into three areas: human-scene interaction, human-object interaction, and human-human interaction. Despite the rapid advancements in this area, challenges remain due to the need for naturalness in human motion generation and the accurate interaction between humans and interactive entities. In this survey, we present a comprehensive literature review of human interaction generation, which, to the best of our knowledge, is the first of its kind. We begin by introducing the foundational technologies, including model representations, motion capture methods, and generative models. Subsequently, we introduce the approaches proposed for the three sub-tasks, along with their corresponding datasets and evaluation metrics. Finally, we discuss potential future research directions in this area and conclude the survey. Through this survey, we aim to offer a comprehensive overview of the current advancements in the field, highlight key challenges, and inspire future research works.
Authors: Yin Wang, Mu Li, Jiapeng Liu, Zhiying Leng, Frederick W. B. Li, Ziyao Zhang, Xiaohui Liang
Abstract:
We address the challenging problem of fine-grained text-driven human motion generation. Existing works generate imprecise motions that fail to accurately capture relationships specified in text due to: (1) lack of effective text parsing for detailed semantic cues regarding body parts, (2) not fully modeling linguistic structures between words to comprehend text comprehensively. To tackle these limitations, we propose a novel fine-grained framework Fg-T2M++ that consists of: (1) an LLMs semantic parsing module to extract body part descriptions and semantics from text, (2) a hyperbolic text representation module to encode relational information between text units by embedding the syntactic dependency graph into hyperbolic space, and (3) a multi-modal fusion module to hierarchically fuse text and motion features. Extensive experiments on HumanML3D and KIT-ML datasets demonstrate that Fg-T2M++ outperforms SOTA methods, validating its ability to accurately generate motions adhering to comprehensive text semantics.
Authors: Muhayy Ud Din, Jan Rosell, Waseem Akram, Isiah Zaplana, Maximo A Roa, Irfan Hussain
Abstract:
Performing complex manipulation tasks in dynamic environments requires efficient Task and Motion Planning (TAMP) approaches that combine high-level symbolic plans with low-level motion control. Advances in Large Language Models (LLMs), such as GPT-4, are transforming task planning by offering natural language as an intuitive and flexible way to describe tasks, generate symbolic plans, and reason. However, the effectiveness of LLM-based TAMP approaches is limited due to static and template-based prompting, which limits adaptability to dynamic environments and complex task contexts. To address these limitations, this work proposes a novel Onto-LLM-TAMP framework that employs knowledge-based reasoning to refine and expand user prompts with task-contextual reasoning and knowledge-based environment state descriptions. Integrating domain-specific knowledge into the prompt ensures semantically accurate and context-aware task plans. The proposed framework demonstrates its effectiveness by resolving semantic errors in symbolic plan generation, such as maintaining logical temporal goal ordering in scenarios involving hierarchical object placement. The proposed framework is validated through both simulation and real-world scenarios, demonstrating significant improvements over the baseline approach in terms of adaptability to dynamic environments and the generation of semantically correct task plans.
Authors: Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver Wang, Andrew Owens, Deqing Sun
Abstract:
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
Authors: Demir Arikan, Peiyao Zhang, Michael Sommersperger, Shervin Dehghani, Mojtaba Esfandiari, Russel H. Taylor, M. Ali Nasseri, Peter Gehlbach, Nassir Navab, Iulian Iordachita
Abstract:
Exudative (wet) age-related macular degeneration (AMD) is a leading cause of vision loss in older adults, typically treated with intravitreal injections. Emerging therapies, such as subretinal injections of stem cells, gene therapy, small molecules and RPE cells require precise delivery to avoid damaging delicate retinal structures. Robotic systems can potentially offer the necessary precision for these procedures. This paper presents a novel approach for motion compensation in robotic subretinal injections, utilizing real time Optical Coherence Tomography (OCT). The proposed method leverages B$^5$-scans, a rapid acquisition of small-volume OCT data, for dynamic tracking of retinal motion along the Z-axis, compensating for physiological movements such as breathing and heartbeat. Validation experiments on ex vivo porcine eyes revealed challenges in maintaining a consistent tool-to-retina distance, with deviations of up to 200 $μm$ for 100 $μm$ amplitude motions and over 80 $μm$ for 25 $μm$ amplitude motions over one minute. Subretinal injections faced additional difficulties, with phase shifts causing the needle to move off-target and inject into the vitreous. These results highlight the need for improved motion prediction and horizontal stability to enhance the accuracy and safety of robotic subretinal procedures.
Authors: Yufei Zhu, Shih-Min Yang, Martin Magnusson, Allan Wang
Abstract:
Navigating through dense human crowds remains a significant challenge for mobile robots. A key issue is the freezing robot problem, where the robot struggles to find safe motions and becomes stuck within the crowd. To address this, we propose HiCrowd, a hierarchical framework that integrates reinforcement learning (RL) with model predictive control (MPC). HiCrowd leverages surrounding pedestrian motion as guidance, enabling the robot to align with compatible crowd flows. A high-level RL policy generates a follow point to align the robot with a suitable pedestrian group, while a low-level MPC safely tracks this guidance with short horizon planning. The method combines long-term crowd aware decision making with safe short-term execution. We evaluate HiCrowd against reactive and learning-based baselines in offline setting (replaying recorded human trajectories) and online setting (human trajectories are updated to react to the robot in simulation). Experiments on a real-world dataset and a synthetic crowd dataset show that our method outperforms in navigation efficiency and safety, while reducing freezing behaviors. Our results suggest that leveraging human motion as guidance, rather than treating humans solely as dynamic obstacles, provides a powerful principle for safe and efficient robot navigation in crowds.
Authors: Farzam Tajdari, Georgios Papaioannou, Riender Happee
Abstract:
The security of Automated Vehicles (AVs) is an important emerging area of research in traffic safety. Methods have been published and evaluated in experimental vehicles to secure safe AV control in the presence of attacks, but human motion comfort is rarely investigated in such studies. In this paper, we present an innovative optimal-coupling-observer-based framework that rejects the impact of bounded sensor attacks in a network of connected and automated vehicles from safety and comfort point of view. We demonstrate its performance in car following with cooperative adaptive cruise control for platoons with redundant distance and velocity sensors. The error dynamics are formulated as a Linear Time Variant (LTV) system, resulting in complex stability conditions that are investigated using a Linear Matrix Inequality (LMI) approach guaranteeing global asymptotic stability. We prove the capability of the framework to secure occupants' safety and comfort in the presence of bounded attacks. In the onset of attack, the framework rapidly detects attacked sensors and switches to the most reliable observer eliminating attacked sensors, even with modest attack magnitudes. Without our proposed method, severe (but bounded) attacks result in collisions and major discomfort. With our method, attacks had negligible effects on motion comfort evaluated using ISO-2631 Ride Comfort and Motion Sickness indexes. The results pave the path to bring comfort to the forefront of AVs security.
Authors: Matthias Heyrman, Chenhao Li, Victor Klemm, Dongho Kang, Stelian Coros, Marco Hutter
Abstract:
Effective motion representation is crucial for enabling robots to imitate expressive behaviors in real time, yet existing motion controllers often ignore inherent patterns in motion. Previous efforts in representation learning do not attempt to jointly capture structured periodic patterns and irregular variations in human and animal movement. To address this, we present Multi-Domain Motion Embedding (MDME), a motion representation that unifies the embedding of structured and unstructured features using a wavelet-based encoder and a probabilistic embedding in parallel. This produces a rich representation of reference motions from a minimal input set, enabling improved generalization across diverse motion styles and morphologies. We evaluate MDME on retargeting-free real-time motion imitation by conditioning robot control policies on the learned embeddings, demonstrating accurate reproduction of complex trajectories on both humanoid and quadruped platforms. Our comparative studies confirm that MDME outperforms prior approaches in reconstruction fidelity and generalizability to unseen motions. Furthermore, we demonstrate that MDME can reproduce novel motion styles in real-time through zero-shot deployment, eliminating the need for task-specific tuning or online retargeting. These results position MDME as a generalizable and structure-aware foundation for scalable real-time robot imitation.
Authors: Huiqiang Sun, Liao Shen, Zhan Peng, Kun Wang, Size Wu, Yuhang Zang, Tianqi Liu, Zihao Huang, Xingyu Zeng, Zhiguo Cao, Wei Li, Chen Change Loy
Abstract:
Cinematic storytelling is profoundly shaped by the artful manipulation of photographic elements such as depth of field and exposure. These effects are crucial in conveying mood and creating aesthetic appeal. However, controlling these effects in generative video models remains highly challenging, as most existing methods are restricted to camera motion control. In this paper, we propose CineCtrl, the first video cinematic editing framework that provides fine control over professional camera parameters (e.g., bokeh, shutter speed). We introduce a decoupled cross-attention mechanism to disentangle camera motion from photographic inputs, allowing fine-grained, independent control without compromising scene consistency. To overcome the shortage of training data, we develop a comprehensive data generation strategy that leverages simulated photographic effects with a dedicated real-world collection pipeline, enabling the construction of a large-scale dataset for robust model training. Extensive experiments demonstrate that our model generates high-fidelity videos with precisely controlled, user-specified photographic camera effects.
Authors: Aymen Mir, Jian Wang, Riza Alp Guler, Chuan Guo, Gerard Pons-Moll, Bing Zhou
Abstract:
We present a novel framework for animating humans in 3D scenes using 3D Gaussian Splatting (3DGS), a neural scene representation that has recently achieved state-of-the-art photorealistic results for novel-view synthesis but remains under-explored for human-scene animation and interaction. Unlike existing animation pipelines that use meshes or point clouds as the underlying 3D representation, our approach introduces the use of 3DGS as the 3D representation to the problem of animating humans in scenes. By representing humans and scenes as Gaussians, our approach allows for geometry-consistent free-viewpoint rendering of humans interacting with 3D scenes. Our key insight is that the rendering can be decoupled from the motion synthesis and each sub-problem can be addressed independently, without the need for paired human-scene data. Central to our method is a Gaussian-aligned motion module that synthesizes motion without explicit scene geometry, using opacity-based cues and projected Gaussian structures to guide human placement and pose alignment. To ensure natural interactions, we further propose a human-scene Gaussian refinement optimization that enforces realistic contact and navigation. We evaluate our approach on scenes from Scannet++ and the SuperSplat library, and on avatars reconstructed from sparse and dense multi-view human capture. Finally, we demonstrate that our framework allows for novel applications such as geometry-consistent free-viewpoint rendering of edited monocular RGB videos with new animated humans, showcasing the unique advantage of 3DGS for monocular video-based human animation.
Authors: Katie Luo, Jingwei Ji, Tong He, Runsheng Xu, Yichen Xie, Dragomir Anguelov, Mingxing Tan
Abstract:
Current autonomous driving systems rely on specialized models for perceiving and predicting motion, which demonstrate reliable performance in standard conditions. However, generalizing cost-effectively to diverse real-world scenarios remains a significant challenge. To address this, we propose Plug-and-Forecast (PnF), a plug-and-play approach that augments existing motion forecasting models with multimodal large language models (MLLMs). PnF builds on the insight that natural language provides a more effective way to describe and handle complex scenarios, enabling quick adaptation to targeted behaviors. We design prompts to extract structured scene understanding from MLLMs and distill this information into learnable embeddings to augment existing behavior prediction models. Our method leverages the zero-shot reasoning capabilities of MLLMs to achieve significant improvements in motion prediction performance, while requiring no fine-tuning -- making it practical to adopt. We validate our approach on two state-of-the-art motion forecasting models using the Waymo Open Motion Dataset and the nuScenes Dataset, demonstrating consistent performance improvements across both benchmarks.
Authors: Siheng Zhao, Yanjie Ze, Yue Wang, C. Karen Liu, Pieter Abbeel, Guanya Shi, Rocky Duan
Abstract:
Humanoid whole-body loco-manipulation promises transformative capabilities for daily service and warehouse tasks. While recent advances in general motion tracking (GMT) have enabled humanoids to reproduce diverse human motions, these policies lack the precision and object awareness required for loco-manipulation. To this end, we introduce ResMimic, a two-stage residual learning framework for precise and expressive humanoid control from human motion data. First, a GMT policy, trained on large-scale human-only motion, serves as a task-agnostic base for generating human-like whole-body movements. An efficient but precise residual policy is then learned to refine the GMT outputs to improve locomotion and incorporate object interaction. To further facilitate efficient training, we design (i) a point-cloud-based object tracking reward for smoother optimization, (ii) a contact reward that encourages accurate humanoid body-object interactions, and (iii) a curriculum-based virtual object controller to stabilize early training. We evaluate ResMimic in both simulation and on a real Unitree G1 humanoid. Results show substantial gains in task success, training efficiency, and robustness over strong baselines. Videos are available at https://resmimic.github.io/ .
Authors: Anna Deichler, Siyang Wang, Simon Alexanderson, Jonas Beskow
Abstract:
Pointing is a key mode of interaction with robots, yet most prior work has focused on recognition rather than generation. We present a motion capture dataset of human pointing gestures covering diverse styles, handedness, and spatial targets. Using reinforcement learning with motion imitation, we train policies that reproduce human-like pointing while maximizing precision. Results show our approach enables context-aware pointing behaviors in simulation, balancing task performance with natural dynamics.
Authors: Guoxian Song, Hongyi Xu, Xiaochen Zhao, You Xie, Tianpei Gu, Zenan Li, Chenxu Zhang, Linjie Luo
Abstract:
We present X-UniMotion, a unified and expressive implicit latent representation for whole-body human motion, encompassing facial expressions, body poses, and hand gestures. Unlike prior motion transfer methods that rely on explicit skeletal poses and heuristic cross-identity adjustments, our approach encodes multi-granular motion directly from a single image into a compact set of four disentangled latent tokens -- one for facial expression, one for body pose, and one for each hand. These motion latents are both highly expressive and identity-agnostic, enabling high-fidelity, detailed cross-identity motion transfer across subjects with diverse identities, poses, and spatial configurations. To achieve this, we introduce a self-supervised, end-to-end framework that jointly learns the motion encoder and latent representation alongside a DiT-based video generative model, trained on large-scale, diverse human motion datasets. Motion-identity disentanglement is enforced via 2D spatial and color augmentations, as well as synthetic 3D renderings of cross-identity subject pairs under shared poses. Furthermore, we guide motion token learning with auxiliary decoders that promote fine-grained, semantically aligned, and depth-aware motion embeddings. Extensive experiments show that X-UniMotion outperforms state-of-the-art methods, producing highly expressive animations with superior motion fidelity and identity preservation.
Authors: Yu Liu, Leyuan Qu, Hanlei Shi, Di Gao, Yuhua Zheng, Taihao Li
Abstract:
Dynamic Facial Expression Recognition (DFER) aims to identify human emotions from temporally evolving facial movements and plays a critical role in affective computing. While recent vision-language approaches have introduced semantic textual descriptions to guide expression recognition, existing methods still face two key limitations: they often underutilize the subtle emotional cues embedded in generated text, and they have yet to incorporate sufficiently effective mechanisms for filtering out facial dynamics that are irrelevant to emotional expression. To address these gaps, We propose GRACE, Granular Representation Alignment for Cross-modal Emotion recognition that integrates dynamic motion modeling, semantic text refinement, and token-level cross-modal alignment to facilitate the precise localization of emotionally salient spatiotemporal features. Our method constructs emotion-aware textual descriptions via a Coarse-to-fine Affective Text Enhancement (CATE) module and highlights expression-relevant facial motion through a motion-difference weighting mechanism. These refined semantic and visual signals are aligned at the token level using entropy-regularized optimal transport. Experiments on three benchmark datasets demonstrate that our method significantly improves recognition performance, particularly in challenging settings with ambiguous or imbalanced emotion classes, establishing new state-of-the-art (SOTA) results in terms of both UAR and WAR.
Authors: Chenhao Li, Marco Hutter, Andreas Krause
Abstract:
This survey provides a comparative analysis of feature-based and GAN-based approaches to learning from demonstrations, with a focus on the structure of reward functions and their implications for policy learning. Feature-based methods offer dense, interpretable rewards that excel at high-fidelity motion imitation, yet often require sophisticated representations of references and struggle with generalization in unstructured settings. GAN-based methods, in contrast, use implicit, distributional supervision that enables scalability and adaptation flexibility, but are prone to training instability and coarse reward signals. Recent advancements in both paradigms converge on the importance of structured motion representations, which enable smoother transitions, controllable synthesis, and improved task integration. We argue that the dichotomy between feature-based and GAN-based methods is increasingly nuanced: rather than one paradigm dominating the other, the choice should be guided by task-specific priorities such as fidelity, diversity, interpretability, and adaptability. This work outlines the algorithmic trade-offs and design considerations that underlie method selection, offering a framework for principled decision-making in learning from demonstrations.
Authors: Anna Deichler, Jim O'Regan, Teo Guichoux, David Johansson, Jonas Beskow
Abstract:
Human motion generation has advanced rapidly in recent years, yet the critical problem of creating spatially grounded, context-aware gestures has been largely overlooked. Existing models typically specialize either in descriptive motion generation, such as locomotion and object interaction, or in isolated co-speech gesture synthesis aligned with utterance semantics. However, both lines of work often treat motion and environmental grounding separately, limiting advances toward embodied, communicative agents. To address this gap, our work introduces a multimodal dataset and framework for grounded gesture generation, combining two key resources: (1) a synthetic dataset of spatially grounded referential gestures, and (2) MM-Conv, a VR-based dataset capturing two-party dialogues. Together, they provide over 7.7 hours of synchronized motion, speech, and 3D scene information, standardized in the HumanML3D format. Our framework further connects to a physics-based simulator, enabling synthetic data generation and situated evaluation. By bridging gesture modeling and spatial grounding, our contribution establishes a foundation for advancing research in situated gesture generation and grounded multimodal interaction.
Project page: https://groundedgestures.github.io/
Authors: Dongho Kang, Jin Cheng, Fatemeh Zargarbashi, Taerim Yoon, Sungjoon Choi, Stelian Coros
Abstract:
This paper presents a control framework for legged robots that leverages unstructured real-world animal motion data to generate animal-like and user-steerable behaviors. Our framework learns to follow velocity commands while reproducing the diverse gait patterns in the original dataset. To begin with, animal motion data is transformed into a robot-compatible database using constrained inverse kinematics and model predictive control, bridging the morphological and physical gap between the animal and the robot. Subsequently, a variational autoencoder-based motion synthesis module captures the diverse locomotion patterns in the motion database and generates smooth transitions between them in response to velocity commands. The resulting kinematic motions serve as references for a reinforcement learning-based feedback controller deployed on physical robots. We show that this approach enables a quadruped robot to adaptively switch gaits and accurately track user velocity commands while maintaining the stylistic coherence of the motion data. Additionally, we provide component-wise evaluations to analyze the system's behavior in depth and demonstrate the efficacy of our method for more accurate and reliable motion imitation.
Authors: Bingfan Zhu, Biao Jiang, Sunyi Wang, Shixiang Tang, Tao Chen, Linjie Luo, Youyi Zheng, Xin Chen
Abstract:
Though recent advances in multimodal models have demonstrated strong capabilities and opportunities in unified understanding and generation, the development of unified motion-language models remains underexplored. To enable such models with high-fidelity human motion, two core challenges must be addressed. The first is the reconstruction gap between the continuous motion modality and discrete representation in an autoregressive manner, and the second is the degradation of language intelligence during unified training. Inspired by the mixture of experts, we propose MotionGPT3, a bimodal motion-language model that treats human motion as a second modality, decoupling motion modeling via separate model parameters and enabling both effective cross-modal interaction and efficient multimodal scaling training. To preserve language intelligence, the text branch retains the original structure and parameters of the pretrained language model, while a new motion branch is integrated via a shared attention mechanism, enabling bidirectional information flow between two modalities. We first employ a motion Variational Autoencoder (VAE) to encode raw human motion into latent representations. Based on this continuous latent space, the motion branch predicts motion latents directly from intermediate hidden states using a diffusion head, bypassing discrete tokenization. Extensive experiments show that our approach achieves competitive performance on both motion understanding and generation tasks while preserving strong language capabilities, establishing a unified bimodal motion diffusion framework within an autoregressive manner.
Authors: Ge Wang, Songlin Fan, Hangxu Liu, Quanjian Song, Hewei Wang, Jinfeng Xu
Abstract:
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
Authors: Mingyang Huang, Peng Zhang, Bang Zhang
Abstract:
Generating long-term, coherent, and realistic music-conditioned dance sequences remains a challenging task in human motion synthesis. Existing approaches exhibit critical limitations: motion graph methods rely on fixed template libraries, restricting creative generation; diffusion models, while capable of producing novel motions, often lack temporal coherence and musical alignment. To address these challenges, we propose $\textbf{MotionRAG-Diff}$, a hybrid framework that integrates Retrieval-Augmented Generation (RAG) with diffusion-based refinement to enable high-quality, musically coherent dance generation for arbitrary long-term music inputs. Our method introduces three core innovations: (1) A cross-modal contrastive learning architecture that aligns heterogeneous music and dance representations in a shared latent space, establishing unsupervised semantic correspondence without paired data; (2) An optimized motion graph system for efficient retrieval and seamless concatenation of motion segments, ensuring realism and temporal coherence across long sequences; (3) A multi-condition diffusion model that jointly conditions on raw music signals and contrastive features to enhance motion quality and global synchronization. Extensive experiments demonstrate that MotionRAG-Diff achieves state-of-the-art performance in motion quality, diversity, and music-motion synchronization accuracy. This work establishes a new paradigm for music-driven dance generation by synergizing retrieval-based template fidelity with diffusion-based creative enhancement.
Authors: Wenqi Jia, Bolin Lai, Miao Liu, Danfei Xu, James M. Rehg
Abstract:
Understanding and predicting human visuomotor coordination is crucial for applications in robotics, human-computer interaction, and assistive technologies. This work introduces a forecasting-based task for visuomotor modeling, where the goal is to predict head pose, gaze, and upper-body motion from egocentric visual and kinematic observations. We propose a \textit{Visuomotor Coordination Representation} (VCR) that learns structured temporal dependencies across these multimodal signals. We extend a diffusion-based motion modeling framework that integrates egocentric vision and kinematic sequences, enabling temporally coherent and accurate visuomotor predictions. Our approach is evaluated on the large-scale EgoExo4D dataset, demonstrating strong generalization across diverse real-world activities. Our results highlight the importance of multimodal integration in understanding visuomotor coordination, contributing to research in visuomotor learning and human behavior modeling.
Authors: Luobin Wang, Hongzhan Yu, Chenning Yu, Sicun Gao, Henrik Christensen
Abstract:
Diffusion models have recently gained significant attention in robotics due to their ability to generate multi-modal distributions of system states and behaviors. However, a key challenge remains: ensuring precise control over the generated outcomes without compromising realism. This is crucial for applications such as motion planning or trajectory forecasting, where adherence to physical constraints and task-specific objectives is essential. We propose a novel framework that enhances controllability in diffusion models by leveraging multi-modal prior distributions and enforcing strong modal coupling. This allows us to initiate the denoising process directly from distinct prior modes that correspond to different possible system behaviors, ensuring sampling to align with the training distribution. We evaluate our approach on motion prediction using the Waymo dataset and multi-task control in Maze2D environments. Experimental results show that our framework outperforms both guidance-based techniques and conditioned models with unimodal priors, achieving superior fidelity, diversity, and controllability, even in the absence of explicit conditioning. Overall, our approach provides a more reliable and scalable solution for controllable motion generation in robotics.
Authors: Zeyuan Chen, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xin Chen, Chao Wang, Di Chang, Linjie Luo
Abstract:
We present X-Dancer, a novel zero-shot music-driven image animation pipeline that creates diverse and long-range lifelike human dance videos from a single static image. As its core, we introduce a unified transformer-diffusion framework, featuring an autoregressive transformer model that synthesize extended and music-synchronized token sequences for 2D body, head and hands poses, which then guide a diffusion model to produce coherent and realistic dance video frames. Unlike traditional methods that primarily generate human motion in 3D, X-Dancer addresses data limitations and enhances scalability by modeling a wide spectrum of 2D dance motions, capturing their nuanced alignment with musical beats through readily available monocular videos. To achieve this, we first build a spatially compositional token representation from 2D human pose labels associated with keypoint confidences, encoding both large articulated body movements (e.g., upper and lower body) and fine-grained motions (e.g., head and hands). We then design a music-to-motion transformer model that autoregressively generates music-aligned dance pose token sequences, incorporating global attention to both musical style and prior motion context. Finally we leverage a diffusion backbone to animate the reference image with these synthesized pose tokens through AdaIN, forming a fully differentiable end-to-end framework. Experimental results demonstrate that X-Dancer is able to produce both diverse and characterized dance videos, substantially outperforming state-of-the-art methods in term of diversity, expressiveness and realism. Code and model will be available for research purposes.
Authors: Mario Rosenfelder, Hendrik Carius, Markus Herrmann-Wicklmayr, Peter Eberhard, Kathrin FlaÃkamp, Henrik Ebel
Abstract:
In real-world applications of mobile robots, collision avoidance is of critical importance. Typically, global motion planning in constrained environments is addressed through high-level control schemes. However, additionally integrating local collision avoidance into robot motion control offers significant advantages. For instance, it reduces the reliance on heuristics and conservatism that can arise from a two-stage approach separating local collision avoidance and control. Moreover, using model predictive control (MPC), a robot's full potential can be harnessed by considering jointly local collision avoidance, the robot's dynamics, and actuation constraints. In this context, the present paper focuses on obstacle avoidance for wheeled mobile robots, where both the robot's and obstacles' occupied volumes are modeled as ellipsoids. To this end, a computationally efficient overlap test, that works for arbitrary ellipsoids, is conducted and novelly integrated into the MPC framework. We propose a particularly efficient implementation tailored to robots moving in the plane. The functionality of the proposed obstacle-avoiding MPC is demonstrated for two exemplary types of kinematics by means of simulations. A hardware experiment using a real-world wheeled mobile robot shows transferability to reality and real-time applicability. The general computational approach to ellipsoidal obstacle avoidance can also be applied to other robotic systems and vehicles as well as three-dimensional scenarios.
Authors: Songpengcheng Xia, Yu Zhang, Zhuo Su, Xiaozheng Zheng, Zheng Lv, Guidong Wang, Yongjie Zhang, Qi Wu, Lei Chu, Ling Pei
Abstract:
Estimating full-body motion using the tracking signals of head and hands from VR devices holds great potential for various applications. However, the sparsity and unique distribution of observations present a significant challenge, resulting in an ill-posed problem with multiple feasible solutions (i.e., hypotheses). This amplifies uncertainty and ambiguity in full-body motion estimation, especially for the lower-body joints. Therefore, we propose a new method, EnvPoser, that employs a two-stage framework to perform full-body motion estimation using sparse tracking signals and pre-scanned environment from VR devices. EnvPoser models the multi-hypothesis nature of human motion through an uncertainty-aware estimation module in the first stage. In the second stage, we refine these multi-hypothesis estimates by integrating semantic and geometric environmental constraints, ensuring that the final motion estimation aligns realistically with both the environmental context and physical interactions. Qualitative and quantitative experiments on two public datasets demonstrate that our method achieves state-of-the-art performance, highlighting significant improvements in human motion estimation within motion-environment interaction scenarios.
Authors: Amon Lahr, Joshua Näf, Kim P. Wabersich, Jonathan Frey, Pascal Siehl, Andrea Carron, Moritz Diehl, Melanie N. Zeilinger
Abstract:
Incorporating learning-based models, such as artificial neural networks or Gaussian processes, into model predictive control (MPC) strategies can significantly improve control performance and online adaptation capabilities for real-world applications. Still, enabling state-of-the-art implementations of learning-based models for MPC is complicated by the challenge of interfacing machine learning frameworks with real-time optimal control software. This work aims at filling this gap by incorporating external sensitivities in sequential quadratic programming solvers for nonlinear optimal control. To this end, we provide L4acados, a general framework for incorporating Python-based residual models in the real-time optimal control software acados. By computing external sensitivities via a user-defined Python module, L4acados enables the implementation of MPC controllers with learning-based residual models in acados, while supporting parallelization of sensitivity computations when preparing the quadratic subproblems. We demonstrate significant speed-ups and superior scaling properties of L4acados compared to available software using a neural-network-based control example. Last, we provide an efficient and modular real-time implementation of Gaussian process-based MPC using L4acados, which is applied to two hardware examples: autonomous miniature racing, as well as motion control of a full-scale autonomous vehicle for an ISO lane change maneuver.
Authors: Haisheng Su, Wei Wu, Junchi Yan
Abstract:
Current end-to-end autonomous driving methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized in a planning-oriented spirit with a fully differentiable framework, existing end-to-end driving systems without ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, owing to the rasterized scene representation learning and redundant information transmission. In this paper, we revisit the human driving behavior and propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving. Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection, tracking and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. Besides, both position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thus facilitating the training stability and convergence of the whole framework. Extensive experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
Authors: Songming Jia, Yan Lu, Bin Liu, Xiang Zhang, Peng Zhao, Xinmeng Tang, Yelin Wei, Jinyang Huang, Huan Yan, Zhi Liu
Abstract:
WiFi-based 3D human pose estimation offers a low-cost and privacy-preserving alternative to vision-based systems for smart interaction. However, existing approaches rely on visual 3D poses as supervision and directly regress CSI to a camera-based coordinate system. We find that this practice leads to coordinate overfitting: models memorize deployment-specific WiFi transceiver layouts rather than only learning activity-relevant representations, resulting in severe generalization failures. To address this challenge, we present PerceptAlign, the first geometry-conditioned framework for WiFi-based cross-layout pose estimation. PerceptAlign introduces a lightweight coordinate unification procedure that aligns WiFi and vision measurements in a shared 3D space using only two checkerboards and a few photos. Within this unified space, it encodes calibrated transceiver positions into high-dimensional embeddings and fuses them with CSI features, making the model explicitly aware of device geometry as a conditional variable. This design forces the network to disentangle human motion from deployment layouts, enabling robust and, for the first time, layout-invariant WiFi pose estimation. To support systematic evaluation, we construct the largest cross-domain 3D WiFi pose estimation dataset to date, comprising 21 subjects, 5 scenes, 18 actions, and 7 device layouts. Experiments show that PerceptAlign reduces in-domain error by 12.3% and cross-domain error by more than 60% compared to state-of-the-art baselines. These results establish geometry-conditioned learning as a viable path toward scalable and practical WiFi sensing.
Authors: Joachim Tesch, Giorgio Becherini, Prerana Achar, Anastasios Yiannakidis, Muhammed Kocabas, Priyanka Patel, Michael J. Black
Abstract:
Inferring 3D human motion from video remains a challenging problem with many applications. While traditional methods estimate the human in image coordinates, many applications require human motion to be estimated in world coordinates. This is particularly challenging when there is both human and camera motion. Progress on this topic has been limited by the lack of rich video data with ground truth human and camera movement. We address this with BEDLAM2.0, a new dataset that goes beyond the popular BEDLAM dataset in important ways. In addition to introducing more diverse and realistic cameras and camera motions, BEDLAM2.0 increases diversity and realism of body shape, motions, clothing, hair, and 3D environments. Additionally, it adds shoes, which were missing in BEDLAM. BEDLAM has become a key resource for training 3D human pose and motion regressors today and we show that BEDLAM2.0 is significantly better, particularly for training methods that estimate humans in world coordinates. We compare state-of-the art methods trained on BEDLAM and BEDLAM2.0, and find that BEDLAM2.0 significantly improves accuracy over BEDLAM. For research purposes, we provide the rendered videos, ground truth body parameters, and camera motions. We also provide the 3D assets to which we have rights and links to those from third parties.
Authors: Yuxi Wei, Zirui Wang, Kangning Yin, Yue Hu, Jingbo Wang, Siheng Chen
Abstract:
Data scaling has long remained a critical bottleneck in robot learning. For humanoid robots, human videos and motion data are abundant and widely available, offering a free and large-scale data source. Besides, the semantics related to the motions enable modality alignment and high-level robot control learning. However, how to effectively mine raw video, extract robot-learnable representations, and leverage them for scalable learning remains an open problem. To address this, we introduce Humanoid-Union, a large-scale dataset generated through an autonomous pipeline, comprising over 260 hours of diverse, high-quality humanoid robot motion data with semantic annotations derived from human motion videos. The dataset can be further expanded via the same pipeline. Building on this data resource, we propose SCHUR, a scalable learning framework designed to explore the impact of large-scale data on high-level control in humanoid robots. Experimental results demonstrate that SCHUR achieves high robot motion generation quality and strong text-motion alignment under data and model scaling, with 37\% reconstruction improvement under MPJPE and 25\% alignment improvement under FID comparing with previous methods. Its effectiveness is further validated through deployment in real-world humanoid robot.
Authors: Guowei Xu, Yuxuan Bian, Ailing Zeng, Mingyi Shi, Shaoli Huang, Wen Li, Lixin Duan, Qiang Xu
Abstract:
This paper introduces OmniMotion-X, a versatile multimodal framework for whole-body human motion generation, leveraging an autoregressive diffusion transformer in a unified sequence-to-sequence manner. OmniMotion-X efficiently supports diverse multimodal tasks, including text-to-motion, music-to-dance, speech-to-gesture, and global spatial-temporal control scenarios (e.g., motion prediction, in-betweening, completion, and joint/trajectory-guided synthesis), as well as flexible combinations of these tasks. Specifically, we propose the use of reference motion as a novel conditioning signal, substantially enhancing the consistency of generated content, style, and temporal dynamics crucial for realistic animations. To handle multimodal conflicts, we introduce a progressive weak-to-strong mixed-condition training strategy. To enable high-quality multimodal training, we construct OmniMoCap-X, the largest unified multimodal motion dataset to date, integrating 28 publicly available MoCap sources across 10 distinct tasks, standardized to the SMPL-X format at 30 fps. To ensure detailed and consistent annotations, we render sequences into videos and use GPT-4o to automatically generate structured and hierarchical captions, capturing both low-level actions and high-level semantics. Extensive experimental evaluations confirm that OmniMotion-X significantly surpasses existing methods, demonstrating state-of-the-art performance across multiple multimodal tasks and enabling the interactive generation of realistic, coherent, and controllable long-duration motions.
Authors: Jiale Fan, Andrei Cramariuc, Tifanny Portela, Marco Hutter
Abstract:
The pretraining-finetuning paradigm has facilitated numerous transformative advancements in artificial intelligence research in recent years. However, in the domain of reinforcement learning (RL) for robot motion control, individual skills are often learned from scratch despite the high likelihood that some generalizable knowledge is shared across all task-specific policies belonging to a single robot embodiment. This work aims to define a paradigm for pretraining neural network models that encapsulate such knowledge and can subsequently serve as a basis for warm-starting the RL process in classic actor-critic algorithms, such as Proximal Policy Optimization (PPO). We begin with a task-agnostic exploration-based data collection algorithm to gather diverse, dynamic transition data, which is then used to train a Proprioceptive Inverse Dynamics Model (PIDM) through supervised learning. The pretrained weights are loaded into both the actor and critic networks to warm-start the policy optimization of actual tasks. We systematically validated our proposed method on seven distinct robot motion control tasks, showing significant benefits to this initialization strategy. Our proposed approach on average improves sample efficiency by 40.1% and task performance by 7.5%, compared to random initialization. We further present key ablation studies and empirical analyses that shed light on the mechanisms behind the effectiveness of our method.
Authors: Markos Diomataris, Berat Mert Albaba, Giorgio Becherini, Partha Ghosh, Omid Taheri, Michael J. Black
Abstract:
The way we perceive the world fundamentally shapes how we move, whether it is how we navigate in a room or how we interact with other humans. Current human motion generation methods, neglect this interdependency and use task-specific ``perception'' that differs radically from that of humans. We argue that the generation of human-like avatar behavior requires human-like perception. Consequently, in this work we present CLOPS, the first human avatar that solely uses egocentric vision to perceive its surroundings and navigate. Using vision as the primary driver of motion however, gives rise to a significant challenge for training avatars: existing datasets have either isolated human motion, without the context of a scene, or lack scale. We overcome this challenge by decoupling the learning of low-level motion skills from learning of high-level control that maps visual input to motion. First, we train a motion prior model on a large motion capture dataset. Then, a policy is trained using Q-learning to map egocentric visual inputs to high-level control commands for the motion prior. Our experiments empirically demonstrate that egocentric vision can give rise to human-like motion characteristics in our avatars. For example, the avatars walk such that they avoid obstacles present in their visual field. These findings suggest that equipping avatars with human-like sensors, particularly egocentric vision, holds promise for training avatars that behave like humans.
Authors: Md. Taherul Islam Shawon, Yuan Li, Yincai Cai, Junjie Niu, Ting Peng
Abstract:
Traditional aggregate sorting methods, whether manual or mechanical, often suffer from low precision, limited flexibility, and poor adaptability to diverse material properties such as size, shape, and lithology. To address these limitations, this study presents a computer vision-aided robotic arm system designed for autonomous aggregate sorting in construction and mining applications. The system integrates a six-degree-of-freedom robotic arm, a binocular stereo camera for 3D perception, and a ROS-based control framework. Core techniques include an attention-augmented YOLOv8 model for aggregate detection, stereo matching for 3D localization, Denavit-Hartenberg kinematic modeling for arm motion control, minimum enclosing rectangle analysis for size estimation, and hand-eye calibration for precise coordinate alignment. Experimental validation with four aggregate types achieved an average grasping and sorting success rate of 97.5%, with comparable classification accuracy. Remaining challenges include the reliable handling of small aggregates and texture-based misclassification. Overall, the proposed system demonstrates significant potential to enhance productivity, reduce operational costs, and improve safety in aggregate handling, while providing a scalable framework for advancing smart automation in construction, mining, and recycling industries.
Authors: Ilya A. Petrov, Vladimir Guzov, Riccardo Marin, Emre Aksan, Xu Chen, Daniel Cremers, Thabo Beeler, Gerard Pons-Moll
Abstract:
Modeling human-object interactions (HOI) from an egocentric perspective is a largely unexplored yet important problem due to the increasing adoption of wearable devices, such as smart glasses and watches. We investigate how much information about interaction can be recovered from only head and wrists tracking. Our answer is ECHO (Ego-Centric modeling of Human-Object interactions), which, for the first time, proposes a unified framework to recover three modalities: human pose, object motion, and contact from such minimal observation. ECHO employs a Diffusion Transformer architecture and a unique three-variate diffusion process, which jointly models human motion, object trajectory, and contact sequence, allowing for flexible input configurations. Our method operates in a head-centric canonical space, enhancing robustness to global orientation. We propose a conveyor-based inference, which progressively increases the diffusion timestamp with the frame position, allowing us to process sequences of any length. Through extensive evaluation, we demonstrate that ECHO outperforms existing methods that do not offer the same flexibility, setting a state-of-the-art in egocentric HOI reconstruction.
Authors: Hanz Cuevas-Velasquez, Anastasios Yiannakidis, Soyong Shin, Giorgio Becherini, Markus Höschle, Joachim Tesch, Taylor Obersat, Tsvetelina Alexiadis, Michael J. Black
Abstract:
We present MAMMA, a markerless motion-capture pipeline that accurately recovers SMPL-X parameters from multi-view video of two-person interaction sequences. Traditional motion-capture systems rely on physical markers. Although they offer high accuracy, their requirements of specialized hardware, manual marker placement, and extensive post-processing make them costly and time-consuming. Recent learning-based methods attempt to overcome these limitations, but most are designed for single-person capture, rely on sparse keypoints, or struggle with occlusions and physical interactions. In this work, we introduce a method that predicts dense 2D surface landmarks conditioned on segmentation masks, enabling person-specific correspondence estimation even under heavy occlusion. We employ a novel architecture that exploits learnable queries for each landmark. We demonstrate that our approach can handle complex person--person interaction and offers greater accuracy than existing methods. To train our network, we construct a large, synthetic multi-view dataset combining human motions from diverse sources, including extreme poses, hand motions, and close interactions. Our dataset yields high-variability synthetic sequences with rich body contact and occlusion, and includes SMPL-X ground-truth annotations with dense 2D landmarks. The result is a system capable of capturing human motion without the need for markers. Our approach offers competitive reconstruction quality compared to commercial marker-based motion-capture solutions, without the extensive manual cleanup. Finally, we address the absence of common benchmarks for dense-landmark prediction and markerless motion capture by introducing two evaluation settings built from real multi-view sequences. We will release our dataset, benchmark, method, training code, and pre-trained model weights for research purposes.
Authors: Yuntao Ma, Andrei Cramariuc, Farbod Farshidian, Marco Hutter
Abstract:
Coordinating the motion between lower and upper limbs and aligning limb control with perception are substantial challenges in robotics, particularly in dynamic environments. To this end, we introduce an approach for enabling legged mobile manipulators to play badminton, a task that requires precise coordination of perception, locomotion, and arm swinging. We propose a unified reinforcement learning-based control policy for whole-body visuomotor skills involving all degrees of freedom to achieve effective shuttlecock tracking and striking. This policy is informed by a perception noise model that utilizes real-world camera data, allowing for consistent perception error levels between simulation and deployment and encouraging learned active perception behaviors. Our method includes a shuttlecock prediction model, constrained reinforcement learning for robust motion control, and integrated system identification techniques to enhance deployment readiness. Extensive experimental results in a variety of environments validate the robot's capability to predict shuttlecock trajectories, navigate the service area effectively, and execute precise strikes against human players, demonstrating the feasibility of using legged mobile manipulators in complex and dynamic sports scenarios.
Authors: Chen Shi, Shaoshuai Shi, Kehua Sheng, Bo Zhang, Li Jiang
Abstract:
Data-driven learning has advanced autonomous driving, yet task-specific models struggle with out-of-distribution scenarios due to their narrow optimization objectives and reliance on costly annotated data. We present DriveX, a self-supervised world model that learns generalizable scene dynamics and holistic representations (geometric, semantic, and motion) from large-scale driving videos. DriveX introduces Omni Scene Modeling (OSM), a module that unifies multimodal supervision-3D point cloud forecasting, 2D semantic representation, and image generation-to capture comprehensive scene evolution. To simplify learning complex dynamics, we propose a decoupled latent world modeling strategy that separates world representation learning from future state decoding, augmented by dynamic-aware ray sampling to enhance motion modeling. For downstream adaptation, we design Future Spatial Attention (FSA), a unified paradigm that dynamically aggregates spatiotemporal features from DriveX's predictions to enhance task-specific inference. Extensive experiments demonstrate DriveX's effectiveness: it achieves significant improvements in 3D future point cloud prediction over prior work, while attaining state-of-the-art results on diverse tasks including occupancy prediction, flow estimation, and end-to-end driving. These results validate DriveX's capability as a general-purpose world model, paving the way for robust and unified autonomous driving frameworks.
Authors: Piotr Koczy, Michael C. Welle, Danica Kragic
Abstract:
We present a framework for learning dexterous in-hand manipulation with multifingered hands using visuomotor diffusion policies. Our system enables complex in-hand manipulation tasks, such as unscrewing a bottle lid with one hand, by leveraging a fast and responsive teleoperation setup for the four-fingered Allegro Hand. We collect high-quality expert demonstrations using an augmented reality (AR) interface that tracks hand movements and applies inverse kinematics and motion retargeting for precise control. The AR headset provides real-time visualization, while gesture controls streamline teleoperation. To enhance policy learning, we introduce a novel demonstration outlier removal approach based on HDBSCAN clustering and the Global-Local Outlier Score from Hierarchies (GLOSH) algorithm, effectively filtering out low-quality demonstrations that could degrade performance. We evaluate our approach extensively in real-world settings and provide all experimental videos on the project website: https://dex-manip.github.io/
Authors: Xiaoyuan Zhang, Xinyan Cai, Bo Liu, Weidong Huang, Song-Chun Zhu, Siyuan Qi, Yaodong Yang
Abstract:
Differentiable environments have heralded new possibilities for learning control policies by offering rich differentiable information that facilitates gradient-based methods. In comparison to prevailing model-free reinforcement learning approaches, model-based reinforcement learning (MBRL) methods exhibit the potential to effectively harness the power of differentiable information for recovering the underlying physical dynamics. However, this presents two primary challenges: effectively utilizing differentiable information to 1) construct models with more accurate dynamic prediction and 2) enhance the stability of policy training. In this paper, we propose a Differentiable Information Enhanced MBRL method, MB-MIX, to address both challenges. Firstly, we adopt a Sobolev model training approach that penalizes incorrect model gradient outputs, enhancing prediction accuracy and yielding more precise models that faithfully capture system dynamics. Secondly, we introduce mixing lengths of truncated learning windows to reduce the variance in policy gradient estimation, resulting in improved stability during policy learning. To validate the effectiveness of our approach in differentiable environments, we provide theoretical analysis and empirical results. Notably, our approach outperforms previous model-based and model-free methods, in multiple challenging tasks involving controllable rigid robots such as humanoid robots' motion control and deformable object manipulation.
Authors: Patrick Seifner, Kostadin Cvejoski, David Berghaus, Cesar Ojeda, Ramses J. Sanchez
Abstract:
Stochastic differential equations (SDEs) describe dynamical systems where deterministic flows, governed by a drift function, are superimposed with random fluctuations dictated by a diffusion function. The accurate estimation (or discovery) of these functions from data is a central problem in machine learning, with wide application across natural and social sciences alike. Yet current solutions are brittle, and typically rely on symbolic regression or Bayesian non-parametrics. In this work, we introduce FIM-SDE (Foundation Inference Model for SDEs), a transformer-based recognition model capable of performing accurate zero-shot estimation of the drift and diffusion functions of SDEs, from noisy and sparse observations on empirical processes of different dimensionalities. Leveraging concepts from amortized inference and neural operators, we train FIM-SDE in a supervised fashion, to map a large set of noisy and discretely observed SDE paths to their corresponding drift and diffusion functions. We demonstrate that one and the same (pretrained) FIM-SDE achieves robust zero-shot function estimation (i.e. without any parameter fine-tuning) across a wide range of synthetic and real-world processes, from canonical SDE systems (e.g. double-well dynamics or weakly perturbed Hopf bifurcations) to human motion recordings and oil price and wind speed fluctuations.
Authors: Chengjian Li, Xiangbo Shu, Qiongjie Cui, Yazhou Yao, Jinhui Tang
Abstract:
Diffusion models achieve impressive performance in human motion generation. However, current approaches typically ignore the significance of frequency-domain information in capturing fine-grained motions within the latent space (e.g., low frequencies correlate with static poses, and high frequencies align with fine-grained motions). Additionally, there is a semantic discrepancy between text and motion, leading to inconsistency between the generated motions and the text descriptions. In this work, we propose a novel diffusion-based FTMoMamba framework equipped with a Frequency State Space Model (FreqSSM) and a Text State Space Model (TextSSM). Specifically, to learn fine-grained representation, FreqSSM decomposes sequences into low-frequency and high-frequency components, guiding the generation of static pose (e.g., sits, lay) and fine-grained motions (e.g., transition, stumble), respectively. To ensure the consistency between text and motion, TextSSM encodes text features at the sentence level, aligning textual semantics with sequential features. Extensive experiments show that FTMoMamba achieves superior performance on the text-to-motion generation task, especially gaining the lowest FID of 0.181 (rather lower than 0.421 of MLD) on the HumanML3D dataset.
Authors: Silas Ruhrberg Estévez, Josée Mallah, Dominika Kazieczko, Chenyu Tang, Luigi G. Occhipinti
Abstract:
Ankle exoskeletons have garnered considerable interest for their potential to enhance mobility and reduce fall risks, particularly among the aging population. The efficacy of these devices relies on accurate real-time prediction of the user's intended movements through sensor-based inputs. This paper presents a novel motion prediction framework that integrates three Inertial Measurement Units (IMUs) and eight surface Electromyography (sEMG) sensors to capture both kinematic and muscular activity data. A comprehensive set of activities, representative of everyday movements in barrier-free environments, was recorded for the purpose. Our findings reveal that Convolutional Neural Networks (CNNs) slightly outperform Long Short-Term Memory (LSTM) networks on a dataset of five motion tasks, achieving classification accuracies of $96.5 \pm 0.8 \%$ and $87.5 \pm 2.9 \%$, respectively. Furthermore, we demonstrate the system's proficiency in transfer learning, enabling accurate motion classification for new subjects using just ten samples per class for finetuning. The robustness of the model is demonstrated by its resilience to sensor failures resulting in absent signals, maintaining reliable performance in real-world scenarios. These results underscore the potential of deep learning algorithms to enhance the functionality and safety of ankle exoskeletons, ultimately improving their usability in daily life.
Authors: Nefeli Andreou, Xi Wang, Victoria Fernández Abrevaya, Marie-Paule Cani, Yiorgos Chrysanthou, Vicky Kalogeiton
Abstract:
Our goal is to generate realistic human motion from natural language. Modern methods often face a trade-off between model expressiveness and text-to-motion alignment. Some align text and motion latent spaces but sacrifice expressiveness; others rely on diffusion models producing impressive motions, but lacking semantic meaning in their latent space. This may compromise realism, diversity, and applicability. Here, we address this by combining latent diffusion with a realignment mechanism, producing a novel, semantically structured space that encodes the semantics of language. Leveraging this capability, we introduce the task of textual motion inversion to capture novel motion concepts from a few examples. For motion synthesis, we evaluate LEAD on HumanML3D and KIT-ML and show comparable performance to the state-of-the-art in terms of realism, diversity, and text-motion consistency. Our qualitative analysis and user study reveal that our synthesized motions are sharper, more human-like and comply better with the text compared to modern methods. For motion textual inversion, our method demonstrates improved capacity in capturing out-of-distribution characteristics in comparison to traditional VAEs.
Authors: Denys Iliash, Hanxiao Jiang, Yiming Zhang, Manolis Savva, Angel X. Chang
Abstract:
Despite much progress in large 3D datasets there are currently few interactive 3D object datasets, and their scale is limited due to the manual effort required in their construction. We introduce the static to openable (S2O) task which creates interactive articulated 3D objects from static counterparts through openable part detection, motion prediction, and interior geometry completion. We formulate a unified framework to tackle this task, and curate a challenging dataset of openable 3D objects that serves as a test bed for systematic evaluation. Our experiments benchmark methods from prior work, extended and improved methods, and simple yet effective heuristics for the S2O task. We find that turning static 3D objects into interactively openable counterparts is possible but that all methods struggle to generalize to realistic settings of the task, and we highlight promising future work directions. Our work enables efficient creation of interactive 3D objects for robotic manipulation and embodied AI tasks.
Authors: Lina MarÃa Amaya-MejÃa, Mohamed Ghita, Jan Dentler, Miguel Olivares-Mendez, Carol Martinez
Abstract:
On-orbit servicing (OOS) activities will power the next big step for sustainable exploration and commercialization of space. Developing robotic capabilities for autonomous OOS operations is a priority for the space industry. Visual Servoing (VS) enables robots to achieve the precise manoeuvres needed for critical OOS missions by utilizing visual information for motion control. This article presents an overview of existing VS approaches for autonomous OOS operations with space manipulator systems (SMS). We divide the approaches according to their contribution to the typical phases of a robotic OOS mission: a) Recognition, b) Approach, and c) Contact. We also present a discussion on the reviewed VS approaches, identifying current trends. Finally, we highlight the challenges and areas for future research on VS techniques for robotic OOS.
Authors: Zhexin Zhang, Yifeng Zhu, Yangyang Xu, Long Chen, Yong Du, Shengfeng He, Jun Yu
Abstract:
Recent advances in diffusion-based text-to-video models, particularly those built on the diffusion transformer architecture, have achieved remarkable progress in generating high-quality and temporally coherent videos. However, transferring complex motions between videos remains challenging. In this work, we present MotionAdapter, a content-aware motion transfer framework that enables robust and semantically aligned motion transfer within DiT-based T2V models. Our key insight is that effective motion transfer requires \romannumeral1) explicit disentanglement of motion from appearance and \romannumeral 2) adaptive customization of motion to target content. MotionAdapter first isolates motion by analyzing cross-frame attention within 3D full-attention modules to extract attention-derived motion fields. To bridge the semantic gap between reference and target videos, we further introduce a DINO-guided motion customization module that rearranges and refines motion fields based on content correspondences. The customized motion field is then used to guide the DiT denoising process, ensuring that the synthesized video inherits the reference motion while preserving target appearance and semantics. Extensive experiments demonstrate that MotionAdapter outperforms state-of-the-art methods in both qualitative and quantitative evaluations. Moreover, MotionAdapter naturally supports complex motion transfer and motion editing tasks such as zooming.
Authors: Xiaoshan Zhou, Carol C. Menassa, Vineet R. Kamat
Abstract:
Non-invasive electroencephalography (EEG)-based brain-computer interfaces (BCIs) offer an intuitive means for individuals with severe motor impairments to independently operate assistive robotic wheelchairs and navigate built environments. Despite considerable progress in BCI research, most current motion control systems are limited to discrete commands, rather than supporting continuous pursuit, where users can freely adjust speed and direction in real time. Such natural mobility control is, however, essential for wheelchair users to navigate complex public spaces, such as transit stations, airports, hospitals, and indoor corridors, to interact socially with the dynamic populations with agility, and to move flexibly and comfortably as autonomous driving is refined to allow movement at will. In this study, we address the gap of continuous pursuit motion control in BCIs by proposing and validating a brain-inspired Bayesian inference framework, where embodied dynamics in acceleration-based motor representations are decoded. This approach contrasts with conventional kinematics-level decoding and deep learning-based methods. Using a public dataset with sixteen hours of EEG from four subjects performing motor imagery-based target-following, we demonstrate that our method, utilizing Automatic Relevance Determination for feature selection and continual online learning, reduces the normalized mean squared error between predicted and true velocities by 72% compared to autoregressive and EEGNet-based methods in a session-accumulative transfer learning setting. Theoretically, these findings empirically support embodied cognition theory and reveal the brain's intrinsic motor control dynamics in an embodied and predictive nature. Practically, grounding EEG decoding in the same dynamical principles that govern biological motion offers a promising path toward more stable and intuitive BCI control.
Authors: Danush Kumar Venkatesh, Adam Schmidt, Muhammad Abdullah Jamal, Omid Mohareri
Abstract:
Surgical video datasets are essential for scene understanding, enabling procedural modeling and intra-operative support. However, these datasets are often heavily imbalanced, with rare actions and tools under-represented, which limits the robustness of downstream models. We address this challenge with $SurgiFlowVid$, a sparse and controllable video diffusion framework for generating surgical videos of under-represented classes. Our approach introduces a dual-prediction diffusion module that jointly denoises RGB frames and optical flow, providing temporal inductive biases to improve motion modeling from limited samples. In addition, a sparse visual encoder conditions the generation process on lightweight signals (e.g., sparse segmentation masks or RGB frames), enabling controllability without dense annotations. We validate our approach on three surgical datasets across tasks including action recognition, tool presence detection, and laparoscope motion prediction. Synthetic data generated by our method yields consistent gains of 10-20% over competitive baselines, establishing $SurgiFlowVid$ as a promising strategy to mitigate data imbalance and advance surgical video understanding methods.
Authors: Yinuo Wang, Yuanyang Qi, Jinzhao Zhou, Gavin Tao
Abstract:
End-to-end reinforcement learning (RL) for humanoid locomotion is appealing for its compact perception-action mapping, yet practical policies often suffer from training instability, inefficient feature fusion, and high actuation cost. We present HuMam, a state-centric end-to-end RL framework that employs a single-layer Mamba encoder to fuse robot-centric states with oriented footstep targets and a continuous phase clock. The policy outputs joint position targets tracked by a low-level PD loop and is optimized with PPO. A concise six-term reward balances contact quality, swing smoothness, foot placement, posture, and body stability while implicitly promoting energy saving. On the JVRC-1 humanoid in mc-mujoco, HuMam consistently improves learning efficiency, training stability, and overall task performance over a strong feedforward baseline, while reducing power consumption and torque peaks. To our knowledge, this is the first end-to-end humanoid RL controller that adopts Mamba as the fusion backbone, demonstrating tangible gains in efficiency, stability, and control economy.
Authors: Huong Hoang, Keito Suzuki, Truong Nguyen, Pamela Cosman
Abstract:
For dynamic human motion sequences, the original KeyNode-Driven codec often struggles to retain compression efficiency when confronted with rapid movements or strong non-rigid deformations. This paper proposes a novel Bi-modal coding framework that enhances the flexibility of motion representation by integrating semantic segmentation and region-specific transformation modeling. The rigid transformation model (rotation & translation) is extended with a hybrid scheme that selectively applies affine transformations-rotation, translation, scaling, and shearing-only to deformation-rich regions (e.g., the torso, where loose clothing induces high variability), while retaining rigid models elsewhere. The affine model is decomposed into minimal parameter sets for efficient coding and combined through a component selection strategy guided by a Lagrangian Rate-Distortion optimization. The results show that the Bi-modal method achieves more accurate mesh deformation, especially in sequences involving complex non-rigid motion, without compromising compression efficiency in simpler regions, with an average bit-rate saving of 33.81% compared to the baseline.
Authors: Gavin Tao, Yinuo Wang, Jinzhao Zhou
Abstract:
End-to-end reinforcement learning for motion control promises unified perception-action policies that scale across embodiments and tasks, yet most deployed controllers are either blind (proprioception-only) or rely on fusion backbones with unfavorable compute-memory trade-offs. Recurrent controllers struggle with long-horizon credit assignment, and Transformer-based fusion incurs quadratic cost in token length, limiting temporal and spatial context. We present a vision-driven cross-modal RL framework built on SSD-Mamba2, a selective state-space backbone that applies state-space duality (SSD) to enable both recurrent and convolutional scanning with hardware-aware streaming and near-linear scaling. Proprioceptive states and exteroceptive observations (e.g., depth tokens) are encoded into compact tokens and fused by stacked SSD-Mamba2 layers. The selective state-space updates retain long-range dependencies with markedly lower latency and memory use than quadratic self-attention, enabling longer look-ahead, higher token resolution, and stable training under limited compute. Policies are trained end-to-end under curricula that randomize terrain and appearance and progressively increase scene complexity. A compact, state-centric reward balances task progress, energy efficiency, and safety. Across diverse motion-control scenarios, our approach consistently surpasses strong state-of-the-art baselines in return, safety (collisions and falls), and sample efficiency, while converging faster at the same compute budget. These results suggest that SSD-Mamba2 provides a practical fusion backbone for scalable, foresightful, and efficient end-to-end motion control.
Authors: Yinuo Wang, Gavin Tao
Abstract:
We address vision-guided quadruped motion control with reinforcement learning (RL) and highlight the necessity of combining proprioception with vision for robust control. We propose QuadKAN, a spline-parameterized cross-modal policy instantiated with Kolmogorov-Arnold Networks (KANs). The framework incorporates a spline encoder for proprioception and a spline fusion head for proprioception-vision inputs. This structured function class aligns the state-to-action mapping with the piecewise-smooth nature of gait, improving sample efficiency, reducing action jitter and energy consumption, and providing interpretable posture-action sensitivities. We adopt Multi-Modal Delay Randomization (MMDR) and perform end-to-end training with Proximal Policy Optimization (PPO). Evaluations across diverse terrains, including both even and uneven surfaces and scenarios with static or dynamic obstacles, demonstrate that QuadKAN achieves consistently higher returns, greater distances, and fewer collisions than state-of-the-art (SOTA) baselines. These results show that spline-parameterized policies offer a simple, effective, and interpretable alternative for robust vision-guided locomotion. A repository will be made available upon acceptance.
Authors: Mingi Kwon, Joonghyuk Shin, Jaeseok Jung, Jaesik Park, Youngjung Uh
Abstract:
The intrinsic link between facial motion and speech is often overlooked in generative modeling, where talking head synthesis and text-to-speech (TTS) are typically addressed as separate tasks. This paper introduces JAM-Flow, a unified framework to simultaneously synthesize and condition on both facial motion and speech. Our approach leverages flow matching and a novel Multi-Modal Diffusion Transformer (MM-DiT) architecture, integrating specialized Motion-DiT and Audio-DiT modules. These are coupled via selective joint attention layers and incorporate key architectural choices, such as temporally aligned positional embeddings and localized joint attention masking, to enable effective cross-modal interaction while preserving modality-specific strengths. Trained with an inpainting-style objective, JAM-Flow supports a wide array of conditioning inputs-including text, reference audio, and reference motion-facilitating tasks such as synchronized talking head generation from text, audio-driven animation, and much more, within a single, coherent model. JAM-Flow significantly advances multi-modal generative modeling by providing a practical solution for holistic audio-visual synthesis. project page: https://joonghyuk.com/jamflow-web
Authors: Junpeng Yue, Zepeng Wang, Yuxuan Wang, Weishuai Zeng, Jiangxing Wang, Xinrun Xu, Yu Zhang, Sipeng Zheng, Ziluo Ding, Zongqing Lu
Abstract:
This paper focuses on a critical challenge in robotics: translating text-driven human motions into executable actions for humanoid robots, enabling efficient and cost-effective learning of new behaviors. While existing text-to-motion generation methods achieve semantic alignment between language and motion, they often produce kinematically or physically infeasible motions unsuitable for real-world deployment. To bridge this sim-to-real gap, we propose Reinforcement Learning from Physical Feedback (RLPF), a novel framework that integrates physics-aware motion evaluation with text-conditioned motion generation. RLPF employs a motion tracking policy to assess feasibility in a physics simulator, generating rewards for fine-tuning the motion generator. Furthermore, RLPF introduces an alignment verification module to preserve semantic fidelity to text instructions. This joint optimization ensures both physical plausibility and instruction alignment. Extensive experiments show that RLPF greatly outperforms baseline methods in generating physically feasible motions while maintaining semantic correspondence with text instruction, enabling successful deployment on real humanoid robots.
Authors: Zichong Meng, Zeyu Han, Xiaogang Peng, Yiming Xie, Huaizu Jiang
Abstract:
State-of-the-art text-to-motion generation models rely on the kinematic-aware, local-relative motion representation popularized by HumanML3D, which encodes motion relative to the pelvis and to the previous frame with built-in redundancy. While this design simplifies training for earlier generation models, it introduces critical limitations for diffusion models and hinders applicability to downstream tasks. In this work, we revisit the motion representation and propose a radically simplified and long-abandoned alternative for text-to-motion generation: absolute joint coordinates in global space. Through systematic analysis of design choices, we show that this formulation achieves significantly higher motion fidelity, improved text alignment, and strong scalability, even with a simple Transformer backbone and no auxiliary kinematic-aware losses. Moreover, our formulation naturally supports downstream tasks such as text-driven motion control and temporal/spatial editing without additional task-specific reengineering and costly classifier guidance generation from control signals. Finally, we demonstrate promising generalization to directly generate SMPL-H mesh vertices in motion from text, laying a strong foundation for future research and motion-related applications.
Authors: Chung Min Kim, Brent Yi, Hongsuk Choi, Yi Ma, Ken Goldberg, Angjoo Kanazawa
Abstract:
Robot motion can have many goals. Depending on the task, we might optimize for pose error, speed, collision, or similarity to a human demonstration. Motivated by this, we present PyRoki: a modular, extensible, and cross-platform toolkit for solving kinematic optimization problems. PyRoki couples an interface for specifying kinematic variables and costs with an efficient nonlinear least squares optimizer. Unlike existing tools, it is also cross-platform: optimization runs natively on CPU, GPU, and TPU. In this paper, we present (i) the design and implementation of PyRoki, (ii) motion retargeting and planning case studies that highlight the advantages of PyRoki's modularity, and (iii) optimization benchmarking, where PyRoki can be 1.4-1.7x faster and converges to lower errors than cuRobo, an existing GPU-accelerated inverse kinematics library.
Authors: Oussema Dhaouadi, Johannes Meier, Luca Wahl, Jacques Kaiser, Luca Scalerandi, Nick Wandelburg, Zhuolun Zhou, Nijanthan Berinpanathan, Holger Banzhaf, Daniel Cremers
Abstract:
Accurate 3D trajectory data is crucial for advancing autonomous driving. Yet, traditional datasets are usually captured by fixed sensors mounted on a car and are susceptible to occlusion. Additionally, such an approach can precisely reconstruct the dynamic environment in the close vicinity of the measurement vehicle only, while neglecting objects that are further away. In this paper, we introduce the DeepScenario Open 3D Dataset (DSC3D), a high-quality, occlusion-free dataset of 6 degrees of freedom bounding box trajectories acquired through a novel monocular camera drone tracking pipeline. Our dataset includes more than 175,000 trajectories of 14 types of traffic participants and significantly exceeds existing datasets in terms of diversity and scale, containing many unprecedented scenarios such as complex vehicle-pedestrian interaction on highly populated urban streets and comprehensive parking maneuvers from entry to exit. DSC3D dataset was captured in five various locations in Europe and the United States and include: a parking lot, a crowded inner-city, a steep urban intersection, a federal highway, and a suburban intersection. Our 3D trajectory dataset aims to enhance autonomous driving systems by providing detailed environmental 3D representations, which could lead to improved obstacle interactions and safety. We demonstrate its utility across multiple applications including motion prediction, motion planning, scenario mining, and generative reactive traffic agents. Our interactive online visualization platform and the complete dataset are publicly available at https://app.deepscenario.com, facilitating research in motion prediction, behavior modeling, and safety validation.
Authors: Pengming Zhu, Zongtan Zhou, Weijia Yao, Wei Dai, Zhiwen Zeng, Huimin Lu
Abstract:
Human-multi-robot shared control leverages human decision-making and robotic autonomy to enhance human-robot collaboration. While widely studied, existing systems often adopt a leader-follower model, limiting robot autonomy to some extent. Besides, a human is required to directly participate in the motion control of robots through teleoperation, which significantly burdens the operator. To alleviate these two issues, we propose a layered shared control computing framework using human-influenced guiding vector fields (HI-GVF) for human-robot collaboration. HI-GVF guides the multi-robot system along a desired path specified by the human. Then, an intention field is designed to merge the human and robot intentions, accelerating the propagation of the human intention within the multi-robot system. Moreover, we give the stability analysis of the proposed model and use collision avoidance based on safety barrier certificates to fine-tune the velocity. Eventually, considering the firefighting task as an example scenario, we conduct simulations and experiments using multiple human-robot interfaces (brain-computer interface, myoelectric wristband, eye-tracking), and the results demonstrate that our proposed approach boosts the effectiveness and performance of the task.
Authors: Fei Shen, Cong Wang, Junyao Gao, Qin Guo, Jisheng Dang, Jinhui Tang, Tat-Seng Chua
Abstract:
Recent advances in conditional diffusion models have shown promise for generating realistic TalkingFace videos, yet challenges persist in achieving consistent head movement, synchronized facial expressions, and accurate lip synchronization over extended generations. To address these, we introduce the \textbf{M}otion-priors \textbf{C}onditional \textbf{D}iffusion \textbf{M}odel (\textbf{MCDM}), which utilizes both archived and current clip motion priors to enhance motion prediction and ensure temporal consistency. The model consists of three key elements: (1) an archived-clip motion-prior that incorporates historical frames and a reference frame to preserve identity and context; (2) a present-clip motion-prior diffusion model that captures multimodal causality for accurate predictions of head movements, lip sync, and expressions; and (3) a memory-efficient temporal attention mechanism that mitigates error accumulation by dynamically storing and updating motion features. We also release the \textbf{TalkingFace-Wild} dataset, a multilingual collection of over 200 hours of footage across 10 languages. Experimental results demonstrate the effectiveness of MCDM in maintaining identity and motion continuity for long-term TalkingFace generation. Code, models, and datasets will be publicly available.
Authors: Zeqi Xiao, Wenqi Ouyang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, Xingang Pan
Abstract:
Recent advancements in video generation have been greatly driven by video diffusion models, with camera motion control emerging as a crucial challenge in creating view-customized visual content. This paper introduces trajectory attention, a novel approach that performs attention along available pixel trajectories for fine-grained camera motion control. Unlike existing methods that often yield imprecise outputs or neglect temporal correlations, our approach possesses a stronger inductive bias that seamlessly injects trajectory information into the video generation process. Importantly, our approach models trajectory attention as an auxiliary branch alongside traditional temporal attention. This design enables the original temporal attention and the trajectory attention to work in synergy, ensuring both precise motion control and new content generation capability, which is critical when the trajectory is only partially available. Experiments on camera motion control for images and videos demonstrate significant improvements in precision and long-range consistency while maintaining high-quality generation. Furthermore, we show that our approach can be extended to other video motion control tasks, such as first-frame-guided video editing, where it excels in maintaining content consistency over large spatial and temporal ranges.
Authors: Zichong Meng, Yiming Xie, Xiaogang Peng, Zeyu Han, Huaizu Jiang
Abstract:
Since 2023, Vector Quantization (VQ)-based discrete generation methods have rapidly dominated human motion generation, primarily surpassing diffusion-based continuous generation methods in standard performance metrics. However, VQ-based methods have inherent limitations. Representing continuous motion data as limited discrete tokens leads to inevitable information loss, reduces the diversity of generated motions, and restricts their ability to function effectively as motion priors or generation guidance. In contrast, the continuous space generation nature of diffusion-based methods makes them well-suited to address these limitations and with even potential for model scalability. In this work, we systematically investigate why current VQ-based methods perform well and explore the limitations of existing diffusion-based methods from the perspective of motion data representation and distribution. Drawing on these insights, we preserve the inherent strengths of a diffusion-based human motion generation model and gradually optimize it with inspiration from VQ-based approaches. Our approach introduces a human motion diffusion model enabled to perform masked autoregression, optimized with a reformed data representation and distribution. Additionally, we propose a more robust evaluation method to assess different approaches. Extensive experiments on various datasets demonstrate our method outperforms previous methods and achieves state-of-the-art performances.
Authors: Alexander Prutsch, Horst Bischof, Horst Possegger
Abstract:
For efficient and safe autonomous driving, it is essential that autonomous vehicles can predict the motion of other traffic agents. While highly accurate, current motion prediction models often impose significant challenges in terms of training resource requirements and deployment on embedded hardware. We propose a new efficient motion prediction model, which achieves highly competitive benchmark results while training only a few hours on a single GPU. Due to our lightweight architectural choices and the focus on reducing the required training resources, our model can easily be applied to custom datasets. Furthermore, its low inference latency makes it particularly suitable for deployment in autonomous applications with limited computing resources.
Authors: Yue Han, Junwei Zhu, Yuxiang Feng, Xiaozhong Ji, Keke He, Xiangtai Li, zhucun xue, Yong Liu
Abstract:
Current diffusion-based face animation methods generally adopt a ReferenceNet (a copy of U-Net) and a large amount of curated self-acquired data to learn appearance features, as robust appearance features are vital for ensuring temporal stability. However, when trained on public datasets, the results often exhibit a noticeable performance gap in image quality and temporal consistency. To address this issue, we meticulously examine the essential appearance features in the facial animation tasks, which include motion-agnostic (e.g., clothing, background) and motion-related (e.g., facial details) texture components, along with high-level discriminative identity features. Drawing from this analysis, we introduce a Motion-Identity Modulated Appearance Learning Module (MIA) that modulates CLIP features at both motion and identity levels. Additionally, to tackle the semantic/ color discontinuities between clips, we design an Inter-clip Affinity Learning Module (ICA) to model temporal relationships across clips. Our method achieves precise facial motion control (i.e., expressions and gaze), faithful identity preservation, and generates animation videos that maintain both intra/inter-clip temporal consistency. Moreover, it easily adapts to various modalities of driving sources. Extensive experiments demonstrate the superiority of our method.
Authors: Jiawei Sun, Jiahui Li, Tingchen Liu, Chengran Yuan, Shuo Sun, Zefan Huang, Anthony Wong, Keng Peng Tee, Marcelo H. Ang
Abstract:
We introduce RMP-YOLO, a unified framework designed to provide robust motion predictions even with incomplete input data. Our key insight stems from the observation that complete and reliable historical trajectory data plays a pivotal role in ensuring accurate motion prediction. Therefore, we propose a new paradigm that prioritizes the reconstruction of intact historical trajectories before feeding them into the prediction modules. Our approach introduces a novel scene tokenization module to enhance the extraction and fusion of spatial and temporal features. Following this, our proposed recovery module reconstructs agents' incomplete historical trajectories by leveraging local map topology and interactions with nearby agents. The reconstructed, clean historical data is then integrated into the downstream prediction modules. Our framework is able to effectively handle missing data of varying lengths and remains robust against observation noise, while maintaining high prediction accuracy. Furthermore, our recovery module is compatible with existing prediction models, ensuring seamless integration. Extensive experiments validate the effectiveness of our approach, and deployment in real-world autonomous vehicles confirms its practical utility. In the 2024 Waymo Motion Prediction Competition, our method, RMP-YOLO, achieves state-of-the-art performance, securing third place.
Authors: Yu-Han Shu, Toshiaki Tsuji, Sho Sakaino
Abstract:
Imitation learning (IL) enables robots to acquire human-like motion skills from demonstrations, but it still requires extensive high-quality data and retraining to handle complex or long-horizon tasks. To improve data efficiency and adaptability, this study proposes a hierarchical IL framework that integrates motion primitives with proportion-based motion synthesis. The proposed method employs a two-layer architecture, where the upper layer performs long-term planning, while a set of lower-layer models learn individual motion primitives, which are combined according to specific proportions. Three model variants are introduced to explore different trade-offs between learning flexibility, computational cost, and adaptability: a learning-based proportion model, a sampling-based proportion model, and a playback-based proportion model, which differ in how the proportions are determined and whether the upper layer is trainable. Through real-robot pick-and-place experiments, the proposed models successfully generated complex motions not included in the primitive set. The sampling-based and playback-based proportion models achieved more stable and adaptable motion generation than the standard hierarchical model, demonstrating the effectiveness of proportion-based motion integration for practical robot learning.
Authors: Farnoosh Koleini, Hongfei Xue, Ahmed Helmy, Pu Wang
Abstract:
Reconstructing biomechanically realistic 3D human motion - recovering both kinematics (motion) and kinetics (forces) - is a critical challenge. While marker-based systems are lab-bound and slow, popular monocular methods use oversimplified, anatomically inaccurate models (e.g., SMPL) and ignore physics, fundamentally limiting their biomechanical fidelity. In this work, we introduce MonoMSK, a hybrid framework that bridges data-driven learning and physics-based simulation for biomechanically realistic 3D human motion estimation from monocular video. MonoMSK jointly recovers both kinematics (motions) and kinetics (forces and torques) through an anatomically accurate musculoskeletal model. By integrating transformer-based inverse dynamics with differentiable forward kinematics and dynamics layers governed by ODE-based simulation, MonoMSK establishes a physics-regulated inverse-forward loop that enforces biomechanical causality and physical plausibility. A novel forward-inverse consistency loss further aligns motion reconstruction with the underlying kinetic reasoning. Experiments on BML-MoVi, BEDLAM, and OpenCap show that MonoMSK significantly outperforms state-of-the-art methods in kinematic accuracy, while for the first time enabling precise monocular kinetics estimation.
Authors: Qifeng Wang, Weigang Li, Lei Nie, Xin Xu, Wenping Liu, Zhe Xu
Abstract:
As a key technology for autonomous navigation and positioning in mobile robots, light detection and ranging (LiDAR) odometry is widely used in autonomous driving applications. The Iterative Closest Point (ICP)-based methods have become the core technique in LiDAR odometry due to their efficient and accurate point cloud registration capability. However, some existing ICP-based methods do not consider the reliability of the initial pose, which may cause the method to converge to a local optimum. Furthermore, the absence of an adaptive mechanism hinders the effective handling of complex dynamic environments, resulting in a significant degradation of registration accuracy. To address these issues, this paper proposes an adaptive ICP-based LiDAR odometry method that relies on a reliable initial pose. First, distributed coarse registration based on density filtering is employed to obtain the initial pose estimation. The reliable initial pose is then selected by comparing it with the motion prediction pose, reducing the initial error between the source and target point clouds. Subsequently, by combining the current and historical errors, the adaptive threshold is dynamically adjusted to accommodate the real-time changes in the dynamic environment. Finally, based on the reliable initial pose and the adaptive threshold, point-to-plane adaptive ICP registration is performed from the current frame to the local map, achieving high-precision alignment of the source and target point clouds. Extensive experiments on the public KITTI dataset demonstrate that the proposed method outperforms existing approaches and significantly enhances the accuracy of LiDAR odometry.
Authors: Dingzhu Wen, Sijing Xie, Xiaowen Cao, Yuanhao Cui, Jie Xu, Yuanming Shi, Shuguang Cui
Abstract:
This paper studies an over-the-air federated edge learning (Air-FEEL) system with integrated sensing, communication, and computation (ISCC), in which one edge server coordinates multiple edge devices to wirelessly sense the objects and use the sensing data to collaboratively train a machine learning model for recognition tasks. In this system, over-the-air computation (AirComp) is employed to enable one-shot model aggregation from edge devices. Under this setup, we analyze the convergence behavior of the ISCC-enabled Air-FEEL in terms of the loss function degradation, by particularly taking into account the wireless sensing noise during the training data acquisition and the AirComp distortions during the over-the-air model aggregation. The result theoretically shows that sensing, communication, and computation compete for network resources to jointly decide the convergence rate. Based on the analysis, we design the ISCC parameters under the target of maximizing the loss function degradation while ensuring the latency and energy budgets in each round. The challenge lies on the tightly coupled processes of sensing, communication, and computation among different devices. To tackle the challenge, we derive a low-complexity ISCC algorithm by alternately optimizing the batch size control and the network resource allocation. It is found that for each device, less sensing power should be consumed if a larger batch of data samples is obtained and vice versa. Besides, with a given batch size, the optimal computation speed of one device is the minimum one that satisfies the latency constraint. Numerical results based on a human motion recognition task verify the theoretical convergence analysis and show that the proposed ISCC algorithm well coordinates the batch size control and resource allocation among sensing, communication, and computation to enhance the learning performance.
Authors: Takahiro Maeda, Jinkun Cao, Norimichi Ukita, Kris Kitani
Abstract:
Many density estimation techniques for 3D human motion prediction require a significant amount of inference time, often exceeding the duration of the predicted time horizon. To address the need for faster density estimation for 3D human motion prediction, we introduce a novel flow-based method for human motion prediction called CacheFlow. Unlike previous conditional generative models that suffer from time efficiency, CacheFlow takes advantage of an unconditional flow-based generative model that transforms a Gaussian mixture into the density of future motions. The results of the computation of the flow-based generative model can be precomputed and cached. Then, for conditional prediction, we seek a mapping from historical trajectories to samples in the Gaussian mixture. This mapping can be done by a much more lightweight model, thus saving significant computation overhead compared to a typical conditional flow model. In such a two-stage fashion and by caching results from the slow flow model computation, we build our CacheFlow without loss of prediction accuracy and model expressiveness. This inference process is completed in approximately one millisecond, making it 4 times faster than previous VAE methods and 30 times faster than previous diffusion-based methods on standard benchmarks such as Human3.6M and AMASS datasets. Furthermore, our method demonstrates improved density estimation accuracy and comparable prediction accuracy to a SOTA method on Human3.6M. Our code and models will be publicly available.
Authors: Foram Niravbhai Shah, Parshwa Shah, Muhammad Usama Saleem, Ekkasit Pinyoanuntapong, Pu Wang, Hongfei Xue, Ahmed Helmy
Abstract:
Recent advances in dance generation have enabled automatic synthesis of 3D dance motions. However, existing methods still struggle to produce high-fidelity dance sequences that simultaneously deliver exceptional realism, precise dance-music synchronization, high motion diversity, and physical plausibility. Moreover, existing methods lack the flexibility to edit dance sequences according to diverse guidance signals, such as musical prompts, pose constraints, action labels, and genre descriptions, significantly restricting their creative utility and adaptability. Unlike the existing approaches, DanceMosaic enables fast and high-fidelity dance generation, while allowing multimodal motion editing. Specifically, we propose a multimodal masked motion model that fuses the text-to-motion model with music and pose adapters to learn probabilistic mapping from diverse guidance signals to high-quality dance motion sequences via progressive generative masking training. To further enhance the motion generation quality, we propose multimodal classifier-free guidance and inference-time optimization mechanism that further enforce the alignment between the generated motions and the multimodal guidance. Extensive experiments demonstrate that our method establishes a new state-of-the-art performance in dance generation, significantly advancing the quality and editability achieved by existing approaches.
Authors: Wenzhang Sun, Xiang Li, Donglin Di, Zhuding Liang, Qiyuan Zhang, Hao Li, Wei Chen, Jianxun Cui
Abstract:
Recently, animating portrait images using audio input is a popular task. Creating lifelike talking head videos requires flexible and natural movements, including facial and head dynamics, camera motion, realistic light and shadow effects. Existing methods struggle to offer comprehensive, multifaceted control over these aspects. In this work, we introduce UniAvatar, a designed method that provides extensive control over a wide range of motion and illumination conditions. Specifically, we use the FLAME model to render all motion information onto a single image, maintaining the integrity of 3D motion details while enabling fine-grained, pixel-level control. Beyond motion, this approach also allows for comprehensive global illumination control. We design independent modules to manage both 3D motion and illumination, permitting separate and combined control. Extensive experiments demonstrate that our method outperforms others in both broad-range motion control and lighting control. Additionally, to enhance the diversity of motion and environmental contexts in current datasets, we collect and plan to publicly release two datasets, DH-FaceDrasMvVid-100 and DH-FaceReliVid-200, which capture significant head movements during speech and various lighting scenarios.
Authors: Wenru Liu, Yongkang Song, Chengzhen Meng, Zhiyu Huang, Haochen Liu, Chen Lv, Jun Ma
Abstract:
We address the decision-making capability within an end-to-end planning framework that focuses on motion prediction, decision-making, and trajectory planning. Specifically, we formulate decision-making and trajectory planning as a differentiable nonlinear optimization problem, which ensures compatibility with learning-based modules to establish an end-to-end trainable architecture. This optimization introduces explicit objectives related to safety, traveling efficiency, and riding comfort, guiding the learning process in our proposed pipeline. Intrinsic constraints resulting from the decision-making task are integrated into the optimization formulation and preserved throughout the learning process. By integrating the differentiable optimizer with a neural network predictor, the proposed framework is end-to-end trainable, aligning various driving tasks with ultimate performance goals defined by the optimization objectives. The proposed framework is trained and validated using the Waymo Open Motion dataset. The open-loop testing reveals that while the planning outcomes using our method do not always resemble the expert trajectory, they consistently outperform baseline approaches with improved safety, traveling efficiency, and riding comfort. The closed-loop testing further demonstrates the effectiveness of optimizing decisions and improving driving performance. Ablation studies demonstrate that the initialization provided by the learning-based prediction module is essential for the convergence of the optimizer as well as the overall driving performance.
Authors: Beomseok Kang, Priyabrata Saha, Sudarshan Sharma, Biswadeep Chakraborty, Saibal Mukhopadhyay
Abstract:
We introduce a novel framework, Online Relational Inference (ORI), designed to efficiently identify hidden interaction graphs in evolving multi-agent interacting systems using streaming data. Unlike traditional offline methods that rely on a fixed training set, ORI employs online backpropagation, updating the model with each new data point, thereby allowing it to adapt to changing environments in real-time. A key innovation is the use of an adjacency matrix as a trainable parameter, optimized through a new adaptive learning rate technique called AdaRelation, which adjusts based on the historical sensitivity of the decoder to changes in the interaction graph. Additionally, a data augmentation method named Trajectory Mirror (TM) is introduced to improve generalization by exposing the model to varied trajectory patterns. Experimental results on both synthetic datasets and real-world data (CMU MoCap for human motion) demonstrate that ORI significantly improves the accuracy and adaptability of relational inference in dynamic settings compared to existing methods. This approach is model-agnostic, enabling seamless integration with various neural relational inference (NRI) architectures, and offers a robust solution for real-time applications in complex, evolving systems.
Authors: Filip Novák, Tomáš BáÄa, OndÅej Procházka, Martin Saska
Abstract:
A novel approach for robust state estimation of marine vessels in rough water is proposed in this paper to enable tight collaboration between Unmanned Aerial Vehicles (UAVs) and a marine vessel, such as cooperative landing or object manipulation, regardless of weather conditions. Our study of marine vessel (in our case Unmanned Surface Vehicle (USV)) dynamics influenced by strong wave motion has resulted in a novel nonlinear mathematical USV model with 6 degrees of freedom (DOFs), which is required for precise USV state estimation and motion prediction. The proposed state estimation and prediction approach fuses data from multiple sensors onboard the UAV and the USV to enable redundancy and robustness under varying weather conditions of real-world applications. The proposed approach provides estimated states of the USV with 6 DOFs and predicts its future states to enable tight control of both vehicles on a receding control horizon. The proposed approach was extensively tested in the realistic Gazebo simulator and successfully experimentally validated in many real-world experiments representing different application scenarios, including agile landing on an oscillating and moving USV. A comparative study indicates that the proposed approach significantly surpassed the current state-of-the-art.
Authors: Wenshuai Zhao, Yi Zhao, Joni Pajarinen, Michael Muehlebach
Abstract:
Imitation learning from human motion capture (MoCap) data provides a promising way to train humanoid robots. However, due to differences in morphology, such as varying degrees of joint freedom and force limits, exact replication of human behaviors may not be feasible for humanoid robots. Consequently, incorporating physically infeasible MoCap data in training datasets can adversely affect the performance of the robot policy. To address this issue, we propose a bi-level optimization-based imitation learning framework that alternates between optimizing both the robot policy and the target MoCap data. Specifically, we first develop a generative latent dynamics model using a novel self-consistent auto-encoder, which learns sparse and structured motion representations while capturing desired motion patterns in the dataset. The dynamics model is then utilized to generate reference motions while the latent representation regularizes the bi-level motion imitation process. Simulations conducted with a realistic model of a humanoid robot demonstrate that our method enhances the robot policy by modifying reference motions to be physically consistent.
Authors: Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, Yanbo Zheng
Abstract:
With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
Authors: Kumar Ashutosh, XuDong Wang, Xi Yin, Kristen Grauman, Adam Polyak, Ishan Misra, Rohit Girdhar
Abstract:
Video generation models have recently achieved impressive visual fidelity and temporal coherence. Yet, they continue to struggle with complex, non-rigid motions, especially when synthesizing humans performing dynamic actions such as sports, dance, etc. Generated videos often exhibit missing or extra limbs, distorted poses, or physically implausible actions. In this work, we propose a remarkably simple reward model, HuDA, to quantify and improve the human motion in generated videos. HuDA integrates human detection confidence for appearance quality, and a temporal prompt alignment score to capture motion realism. We show this simple reward function that leverages off-the-shelf models without any additional training, outperforms specialized models finetuned with manually annotated data. Using HuDA for Group Reward Policy Optimization (GRPO) post-training of video models, we significantly enhance video generation, especially when generating complex human motions, outperforming state-of-the-art models like Wan 2.1, with win-rate of 73%. Finally, we demonstrate that HuDA improves generation quality beyond just humans, for instance, significantly improving generation of animal videos and human-object interactions.
Authors: Melone Nyoba Tchonkeu, Soulaimane Berkane, Tarek Hamel
Abstract:
This paper addresses the problem of estimating air velocity and full attitude for unmanned aerial vehicles (UAVs) in GNSS-denied environments using minimal onboard sensing-an interesting and practically relevant challenge for UAV navigation. The contribution of the paper is twofold: (i) an observability analysis establishing the conditions for uniform observability, which are useful for trajectory planning and motion control of the UAV; and (ii) the design of a nonlinear observer on SO3R3R that incorporates pitot-tube, barometric altitude, and magnetometer measurements as outputs, with IMU data used as inputs, within a unified framework. Simulation results are presented to confirm the convergence and robustness of the proposed design, including under minimally excited trajectories.
Authors: Joonghyuk Shin, Zhengqi Li, Richard Zhang, Jun-Yan Zhu, Jaesik Park, Eli Schechtman, Xun Huang
Abstract:
Current motion-conditioned video generation methods suffer from prohibitive latency (minutes per video) and non-causal processing that prevents real-time interaction. We present MotionStream, enabling sub-second latency with up to 29 FPS streaming generation on a single GPU. Our approach begins by augmenting a text-to-video model with motion control, which generates high-quality videos that adhere to the global text prompt and local motion guidance, but does not perform inference on the fly. As such, we distill this bidirectional teacher into a causal student through Self Forcing with Distribution Matching Distillation, enabling real-time streaming inference. Several key challenges arise when generating videos of long, potentially infinite time-horizons: (1) bridging the domain gap from training on finite length and extrapolating to infinite horizons, (2) sustaining high quality by preventing error accumulation, and (3) maintaining fast inference, without incurring growth in computational cost due to increasing context windows. A key to our approach is introducing carefully designed sliding-window causal attention, combined with attention sinks. By incorporating self-rollout with attention sinks and KV cache rolling during training, we properly simulate inference-time extrapolations with a fixed context window, enabling constant-speed generation of arbitrarily long videos. Our models achieve state-of-the-art results in motion following and video quality while being two orders of magnitude faster, uniquely enabling infinite-length streaming. With MotionStream, users can paint trajectories, control cameras, or transfer motion, and see results unfold in real-time, delivering a truly interactive experience.
Authors: Heechang Kim, Gwanghyun Kim, Se Young Chun
Abstract:
Diverse human motion generation is an increasingly important task, having various applications in computer vision, human-computer interaction and animation. While text-to-motion synthesis using diffusion models has shown success in generating high-quality motions, achieving fine-grained expressive motion control remains a significant challenge. This is due to the lack of motion style diversity in datasets and the difficulty of expressing quantitative characteristics in natural language. Laban movement analysis has been widely used by dance experts to express the details of motion including motion quality as consistent as possible. Inspired by that, this work aims for interpretable and expressive control of human motion generation by seamlessly integrating the quantification methods of Laban Effort and Shape components into the text-guided motion generation models. Our proposed zero-shot, inference-time optimization method guides the motion generation model to have desired Laban Effort and Shape components without any additional motion data by updating the text embedding of pretrained diffusion models during the sampling step. We demonstrate that our approach yields diverse expressive motion qualities while preserving motion identity by successfully manipulating motion attributes according to target Laban tags.
Authors: Rohit Chowdhury, Aniruddha Bala, Rohan Jaiswal, Siddharth Roheda
Abstract:
The rapid progress of image-to-video (I2V) generation models has introduced significant risks, enabling video synthesis from static images and facilitating deceptive or malicious content creation. While prior defenses such as I2VGuard attempt to immunize images, effective and principled protection to block motion remains underexplored. In this work, we introduce Vid-Freeze - a novel attention-suppressing adversarial attack that adds carefully crafted adversarial perturbations to images. Our method explicitly targets the attention mechanism of I2V models, completely disrupting motion synthesis while preserving semantic fidelity of the input image. The resulting immunized images generate stand-still or near-static videos, effectively blocking malicious content creation. Our experiments demonstrate the impressive protection provided by the proposed approach, highlighting the importance of attention attacks as a promising direction for robust and proactive defenses against misuse of I2V generation models.
Authors: Qingpeng Li, Chengrui Zhu, Yanming Wu, Xin Yuan, Zhen Zhang, Jian Yang, Yong Liu
Abstract:
Enabling humanoid robots to achieve natural and dynamic locomotion across a wide range of speeds, including smooth transitions from walking to running, presents a significant challenge. Existing deep reinforcement learning methods typically require the policy to directly track a reference motion, forcing a single policy to simultaneously learn motion imitation, velocity tracking, and stability maintenance. To address this, we introduce RuN, a novel decoupled residual learning framework. RuN decomposes the control task by pairing a pre-trained Conditional Motion Generator, which provides a kinematically natural motion prior, with a reinforcement learning policy that learns a lightweight residual correction to handle dynamical interactions. Experiments in simulation and reality on the Unitree G1 humanoid robot demonstrate that RuN achieves stable, natural gaits and smooth walk-run transitions across a broad velocity range (0-2.5 m/s), outperforming state-of-the-art methods in both training efficiency and final performance.
Authors: Xingyu Chen, Hanyu Wu, Sikai Wu, Mingliang Zhou, Diyun Xiang, Haodong Zhang
Abstract:
Human-to-humanoid imitation learning aims to learn a humanoid whole-body controller from human motion. Motion retargeting is a crucial step in enabling robots to acquire reference trajectories when exploring locomotion skills. However, current methods focus on motion retargeting frame by frame, which lacks scalability. Could we directly convert large-scale human motion into robot-executable motion through a more efficient approach? To address this issue, we propose Implicit Kinodynamic Motion Retargeting (IKMR), a novel efficient and scalable retargeting framework that considers both kinematics and dynamics. In kinematics, IKMR pretrains motion topology feature representation and a dual encoder-decoder architecture to learn a motion domain mapping. In dynamics, IKMR integrates imitation learning with the motion retargeting network to refine motion into physically feasible trajectories. After fine-tuning using the tracking results, IKMR can achieve large-scale physically feasible motion retargeting in real time, and a whole-body controller could be directly trained and deployed for tracking its retargeted trajectories. We conduct our experiments both in the simulator and the real robot on a full-size humanoid robot. Extensive experiments and evaluation results verify the effectiveness of our proposed framework.
Authors: Kejun Li, Jeeseop Kim, Maxime Brunet, Marine Pétriaux, Yisong Yue, Aaron D. Ames
Abstract:
Robust bipedal locomotion in exoskeletons requires the ability to dynamically react to changes in the environment in real time. This paper introduces the hybrid data-driven predictive control (HDDPC) framework, an extension of the data-enabled predictive control, that addresses these challenges by simultaneously planning foot contact schedules and continuous domain trajectories. The proposed framework utilizes a Hankel matrix-based representation to model system dynamics, incorporating step-to-step (S2S) transitions to enhance adaptability in dynamic environments. By integrating contact scheduling with trajectory planning, the framework offers an efficient, unified solution for locomotion motion synthesis that enables robust and reactive walking through online replanning. We validate the approach on the Atalante exoskeleton, demonstrating improved robustness and adaptability.
Authors: Bizhu Wu, Jinheng Xie, Meidan Ding, Zhe Kong, Jianfeng Ren, Ruibin Bai, Rong Qu, Linlin Shen
Abstract:
Generating realistic human motions from textual descriptions has undergone significant advancements. However, existing methods often overlook specific body part movements and their timing. In this paper, we address this issue by enriching the textual description with more details. Specifically, we propose the FineMotion dataset, which contains over 442,000 human motion snippets - short segments of human motion sequences - and their corresponding detailed descriptions of human body part movements. Additionally, the dataset includes about 95k detailed paragraphs describing the movements of human body parts of entire motion sequences. Experimental results demonstrate the significance of our dataset on the text-driven finegrained human motion generation task, especially with a remarkable +15.3% improvement in Top-3 accuracy for the MDM model. Notably, we further support a zero-shot pipeline of fine-grained motion editing, which focuses on detailed editing in both spatial and temporal dimensions via text. Dataset and code available at: CVI-SZU/FineMotion
Authors: Tao Wang, Zhihua Wu, Qiaozhi He, Jiaming Chu, Ling Qian, Yu Cheng, Junliang Xing, Jian Zhao, Lei Jin
Abstract:
Text-to-motion generation, which translates textual descriptions into human motions, has been challenging in accurately capturing detailed user-imagined motions from simple text inputs. This paper introduces StickMotion, an efficient diffusion-based network designed for multi-condition scenarios, which generates desired motions based on traditional text and our proposed stickman conditions for global and local control of these motions, respectively. We address the challenges introduced by the user-friendly stickman from three perspectives: 1) Data generation. We develop an algorithm to generate hand-drawn stickmen automatically across different dataset formats. 2) Multi-condition fusion. We propose a multi-condition module that integrates into the diffusion process and obtains outputs of all possible condition combinations, reducing computational complexity and enhancing StickMotion's performance compared to conventional approaches with the self-attention module. 3) Dynamic supervision. We empower StickMotion to make minor adjustments to the stickman's position within the output sequences, generating more natural movements through our proposed dynamic supervision strategy. Through quantitative experiments and user studies, sketching stickmen saves users about 51.5% of their time generating motions consistent with their imagination. Our codes, demos, and relevant data will be released to facilitate further research and validation within the scientific community.
Authors: Haoran Chen, Yiteng Xu, Yiming Ren, Yaoqin Ye, Xinran Li, Ning Ding, Yuxuan Wu, Yaoze Liu, Peishan Cong, Ziyi Wang, Bushi Liu, Yuhan Chen, Zhiyang Dou, Xiaokun Leng, Manyi Li, Yuexin Ma, Changhe Tu
Abstract:
The development of intelligent robots seeks to seamlessly integrate them into the human world, providing assistance and companionship in daily life and work, with the ultimate goal of achieving human-robot symbiosis. This requires robots with intelligent interaction abilities to work naturally and effectively with humans. However, current robotic simulators fail to support real human participation, limiting their ability to provide authentic interaction experiences and gather valuable human feedback essential for enhancing robotic capabilities. In this paper, we introduce SymBridge, the first human-in-the-loop cyber-physical interactive system designed to enable the safe and efficient development, evaluation, and optimization of human-robot interaction methods. Specifically, we employ augmented reality technology to enable real humans to interact with virtual robots in physical environments, creating an authentic interactive experience. Building on this, we propose a novel robotic interaction model that generates responsive, precise robot actions in real time through continuous human behavior observation. The model incorporates multi-resolution human motion features and environmental affordances, ensuring contextually adaptive robotic responses. Additionally, SymBridge enables continuous robot learning by collecting human feedback and dynamically adapting the robotic interaction model. By leveraging a carefully designed system architecture and modules, SymBridge builds a bridge between humans and robots, as well as between cyber and physical spaces, providing a natural and realistic online interaction experience while facilitating the continuous evolution of robotic intelligence. Extensive experiments, user studies, and real robot testing demonstrate the promising performance of the system and highlight its potential to significantly advance research on human-robot symbiosis.
Authors: Kaixing Yang, Xulong Tang, Haoyu Wu, Qinliang Xue, Biao Qin, Hongyan Liu, Zhaoxin Fan
Abstract:
Dance generation is crucial and challenging, particularly in domains like dance performance and virtual gaming. In the current body of literature, most methodologies focus on Solo Music2Dance. While there are efforts directed towards Group Music2Dance, these often suffer from a lack of coherence, resulting in aesthetically poor dance performances. Thus, we introduce CoheDancers, a novel framework for Music-Driven Interactive Group Dance Generation. CoheDancers aims to enhance group dance generation coherence by decomposing it into three key aspects: synchronization, naturalness, and fluidity. Correspondingly, we develop a Cycle Consistency based Dance Synchronization strategy to foster music-dance correspondences, an Auto-Regressive-based Exposure Bias Correction strategy to enhance the fluidity of the generated dances, and an Adversarial Training Strategy to augment the naturalness of the group dance output. Collectively, these strategies enable CohdeDancers to produce highly coherent group dances with superior quality. Furthermore, to establish better benchmarks for Group Music2Dance, we construct the most diverse and comprehensive open-source dataset to date, I-Dancers, featuring rich dancer interactions, and create comprehensive evaluation metrics. Experimental evaluations on I-Dancers and other extant datasets substantiate that CoheDancers achieves unprecedented state-of-the-art performance. Code will be released.
Authors: Changan Chen, Juze Zhang, Shrinidhi K. Lakshmikanth, Yusu Fang, Ruizhi Shao, Gordon Wetzstein, Li Fei-Fei, Ehsan Adeli
Abstract:
Human communication is inherently multimodal, involving a combination of verbal and non-verbal cues such as speech, facial expressions, and body gestures. Modeling these behaviors is essential for understanding human interaction and for creating virtual characters that can communicate naturally in applications like games, films, and virtual reality. However, existing motion generation models are typically limited to specific input modalities -- either speech, text, or motion data -- and cannot fully leverage the diversity of available data. In this paper, we propose a novel framework that unifies verbal and non-verbal language using multimodal language models for human motion understanding and generation. This model is flexible in taking text, speech, and motion or any combination of them as input. Coupled with our novel pre-training strategy, our model not only achieves state-of-the-art performance on co-speech gesture generation but also requires much less data for training. Our model also unlocks an array of novel tasks such as editable gesture generation and emotion prediction from motion. We believe unifying the verbal and non-verbal language of human motion is essential for real-world applications, and language models offer a powerful approach to achieving this goal. Project page: languageofmotion.github.io.
Authors: Sunjae Yoon, Gwanhyeong Koo, Younghwan Lee, Chang D. Yoo
Abstract:
Human image animation aims to generate a human motion video from the inputs of a reference human image and a target motion video. Current diffusion-based image animation systems exhibit high precision in transferring human identity into targeted motion, yet they still exhibit irregular quality in their outputs. Their optimal precision is achieved only when the physical compositions (i.e., scale and rotation) of the human shapes in the reference image and target pose frame are aligned. In the absence of such alignment, there is a noticeable decline in fidelity and consistency. Especially, in real-world environments, this compositional misalignment commonly occurs, posing significant challenges to the practical usage of current systems. To this end, we propose Test-time Procrustes Calibration (TPC), which enhances the robustness of diffusion-based image animation systems by maintaining optimal performance even when faced with compositional misalignment, effectively addressing real-world scenarios. The TPC provides a calibrated reference image for the diffusion model, enhancing its capability to understand the correspondence between human shapes in the reference and target images. Our method is simple and can be applied to any diffusion-based image animation system in a model-agnostic manner, improving the effectiveness at test time without additional training.
Authors: Brent Yi, Vickie Ye, Maya Zheng, Yunqi Li, Lea Müller, Georgios Pavlakos, Yi Ma, Jitendra Malik, Angjoo Kanazawa
Abstract:
We present EgoAllo, a system for human motion estimation from a head-mounted device. Using only egocentric SLAM poses and images, EgoAllo guides sampling from a conditional diffusion model to estimate 3D body pose, height, and hand parameters that capture a device wearer's actions in the allocentric coordinate frame of the scene. To achieve this, our key insight is in representation: we propose spatial and temporal invariance criteria for improving model performance, from which we derive a head motion conditioning parameterization that improves estimation by up to 18%. We also show how the bodies estimated by our system can improve hand estimation: the resulting kinematic and temporal constraints can reduce world-frame errors in single-frame estimates by 40%. Project page: https://egoallo.github.io/
Authors: Enes Duran, Nikos Athanasiou, Muhammed Kocabas, Michael J. Black, Omid Taheri
Abstract:
Hands are central to interacting with our surroundings and conveying gestures, making their inclusion essential for full-body motion synthesis. Despite this, existing human motion synthesis methods fall short: some ignore hand motions entirely, while others generate full-body motions only for narrowly scoped tasks under highly constrained settings. A key obstacle is the lack of large-scale datasets that jointly capture diverse full-body motion with detailed hand articulation. While some datasets capture both, they are limited in scale and diversity. Conversely, large-scale datasets typically focus either on body motion without hands or on hand motions without the body. To overcome this, we curate and unify existing hand motion datasets with large-scale body motion data to generate full-body sequences that capture both hand and body. We then propose the first diffusion-based unconditional full-body motion prior, FUSION, which jointly models body and hand motion. Despite using a pose-based motion representation, FUSION surpasses state-of-the-art skeletal control models on the Keypoint Tracking task in the HumanML3D dataset and achieves superior motion naturalness. Beyond standard benchmarks, we demonstrate that FUSION can go beyond typical uses of motion priors through two applications: (1) generating detailed full-body motion including fingers during interaction given the motion of an object, and (2) generating Self-Interaction motions using an LLM to transform natural language cues into actionable motion constraints. For these applications, we develop an optimization pipeline that refines the latent space of our diffusion model to generate task-specific motions. Experiments on these tasks highlight precise control over hand motion while maintaining plausible full-body coordination. The code will be public.
Authors: Jinda Du, Jieji Ren, Qiaojun Yu, Ningbin Zhang, Yu Deng, Xingyu Wei, Yufei Liu, Guoying Gu, Xiangyang Zhu
Abstract:
Imitation learning provides a promising approach to dexterous hand manipulation, but its effectiveness is limited by the lack of large-scale, high-fidelity data. Existing data-collection pipelines suffer from inaccurate motion retargeting, low data-collection efficiency, and missing high-resolution fingertip tactile sensing. We address this gap with MILE, a mechanically isomorphic teleoperation and data-collection system co-designed from human hand to exoskeleton to robotic hand. The exoskeleton is anthropometrically derived from the human hand, and the robotic hand preserves one-to-one joint-position isomorphism, eliminating nonlinear retargeting and enabling precise, natural control. The exoskeleton achieves a multi-joint mean absolute angular error below one degree, while the robotic hand integrates compact fingertip visuotactile modules that provide high-resolution tactile observations. Built on this retargeting-free interface, we teleoperate complex, contact-rich in-hand manipulation and efficiently collect a multimodal dataset comprising high-resolution fingertip visuotactile signals, RGB-D images, and joint positions. The teleoperation pipeline achieves a mean success rate improvement of 64%. Incorporating fingertip tactile observations further increases the success rate by an average of 25% over the vision-only baseline, validating the fidelity and utility of the dataset. Further details are available at: https://sites.google.com/view/mile-system.
Authors: Prerit Gupta, Shourya Verma, Ananth Grama, Aniket Bera
Abstract:
Generating realistic, context-aware two-person motion conditioned on diverse modalities remains a central challenge in computer graphics, animation, and human-computer interaction. We introduce DualFlow, a unified and efficient framework for multi-modal two-person motion generation. DualFlow conditions 3D motion synthesis on diverse inputs, including text, music, and prior motion sequences. Leveraging rectified flow, it achieves deterministic straight-line sampling paths between noise and data, reducing inference time and mitigating error accumulation common in diffusion-based models. To enhance semantic grounding, DualFlow employs a Retrieval-Augmented Generation (RAG) module that retrieves motion exemplars using music features and LLM-based text decompositions of spatial relations, body movements, and rhythmic patterns. We use contrastive objective that further strengthens alignment with conditioning signals and introduce synchronization loss that improves inter-person coordination. Extensive evaluations across text-to-motion, music-to-motion, and multi-modal interactive benchmarks show consistent gains in motion quality, responsiveness, and efficiency. DualFlow produces temporally coherent and rhythmically synchronized motions, setting state-of-the-art in multi-modal human motion generation.
Authors: Minjun Kang, Inkyu Shin, Taeyeop Lee, In So Kweon, Kuk-Jin Yoon
Abstract:
We introduce Drag4D, an interactive framework that integrates object motion control within text-driven 3D scene generation. This framework enables users to define 3D trajectories for the 3D objects generated from a single image, seamlessly integrating them into a high-quality 3D background. Our Drag4D pipeline consists of three stages. First, we enhance text-to-3D background generation by applying 2D Gaussian Splatting with panoramic images and inpainted novel views, resulting in dense and visually complete 3D reconstructions. In the second stage, given a reference image of the target object, we introduce a 3D copy-and-paste approach: the target instance is extracted in a full 3D mesh using an off-the-shelf image-to-3D model and seamlessly composited into the generated 3D scene. The object mesh is then positioned within the 3D scene via our physics-aware object position learning, ensuring precise spatial alignment. Lastly, the spatially aligned object is temporally animated along a user-defined 3D trajectory. To mitigate motion hallucination and ensure view-consistent temporal alignment, we develop a part-augmented, motion-conditioned video diffusion model that processes multiview image pairs together with their projected 2D trajectories. We demonstrate the effectiveness of our unified architecture through evaluations at each stage and in the final results, showcasing the harmonized alignment of user-controlled object motion within a high-quality 3D background.
Authors: Zhimin Zhang, Bi'an Du, Caoyuan Ma, Zheng Wang, Wei Hu
Abstract:
Animal motion embodies species-specific behavioral habits, making the transfer of motion across categories a critical yet complex task for applications in animation and virtual reality. Existing motion transfer methods, primarily focused on human motion, emphasize skeletal alignment (motion retargeting) or stylistic consistency (motion style transfer), often neglecting the preservation of distinct habitual behaviors in animals. To bridge this gap, we propose a novel habit-preserved motion transfer framework for cross-category animal motion. Built upon a generative framework, our model introduces a habit-preservation module with category-specific habit encoder, allowing it to learn motion priors that capture distinctive habitual characteristics. Furthermore, we integrate a large language model (LLM) to facilitate the motion transfer to previously unobserved species. To evaluate the effectiveness of our approach, we introduce the DeformingThings4D-skl dataset, a quadruped dataset with skeletal bindings, and conduct extensive experiments and quantitative analyses, which validate the superiority of our proposed model.
Authors: Vasu Agrawal, Akinniyi Akinyemi, Kathryn Alvero, Morteza Behrooz, Julia Buffalini, Fabio Maria Carlucci, Joy Chen, Junming Chen, Zhang Chen, Shiyang Cheng, Praveen Chowdary, Joe Chuang, Antony D'Avirro, Jon Daly, Ning Dong, Mark Duppenthaler, Cynthia Gao, Jeff Girard, Martin Gleize, Sahir Gomez, Hongyu Gong, Srivathsan Govindarajan, Brandon Han, Sen He, Denise Hernandez, Yordan Hristov, Rongjie Huang, Hirofumi Inaguma, Somya Jain, Raj Janardhan, Qingyao Jia, Christopher Klaiber, Dejan Kovachev, Moneish Kumar, Hang Li, Yilei Li, Pavel Litvin, Wei Liu, Guangyao Ma, Jing Ma, Martin Ma, Xutai Ma, Lucas Mantovani, Sagar Miglani, Sreyas Mohan, Louis-Philippe Morency, Evonne Ng, Kam-Woh Ng, Tu Anh Nguyen, Amia Oberai, Benjamin Peloquin, Juan Pino, Jovan Popovic, Omid Poursaeed, Fabian Prada, Alice Rakotoarison, Rakesh Ranjan, Alexander Richard, Christophe Ropers, Safiyyah Saleem, Vasu Sharma, Alex Shcherbyna, Jia Shen, Jie Shen, Anastasis Stathopoulos, Anna Sun, Paden Tomasello, Tuan Tran, Arina Turkatenko, Bo Wan, Chao Wang, Jeff Wang, Mary Williamson, Carleigh Wood, Tao Xiang, Yilin Yang, Julien Yao, Chen Zhang, Jiemin Zhang, Xinyue Zhang, Jason Zheng, Pavlo Zhyzheria, Jan Zikes, Michael Zollhoefer
Abstract:
Human communication involves a complex interplay of verbal and nonverbal signals, essential for conveying meaning and achieving interpersonal goals. To develop socially intelligent AI technologies, it is crucial to develop models that can both comprehend and generate dyadic behavioral dynamics. To this end, we introduce the Seamless Interaction Dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage from over 4,000 participants in diverse contexts. This dataset enables the development of AI technologies that understand dyadic embodied dynamics, unlocking breakthroughs in virtual agents, telepresence experiences, and multimodal content analysis tools. We also develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech. These models can take as input both the speech and visual behavior of their interlocutors. We present a variant with speech from an LLM model and integrations with 2D and 3D rendering methods, bringing us closer to interactive virtual agents. Additionally, we describe controllable variants of our motion models that can adapt emotional responses and expressivity levels, as well as generating more semantically-relevant gestures. Finally, we discuss methods for assessing the quality of these dyadic motion models, which are demonstrating the potential for more intuitive and responsive human-AI interactions.
Authors: Andela Ilic, Jiaxi Jiang, Paul Streli, Xintong Liu, Christian Holz
Abstract:
Motion capture using sparse inertial sensors has shown great promise due to its portability and lack of occlusion issues compared to camera-based tracking. Existing approaches typically assume that IMU sensors are tightly attached to the human body. However, this assumption often does not hold in real-world scenarios. In this paper, we present Garment Inertial Poser (GaIP), a method for estimating full-body poses from sparse and loosely attached IMU sensors. We first simulate IMU recordings using an existing garment-aware human motion dataset. Our transformer-based diffusion models synthesize loose IMU data and estimate human poses from this challenging loose IMU data. We also demonstrate that incorporating garment-related parameters during training on loose IMU data effectively maintains expressiveness and enhances the ability to capture variations introduced by looser or tighter garments. Our experiments show that our diffusion methods trained on simulated and synthetic data outperform state-of-the-art inertial full-body pose estimators, both quantitatively and qualitatively, opening up a promising direction for future research on motion capture from such realistic sensor placements.
Authors: Longzhen Han, Awes Mubarak, Almas Baimagambetov, Nikolaos Polatidis, Thar Baker
Abstract:
Multimodal Large Language Models (MLLMs) have rapidly evolved beyond text generation, now spanning diverse output modalities including images, music, video, human motion, and 3D objects, by integrating language with other sensory modalities under unified architectures. This survey categorises six primary generative modalities and examines how foundational techniques, namely Self-Supervised Learning (SSL), Mixture of Experts (MoE), Reinforcement Learning from Human Feedback (RLHF), and Chain-of-Thought (CoT) prompting, enable cross-modal capabilities. We analyze key models, architectural trends, and emergent cross-modal synergies, while highlighting transferable techniques and unresolved challenges. Architectural innovations like transformers and diffusion models underpin this convergence, enabling cross-modal transfer and modular specialization. We highlight emerging patterns of synergy, and identify open challenges in evaluation, modularity, and structured reasoning. This survey offers a unified perspective on MLLM development and identifies critical paths toward more general-purpose, adaptive, and interpretable multimodal systems.
Authors: Guanren Qiao, Sixu Lin, Ronglai Zuo, Zhizheng Wu, Kui Jia, Guiliang Liu
Abstract:
Sign language is a natural and visual form of language that uses movements and expressions to convey meaning, serving as a crucial means of communication for individuals who are deaf or hard-of-hearing (DHH). However, the number of people proficient in sign language remains limited, highlighting the need for technological advancements to bridge communication gaps and foster interactions with minorities. Based on recent advancements in embodied humanoid robots, we propose SignBot, a novel framework for human-robot sign language interaction. SignBot integrates a cerebellum-inspired motion control component and a cerebral-oriented module for comprehension and interaction. Specifically, SignBot consists of: 1) Motion Retargeting, which converts human sign language datasets into robot-compatible kinematics; 2) Motion Control, which leverages a learning-based paradigm to develop a robust humanoid control policy for tracking sign language gestures; and 3) Generative Interaction, which incorporates translator, responser, and generator of sign language, thereby enabling natural and effective communication between robots and humans. Simulation and real-world experimental results demonstrate that SignBot can effectively facilitate human-robot interaction and perform sign language motions with diverse robots and datasets. SignBot represents a significant advancement in automatic sign language interaction on embodied humanoid robot platforms, providing a promising solution to improve communication accessibility for the DHH community.
Authors: Xin You, Minghui Zhang, Hanxiao Zhang, Jie Yang, Nassir Navab
Abstract:
Temporal modeling on regular respiration-induced motions is crucial to image-guided clinical applications. Existing methods cannot simulate temporal motions unless high-dose imaging scans including starting and ending frames exist simultaneously. However, in the preoperative data acquisition stage, the slight movement of patients may result in dynamic backgrounds between the first and last frames in a respiratory period. This additional deviation can hardly be removed by image registration, thus affecting the temporal modeling. To address that limitation, we pioneeringly simulate the regular motion process via the image-to-video (I2V) synthesis framework, which animates with the first frame to forecast future frames of a given length. Besides, to promote the temporal consistency of animated videos, we devise the Temporal Differential Diffusion Model to generate temporal differential fields, which measure the relative differential representations between adjacent frames. The prompt attention layer is devised for fine-grained differential fields, and the field augmented layer is adopted to better interact these fields with the I2V framework, promoting more accurate temporal variation of synthesized videos. Extensive results on ACDC cardiac and 4D Lung datasets reveal that our approach simulates 4D videos along the intrinsic motion trajectory, rivaling other competitive methods on perceptual similarity and temporal consistency. Codes will be available soon.
Authors: Tao Liu, Tianyu Zhang, Yongxue Chen, Weiming Wang, Yu Jiang, Yuming Huang, Charlie C. L. Wang
Abstract:
We propose a neural network-based computational framework for the simultaneous optimization of structural topology, curved layers, and path orientations to achieve strong anisotropic strength in fiber-reinforced thermoplastic composites while ensuring manufacturability. Our framework employs three implicit neural fields to represent geometric shape, layer sequence, and fiber orientation. This enables the direct formulation of both design and manufacturability objectives - such as anisotropic strength, structural volume, machine motion control, layer curvature, and layer thickness - into an integrated and differentiable optimization process. By incorporating these objectives as loss functions, the framework ensures that the resultant composites exhibit optimized mechanical strength while remaining its manufacturability for filament-based multi-axis 3D printing across diverse hardware platforms. Physical experiments demonstrate that the composites generated by our co-optimization method can achieve an improvement of up to 33.1% in failure loads compared to composites with sequentially optimized structures and manufacturing sequences.
Authors: Yongqi Zhai, Luyang Tang, Wei Jiang, Jiayu Yang, Ronggang Wang
Abstract:
Recently, learned video compression (LVC) has shown superior performance under low-delay configuration. However, the performance of learned bi-directional video compression (LBVC) still lags behind traditional bi-directional coding. The performance gap mainly arises from inaccurate long-term motion estimation and prediction of distant frames, especially in large motion scenes. To solve these two critical problems, this paper proposes a novel LBVC framework, namely L-LBVC. Firstly, we propose an adaptive motion estimation module that can handle both short-term and long-term motions. Specifically, we directly estimate the optical flows for adjacent frames and non-adjacent frames with small motions. For non-adjacent frames with large motions, we recursively accumulate local flows between adjacent frames to estimate long-term flows. Secondly, we propose an adaptive motion prediction module that can largely reduce the bit cost for motion coding. To improve the accuracy of long-term motion prediction, we adaptively downsample reference frames during testing to match the motion ranges observed during training. Experiments show that our L-LBVC significantly outperforms previous state-of-the-art LVC methods and even surpasses VVC (VTM) on some test datasets under random access configuration.
Authors: Dominik Hollidt, Paul Streli, Jiaxi Jiang, Yasaman Haghighi, Changlin Qian, Xintong Liu, Christian Holz
Abstract:
Research on egocentric tasks in computer vision has mostly focused on head-mounted cameras, such as fisheye cameras or embedded cameras inside immersive headsets. We argue that the increasing miniaturization of optical sensors will lead to the prolific integration of cameras into many more body-worn devices at various locations. This will bring fresh perspectives to established tasks in computer vision and benefit key areas such as human motion tracking, body pose estimation, or action recognition -- particularly for the lower body, which is typically occluded.
In this paper, we introduce EgoSim, a novel simulator of body-worn cameras that generates realistic egocentric renderings from multiple perspectives across a wearer's body. A key feature of EgoSim is its use of real motion capture data to render motion artifacts, which are especially noticeable with arm- or leg-worn cameras. In addition, we introduce MultiEgoView, a dataset of egocentric footage from six body-worn cameras and ground-truth full-body 3D poses during several activities: 119 hours of data are derived from AMASS motion sequences in four high-fidelity virtual environments, which we augment with 5 hours of real-world motion data from 13 participants using six GoPro cameras and 3D body pose references from an Xsens motion capture suit.
We demonstrate EgoSim's effectiveness by training an end-to-end video-only 3D pose estimation network. Analyzing its domain gap, we show that our dataset and simulator substantially aid training for inference on real-world data.
EgoSim code & MultiEgoView dataset: https://siplab.org/projects/EgoSim
Authors: Pandula Thennakoon, Mario De Silva, M. Mahesha Viduranga, Sashini Liyanage, Roshan Godaliyadda, Mervyn Parakrama Ekanayake, Vijitha Herath, Anuruddhika Rathnayake, Ganga Thilakarathne, Janaka Ekanayake, Samath Dharmarathne
Abstract:
Computational disease modeling plays a crucial role in understanding and controlling the transmission of infectious diseases. While agent-based models (ABMs) provide detailed insights into individual dynamics, accurately replicating human motion remains challenging due to its complex, multi-factorial nature. Most existing frameworks fail to model realistic human motion, leading to oversimplified and less realistic behavior modeling. Furthermore, many current models rely on synthetic assumptions and fail to account for realistic environmental structures, transportation systems, and behavioral heterogeneity across occupation groups. To address these limitations, we introduce AVSim, an agent-based simulation framework designed to model airborne and vector-borne disease dynamics under realistic conditions. A distinguishing feature of AVSim is its ability to accurately model the dual nature of human mobility (both the destinations individuals visit and the duration of their stay) by utilizing GPS traces from real-world participants, characterized by occupation. This enables a significantly more granular and realistic representation of human movement compared to existing approaches. Furthermore, spectral clustering combined with graph-theoretic analysis is used to uncover latent behavioral patterns within occupations, enabling fine-grained modeling of agent behavior. We validate the synthetic human mobility patterns against ground-truth GPS data and demonstrate AVSim's capabilities via simulations of COVID-19 and dengue. The results highlight AVSim's capacity to trace infection pathways, identify high-risk zones, and evaluate interventions such as vaccination, quarantine, and vector control with occupational and geographic specificity.
Authors: Changwoon Choi, Jeongjun Kim, Geonho Cha, Minkwan Kim, Dongyoon Wee, Young Min Kim
Abstract:
Recent works on dynamic 3D neural field reconstruction assume the input from synchronized multi-view videos whose poses are known. The input constraints are often not satisfied in real-world setups, making the approach impractical. We show that unsynchronized videos from unknown poses can generate dynamic neural fields as long as the videos capture human motion. Humans are one of the most common dynamic subjects captured in videos, and their shapes and poses can be estimated using state-of-the-art libraries. While noisy, the estimated human shape and pose parameters provide a decent initialization point to start the highly non-convex and under-constrained problem of training a consistent dynamic neural representation. Given the shape and pose parameters of humans in individual frames, we formulate methods to calculate the time offsets between videos, followed by camera pose estimations that analyze the 3D joint positions. Then, we train the dynamic neural fields employing multiresolution grids while we concurrently refine both time offsets and camera poses. The setup still involves optimizing many parameters; therefore, we introduce a robust progressive learning strategy to stabilize the process. Experiments show that our approach achieves accurate spatio-temporal calibration and high-quality scene reconstruction in challenging conditions.
Authors: Yizhe Li, Linrui Zhang, Xueqian Wang, Houde Liu, Bin Liang
Abstract:
Safety-critical traffic scenarios are of great practical relevance to evaluating the robustness of autonomous driving (AD) systems. Given that these long-tail events are extremely rare in real-world traffic data, there is a growing body of work dedicated to the automatic traffic scenario generation. However, nearly all existing algorithms for generating safety-critical scenarios rely on snippets of previously recorded traffic events, transforming normal traffic flow into accident-prone situations directly. In other words, safety-critical traffic scenario generation is hindsight and not applicable to newly encountered and open-ended traffic events.In this paper, we propose the Deep Motion Factorization (DeepMF) framework, which extends static safety-critical driving scenario generation to closed-loop and interactive adversarial traffic simulation. DeepMF casts safety-critical traffic simulation as a Bayesian factorization that includes the assignment of hazardous traffic participants, the motion prediction of selected opponents, the reaction estimation of autonomous vehicle (AV) and the probability estimation of the accident occur. All the aforementioned terms are calculated using decoupled deep neural networks, with inputs limited to the current observation and historical states. Consequently, DeepMF can effectively and efficiently simulate safety-critical traffic scenarios at any triggered time and for any duration by maximizing the compounded posterior probability of traffic risk. Extensive experiments demonstrate that DeepMF excels in terms of risk management, flexibility, and diversity, showcasing outstanding performance in simulating a wide range of realistic, high-risk traffic scenarios.
Authors: Runhao Zeng, Dingjie Zhou, Qiwei Liang, Junlin Liu, Hui Li, Changxin Huang, Jianqiang Li, Xiping Hu, Fuchun Sun
Abstract:
Learning behavior in legged robots presents a significant challenge due to its inherent instability and complex constraints. Recent research has proposed the use of a large language model (LLM) to generate reward functions in reinforcement learning, thereby replacing the need for manually designed rewards by experts. However, this approach, which relies on textual descriptions to define learning objectives, fails to achieve controllable and precise behavior learning with clear directionality. In this paper, we introduce a new video2reward method, which directly generates reward functions from videos depicting the behaviors to be mimicked and learned. Specifically, we first process videos containing the target behaviors, converting the motion information of individuals in the videos into keypoint trajectories represented as coordinates through a video2text transforming module. These trajectories are then fed into an LLM to generate the reward function, which in turn is used to train the policy. To enhance the quality of the reward function, we develop a video-assisted iterative reward refinement scheme that visually assesses the learned behaviors and provides textual feedback to the LLM. This feedback guides the LLM to continually refine the reward function, ultimately facilitating more efficient behavior learning. Experimental results on tasks involving bipedal and quadrupedal robot motion control demonstrate that our method surpasses the performance of state-of-the-art LLM-based reward generation methods by over 37.6% in terms of human normalized score. More importantly, by switching video inputs, we find our method can rapidly learn diverse motion behaviors such as walking and running.
Authors: Junkai Niu, Sheng Zhong, Xiuyuan Lu, Shaojie Shen, Guillermo Gallego, Yi Zhou
Abstract:
Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping subproblems (typically in parallel), by exploiting the special working principles of neuromorphic (i.e., event-based) cameras. Due to the motion-dependent nature of event data, explicit data association (i.e., feature matching) under large-baseline view-point changes is difficult to establish, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we tackle these issues by building an event-based stereo visual-inertial odometry system on top of a direct pipeline. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general 6-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.
Authors: Yupeng Zhu, Xiongzhen Zhang, Ye Chen, Bingbing Ni
Abstract:
3D animation is central to modern visual media, yet traditional production pipelines remain labor-intensive, expertise-demanding, and computationally expensive. Recent AIGC-based approaches partially automate asset creation and rigging, but they either inherit the heavy costs of full 3D pipelines or rely on video-synthesis paradigms that sacrifice 3D controllability and interactivity. We focus on single-image 3D animation generation and argue that progress is fundamentally constrained by a trade-off between rendering quality and 3D control. To address this limitation, we propose a lightweight 3D animation framework that decouples geometric control from appearance synthesis. The core idea is a 2D-3D aligned proxy representation that uses a coarse 3D estimate as a structural carrier, while delegating high-fidelity appearance and view synthesis to learned image-space generative priors. This proxy formulation enables 3D-aware motion control and interaction comparable to classical pipelines, without requiring accurate geometry or expensive optimization, and naturally extends to coherent background animation. Extensive experiments demonstrate that our method achieves efficient animation generation on low-power platforms and outperforms video-based 3D animation generation in identity preservation, geometric and textural consistency, and the level of precise, interactive control it offers to users.
Authors: Zhiyuan Li, Chi-Man Pun, Chen Fang, Jue Wang, Xiaodong Cun
Abstract:
Current diffusion-based portrait animation models predominantly focus on enhancing visual quality and expression realism, while overlooking generation latency and real-time performance, which restricts their application range in the live streaming scenario. We propose PersonaLive, a novel diffusion-based framework towards streaming real-time portrait animation with multi-stage training recipes. Specifically, we first adopt hybrid implicit signals, namely implicit facial representations and 3D implicit keypoints, to achieve expressive image-level motion control. Then, a fewer-step appearance distillation strategy is proposed to eliminate appearance redundancy in the denoising process, greatly improving inference efficiency. Finally, we introduce an autoregressive micro-chunk streaming generation paradigm equipped with a sliding training strategy and a historical keyframe mechanism to enable low-latency and stable long-term video generation. Extensive experiments demonstrate that PersonaLive achieves state-of-the-art performance with up to 7-22x speedup over prior diffusion-based portrait animation models.
Authors: Justin Yu, Yide Shentu, Di Wu, Pieter Abbeel, Ken Goldberg, Philipp Wu
Abstract:
Imitation learning from human demonstrations offers a promising approach for robot skill acquisition, but egocentric human data introduces fundamental challenges due to the embodiment gap. During manipulation, humans actively coordinate head and hand movements, continuously reposition their viewpoint and use pre-action visual fixation search strategies to locate relevant objects. These behaviors create dynamic, task-driven head motions that static robot sensing systems cannot replicate, leading to a significant distribution shift that degrades policy performance. We present EgoMI (Egocentric Manipulation Interface), a framework that captures synchronized end-effector and active head trajectories during manipulation tasks, resulting in data that can be retargeted to compatible semi-humanoid robot embodiments. To handle rapid and wide-spanning head viewpoint changes, we introduce a memory-augmented policy that selectively incorporates historical observations. We evaluate our approach on a bimanual robot equipped with an actuated camera head and find that policies with explicit head-motion modeling consistently outperform baseline methods. Results suggest that coordinated hand-eye learning with EgoMI effectively bridges the human-robot embodiment gap for robust imitation learning on semi-humanoid embodiments. Project page: https://egocentric-manipulation-interface.github.io
Authors: Amir Habel, Fawad Mehboob, Jeffrin Sam, Clement Fortin, Dzmitry Tsetserukou
Abstract:
Achieving precise lateral motion modeling and decoupled control in hover remains a significant challenge for tail-sitter Unmanned Aerial Vehicles (UAVs), primarily due to complex aerodynamic couplings and the absence of welldefined lateral dynamics. This paper presents a novel modeling and control strategy that enhances yaw authority and lateral motion by introducing a sideslip force model derived from differential propeller slipstream effects acting on the fuselage under differential thrust. The resulting lateral force along the body y-axis enables yaw-based lateral position control without inducing roll coupling. The control framework employs a YXZ Euler rotation formulation to accurately represent attitude and incorporate gravitational components while directly controlling yaw in the yaxis, thereby improving lateral dynamic behavior and avoiding singularities. The proposed approach is validated through trajectory-tracking simulations conducted in a Unity-based environment. Tests on both rectangular and circular paths in hover mode demonstrate stable performance, with low mean absolute position errors and yaw deviations constrained within 5.688 degrees. These results confirm the effectiveness of the proposed lateral force generation model and provide a foundation for the development of agile, hover-capable tail-sitter UAVs.
Authors: Masato Kobayashi, Ning Ding, Toru Tamaki
Abstract:
Action recognition models rely excessively on static cues rather than dynamic human motion, which is known as static bias. This bias leads to poor performance in real-world applications and zero-shot action recognition. In this paper, we propose a method to reduce static bias by separating temporal dynamic information from static scene information. Our approach uses a statistical independence loss between biased and unbiased streams, combined with a scene prediction loss. Our experiments demonstrate that this method effectively reduces static bias and confirm the importance of scene prediction loss.
Authors: Hao Wen, Hongbo Kang, Jian Ma, Jing Huang, Yuanwang Yang, Haozhe Lin, Yu-Kun Lai, Kun Li
Abstract:
3D reconstruction of dynamic crowds in large scenes has become increasingly important for applications such as city surveillance and crowd analysis. However, current works attempt to reconstruct 3D crowds from a static image, causing a lack of temporal consistency and inability to alleviate the typical impact caused by occlusions. In this paper, we propose DyCrowd, the first framework for spatio-temporally consistent 3D reconstruction of hundreds of individuals' poses, positions and shapes from a large-scene video. We design a coarse-to-fine group-guided motion optimization strategy for occlusion-robust crowd reconstruction in large scenes. To address temporal instability and severe occlusions, we further incorporate a VAE (Variational Autoencoder)-based human motion prior along with a segment-level group-guided optimization. The core of our strategy leverages collective crowd behavior to address long-term dynamic occlusions. By jointly optimizing the motion sequences of individuals with similar motion segments and combining this with the proposed Asynchronous Motion Consistency (AMC) loss, we enable high-quality unoccluded motion segments to guide the motion recovery of occluded ones, ensuring robust and plausible motion recovery even in the presence of temporal desynchronization and rhythmic inconsistencies. Additionally, in order to fill the gap of no existing well-annotated large-scene video dataset, we contribute a virtual benchmark dataset, VirtualCrowd, for evaluating dynamic crowd reconstruction from large-scene videos. Experimental results demonstrate that the proposed method achieves state-of-the-art performance in the large-scene dynamic crowd reconstruction task. The code and dataset will be available for research purposes.
Authors: Filippo A. Spinelli, Yifan Zhai, Fang Nan, Pascal Egli, Julian Nubert, Thilo Bleumer, Lukas Miller, Ferdinand Hofmann, Marco Hutter
Abstract:
Bulk material handling involves the efficient and precise moving of large quantities of materials, a core operation in many industries, including cargo ship unloading, waste sorting, construction, and demolition. These repetitive, labor-intensive, and safety-critical operations are typically performed using large hydraulic material handlers equipped with underactuated grippers. In this work, we present a comprehensive framework for the autonomous execution of large-scale material handling tasks. The system integrates specialized modules for environment perception, pile attack point selection, path planning, and motion control. The main contributions of this work are two reinforcement learning-based modules: an attack point planner that selects optimal grasping locations on the material pile to maximize removal efficiency and minimize the number of scoops, and a robust trajectory following controller that addresses the precision and safety challenges associated with underactuated grippers in movement, while utilizing their free-swinging nature to release material through dynamic throwing. We validate our framework through real-world experiments on a 40 t material handler in a representative worksite, focusing on two key tasks: high-throughput bulk pile management and high-precision truck loading. Comparative evaluations against human operators demonstrate the system's effectiveness in terms of precision, repeatability, and operational safety. To the best of our knowledge, this is the first complete automation of material handling tasks on a full scale.
Authors: Huangbin Liang, Beatriz Moya, Francisco Chinesta, Eleni Chatzi
Abstract:
Electric power networks are critical lifelines, and their disruption during earthquakes can lead to severe cascading failures and significantly hinder post-disaster recovery. Enhancing their seismic resilience requires identifying and strengthening vulnerable components in a cost-effective and system-aware manner. However, existing studies often overlook the systemic behavior of power networks under seismic loading. Common limitations include isolated component analyses that neglect network-wide interdependencies, oversimplified damage models assuming binary states or damage independence, and the exclusion of electrical operational constraints. These simplifications can result in inaccurate risk estimates and inefficient retrofit decisions. This study proposes a multi-model probabilistic framework for seismic risk assessment and retrofit planning of electric power systems. The approach integrates: (1) regional seismic hazard characterization with ground motion prediction and spatial correlation models; (2) component-level damage analysis using fragility functions and multi-state damage-functionality mappings; (3) system-level cascading impact evaluation through graph-based island detection and constrained optimal power flow analysis; and (4) retrofit planning via heuristic optimization to minimize expected annual functionality loss (EAFL) under budget constraints. Uncertainty is propagated throughout the framework using Monte Carlo simulation. The methodology is demonstrated on the IEEE 24-bus Reliability Test System, showcasing its ability to capture cascading failures, identify critical components, and generate effective retrofit strategies. Results underscore the potential of the framework as a scalable, data-informed decision-support tool for enhancing the seismic resilience of power infrastructure.
Authors: Jianbo Ma, Hui Luo, Qi Chen, Yuankai Qi, Yumei Sun, Amin Beheshti, Jianlin Zhang, Ming-Hsuan Yang
Abstract:
Multi-object tracking (MOT) aims to track multiple objects while maintaining consistent identities across frames of a given video. In unmanned aerial vehicle (UAV) recorded videos, frequent viewpoint changes and complex UAV-ground relative motion dynamics pose significant challenges, which often lead to unstable affinity measurement and ambiguous association. Existing methods typically model motion and appearance cues separately, overlooking their spatio-temporal interplay and resulting in suboptimal tracking performance. In this work, we propose AMOT, which jointly exploits appearance and motion cues through two key components: an Appearance-Motion Consistency (AMC) matrix and a Motion-aware Track Continuation (MTC) module. Specifically, the AMC matrix computes bi-directional spatial consistency under the guidance of appearance features, enabling more reliable and context-aware identity association. The MTC module complements AMC by reactivating unmatched tracks through appearance-guided predictions that align with Kalman-based predictions, thereby reducing broken trajectories caused by missed detections. Extensive experiments on three UAV benchmarks, including VisDrone2019, UAVDT, and VT-MOT-UAV, demonstrate that our AMOT outperforms current state-of-the-art methods and generalizes well in a plug-and-play and training-free manner.
Authors: Mengda Xu, Han Zhang, Yifan Hou, Zhenjia Xu, Linxi Fan, Manuela Veloso, Shuran Song
Abstract:
We present DexUMI - a data collection and policy learning framework that uses the human hand as the natural interface to transfer dexterous manipulation skills to various robot hands. DexUMI includes hardware and software adaptations to minimize the embodiment gap between the human hand and various robot hands. The hardware adaptation bridges the kinematics gap using a wearable hand exoskeleton. It allows direct haptic feedback in manipulation data collection and adapts human motion to feasible robot hand motion. The software adaptation bridges the visual gap by replacing the human hand in video data with high-fidelity robot hand inpainting. We demonstrate DexUMI's capabilities through comprehensive real-world experiments on two different dexterous robot hand hardware platforms, achieving an average task success rate of 86%.
Authors: Yunyue Wei, Shanning Zhuang, Vincent Zhuang, Yanan Sui
Abstract:
Controlling high-dimensional nonlinear systems, such as those found in biological and robotic applications, is challenging due to large state and action spaces. While deep reinforcement learning has achieved a number of successes in these domains, it is computationally intensive and time consuming, and therefore not suitable for solving large collections of tasks that require significant manual tuning. In this work, we introduce Model Predictive Control with Morphology-aware Proportional Control (MPC^2), a hierarchical model-based learning algorithm for zero-shot and near-real-time control of high-dimensional complex dynamical systems. MPC^2 uses a sampling-based model predictive controller for target posture planning, and enables robust control for high-dimensional tasks by incorporating a morphology-aware proportional controller for actuator coordination. The algorithm enables motion control of a high-dimensional human musculoskeletal model in a variety of motion tasks, such as standing, walking on different terrains, and imitating sports activities. The reward function of MPC^2 can be tuned via black-box optimization, drastically reducing the need for human-intensive reward engineering.
Authors: Ziluo Ding, Haobin Jiang, Yuxuan Wang, Zhenguo Sun, Yu Zhang, Xiaojie Niu, Ming Yang, Weishuai Zeng, Xinrun Xu, Zongqing Lu
Abstract:
This paper presents JAEGER, a dual-level whole-body controller for humanoid robots that addresses the challenges of training a more robust and versatile policy. Unlike traditional single-controller approaches, JAEGER separates the control of the upper and lower bodies into two independent controllers, so that they can better focus on their distinct tasks. This separation alleviates the dimensionality curse and improves fault tolerance. JAEGER supports both root velocity tracking (coarse-grained control) and local joint angle tracking (fine-grained control), enabling versatile and stable movements. To train the controller, we utilize a human motion dataset (AMASS), retargeting human poses to humanoid poses through an efficient retargeting network, and employ a curriculum learning approach. This method performs supervised learning for initialization, followed by reinforcement learning for further exploration. We conduct our experiments on two humanoid platforms and demonstrate the superiority of our approach against state-of-the-art methods in both simulation and real environments.
Authors: Jiefeng Li, Jinkun Cao, Haotian Zhang, Davis Rempe, Jan Kautz, Umar Iqbal, Ye Yuan
Abstract:
Human motion modeling traditionally separates motion generation and estimation into distinct tasks with specialized models. Motion generation models focus on creating diverse, realistic motions from inputs like text, audio, or keyframes, while motion estimation models aim to reconstruct accurate motion trajectories from observations like videos. Despite sharing underlying representations of temporal dynamics and kinematics, this separation limits knowledge transfer between tasks and requires maintaining separate models. We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework. Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals. Leveraging the synergy between regression and diffusion, GENMO achieves accurate global motion estimation while enabling diverse motion generation. We also introduce an estimation-guided training objective that exploits in-the-wild videos with 2D annotations and text descriptions to enhance generative diversity. Furthermore, our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control. This unified approach creates synergistic benefits: generative priors improve estimated motions under challenging conditions like occlusions, while diverse video data enhances generation capabilities. Extensive experiments demonstrate GENMO's effectiveness as a generalist framework that successfully handles multiple human motion tasks within a single model.
Authors: Leonel Rozo, Miguel González-Duque, Noémie Jaquier, Søren Hauberg
Abstract:
Latent variable models are powerful tools for learning low-dimensional manifolds from high-dimensional data. However, when dealing with constrained data such as unit-norm vectors or symmetric positive-definite matrices, existing approaches ignore the underlying geometric constraints or fail to provide meaningful metrics in the latent space. To address these limitations, we propose to learn Riemannian latent representations of such geometric data. To do so, we estimate the pullback metric induced by a Wrapped Gaussian Process Latent Variable Model, which explicitly accounts for the data geometry. This enables us to define geometry-aware notions of distance and shortest paths in the latent space, while ensuring that our model only assigns probability mass to the data manifold. This generalizes previous work and allows us to handle complex tasks in various domains, including robot motion synthesis and analysis of brain connectomes.
Authors: Varsha Suresh, M. Hamza Mughal, Christian Theobalt, Vera Demberg
Abstract:
Research in linguistics shows that non-verbal cues, such as gestures, play a crucial role in spoken discourse. For example, speakers perform hand gestures to indicate topic shifts, helping listeners identify transitions in discourse. In this work, we investigate whether the joint modeling of gestures using human motion sequences and language can improve spoken discourse modeling in language models. To integrate gestures into language models, we first encode 3D human motion sequences into discrete gesture tokens using a VQ-VAE. These gesture token embeddings are then aligned with text embeddings through feature alignment, mapping them into the text embedding space. To evaluate the gesture-aligned language model on spoken discourse, we construct text infilling tasks targeting three key discourse cues grounded in linguistic research: discourse connectives, stance markers, and quantifiers. Results show that incorporating gestures enhances marker prediction accuracy across the three tasks, highlighting the complementary information that gestures can offer in modeling spoken discourse. We view this work as an initial step toward leveraging non-verbal cues to advance spoken language modeling in language models.
Authors: Xinran Liu, Xu Dong, Shenbin Qian, Diptesh Kanojia, Wenwu Wang, Zhenhua Feng
Abstract:
Music-driven dance generation is a challenging task as it requires strict adherence to genre-specific choreography while ensuring physically realistic and precisely synchronized dance sequences with the music's beats and rhythm. Although significant progress has been made in music-conditioned dance generation, most existing methods struggle to convey specific stylistic attributes in generated dance. To bridge this gap, we propose a diffusion-based framework for genre-specific 3D full-body dance generation, conditioned on both music and descriptive text. To effectively incorporate genre information, we develop a text-based control mechanism that maps input prompts, either explicit genre labels or free-form descriptive text, into genre-specific control signals, enabling precise and controllable text-guided generation of genre-consistent dance motions. Furthermore, to enhance the alignment between music and textual conditions, we leverage the features of a music foundation model, facilitating coherent and semantically aligned dance synthesis. Last, to balance the objectives of extracting text-genre information and maintaining high-quality generation results, we propose a novel multi-task optimization strategy. This effectively balances competing factors such as physical realism, spatial accuracy, and text classification, significantly improving the overall quality of the generated sequences. Extensive experimental results obtained on the FineDance and AIST++ datasets demonstrate the superiority of GCDance over the existing state-of-the-art approaches.
Authors: Dong-In Kim, Dong-Hee Paek, Seung-Hyun Song, Seung-Hyun Kong
Abstract:
Accurate 3D multi-object tracking (MOT) is vital for autonomous vehicles, yet LiDAR and camera-based methods degrade in adverse weather. Meanwhile, Radar-based solutions remain robust but often suffer from limited vertical resolution and simplistic motion models. Existing Kalman filter-based approaches also rely on fixed noise covariance, hampering adaptability when objects make sudden maneuvers. We propose Bayes-4DRTrack, a 4D Radar-based MOT framework that adopts a transformer-based motion prediction network to capture nonlinear motion dynamics and employs Bayesian approximation in both detection and prediction steps. Moreover, our two-stage data association leverages Doppler measurements to better distinguish closely spaced targets. Evaluated on the K-Radar dataset (including adverse weather scenarios), Bayes-4DRTrack demonstrates a 5.7% gain in Average Multi-Object Tracking Accuracy (AMOTA) over methods with traditional motion models and fixed noise covariance. These results showcase enhanced robustness and accuracy in demanding, real-world conditions.
Authors: Yunyue Wei, Zeji Yi, Hongda Li, Saraswati Soedarmadji, Yanan Sui
Abstract:
Learning to move is a primary goal for animals and robots, where ensuring safety is often important when optimizing control policies on the embodied systems. For complex tasks such as the control of human or humanoid control, the high-dimensional parameter space adds complexity to the safe optimization effort. Current safe exploration algorithms exhibit inefficiency and may even become infeasible with large high-dimensional input spaces. Furthermore, existing high-dimensional constrained optimization methods neglect safety in the search process. In this paper, we propose High-dimensional Safe Bayesian Optimization with local optimistic exploration (HdSafeBO), a novel approach designed to handle high-dimensional sampling problems under probabilistic safety constraints. We introduce a local optimistic strategy to efficiently and safely optimize the objective function, providing a probabilistic safety guarantee and a cumulative safety violation bound. Through the use of isometric embedding, HdSafeBO addresses problems ranging from a few hundred to several thousand dimensions while maintaining safety guarantees. To our knowledge, HdSafeBO is the first algorithm capable of optimizing the control of high-dimensional musculoskeletal systems with high safety probability. We also demonstrate the real-world applicability of HdSafeBO through its use in the safe online optimization of neural stimulation induced human motion control.
Authors: Julien Mellet, Andrea Berra, Achilleas Santi Seisa, Viswa Sankaranarayanan, Udayanga G. W. K. N. Gamage, Miguel Angel Trujillo Soto, Guillermo Heredia, George Nikolakopoulos, Vincenzo Lippiello, Fabio Ruggiero
Abstract:
This paper introduces a novel compliant mechanism combining lightweight and energy dissipation for aerial physical interaction. Weighting 400~g at take-off, the mechanism is actuated in the forward body direction, enabling precise position control for force interaction and various other aerial manipulation tasks. The robotic arm, structured as a closed-loop kinematic chain, employs two deported servomotors. Each joint is actuated with a single tendon for active motion control in compression of the arm at the end-effector. Its elasto-mechanical design reduces weight and provides flexibility, allowing passive-compliant interactions without impacting the motors' integrity. Notably, the arm's damping can be adjusted based on the proposed inner frictional bulges. Experimental applications showcase the aerial system performance in both free-flight and physical interaction. The presented work may open safer applications for \ac{MAV} in real environments subject to perturbations during interaction.
Authors: Yin Li, Liangwei Wang, Shiyuan Piao, Boo-Ho Yang, Ziyue Li, Wei Zeng, Fugee Tsung
Abstract:
Large Language Models (LLMs) have demonstrated significant potential in code generation. However, in the factory automation sector, particularly motion control, manual programming, alongside inefficient and unsafe debugging practices, remains prevalent. This stems from the complex interplay of mechanical and electrical systems and stringent safety requirements. Moreover, most current AI-assisted motion control programming efforts focus on PLCs, with little attention given to high-level languages and function libraries. To address these challenges, we introduce MCCoder, an LLM-powered system tailored for generating motion control code, integrated with a soft-motion controller. MCCoder improves code generation through a structured workflow that combines multitask decomposition, hybrid retrieval-augmented generation (RAG), and iterative self-correction, utilizing a well-established motion library. Additionally, it integrates a 3D simulator for intuitive motion validation and logs of full motion trajectories for data verification, significantly enhancing accuracy and safety. In the absence of benchmark datasets and metrics tailored for evaluating motion control code generation, we propose MCEVAL, a dataset spanning motion tasks of varying complexity. Experiments show that MCCoder outperforms baseline models using Advanced RAG, achieving an overall performance gain of 33.09% and a 131.77% improvement on complex tasks in the MCEVAL dataset.
Authors: Kojiro Takeyama, Yimeng Liu, Misha Sra
Abstract:
Understanding human locomotion is crucial for AI agents such as robots, particularly in complex indoor home environments. Modeling human trajectories in these spaces requires insight into how individuals maneuver around physical obstacles and manage social navigation dynamics. These dynamics include subtle behaviors influenced by proxemics - the social use of space, such as stepping aside to allow others to pass or choosing longer routes to avoid collisions. Previous research has developed datasets of human motion in indoor scenes, but these are often limited in scale and lack the nuanced social navigation dynamics common in home environments. To address this, we present LocoVR, a dataset of 7000+ two-person trajectories captured in virtual reality from over 130 different indoor home environments. LocoVR provides accurate trajectory data and precise spatial information, along with rich examples of socially-motivated movement behaviors. For example, the dataset captures instances of individuals navigating around each other in narrow spaces, adjusting paths to respect personal boundaries in living areas, and coordinating movements in high-traffic zones like entryways and kitchens. Our evaluation shows that LocoVR significantly enhances model performance in three practical indoor tasks utilizing human trajectories, and demonstrates predicting socially-aware navigation patterns in home environments.
Authors: Chao Wang, Anna Belardinelli, Michael Gienger
Abstract:
Social-physical human-robot interaction (spHRI) is difficult to study: building and programming robots that integrate multiple interaction modalities is costly and slow, while VR-based prototypes often lack physical contact, breaking users' visuo-tactile expectations. We present XR$^3$, a co-located dual-VR-headset platform for HRI research in which an attendee and a hidden operator share the same physical space while experiencing different virtual embodiments. The attendee sees an expressive virtual robot that interacts face-to-face in a shared virtual environment. In real time, the robot's upper-body motion, head and gaze behavior, and facial expressions are mapped from the operator's tracked limbs and face signals. Because the operator is co-present and calibrated in the same coordinate frame, the operator can also touch the attendee, enabling perceived robot touch synchronized with the robot's visible hands. Finger and hand motion is mapped to the robot avatar using inverse kinematics to support precise contact. Beyond motion retargeting, XR$^3$ supports social retargeting of multiple nonverbal cues that can be experimentally varied while keeping physical interaction constant. We detail the system design and calibration, and demonstrate the platform in a touch-based Wizard-of-Oz study, lowering the barrier to prototyping and evaluating embodied, contact-based robot behaviors.
Authors: Jiacheng Sui, Yujie Zhou, Li Niu
Abstract:
To achieve pixel-level image manipulation, drag-style image editing which edits images using points or trajectories as conditions is attracting widespread attention. Most previous methods follow move-and-track framework, in which miss tracking and ambiguous tracking are unavoidable challenging issues. Other methods under different frameworks suffer from various problems like the huge gap between source image and target edited image as well as unreasonable intermediate point which can lead to low editability. To avoid these problems, we propose DynaDrag, the first dragging method under predict-and-move framework. In DynaDrag, Motion Prediction and Motion Supervision are performed iteratively. In each iteration, Motion Prediction first predicts where the handle points should move, and then Motion Supervision drags them accordingly. We also propose to dynamically adjust the valid handle points to further improve the performance. Experiments on face and human datasets showcase the superiority over previous works.
Authors: Tian Guo, Hui Yuan, Philip Xu, David Elizondo
Abstract:
We propose SirenPose, a novel loss function that combines the periodic activation properties of sinusoidal representation networks with geometric priors derived from keypoint structures to improve the accuracy of dynamic 3D scene reconstruction. Existing approaches often struggle to maintain motion modeling accuracy and spatiotemporal consistency in fast moving and multi target scenes. By introducing physics inspired constraint mechanisms, SirenPose enforces coherent keypoint predictions across both spatial and temporal dimensions. We further expand the training dataset to 600,000 annotated instances to support robust learning. Experimental results demonstrate that models trained with SirenPose achieve significant improvements in spatiotemporal consistency metrics compared to prior methods, showing superior performance in handling rapid motion and complex scene changes.
Authors: Marco Pegoraro, Evan Atherton, Bruno Roy, Aliasghar Khani, Arianna Rampini
Abstract:
Learning natural body motion remains challenging due to the strong coupling between spatial geometry and temporal dynamics. Embedding motion in phase manifolds, latent spaces that capture local periodicity, has proven effective for motion prediction; however, existing approaches lack scalability and remain confined to specific settings. We introduce FunPhase, a functional periodic autoencoder that learns a phase manifold for motion and replaces discrete temporal decoding with a function-space formulation, enabling smooth trajectories that can be sampled at arbitrary temporal resolutions. FunPhase supports downstream tasks such as super-resolution and partial-body motion completion, generalizes across skeletons and datasets, and unifies motion prediction and generation within a single interpretable manifold. Our model achieves substantially lower reconstruction error than prior periodic autoencoder baselines while enabling a broader range of applications and performing on par with state-of-the-art motion generation methods.
Authors: Zuhong Liu, Junhao Ge, Minhao Xiong, Jiahao Gu, Bowei Tang, Wei Jing, Siheng Chen
Abstract:
The true promise of humanoid robotics lies beyond single-agent autonomy: two or more humanoids must engage in physically grounded, socially meaningful whole-body interactions that echo the richness of human social interaction. However, single-humanoid methods suffer from the isolation issue, ignoring inter-agent dynamics and causing misaligned contacts, interpenetrations, and unrealistic motions. To address this, we present Harmanoid , a dual-humanoid motion imitation framework that transfers interacting human motions to two robots while preserving both kinematic fidelity and physical realism. Harmanoid comprises two key components: (i) contact-aware motion retargeting, which restores inter-body coordination by aligning SMPL contacts with robot vertices, and (ii) interaction-driven motion controller, which leverages interaction-specific rewards to enforce coordinated keypoints and physically plausible contacts. By explicitly modeling inter-agent contacts and interaction-aware dynamics, Harmanoid captures the coupled behaviors between humanoids that single-humanoid frameworks inherently overlook. Experiments demonstrate that Harmanoid significantly improves interactive motion imitation, surpassing existing single-humanoid frameworks that largely fail in such scenarios.
Authors: Ethan Foss, Simone D'Amico
Abstract:
This work presents a novel algorithm for impulsive optimal control of linear time-varying systems with the inclusion of input magnitude constraints. Impulsive optimal control problems, where the optimal input solution is a sum of delta functions, are typically formulated as an optimization over a normed function space subject to integral equality constraints and can be efficiently solved for linear time-varying systems in their dual formulation. In this dual setting, the problem takes the form of a semi-infinite program which is readily solvable in online scenarios for constructing maneuver plans. This work augments the approach with the inclusion of magnitude constraints on the input over time windows of interest, which is shown to preserve the impulsive nature of the optimal solution and enable efficient solution procedures via semi-infinite programming. The resulting algorithm is demonstrated on the highly relevant problem of relative motion control of spacecraft in Low Earth Orbit (LEO) and compared to several other proposed solutions from the literature.
Authors: Bingjie Chen, Zihan Wang, Zhe Han, Guoping Pan, Yi Cheng, Houde Liu
Abstract:
Traditional IK methods for redundant humanoid manipulators emphasize end-effector (EE) tracking, frequently producing configurations that are valid mechanically but not human-like. We present Human-Like Inverse Kinematics (HL-IK), a lightweight IK framework that preserves EE tracking while shaping whole-arm configurations to appear human-like, without full-body sensing at runtime. The key idea is a learned elbow prior: using large-scale human motion data retargeted to the robot, we train a FiLM-modulated spatio-temporal attention network (FiSTA) to predict the next-step elbow pose from the EE target and a short history of EE-elbow states.This prediction is incorporated as a small residual alongside EE and smoothness terms in a standard Levenberg-Marquardt optimizer, making HL-IK a drop-in addition to numerical IK stacks. Over 183k simulation steps, HL-IK reduces arm-similarity position and direction error by 30.6% and 35.4% on average, and by 42.2% and 47.4% on the most challenging trajectories. Hardware teleoperation on a robot distinct from simulation further confirms the gains in anthropomorphism. HL-IK is simple to integrate, adaptable across platforms via our pipeline, and adds minimal computation, enabling human-like motions for humanoid robots. Project page: https://hl-ik.github.io/
Authors: Xinyang Wu, Muheng Li, Xia Li, Orso Pusterla, Sairos Safai, Philippe C. Cattin, Antony J. Lomax, Ye Zhang
Abstract:
Four-dimensional MRI (4D-MRI) is an promising technique for capturing respiratory-induced motion in radiation therapy planning and delivery. Conventional 4D reconstruction methods, which typically rely on phase binning or separate template scans, struggle to capture temporal variability, complicate workflows, and impose heavy computational loads. We introduce a neural representation framework that considers respiratory motion as a smooth, continuous deformation steered by a 1D surrogate signal, completely replacing the conventional discrete sorting approach. The new method fuses motion modeling with image reconstruction through two synergistic networks: the Spatial Anatomy Network (SAN) encodes a continuous 3D anatomical representation, while a Temporal Motion Network (TMN), guided by Transformer-derived respiratory signals, produces temporally consistent deformation fields. Evaluation using a free-breathing dataset of 19 volunteers demonstrates that our template- and phase-free method accurately captures both regular and irregular respiratory patterns, while preserving vessel and bronchial continuity with high anatomical fidelity. The proposed method significantly improves efficiency, reducing the total processing time from approximately five hours required by conventional discrete sorting methods to just 15 minutes of training. Furthermore, it enables inference of each 3D volume in under one second. The framework accurately reconstructs 3D images at any respiratory state, achieves superior performance compared to conventional methods, and demonstrates strong potential for application in 4D radiation therapy planning and real-time adaptive treatment.
Authors: Mallikarjun B. R., Fei Yin, Vikram Voleti, Nikita Drobyshev, Maksim Lapin, Aaryaman Vasishta, Varun Jampani
Abstract:
Portrait animation aims to generate photo-realistic videos from a single source image by reenacting the expression and pose from a driving video. While early methods relied on 3D morphable models or feature warping techniques, they often suffered from limited expressivity, temporal inconsistency, and poor generalization to unseen identities or large pose variations. Recent advances using diffusion models have demonstrated improved quality but remain constrained by weak control signals and architectural limitations. In this work, we propose a novel diffusion based framework that leverages masked facial regions specifically the eyes, nose, and mouth from the driving video as strong motion control cues. To enable robust training without appearance leakage, we adopt cross identity supervision. To leverage the strong prior from the pretrained diffusion model, our novel architecture introduces minimal new parameters that converge faster and help in better generalization. We introduce spatial temporal attention mechanisms that allow inter frame and intra frame interactions, effectively capturing subtle motions and reducing temporal artifacts. Our model uses history frames to ensure continuity across segments. At inference, we propose a novel signal fusion strategy that balances motion fidelity with identity preservation. Our approach achieves superior temporal consistency and accurate expression control, enabling high-quality, controllable portrait animation suitable for real-world applications.
Authors: Ruibo Li, Hanyu Shi, Zhe Wang, Guosheng Lin
Abstract:
Understanding motion in dynamic environments is critical for autonomous driving, thereby motivating research on class-agnostic motion prediction. In this work, we investigate weakly and self-supervised class-agnostic motion prediction from LiDAR point clouds. Outdoor scenes typically consist of mobile foregrounds and static backgrounds, allowing motion understanding to be associated with scene parsing. Based on this observation, we propose a novel weakly supervised paradigm that replaces motion annotations with fully or partially annotated (1%, 0.1%) foreground/background masks for supervision. To this end, we develop a weakly supervised approach utilizing foreground/background cues to guide the self-supervised learning of motion prediction models. Since foreground motion generally occurs in non-ground regions, non-ground/ground masks can serve as an alternative to foreground/background masks, further reducing annotation effort. Leveraging non-ground/ground cues, we propose two additional approaches: a weakly supervised method requiring fewer (0.01%) foreground/background annotations, and a self-supervised method without annotations. Furthermore, we design a Robust Consistency-aware Chamfer Distance loss that incorporates multi-frame information and robust penalty functions to suppress outliers in self-supervised learning. Experiments show that our weakly and self-supervised models outperform existing self-supervised counterparts, and our weakly supervised models even rival some supervised ones. This demonstrates that our approaches effectively balance annotation effort and performance.
Authors: Libo Zhang, Xinyu Yi, Feng Xu
Abstract:
In recent years, tracking human motion using IMUs from everyday devices such as smartphones and smartwatches has gained increasing popularity. However, due to the sparsity of sensor measurements and the lack of datasets capturing human motion over uneven terrain, existing methods often struggle with pose estimation accuracy and are typically limited to recovering movements on flat terrain only. To this end, we present BaroPoser, the first method that combines IMU and barometric data recorded by a smartphone and a smartwatch to estimate human pose and global translation in real time. By leveraging barometric readings, we estimate sensor height changes, which provide valuable cues for both improving the accuracy of human pose estimation and predicting global translation on non-flat terrain. Furthermore, we propose a local thigh coordinate frame to disentangle local and global motion input for better pose representation learning. We evaluate our method on both public benchmark datasets and real-world recordings. Quantitative and qualitative results demonstrate that our approach outperforms the state-of-the-art (SOTA) methods that use IMUs only with the same hardware configuration.
Authors: Weijia Peng, Mingtong Chen, Zhengbao Yang
Abstract:
As wearable electronics become increasingly prevalent, there is a rise in interest and demand for sustainably designed systems that are also energy self-sufficient. The research described in this paper investigated a shoe-worn energy harvesting system designed use the mechanical energy from walking to output electrical energy. A spring is attached to electromagnetic generator embedded in the heel of the shoe to recover the vertical pressure caused by the foot strike. The simulated prototype consisted of a standard EM generator designed in MATLAB demonstrating a maximum voltage of 12V. The initial low fidelity prototype demonstrated testing the relationship between the EM generator and a simple electrical circuit, with energy output observed. Future research will explore enhancing the overall generator design, integrate a power management IC for battery protect and regulation, and combine the system into a final product, wearable footwear. This research lays a foundation for self-powered footwear and energy independent wearable electronic devices.
Authors: Ajay Shankar, Keisuke Okumura, Amanda Prorok
Abstract:
We propose a multi-robot control paradigm to solve point-to-point navigation tasks for a team of holonomic robots with access to the full environment information. The framework invokes two processes asynchronously at high frequency: (i) a centralized, discrete, and full-horizon planner for computing collision- and deadlock-free paths rapidly, leveraging recent advances in multi-agent pathfinding (MAPF), and (ii) dynamics-aware, robot-wise optimal trajectory controllers that ensure all robots independently follow their assigned paths reliably. This hierarchical shift in planning representation from (i) discrete and coupled to (ii) continuous and decoupled domains enables the framework to maintain long-term scalable motion synthesis. As an instantiation of this idea, we present LF, which combines a fast state-of-the-art MAPF solver (LaCAM), and a robust feedback control stack (Freyja) for executing agile robot maneuvers. LF provides a robust and versatile mechanism for lifelong multi-robot navigation even under asynchronous and partial goal updates, and adapts to dynamic workspaces simply by quick replanning. We present various multirotor and ground robot demonstrations, including the deployment of 15 real multirotors with random, consecutive target updates while a person walks through the operational workspace.
Authors: Zhanxiang Cao, Buqing Nie, Yang Zhang, Yue Gao
Abstract:
Recent advancements in quadruped robot research have significantly improved their ability to traverse complex and unstructured outdoor environments. However, the issue of noise generated during locomotion is generally overlooked, which is critically important in noise-sensitive indoor environments, such as service and healthcare settings, where maintaining low noise levels is essential. This study aims to optimize the acoustic noise generated by quadruped robots during locomotion through the development of advanced motion control algorithms. To achieve this, we propose a novel approach that minimizes noise emissions by integrating optimized gait design with tailored control strategies. This method achieves an average noise reduction of approximately 8 dBA during movement, thereby enhancing the suitability of quadruped robots for deployment in noise-sensitive indoor environments. Experimental results demonstrate the effectiveness of this approach across various indoor settings, highlighting the potential of quadruped robots for quiet operation in noise-sensitive environments.
Authors: Yunzhe Shao, Xinyu Yi, Lu Yin, Shihui Guo, Junhai Yong, Feng Xu
Abstract:
This paper proposes a novel method called MagShield, designed to address the issue of magnetic interference in sparse inertial motion capture (MoCap) systems. Existing Inertial Measurement Unit (IMU) systems are prone to orientation estimation errors in magnetically disturbed environments, limiting their practical application in real-world scenarios. To address this problem, MagShield employs a "detect-then-correct" strategy, first detecting magnetic disturbances through multi-IMU joint analysis, and then correcting orientation errors using human motion priors. MagShield can be integrated with most existing sparse inertial MoCap systems, improving their performance in magnetically disturbed environments. Experimental results demonstrate that MagShield significantly enhances the accuracy of motion capture under magnetic interference and exhibits good compatibility across different sparse inertial MoCap systems.
Authors: Xinran Liu, Zhenhua Feng, Diptesh Kanojia, Wenwu Wang
Abstract:
In music-driven dance motion generation, most existing methods use hand-crafted features and neglect that music foundation models have profoundly impacted cross-modal content generation. To bridge this gap, we propose a diffusion-based method that generates dance movements conditioned on text and music. Our approach extracts music features by combining high-level features obtained by music foundation model with hand-crafted features, thereby enhancing the quality of generated dance sequences. This method effectively leverages the advantages of high-level semantic information and low-level temporal details to improve the model's capability in music feature understanding. To show the merits of the proposed method, we compare it with four music foundation models and two sets of hand-crafted music features. The results demonstrate that our method obtains the most realistic dance sequences and achieves the best match with the input music.
Authors: Yuzhu Ji, Chuanxia Zheng, Tat-Jen Cham
Abstract:
Human motion transfer aims at animating a static source image with a driving video. While recent advances in one-shot human motion transfer have led to significant improvement in results, it remains challenging for methods with 2D body landmarks, skeleton and semantic mask to accurately capture correspondences between source and driving poses due to the large variation in motion and articulation complexity. In addition, the accuracy and precision of DensePose degrade the image quality for neural-rendering-based methods. To address the limitations and by both considering the importance of appearance and geometry for motion transfer, in this work, we proposed a unified framework that combines multi-scale feature warping and neural texture mapping to recover better 2D appearance and 2.5D geometry, partly by exploiting the information from DensePose, yet adapting to its inherent limited accuracy. Our model takes advantage of multiple modalities by jointly training and fusing them, which allows it to robust neural texture features that cope with geometric errors as well as multi-scale dense motion flow that better preserves appearance. Experimental results with full and half-view body video datasets demonstrate that our model can generalize well and achieve competitive results, and that it is particularly effective in handling challenging cases such as those with substantial self-occlusions.
Authors: Mingyi Shi, Dafei Qin, Leo Ho, Zhouyingcheng Liao, Yinghao Huang, Junichi Yamagishi, Taku Komura
Abstract:
Conversational scenarios are very common in real-world settings, yet existing co-speech motion synthesis approaches often fall short in these contexts, where one person's audio and gestures will influence the other's responses. Additionally, most existing methods rely on offline sequence-to-sequence frameworks, which are unsuitable for online applications. In this work, we introduce an audio-driven, auto-regressive system designed to synthesize dynamic movements for two characters during a conversation. At the core of our approach is a diffusion-based full-body motion synthesis model, which is conditioned on the past states of both characters, speech audio, and a task-oriented motion trajectory input, allowing for flexible spatial control. To enhance the model's ability to learn diverse interactions, we have enriched existing two-person conversational motion datasets with more dynamic and interactive motions. We evaluate our system through multiple experiments to show it outperforms across a variety of tasks, including single and two-person co-speech motion generation, as well as interactive motion generation. To the best of our knowledge, this is the first system capable of generating interactive full-body motions for two characters from speech in an online manner.
Authors: Mingjiang Liang, Yongkang Cheng, Hualin Liang, Shaoli Huang, Wei Liu
Abstract:
We present RopeTP, a novel framework that combines Robust pose estimation with a diffusion Trajectory Prior to reconstruct global human motion from videos. At the heart of RopeTP is a hierarchical attention mechanism that significantly improves context awareness, which is essential for accurately inferring the posture of occluded body parts. This is achieved by exploiting the relationships with visible anatomical structures, enhancing the accuracy of local pose estimations. The improved robustness of these local estimations allows for the reconstruction of precise and stable global trajectories. Additionally, RopeTP incorporates a diffusion trajectory model that predicts realistic human motion from local pose sequences. This model ensures that the generated trajectories are not only consistent with observed local actions but also unfold naturally over time, thereby improving the realism and stability of 3D human motion reconstruction. Extensive experimental validation shows that RopeTP surpasses current methods on two benchmark datasets, particularly excelling in scenarios with occlusions. It also outperforms methods that rely on SLAM for initial camera estimates and extensive optimization, delivering more accurate and realistic trajectories.
Authors: Gaoge Han, Mingjiang Liang, Jinglei Tang, Yongkang Cheng, Wei Liu, Shaoli Huang
Abstract:
Generating human motion from textual descriptions is a challenging task. Existing methods either struggle with physical credibility or are limited by the complexities of physics simulations. In this paper, we present \emph{ReinDiffuse} that combines reinforcement learning with motion diffusion model to generate physically credible human motions that align with textual descriptions. Our method adapts Motion Diffusion Model to output a parameterized distribution of actions, making them compatible with reinforcement learning paradigms. We employ reinforcement learning with the objective of maximizing physically plausible rewards to optimize motion generation for physical fidelity. Our approach outperforms existing state-of-the-art models on two major datasets, HumanML3D and KIT-ML, achieving significant improvements in physical plausibility and motion quality. Project: https://reindiffuse.github.io/
Authors: Yinlong Dai, Benjamin A. Christie, Daniel J. Evans, Dylan P. Losey, Simon Stepputtis
Abstract:
Enabling robots to perform novel manipulation tasks from natural language instructions remains a fundamental challenge in robotics, despite significant progress in generalized problem solving with foundational models. Large vision and language models (VLMs) are capable of processing high-dimensional input data for visual scene and language understanding, as well as decomposing tasks into a sequence of logical steps; however, they struggle to ground those steps in embodied robot motion. On the other hand, robotics foundation models output action commands, but require in-domain fine-tuning or experience before they are able to perform novel tasks successfully. At its core, there still remains the fundamental challenge of connecting abstract task reasoning with low-level motion control. To address this disconnect, we propose Language Movement Primitives (LMPs), a framework that grounds VLM reasoning in Dynamic Movement Primitive (DMP) parameterization. Our key insight is that DMPs provide a small number of interpretable parameters, and VLMs can set these parameters to specify diverse, continuous, and stable trajectories. Put another way: VLMs can reason over free-form natural language task descriptions, and semantically ground their desired motions into DMPs -- bridging the gap between high-level task reasoning and low-level position and velocity control. Building on this combination of VLMs and DMPs, we formulate our LMP pipeline for zero-shot robot manipulation that effectively completes tabletop manipulation problems by generating a sequence of DMP motions. Across 20 real-world manipulation tasks, we show that LMP achieves 80% task success as compared to 31% for the best-performing baseline. See videos at our website: https://collab.me.vt.edu/lmp
Authors: Yuxiao Yang, Hualian Sheng, Sijia Cai, Jing Lin, Jiahao Wang, Bing Deng, Junzhe Lu, Haoqian Wang, Jieping Ye
Abstract:
Video generation models have advanced significantly, yet they still struggle to synthesize complex human movements due to the high degrees of freedom in human articulation. This limitation stems from the intrinsic constraints of pixel-only training objectives, which inherently bias models toward appearance fidelity at the expense of learning underlying kinematic principles. To address this, we introduce EchoMotion, a framework designed to model the joint distribution of appearance and human motion, thereby improving the quality of complex human action video generation. EchoMotion extends the DiT (Diffusion Transformer) framework with a dual-branch architecture that jointly processes tokens concatenated from different modalities. Furthermore, we propose MVS-RoPE (Motion-Video Syncronized RoPE), which offers unified 3D positional encoding for both video and motion tokens. By providing a synchronized coordinate system for the dual-modal latent sequence, MVS-RoPE establishes an inductive bias that fosters temporal alignment between the two modalities. We also propose a Motion-Video Two-Stage Training Strategy. This strategy enables the model to perform both the joint generation of complex human action videos and their corresponding motion sequences, as well as versatile cross-modal conditional generation tasks. To facilitate the training of a model with these capabilities, we construct HuMoVe, a large-scale dataset of approximately 80,000 high-quality, human-centric video-motion pairs. Our findings reveal that explicitly representing human motion is complementary to appearance, significantly boosting the coherence and plausibility of human-centric video generation.
Authors: Jerrin Bright, Zhibo Wang, Dmytro Klepachevskyi, Yuhao Chen, Sirisha Rambhatla, David Clausi, John Zelek
Abstract:
We present Avatar4D, a real-world transferable pipeline for generating customizable synthetic human motion datasets tailored to domain-specific applications. Unlike prior works, which focus on general, everyday motions and offer limited flexibility, our approach provides fine-grained control over body pose, appearance, camera viewpoint, and environmental context, without requiring any manual annotations. To validate the impact of Avatar4D, we focus on sports, where domain-specific human actions and movement patterns pose unique challenges for motion understanding. In this setting, we introduce Syn2Sport, a large-scale synthetic dataset spanning sports, including baseball and ice hockey. Avatar4D features high-fidelity 4D (3D geometry over time) human motion sequences with varying player appearances rendered in diverse environments. We benchmark several state-of-the-art pose estimation models on Syn2Sport and demonstrate their effectiveness for supervised learning, zero-shot transfer to real-world data, and generalization across sports. Furthermore, we evaluate how closely the generated synthetic data aligns with real-world datasets in feature space. Our results highlight the potential of such systems to generate scalable, controllable, and transferable human datasets for diverse domain-specific tasks without relying on domain-specific real data.
Authors: Haoxian Zhou, Chuanzhi Xu, Langyi Chen, Haodong Chen, Yuk Ying Chung, Qiang Qu, Xaoming Chen, Weidong Cai
Abstract:
Human pose estimation focuses on predicting body keypoints to analyze human motion. Event cameras provide high temporal resolution and low latency, enabling robust estimation under challenging conditions. However, most existing methods convert event streams into dense event frames, which adds extra computation and sacrifices the high temporal resolution of the event signal. In this work, we aim to exploit the spatiotemporal properties of event streams based on point cloud-based framework, designed to enhance human pose estimation performance. We design Event Temporal Slicing Convolution module to capture short-term dependencies across event slices, and combine it with Event Slice Sequencing module for structured temporal modeling. We also apply edge enhancement in point cloud-based event representation to enhance spatial edge information under sparse event conditions to further improve performance. Experiments on the DHP19 dataset show our proposed method consistently improves performance across three representative point cloud backbones: PointNet, DGCNN, and Point Transformer.
Authors: Aron Distelzweig, Yiwei Wang, Faris Janjoš, Marcel Hallgarten, Mihai Dobre, Alexander Langmann, Joschka Boedecker, Johannes Betz
Abstract:
Autonomous driving planning systems perform nearly perfectly in routine scenarios using lightweight, rule-based methods but still struggle in dense urban traffic, where lane changes and merges require anticipating and influencing other agents. Modern motion predictors offer highly accurate forecasts, yet their integration into planning is mostly rudimental: discarding unsafe plans. Similarly, end-to-end models offer a one-way integration that avoids the challenges of joint prediction and planning modeling under uncertainty. In contrast, game-theoretic formulations offer a principled alternative but have seen limited adoption in autonomous driving. We present Bayesian Iterative Best Response (BIBeR), a framework that unifies motion prediction and game-theoretic planning into a single interaction-aware process. BIBeR is the first to integrate a state-of-the-art predictor into an Iterative Best Response (IBR) loop, repeatedly refining the strategies of the ego vehicle and surrounding agents. This repeated best-response process approximates a Nash equilibrium, enabling bidirectional adaptation where the ego both reacts to and shapes the behavior of others. In addition, our proposed Bayesian confidence estimation quantifies prediction reliability and modulates update strength, more conservative under low confidence and more decisive under high confidence. BIBeR is compatible with modern predictors and planners, combining the transparency of structured planning with the flexibility of learned models. Experiments show that BIBeR achieves an 11% improvement over state-of-the-art planners on highly interactive interPlan lane-change scenarios, while also outperforming existing approaches on standard nuPlan benchmarks.
Authors: Kerui Chen, Jianrong Zhang, Ming Li, Zhonglong Zheng, Hehe Fan
Abstract:
Existing stylized motion generation models have shown their remarkable ability to understand specific style information from the style motion, and insert it into the content motion. However, capturing intra-style diversity, where a single style should correspond to diverse motion variations, remains a significant challenge. In this paper, we propose a clustering-based framework, ClusterStyle, to address this limitation. Instead of learning an unstructured embedding from each style motion, we leverage a set of prototypes to effectively model diverse style patterns across motions belonging to the same style category. We consider two types of style diversity: global-level diversity among style motions of the same category, and local-level diversity within the temporal dynamics of motion sequences. These components jointly shape two structured style embedding spaces, i.e., global and local, optimized via alignment with non-learnable prototype anchors. Furthermore, we augment the pretrained text-to-motion generation model with the Stylistic Modulation Adapter (SMA) to integrate the style features. Extensive experiments demonstrate that our approach outperforms existing state-of-the-art models in stylized motion generation and motion style transfer.
Authors: Sinan Mutlu, Georgios F. Angelis, Savas Ozkan, Paul Wisbey, Anastasios Drosou, Mete Ozay
Abstract:
Realistic and smooth full-body tracking is crucial for immersive AR/VR applications. Existing systems primarily track head and hands via Head Mounted Devices (HMDs) and controllers, making the 3D full-body reconstruction in-complete. One potential approach is to generate the full-body motions from sparse inputs collected from limited sensors using a Neural Network (NN) model. In this paper, we propose a novel method based on a multi-layer perceptron (MLP) backbone that is enhanced with residual connections and a novel NN-component called Memory-Block. In particular, Memory-Block represents missing sensor data with trainable code-vectors, which are combined with the sparse signals from previous time instances to improve the temporal consistency. Furthermore, we formulate our solution as a multi-task learning problem, allowing our MLP-backbone to learn robust representations that boost accuracy. Our experiments show that our method outperforms state-of-the-art baselines by substantially reducing prediction errors. Moreover, it achieves 72 FPS on mobile HMDs that ultimately improves the accuracy-running time tradeoff.
Authors: Guorui Song, Guocun Wang, Zhe Huang, Jing Lin, Xuefei Zhe, Jian Li, Haoqian Wang
Abstract:
Generating accurate descriptions of human actions in videos remains a challenging task for video captioning models. Existing approaches often struggle to capture fine-grained motion details, resulting in vague or semantically inconsistent captions. In this work, we introduce the Motion-Augmented Caption Model (M-ACM), a novel generative framework that enhances caption quality by incorporating motion-aware decoding. At its core, M-ACM leverages motion representations derived from human mesh recovery to explicitly highlight human body dynamics, thereby reducing hallucinations and improving both semantic fidelity and spatial alignment in the generated captions. To support research in this area, we present the Human Motion Insight (HMI) Dataset, comprising 115K video-description pairs focused on human movement, along with HMI-Bench, a dedicated benchmark for evaluating motion-focused video captioning. Experimental results demonstrate that M-ACM significantly outperforms previous methods in accurately describing complex human motions and subtle temporal variations, setting a new standard for motion-centric video captioning.
Authors: Jiahui Lei, Kyle Genova, George Kopanas, Noah Snavely, Leonidas Guibas
Abstract:
This paper addresses the challenge of learning semantically and functionally meaningful 3D motion priors from real-world videos, in order to enable prediction of future 3D scene motion from a single input image. We propose a novel pixel-aligned Motion Map (MoMap) representation for 3D scene motion, which can be generated from existing generative image models to facilitate efficient and effective motion prediction. To learn meaningful distributions over motion, we create a large-scale database of MoMaps from over 50,000 real videos and train a diffusion model on these representations. Our motion generation not only synthesizes trajectories in 3D but also suggests a new pipeline for 2D video synthesis: first generate a MoMap, then warp an image accordingly and complete the warped point-based renderings. Experimental results demonstrate that our approach generates plausible and semantically consistent 3D scene motion.
Authors: Runyang Feng, Hyung Jin Chang, Tze Ho Elden Tse, Boeun Kim, Yi Chang, Yixing Gao
Abstract:
Modeling high-resolution spatiotemporal representations, including both global dynamic contexts (e.g., holistic human motion tendencies) and local motion details (e.g., high-frequency changes of keypoints), is essential for video-based human pose estimation (VHPE). Current state-of-the-art methods typically unify spatiotemporal learning within a single type of modeling structure (convolution or attention-based blocks), which inherently have difficulties in balancing global and local dynamic modeling and may bias the network to one of them, leading to suboptimal performance. Moreover, existing VHPE models suffer from quadratic complexity when capturing global dependencies, limiting their applicability especially for high-resolution sequences. Recently, the state space models (known as Mamba) have demonstrated significant potential in modeling long-range contexts with linear complexity; however, they are restricted to 1D sequential data. In this paper, we present a novel framework that extends Mamba from two aspects to separately learn global and local high-resolution spatiotemporal representations for VHPE. Specifically, we first propose a Global Spatiotemporal Mamba, which performs 6D selective space-time scan and spatial- and temporal-modulated scan merging to efficiently extract global representations from high-resolution sequences. We further introduce a windowed space-time scan-based Local Refinement Mamba to enhance the high-frequency details of localized keypoint motions. Extensive experiments on four benchmark datasets demonstrate that the proposed model outperforms state-of-the-art VHPE approaches while achieving better computational trade-offs.
Authors: Filip Bečanović, Kosta Jovanović, Vincent Bonnet
Abstract:
Inverse optimal control (IOC) allows the retrieval of optimal cost function weights, or behavioral parameters, from human motion. The literature on IOC uses methods that are either based on a slow bilevel process or a fast but noise-sensitive minimization of optimality condition violation. Assuming equality-constrained optimal control models of human motion, this article presents a faster but robust approach to solving IOC using a single-level reformulation of the bilevel method and yields equivalent results. Through numerical experiments in simulation, we analyze the robustness to noise of the proposed single-level reformulation to the bilevel IOC formulation with a human-like planar reaching task that is used across recent studies. The approach shows resilience to very large levels of noise and reduces the computation time of the IOC on this task by a factor of 15 when compared to a classical bilevel implementation.
Authors: Jianing Chen, Zehao Li, Yujun Cai, Hao Jiang, Shuqin Gao, Honglong Zhao, Tianlu Mao, Yucheng Zhang
Abstract:
Dynamic 3D reconstruction from monocular videos remains difficult due to the ambiguity inferring 3D motion from limited views and computational demands of modeling temporally varying scenes. While recent sparse control methods alleviate computation by reducing millions of Gaussians to thousands of control points, they suffer from a critical limitation: they allocate points purely by geometry, leading to static redundancy and dynamic insufficiency. We propose a motion-adaptive framework that aligns control density with motion complexity. Leveraging semantic and motion priors from vision foundation models, we establish patch-token-node correspondences and apply motion-adaptive compression to concentrate control points in dynamic regions while suppressing redundancy in static backgrounds. Our approach achieves flexible representational density adaptation through iterative voxelization and motion tendency scoring, directly addressing the fundamental mismatch between control point allocation and motion complexity. To capture temporal evolution, we introduce spline-based trajectory parameterization initialized by 2D tracklets, replacing MLP-based deformation fields to achieve smoother motion representation and more stable optimization. Extensive experiments demonstrate significant improvements in reconstruction quality and efficiency over existing state-of-the-art methods.
Authors: Konstantin Gubernatorov, Artem Voronov, Roman Voronov, Sergei Pasynkov, Stepan Perminov, Ziang Guo, Dzmitry Tsetserukou
Abstract:
We address natural language pick-and-place in unseen, unpredictable indoor environments with AnywhereVLA, a modular framework for mobile manipulation. A user text prompt serves as an entry point and is parsed into a structured task graph that conditions classical SLAM with LiDAR and cameras, metric semantic mapping, and a task-aware frontier exploration policy. An approach planner then selects visibility and reachability aware pre grasp base poses. For interaction, a compact SmolVLA manipulation head is fine tuned on platform pick and place trajectories for the SO-101 by TheRobotStudio, grounding local visual context and sub-goals into grasp and place proposals. The full system runs fully onboard on consumer-level hardware, with Jetson Orin NX for perception and VLA and an Intel NUC for SLAM, exploration, and control, sustaining real-time operation. We evaluated AnywhereVLA in a multi-room lab under static scenes and normal human motion. In this setting, the system achieves a $46\%$ overall task success rate while maintaining throughput on embedded compute. By combining a classical stack with a fine-tuned VLA manipulation, the system inherits the reliability of geometry-based navigation with the agility and task generalization of language-conditioned manipulation.
Authors: Mayank Patel, Rahul Jain, Asim Unmesh, Karthik Ramani
Abstract:
Understanding the motion of articulated mechanical assemblies from static geometry remains a core challenge in 3D perception and design automation. Prior work on everyday articulated objects such as doors and laptops typically assumes simplified kinematic structures or relies on joint annotations. However, in mechanical assemblies like gears, motion arises from geometric coupling, through meshing teeth or aligned axes, making it difficult for existing methods to reason about relational motion from geometry alone. To address this gap, we introduce MechBench, a benchmark dataset of 693 diverse synthetic gear assemblies with part-wise ground-truth motion trajectories. MechBench provides a structured setting to study coupled motion, where part dynamics are induced by contact and transmission rather than predefined joints. Building on this, we propose DYNAMO, a dependency-aware neural model that predicts per-part SE(3) motion trajectories directly from segmented CAD point clouds. Experiments show that DYNAMO outperforms strong baselines, achieving accurate and temporally consistent predictions across varied gear configurations. Together, MechBench and DYNAMO establish a novel systematic framework for data-driven learning of coupled mechanical motion in CAD assemblies.
Authors: Saeed Saadatnejad, Reyhaneh Hosseininejad, Jose Barreiros, Katherine M. Tsui, Alexandre Alahi
Abstract:
The increasing labor shortage and aging population underline the need for assistive robots to support human care recipients. To enable safe and responsive assistance, robots require accurate human motion prediction in physical interaction scenarios. However, this remains a challenging task due to the variability of assistive settings and the complexity of coupled dynamics in physical interactions. In this work, we address these challenges through two key contributions: (1) HHI-Assist, a dataset comprising motion capture clips of human-human interactions in assistive tasks; and (2) a conditional Transformer-based denoising diffusion model for predicting the poses of interacting agents. Our model effectively captures the coupled dynamics between caregivers and care receivers, demonstrating improvements over baselines and strong generalization to unseen scenarios. By advancing interaction-aware motion prediction and introducing a new dataset, our work has the potential to significantly enhance robotic assistance policies. The dataset and code are available at: https://sites.google.com/view/hhi-assist/home
Authors: Lorenzo Busellato, Federico Cunico, Diego Dall'Alba, Marco Emporio, Andrea Giachetti, Riccardo Muradore, Marco Cristani
Abstract:
To enable flexible, high-throughput automation in settings where people and robots share workspaces, collaborative robotic cells must reconcile stringent safety guarantees with the need for responsive and effective behavior. A dynamic obstacle is the stochastic, task-dependent variability of human motion: when robots fall back on purely reactive or worst-case envelopes, they brake unnecessarily, stall task progress, and tamper with the fluidity that true Human-Robot Interaction demands. In recent years, learning-based human-motion prediction has rapidly advanced, although most approaches produce worst-case scenario forecasts that often do not treat prediction uncertainty in a well-structured way, resulting in over-conservative planning algorithms, limiting their flexibility. We introduce Uncertainty-Aware Predictive Control Barrier Functions (UA-PCBFs), a unified framework that fuses probabilistic human hand motion forecasting with the formal safety guarantees of Control Barrier Functions. In contrast to other variants, our framework allows for dynamic adjustment of the safety margin thanks to the human motion uncertainty estimation provided by a forecasting module. Thanks to uncertainty estimation, UA-PCBFs empower collaborative robots with a deeper understanding of future human states, facilitating more fluid and intelligent interactions through informed motion planning. We validate UA-PCBFs through comprehensive real-world experiments with an increasing level of realism, including automated setups (to perform exactly repeatable motions) with a robotic hand and direct human-robot interactions (to validate promptness, usability, and human confidence). Relative to state-of-the-art HRI architectures, UA-PCBFs show better performance in task-critical metrics, significantly reducing the number of violations of the robot's safe space during interaction with respect to the state-of-the-art.
Authors: Sihan Zhao, Zixuan Wang, Tianyu Luan, Jia Jia, Wentao Zhu, Jiebo Luo, Junsong Yuan, Nan Xi
Abstract:
Human motion generation has found widespread applications in AR/VR, film, sports, and medical rehabilitation, offering a cost-effective alternative to traditional motion capture systems. However, evaluating the fidelity of such generated motions is a crucial, multifaceted task. Although previous approaches have attempted at motion fidelity evaluation using human perception or physical constraints, there remains an inherent gap between human-perceived fidelity and physical feasibility. Moreover, the subjective and coarse binary labeling of human perception further undermines the development of a robust data-driven metric. We address these issues by introducing a physical labeling method. This method evaluates motion fidelity by calculating the minimum modifications needed for a motion to align with physical laws. With this approach, we are able to produce fine-grained, continuous physical alignment annotations that serve as objective ground truth. With these annotations, we propose PP-Motion, a novel data-driven metric to evaluate both physical and perceptual fidelity of human motion. To effectively capture underlying physical priors, we employ Pearson's correlation loss for the training of our metric. Additionally, by incorporating a human-based perceptual fidelity loss, our metric can capture fidelity that simultaneously considers both human perception and physical alignment. Experimental results demonstrate that our metric, PP-Motion, not only aligns with physical laws but also aligns better with human perception of motion fidelity than previous work.
Authors: Sirui Chen, Yufei Ye, Zi-Ang Cao, Jennifer Lew, Pei Xu, C. Karen Liu
Abstract:
We propose Hand-Eye Autonomous Delivery (HEAD), a framework that learns navigation, locomotion, and reaching skills for humanoids, directly from human motion and vision perception data. We take a modular approach where the high-level planner commands the target position and orientation of the hands and eyes of the humanoid, delivered by the low-level policy that controls the whole-body movements. Specifically, the low-level whole-body controller learns to track the three points (eyes, left hand, and right hand) from existing large-scale human motion capture data while high-level policy learns from human data collected by Aria glasses. Our modular approach decouples the ego-centric vision perception from physical actions, promoting efficient learning and scalability to novel scenes. We evaluate our method both in simulation and in the real-world, demonstrating humanoid's capabilities to navigate and reach in complex environments designed for humans.
Authors: Xi Fu, Weibang Jiang, Rui Liu, Gernot R. Müller-Putz, Cuntai Guan
Abstract:
Accurate decoding of lower-limb motion from EEG signals is essential for advancing brain-computer interface (BCI) applications in movement intent recognition and control. However, challenges persist in achieving causal, phase-consistent predictions and in modeling both inter- and intra-subject variability. To address these issues, we propose NeuroDyGait, a domain-generalizable EEG-to-motion decoding framework that leverages structured contrastive representation learning and relational domain modeling. The proposed method employs relative contrastive learning to achieve semantic alignment between EEG and motion embeddings. Furthermore, a multi-cycle gait reconstruction objective is introduced to enforce temporal coherence and maintain biomechanical consistency. To promote inter-session generalization, during fine-tuning, a domain dynamic decoding mechanism adaptively assigns session-specific prediction heads and learns to mix their outputs based on inter-session relationships. NeuroDyGait enables zero-shot motion prediction for unseen individuals without requiring adaptation and achieves superior performance in cross-subject gait decoding on benchmark datasets. Additionally, it demonstrates strong phase-detection capabilities even without explicit phase supervision during training. These findings highlight the potential of relational domain learning in enabling scalable, target-free deployment of BCIs.
Authors: Xinghan Wang, Kun Xu, Fei Li, Cao Sheng, Jiazhong Yu, Yadong Mu
Abstract:
Text-driven human motion generation has recently attracted considerable attention, allowing models to generate human motions based on textual descriptions. However, current methods neglect the influence of human attributes (such as age, gender, weight, and height) which are key factors shaping human motion patterns. This work represents a pilot exploration for bridging this gap. We conceptualize each motion as comprising both attribute information and action semantics, where textual descriptions align exclusively with action semantics. To achieve this, a new framework inspired by Structural Causal Models is proposed to decouple action semantics from human attributes, enabling text-to-semantics prediction and attribute-controlled generation. The resulting model is capable of generating realistic, attribute-aware motion aligned with the user's text and attribute inputs. For evaluation, we introduce HumanAttr, a comprehensive dataset containing attribute annotations for text-motion pairs, setting the first benchmark for attribute-aware text-to-motion generation. Extensive experiments on the new dataset validate our model's effectiveness.
Authors: Amirreza Payandeh, Anuj Pokhrel, Daeun Song, Marcos Zampieri, Xuesu Xiao
Abstract:
Large Vision-Language Models (VLMs) have demonstrated potential in enhancing mobile robot navigation in human-centric environments by understanding contextual cues, human intentions, and social dynamics while exhibiting reasoning capabilities. However, their computational complexity and limited sensitivity to continuous numerical data impede real-time performance and precise motion control. To this end, we propose Narrate2Nav, a novel real-time vision-action model that leverages a novel self-supervised learning framework based on the Barlow Twins redundancy reduction loss to embed implicit natural language reasoning, social cues, and human intentions within a visual encoder-enabling reasoning in the model's latent space rather than token space. The model combines RGB inputs, motion commands, and textual signals of scene context during training to bridge from robot observations to low-level motion commands for short-horizon point-goal navigation during deployment. Extensive evaluation of Narrate2Nav across various challenging scenarios in both offline unseen dataset and real-world experiments demonstrates an overall improvement of 52.94 percent and 41.67 percent, respectively, over the next best baseline. Additionally, qualitative comparative analysis of Narrate2Nav's visual encoder attention map against four other baselines demonstrates enhanced attention to navigation-critical scene elements, underscoring its effectiveness in human-centric navigation tasks.
Authors: Hao Zhang, Zhan Zhuang, Xuehao Wang, Xiaodong Yang, Yu Zhang
Abstract:
Human Activity Recognition (HAR) with wearable sensors is challenged by limited interpretability, which significantly impacts cross-dataset generalization. To address this challenge, we propose Motion-Primitive Transformer (MoPFormer), a novel self-supervised framework that enhances interpretability by tokenizing inertial measurement unit signals into semantically meaningful motion primitives and leverages a Transformer architecture to learn rich temporal representations. MoPFormer comprises two-stages. first stage is to partition multi-channel sensor streams into short segments and quantizing them into discrete "motion primitive" codewords, while the second stage enriches those tokenized sequences through a context-aware embedding module and then processes them with a Transformer encoder. The proposed MoPFormer can be pre-trained using a masked motion-modeling objective that reconstructs missing primitives, enabling it to develop robust representations across diverse sensor configurations. Experiments on six HAR benchmarks demonstrate that MoPFormer not only outperforms state-of-the-art methods but also successfully generalizes across multiple datasets. Most importantly, the learned motion primitives significantly enhance both interpretability and cross-dataset performance by capturing fundamental movement patterns that remain consistent across similar activities regardless of dataset origin.
Authors: Haoyu Zhao, Sixu Lin, Qingwei Ben, Minyue Dai, Hao Fei, Jingbo Wang, Hua Zou, Junting Dong
Abstract:
This paper presents a novel framework that enables real-world humanoid robots to maintain stability while performing human-like motion. Current methods train a policy which allows humanoid robots to follow human body using the massive retargeted human data via reinforcement learning. However, due to the heterogeneity between human and humanoid robot motion, directly using retargeted human motion reduces training efficiency and stability. To this end, we introduce SMAP, a novel whole-body tracking framework that bridges the gap between human and humanoid action spaces, enabling accurate motion mimicry by humanoid robots. The core idea is to use a vector-quantized periodic autoencoder to capture generic atomic behaviors and adapt human motion into physically plausible humanoid motion. This adaptation accelerates training convergence and improves stability when handling novel or challenging motions. We then employ a privileged teacher to distill precise mimicry skills into the student policy with a proposed decoupled reward. We conduct experiments in simulation and real world to demonstrate the superiority stability and performance of SMAP over SOTA methods, offering practical guidelines for advancing whole-body control in humanoid robots.
Authors: Boeun Kim, Hea In Jeong, JungHoon Sung, Yihua Cheng, Jeongmin Lee, Ju Yong Chang, Sang-Il Choi, Younggeun Choi, Saim Shin, Jungho Kim, Hyung Jin Chang
Abstract:
This paper introduces Motion Personalization, a new task that generates personalized motions aligned with text descriptions using several basic motions containing Persona. To support this novel task, we introduce a new large-scale motion dataset called PerMo (PersonaMotion), which captures the unique personas of multiple actors. We also propose a multi-modal finetuning method of a pretrained motion diffusion model called PersonaBooth. PersonaBooth addresses two main challenges: i) A significant distribution gap between the persona-focused PerMo dataset and the pretraining datasets, which lack persona-specific data, and ii) the difficulty of capturing a consistent persona from the motions vary in content (action type). To tackle the dataset distribution gap, we introduce a persona token to accept new persona features and perform multi-modal adaptation for both text and visuals during finetuning. To capture a consistent persona, we incorporate a contrastive learning technique to enhance intra-cohesion among samples with the same persona. Furthermore, we introduce a context-aware fusion mechanism to maximize the integration of persona cues from multiple input motions. PersonaBooth outperforms state-of-the-art motion style transfer methods, establishing a new benchmark for motion personalization.
Authors: Junxian Ma, Shiwen Wang, Jian Yang, Junyi Hu, Jian Liang, Guosheng Lin, Jingbo chen, Kai Li, Yu Meng
Abstract:
Recent advances in diffusion models have led to significant progress in audio-driven lip synchronization. However, existing methods typically rely on constrained audio-visual alignment priors or multi-stage learning of intermediate representations to force lip motion synthesis. This leads to complex training pipelines and limited motion naturalness. In this paper, we present SayAnything, a conditional video diffusion framework that directly synthesizes lip movements from audio input while preserving speaker identity. Specifically, we propose three specialized modules including identity preservation module, audio guidance module, and editing control module. Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation without requiring additional supervision signals or intermediate representations. Extensive experiments demonstrate that SayAnything generates highly realistic videos with improved lip-teeth coherence, enabling unseen characters to say anything, while effectively generalizing to animated characters.
Authors: Hy Nguyen, Srikanth Thudumu, Hung Du, Rajesh Vasa, Kon Mouzakis
Abstract:
Next-frame prediction in videos is crucial for applications such as autonomous driving, object tracking, and motion prediction. The primary challenge in next-frame prediction lies in effectively capturing and processing both spatial and temporal information from previous video sequences. The transformer architecture, known for its prowess in handling sequence data, has made remarkable progress in this domain. However, transformer-based next-frame prediction models face notable issues: (a) The multi-head self-attention (MHSA) mechanism requires the input embedding to be split into $N$ chunks, where $N$ is the number of heads. Each segment captures only a fraction of the original embeddings information, which distorts the representation of the embedding in the latent space, resulting in a semantic dilution problem; (b) These models predict the embeddings of the next frames rather than the frames themselves, but the loss function based on the errors of the reconstructed frames, not the predicted embeddings -- this creates a discrepancy between the training objective and the model output. We propose a Semantic Concentration Multi-Head Self-Attention (SCMHSA) architecture, which effectively mitigates semantic dilution in transformer-based next-frame prediction. Additionally, we introduce a loss function that optimizes SCMHSA in the latent space, aligning the training objective more closely with the model output. Our method demonstrates superior performance compared to the original transformer-based predictors.
Authors: Lei Wan, Hannan Ejaz Keen, Alexey Vinel
Abstract:
Connected Autonomous Vehicles (CAVs) benefit from Vehicle-to-Everything (V2X) communication, which enables the exchange of sensor data to achieve Collaborative Perception (CP). To reduce cumulative errors in perception modules and mitigate the visual occlusion, this paper introduces a new task, Collaborative Joint Perception and Prediction (Co-P&P), and provides a conceptual framework for its implementation to improve motion prediction of surrounding objects, thereby enhancing vehicle awareness in complex traffic scenarios. The framework consists of two decoupled core modules, Collaborative Scene Completion (CSC) and Joint Perception and Prediction (P&P) module, which simplify practical deployment and enhance scalability. Additionally, we outline the challenges in Co-P&P and discuss future directions for this research area.
Authors: Wenkun He, Yun Liu, Ruitao Liu, Li Yi
Abstract:
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
Authors: Zhouyingcheng Liao, Mingyuan Zhang, Wenjia Wang, Lei Yang, Taku Komura
Abstract:
While motion generation has made substantial progress, its practical application remains constrained by dataset diversity and scale, limiting its ability to handle out-of-distribution scenarios. To address this, we propose a simple and effective baseline, RMD, which enhances the generalization of motion generation through retrieval-augmented techniques. Unlike previous retrieval-based methods, RMD requires no additional training and offers three key advantages: (1) the external retrieval database can be flexibly replaced; (2) body parts from the motion database can be reused, with an LLM facilitating splitting and recombination; and (3) a pre-trained motion diffusion model serves as a prior to improve the quality of motions obtained through retrieval and direct combination. Without any training, RMD achieves state-of-the-art performance, with notable advantages on out-of-distribution data.
Authors: Wenjie Zhuo, Fan Ma, Hehe Fan
Abstract:
We present InfiniDreamer, a novel framework for arbitrarily long human motion generation. InfiniDreamer addresses the limitations of current motion generation methods, which are typically restricted to short sequences due to the lack of long motion training data. To achieve this, we first generate sub-motions corresponding to each textual description and then assemble them into a coarse, extended sequence using randomly initialized transition segments. We then introduce an optimization-based method called Segment Score Distillation (SSD) to refine the entire long motion sequence. SSD is designed to utilize an existing motion prior, which is trained only on short clips, in a training-free manner. Specifically, SSD iteratively refines overlapping short segments sampled from the coarsely extended long motion sequence, progressively aligning them with the pre-trained motion diffusion prior. This process ensures local coherence within each segment, while the refined transitions between segments maintain global consistency across the entire sequence. Extensive qualitative and quantitative experiments validate the superiority of our framework, showcasing its ability to generate coherent, contextually aware motion sequences of arbitrary length.
Authors: Zikang Zhou, Hengjian Zhou, Haibo Hu, Zihao Wen, Jianping Wang, Yung-Hui Li, Yu-Kai Huang
Abstract:
Anticipating the multimodality of future events lays the foundation for safe autonomous driving. However, multimodal motion prediction for traffic agents has been clouded by the lack of multimodal ground truth. Existing works predominantly adopt the winner-take-all training strategy to tackle this challenge, yet still suffer from limited trajectory diversity and uncalibrated mode confidence. While some approaches address these limitations by generating excessive trajectory candidates, they necessitate a post-processing stage to identify the most representative modes, a process lacking universal principles and compromising trajectory accuracy. We are thus motivated to introduce ModeSeq, a new multimodal prediction paradigm that models modes as sequences. Unlike the common practice of decoding multiple plausible trajectories in one shot, ModeSeq requires motion decoders to infer the next mode step by step, thereby more explicitly capturing the correlation between modes and significantly enhancing the ability to reason about multimodality. Leveraging the inductive bias of sequential mode prediction, we also propose the Early-Match-Take-All (EMTA) training strategy to diversify the trajectories further. Without relying on dense mode prediction or heuristic post-processing, ModeSeq considerably improves the diversity of multimodal output while attaining satisfactory trajectory accuracy, resulting in balanced performance on motion prediction benchmarks. Moreover, ModeSeq naturally emerges with the capability of mode extrapolation, which supports forecasting more behavior modes when the future is highly uncertain.
Authors: Di Qiu, Zheng Chen, Rui Wang, Mingyuan Fan, Changqian Yu, Junshi Huang, Xiang Wen
Abstract:
Recent advancements in character video synthesis still depend on extensive fine-tuning or complex 3D modeling processes, which can restrict accessibility and hinder real-time applicability. To address these challenges, we propose a simple yet effective tuning-free framework for character video synthesis, named MovieCharacter, designed to streamline the synthesis process while ensuring high-quality outcomes. Our framework decomposes the synthesis task into distinct, manageable modules: character segmentation and tracking, video object removal, character motion imitation, and video composition. This modular design not only facilitates flexible customization but also ensures that each component operates collaboratively to effectively meet user needs. By leveraging existing open-source models and integrating well-established techniques, MovieCharacter achieves impressive synthesis results without necessitating substantial resources or proprietary datasets. Experimental results demonstrate that our framework enhances the efficiency, accessibility, and adaptability of character video synthesis, paving the way for broader creative and interactive applications.
Authors: Teun van de Laar, Zengjie Zhang, Shuhao Qi, Sofie Haesaert, Zhiyong Sun
Abstract:
It has been an ambition of many to control a robot for a complex task using natural language (NL). The rise of large language models (LLMs) makes it closer to coming true. However, an LLM-powered system still suffers from the ambiguity inherent in an NL and the uncertainty brought up by LLMs. This paper proposes a novel LLM-based robot motion planner, named \textit{VernaCopter}, with signal temporal logic (STL) specifications serving as a bridge between NL commands and specific task objectives. The rigorous and abstract nature of formal specifications allows the planner to generate high-quality and highly consistent paths to guide the motion control of a robot. Compared to a conventional NL-prompting-based planner, the proposed VernaCopter planner is more stable and reliable due to less ambiguous uncertainty. Its efficacy and advantage have been validated by two small but challenging experimental scenarios, implying its potential in designing NL-driven robots.
Authors: Parag Khanna, Karen Jane Dsouza, Chunyu Wang, Mårten Björkman, Christian Smith
Abstract:
This paper introduces the YCB-Handovers dataset, capturing motion data of 2771 human-human handovers with varying object weights. The dataset aims to bridge a gap in human-robot collaboration research, providing insights into the impact of object weight in human handovers and readiness cues for intuitive robotic motion planning. The underlying dataset for object recognition and tracking is the YCB (Yale-CMU-Berkeley) dataset, which is an established standard dataset used in algorithms for robotic manipulation, including grasping and carrying objects. The YCB-Handovers dataset incorporates human motion patterns in handovers, making it applicable for data-driven, human-inspired models aimed at weight-sensitive motion planning and adaptive robotic behaviors. This dataset covers an extensive range of weights, allowing for a more robust study of handover behavior and weight variation. Some objects also require careful handovers, highlighting contrasts with standard handovers. We also provide a detailed analysis of the object's weight impact on the human reaching motion in these handovers.
Authors: Juze Zhang, Changan Chen, Xin Chen, Heng Yu, Tiange Xiang, Ali Sartaz Khan, Shrinidhi K. Lakshmikanth, Ehsan Adeli
Abstract:
Human communication is inherently multimodal and social: words, prosody, and body language jointly carry intent. Yet most prior systems model human behavior as a translation task co-speech gesture or text-to-motion that maps a fixed utterance to motion clips-without requiring agentic decision-making about when to move, what to do, or how to adapt across multi-turn dialogue. This leads to brittle timing, weak social grounding, and fragmented stacks where speech, text, and motion are trained or inferred in isolation. We introduce ViBES (Voice in Behavioral Expression and Synchrony), a conversational 3D agent that jointly plans language and movement and executes dialogue-conditioned body actions. Concretely, ViBES is a speech-language-behavior (SLB) model with a mixture-of-modality-experts (MoME) backbone: modality-partitioned transformer experts for speech, facial expression, and body motion. The model processes interleaved multimodal token streams with hard routing by modality (parameters are split per expert), while sharing information through cross-expert attention. By leveraging strong pretrained speech-language models, the agent supports mixed-initiative interaction: users can speak, type, or issue body-action directives mid-conversation, and the system exposes controllable behavior hooks for streaming responses. We further benchmark on multi-turn conversation with automatic metrics of dialogue-motion alignment and behavior quality, and observe consistent gains over strong co-speech and text-to-motion baselines. ViBES goes beyond "speech-conditioned motion generation" toward agentic virtual bodies where language, prosody, and movement are jointly generated, enabling controllable, socially competent 3D interaction. Code and data will be made available at: ai.stanford.edu/~juze/ViBES/
Authors: Shun Maeda, Chunzhi Gu, Koichiro Kamide, Katsuya Hotta, Shangce Gao, Chao Zhang
Abstract:
Human-centric anomaly detection (AD) has been primarily studied to specify anomalous behaviors in a single person. However, as humans by nature tend to act in a collaborative manner, behavioral anomalies can also arise from human-human interactions. Detecting such anomalies using existing single-person AD models is prone to low accuracy, as these approaches are typically not designed to capture the complex and asymmetric dynamics of interactions. In this paper, we introduce a novel task, Human-Human Interaction Anomaly Detection (H2IAD), which aims to identify anomalous interactive behaviors within collaborative 3D human actions. To address H2IAD, we then propose Interaction Anomaly Detection Network (IADNet), which is formalized with a Temporal Attention Sharing Module (TASM). Specifically, in designing TASM, we share the encoded motion embeddings across both people such that collaborative motion correlations can be effectively synchronized. Moreover, we notice that in addition to temporal dynamics, human interactions are also characterized by spatial configurations between two people. We thus introduce a Distance-Based Relational Encoding Module (DREM) to better reflect social cues in H2IAD. The normalizing flow is eventually employed for anomaly scoring. Extensive experiments on human-human motion benchmarks demonstrate that IADNet outperforms existing Human-centric AD baselines in H2IAD.
Authors: Bishoy Galoaa, Xiangyu Bai, Sarah Ostadabbas
Abstract:
We present Lang2Motion, a framework for language-guided point trajectory generation by aligning motion manifolds with joint embedding spaces. Unlike prior work focusing on human motion or video synthesis, we generate explicit trajectories for arbitrary objects using motion extracted from real-world videos via point tracking. Our transformer-based auto-encoder learns trajectory representations through dual supervision: textual motion descriptions and rendered trajectory visualizations, both mapped through CLIP's frozen encoders. Lang2Motion achieves 34.2% Recall@1 on text-to-trajectory retrieval, outperforming video-based methods by 12.5 points, and improves motion accuracy by 33-52% (12.4 ADE vs 18.3-25.3) compared to video generation baselines. We demonstrate 88.3% Top-1 accuracy on human action recognition despite training only on diverse object motions, showing effective transfer across motion domains. Lang2Motion supports style transfer, semantic interpolation, and latent-space editing through CLIP-aligned trajectory representations.
Authors: Yizheng Wang, Timon Rabczuk, Yinghua Liu
Abstract:
Friction modeling plays a crucial role in achieving high-precision motion control in robotic operating systems. Traditional static friction models (such as the Stribeck model) are widely used due to their simple forms; however, they typically require predefined functional assumptions, which poses significant challenges when dealing with unknown functional structures. To address this issue, this paper proposes a physics-inspired machine learning approach based on the Kolmogorov Arnold Network (KAN) for static friction modeling of robotic joints. The method integrates spline activation functions with a symbolic regression mechanism, enabling model simplification and physical expression extraction through pruning and attribute scoring, while maintaining both high prediction accuracy and interpretability. We first validate the method's capability to accurately identify key parameters under known functional models, and further demonstrate its robustness and generalization ability under conditions with unknown functional structures and noisy data. Experiments conducted on both synthetic data and real friction data collected from a six-degree-of-freedom industrial manipulator show that the proposed method achieves a coefficient of determination greater than 0.95 across various tasks and successfully extracts concise and physically meaningful friction expressions. This study provides a new perspective for interpretable and data-driven robotic friction modeling with promising engineering applicability.
Authors: Shurui Gui, Deep Anil Patel, Xiner Li, Martin Renqiang Min
Abstract:
Recent advances in video diffusion models have enabled the generation of high-quality videos. However, these videos still suffer from unrealistic deformations, semantic violations, and physical inconsistencies that are largely rooted in the absence of 3D physical priors. To address these challenges, we propose an object-aware 4D human motion generation framework grounded in 3D Gaussian representations and motion diffusion priors. With pre-generated 3D humans and objects, our method, Motion Score Distilled Interaction (MSDI), employs the spatial and prompt semantic information in large language models (LLMs) and motion priors through the proposed Motion Diffusion Score Distillation Sampling (MSDS). The combination of MSDS and LLMs enables our spatial-aware motion optimization, which distills score gradients from pre-trained motion diffusion models, to refine human motion while respecting object and semantic constraints. Unlike prior methods requiring joint training on limited interaction datasets, our zero-shot approach avoids retraining and generalizes to out-of-distribution object aware human motions. Experiments demonstrate that our framework produces natural and physically plausible human motions that respect 3D spatial context, offering a scalable solution for realistic 4D generation.
Authors: Jose Luis Ponton, Eduardo Alvarado, Lin Geng Foo, Nuria Pelechano, Carlos Andujar, Marc Habermann
Abstract:
Human motion is fundamentally driven by continuous physical interaction with the environment. Whether walking, running, or simply standing, the forces exchanged between our feet and the ground provide crucial insights for understanding and reconstructing human movement. Recent advances in wearable insole devices offer a compelling solution for capturing these forces in diverse, real-world scenarios. Sensor insoles pose no constraint on the users' motion (unlike mocap suits) and are unaffected by line-of-sight limitations (in contrast to optical systems). These qualities make sensor insoles an ideal choice for robust, unconstrained motion capture, particularly in outdoor environments. Surprisingly, leveraging these devices with recent motion reconstruction methods remains largely unexplored. Aiming to fill this gap, we present Step2Motion, the first approach to reconstruct human locomotion from multi-modal insole sensors. Our method utilizes pressure and inertial data-accelerations and angular rates-captured by the insoles to reconstruct human motion. We evaluate the effectiveness of our approach across a range of experiments to show its versatility for diverse locomotion styles, from simple ones like walking or jogging up to moving sideways, on tiptoes, slightly crouching, or dancing.
Authors: Amin Vahidi-Moghaddam, Sayed Pedram Haeri Boroujeni, Iman Jebellat, Ehsan Jebellat, Niloufar Mehrabi, Zhaojian Li
Abstract:
One of the main challenges in modern control applications, particularly in robot and vehicle motion control, is achieving accurate, fast, and safe movement. To address this, optimal control policies have been developed to enforce safety while ensuring high performance. Since basic first-principles models of real systems are often available, model-based controllers are widely used. Model predictive control (MPC) is a leading approach that optimizes performance while explicitly handling safety constraints. However, obtaining accurate models for complex systems is difficult, which motivates data-driven alternatives. ML-based MPC leverages learned models to reduce reliance on hand-crafted dynamics, while reinforcement learning (RL) can learn near-optimal policies directly from interaction data. Data-enabled predictive control (DeePC) goes further by bypassing modeling altogether, directly learning safe policies from raw input-output data. Recently, large language model (LLM) agents have also emerged, translating natural language instructions into structured formulations of optimal control problems. Despite these advances, data-driven policies face significant limitations. They often suffer from slow response times, high computational demands, and large memory needs, making them less practical for real-world systems with fast dynamics, limited onboard computing, or strict memory constraints. To address this, various technique, such as reduced-order modeling, function-approximated policy learning, and convex relaxations, have been proposed to reduce computational complexity. In this paper, we present eight such approaches and demonstrate their effectiveness across real-world applications, including robotic arms, soft robots, and vehicle motion control.
Authors: Thomas Besnier, Sylvain Arguillère, Mohamed Daoudi
Abstract:
Unregistered surface meshes, especially raw 3D scans, present significant challenges for automatic computation of plausible deformations due to the lack of established point-wise correspondences and the presence of noise in the data. In this paper, we propose a new, rig-free, data-driven framework for motion prediction and transfer on such body meshes. Our method couples a robust motion embedding network with a learned per-vertex feature field to generate a spatio-temporal deformation field, which drives the mesh deformation. Extensive evaluations, including quantitative benchmarks and qualitative visuals on tasks such as walking and running, demonstrate the effectiveness and versatility of our approach on challenging unregistered meshes.
Authors: Alexander Gräfe, Joram Eickhoff, Marco Zimmerling, Sebastian Trimpe
Abstract:
Swarms of unmanned aerial vehicles (UAVs) are increasingly becoming vital to our society, undertaking tasks such as search and rescue, surveillance and delivery. A special variant of Distributed Model Predictive Control (DMPC) has emerged as a promising approach for the safe management of these swarms by combining the scalability of distributed computation with dynamic swarm motion control. In this DMPC method, multiple agents solve local optimization problems with coupled anti-collision constraints, periodically exchanging their solutions. Despite its potential, existing methodologies using this DMPC variant have yet to be deployed on distributed hardware that fully utilize true distributed computation and wireless communication. This is primarily due to the lack of a communication system tailored to meet the unique requirements of mobile swarms and an architecture that supports distributed computation while adhering to the payload constraints of UAVs. We present DMPC-SWARM, a new swarm control methodology that integrates an efficient, stateless low-power wireless communication protocol with a novel DMPC algorithm that provably avoids UAV collisions even under message loss. By utilizing event-triggered and distributed off-board computing, DMPC-SWARM supports nano UAVs, allowing them to benefit from additional computational resources while retaining scalability and fault tolerance. In a detailed theoretical analysis, we prove that DMPC-SWARM guarantees collision avoidance under realistic conditions, including communication delays and message loss. Finally, we present DMPC-SWARM's implementation on a swarm of up to 16 nano-quadcopters, demonstrating the first realization of these DMPC variants with computation distributed on multiple physical devices interconnected by a real wireless mesh networks. A video showcasing DMPC-SWARM is available at http://tiny.cc/DMPCSwarm.
Authors: Italo Napolitano, Stefano Covone, Andrea Lama, Francesco De Lellis, Mario di Bernardo
Abstract:
Multi-agent shepherding represents a challenging distributed control problem where herder agents must coordinate to guide independently moving targets to desired spatial configurations. Most existing control strategies assume cohesive target behavior, which frequently fails in practical applications where targets exhibit stochastic autonomous behavior. This paper presents a hierarchical learning-based control architecture that decomposes the shepherding problem into a high-level decision-making module and a low-level motion control component. The proposed distributed control system synthesizes effective control policies directly from closed-loop experience without requiring explicit inter-agent communication or prior knowledge of target dynamics. The decentralized architecture achieves cooperative control behavior through emergent coordination without centralized supervision. Experimental validation demonstrates superior closed-loop performance compared to state-of-the-art heuristic control methods, achieving 100\% success rates with improved settling times and control efficiency. The control architecture scales beyond its design conditions, adapts to time-varying goal regions, and demonstrates practical implementation feasibility through real-time experiments on the Robotarium platform.
Authors: Guoping Xu, Jayaram K. Udupa, Yajun Yu, Hua-Chieh Shao, Songlin Zhao, Wei Liu, You Zhang
Abstract:
Video Object Segmentation and Tracking (VOST) presents a complex yet critical challenge in computer vision, requiring robust integration of segmentation and tracking across temporally dynamic frames. Traditional methods have struggled with domain generalization, temporal consistency, and computational efficiency. The emergence of foundation models like the Segment Anything Model (SAM) and its successor, SAM2, has introduced a paradigm shift, enabling prompt-driven segmentation with strong generalization capabilities. Building upon these advances, this survey provides a comprehensive review of SAM/SAM2-based methods for VOST, structured along three temporal dimensions: past, present, and future. We examine strategies for retaining and updating historical information (past), approaches for extracting and optimizing discriminative features from the current frame (present), and motion prediction and trajectory estimation mechanisms for anticipating object dynamics in subsequent frames (future). In doing so, we highlight the evolution from early memory-based architectures to the streaming memory and real-time segmentation capabilities of SAM2. We also discuss recent innovations such as motion-aware memory selection and trajectory-guided prompting, which aim to enhance both accuracy and efficiency. Finally, we identify remaining challenges including memory redundancy, error accumulation, and prompt inefficiency, and suggest promising directions for future research. This survey offers a timely and structured overview of the field, aiming to guide researchers and practitioners in advancing the state of VOST through the lens of foundation models.
Authors: Ruoshi Wen, Jiajun Zhang, Guangzeng Chen, Zhongren Cui, Min Du, Yang Gou, Zhigang Han, Junkai Hu, Liqun Huang, Hao Niu, Wei Xu, Haoxiang Zhang, Zhengming Zhu, Hang Li, Zeyu Ren
Abstract:
Replicating human--level dexterity remains a fundamental robotics challenge, requiring integrated solutions from mechatronic design to the control of high degree--of--freedom (DoF) robotic hands. While imitation learning shows promise in transferring human dexterity to robots, the efficacy of trained policies relies on the quality of human demonstration data. We bridge this gap with a hand--arm teleoperation system featuring: (1) a 20--DoF linkage--driven anthropomorphic robotic hand for biomimetic dexterity, and (2) an optimization--based motion retargeting for real--time, high--fidelity reproduction of intricate human hand motions and seamless hand--arm coordination. We validate the system via extensive empirical evaluations, including dexterous in-hand manipulation tasks and a long--horizon task requiring the organization of a cluttered makeup table randomly populated with nine objects. Experimental results demonstrate its intuitive teleoperation interface with real--time control and the ability to generate high--quality demonstration data. Please refer to the accompanying video for further details.
Authors: Kunhang Li, Jason Naradowsky, Yansong Feng, Yusuke Miyao
Abstract:
We explore the human motion knowledge of Large Language Models (LLMs) through 3D avatar control. Given a motion instruction, we prompt LLMs to first generate a high-level movement plan with consecutive steps (High-level Planning), then specify body part positions in each step (Low-level Planning), which we linearly interpolate into avatar animations. Using 20 representative motion instructions that cover fundamental movements and balance body part usage, we conduct comprehensive evaluations, including human and automatic scoring of both high-level movement plans and generated animations, as well as automatic comparison with oracle positions in low-level planning. Our findings show that LLMs are strong at interpreting high-level body movements but struggle with precise body part positioning. While decomposing motion queries into atomic components improves planning, LLMs face challenges in multi-step movements involving high-degree-of-freedom body parts. Furthermore, LLMs provide reasonable approximations for general spatial descriptions, but fall short in handling precise spatial specifications. Notably, LLMs demonstrate promise in conceptualizing creative motions and distinguishing culturally specific motion patterns.
Authors: Yizhou Zhao, Chunjiang Liu, Haoyu Chen, Bhiksha Raj, Min Xu, Tadas Baltrusaitis, Mitch Rundle, HsiangTao Wu, Kamran Ghasedi
Abstract:
Face reenactment and portrait relighting are essential tasks in portrait editing, yet they are typically addressed independently, without much synergy. Most face reenactment methods prioritize motion control and multiview consistency, while portrait relighting focuses on adjusting shading effects. To take advantage of both geometric consistency and illumination awareness, we introduce Total-Editing, a unified portrait editing framework that enables precise control over appearance, motion, and lighting. Specifically, we design a neural radiance field decoder with intrinsic decomposition capabilities. This allows seamless integration of lighting information from portrait images or HDR environment maps into synthesized portraits. We also incorporate a moving least squares based deformation field to enhance the spatiotemporal coherence of avatar motion and shading effects. With these innovations, our unified framework significantly improves the quality and realism of portrait editing results. Further, the multi-source nature of Total-Editing supports more flexible applications, such as illumination transfer from one portrait to another, or portrait animation with customized backgrounds.
Authors: Chen Tessler, Yifeng Jiang, Erwin Coumans, Zhengyi Luo, Gal Chechik, Xue Bin Peng
Abstract:
We tackle the challenges of synthesizing versatile, physically simulated human motions for full-body object manipulation. Unlike prior methods that are focused on detailed motion tracking, trajectory following, or teleoperation, our framework enables users to specify versatile high-level objectives such as target object poses or body poses. To achieve this, we introduce MaskedManipulator, a generative control policy distilled from a tracking controller trained on large-scale human motion capture data. This two-stage learning process allows the system to perform complex interaction behaviors, while providing intuitive user control over both character and object motions. MaskedManipulator produces goal-directed manipulation behaviors that expand the scope of interactive animation systems beyond task-specific solutions.
Authors: Jingzhong Lin, Yuanyuan Qi, Xinru Li, Wenxuan Huang, Xiangfeng Xu, Bangyan Li, Xuejiao Wang, Gaoqi He
Abstract:
Reactive dance generation (RDG) produces follower movements conditioned on guiding dancer and music while ensuring spatial coordination and temporal coherence. However, existing methods overemphasize global constraints and optimization, overlooking local information, such as fine-grained spatial interactions and localized temporal context. Therefore, we present ReactDance, a novel diffusion-based framework for high-fidelity RDG with long-term coherence and multi-scale controllability. Unlike existing methods that struggle with interaction fidelity, synchronization, and temporal consistency in duet synthesis, our approach introduces two key innovations: 1)Group Residual Finite Scalar Quantization (GRFSQ), a multi-scale disentangled motion representation that captures interaction semantics from coarse body rhythms to fine-grained joint dynamics, and 2)Blockwise Local Context (BLC), a sampling strategy eliminating error accumulation in long sequence generation via local block causal masking and periodic positional encoding. Built on the decoupled multi-scale GRFSQ representation, we implement a diffusion model withLayer-Decoupled Classifier-free Guidance (LDCFG), allowing granular control over motion semantics across scales. Extensive experiments on standard benchmarks demonstrate that ReactDance surpasses existing methods, achieving state-of-the-art performance.
Authors: Bizhu Wu, Jinheng Xie, Keming Shen, Zhe Kong, Jianfeng Ren, Ruibin Bai, Rong Qu, Linlin Shen
Abstract:
Recent motion-aware large language models have demonstrated promising potential in unifying motion comprehension and generation. However, existing approaches primarily focus on coarse-grained motion-text modeling, where text describes the overall semantics of an entire motion sequence in just a few words. This limits their ability to handle fine-grained motion-relevant tasks, such as understanding and controlling the movements of specific body parts. To overcome this limitation, we pioneer MG-MotionLLM, a unified motion-language model for multi-granular motion comprehension and generation. We further introduce a comprehensive multi-granularity training scheme by incorporating a set of novel auxiliary tasks, such as localizing temporal boundaries of motion segments via detailed text as well as motion detailed captioning, to facilitate mutual reinforcement for motion-text modeling across various levels of granularity. Extensive experiments show that our MG-MotionLLM achieves superior performance on classical text-to-motion and motion-to-text tasks, and exhibits potential in novel fine-grained motion comprehension and editing tasks. Project page: CVI-SZU/MG-MotionLLM
Authors: Pablo Ruiz-Ponce, German Barquero, Cristina Palmero, Sergio Escalera, José GarcÃa-RodrÃguez
Abstract:
Generating human motion guided by conditions such as textual descriptions is challenging due to the need for datasets with pairs of high-quality motion and their corresponding conditions. The difficulty increases when aiming for finer control in the generation. To that end, prior works have proposed to combine several motion diffusion models pre-trained on datasets with different types of conditions, thus allowing control with multiple conditions. However, the proposed merging strategies overlook that the optimal way to combine the generation processes might depend on the particularities of each pre-trained generative model and also the specific textual descriptions. In this context, we introduce MixerMDM, the first learnable model composition technique for combining pre-trained text-conditioned human motion diffusion models. Unlike previous approaches, MixerMDM provides a dynamic mixing strategy that is trained in an adversarial fashion to learn to combine the denoising process of each model depending on the set of conditions driving the generation. By using MixerMDM to combine single- and multi-person motion diffusion models, we achieve fine-grained control on the dynamics of every person individually, and also on the overall interaction. Furthermore, we propose a new evaluation technique that, for the first time in this task, measures the interaction and individual quality by computing the alignment between the mixed generated motions and their conditions as well as the capabilities of MixerMDM to adapt the mixing throughout the denoising process depending on the motions to mix.
Authors: Junyu Shi, Lijiang Liu, Yong Sun, Zhiyuan Zhang, Jinni Zhou, Qiang Nie
Abstract:
Scaling up motion datasets is crucial to enhance motion generation capabilities. However, training on large-scale multi-source datasets introduces data heterogeneity challenges due to variations in motion content. To address this, we propose Generative Pretrained Multi-path Motion Model (GenM\(^3\)), a comprehensive framework designed to learn unified motion representations. GenM\(^3\) comprises two components: 1) a Multi-Expert VQ-VAE (MEVQ-VAE) that adapts to different dataset distributions to learn a unified discrete motion representation, and 2) a Multi-path Motion Transformer (MMT) that improves intra-modal representations by using separate modality-specific pathways, each with densely activated experts to accommodate variations within that modality, and improves inter-modal alignment by the text-motion shared pathway. To enable large-scale training, we integrate and unify 11 high-quality motion datasets (approximately 220 hours of motion data) and augment it with textual annotations (nearly 10,000 motion sequences labeled by a large language model and 300+ by human experts). After training on our integrated dataset, GenM\(^3\) achieves a state-of-the-art FID of 0.035 on the HumanML3D benchmark, surpassing state-of-the-art methods by a large margin. It also demonstrates strong zero-shot generalization on IDEA400 dataset, highlighting its effectiveness and adaptability across diverse motion scenarios.
Authors: Yuxiang Fu, Qi Yan, Lele Wang, Ke Li, Renjie Liao
Abstract:
In this paper, we address the problem of human trajectory forecasting, which aims to predict the inherently multi-modal future movements of humans based on their past trajectories and other contextual cues. We propose a novel motion prediction conditional flow matching model, termed MoFlow, to predict K-shot future trajectories for all agents in a given scene. We design a novel flow matching loss function that not only ensures at least one of the $K$ sets of future trajectories is accurate but also encourages all $K$ sets of future trajectories to be diverse and plausible. Furthermore, by leveraging the implicit maximum likelihood estimation (IMLE), we propose a novel distillation method for flow models that only requires samples from the teacher model. Extensive experiments on the real-world datasets, including SportVU NBA games, ETH-UCY, and SDD, demonstrate that both our teacher flow model and the IMLE-distilled student model achieve state-of-the-art performance. These models can generate diverse trajectories that are physically and socially plausible. Moreover, our one-step student model is $\textbf{100}$ times faster than the teacher flow model during sampling. The code, model, and data are available at our project page: https://moflow-imle.github.io
Authors: Parag Khanna, Mårten Björkman, Christian Smith
Abstract:
This work explores the effect of object weight on human motion and grip release during handovers to enhance the naturalness, safety, and efficiency of robot-human interactions. We introduce adaptive robotic strategies based on the analysis of human handover behavior with varying object weights. The key contributions of this work includes the development of an adaptive grip-release strategy for robots, a detailed analysis of how object weight influences human motion to guide robotic motion adaptations, and the creation of handover-datasets incorporating various object weights, including the YCB handover dataset. By aligning robotic grip release and motion with human behavior, this work aims to improve robot-human handovers for different weighted objects. We also evaluate these human-inspired adaptive robotic strategies in robot-to-human handovers to assess their effectiveness and performance and demonstrate that they outperform the baseline approaches in terms of naturalness, efficiency, and user perception.
Authors: Kedi Lyu, Haipeng Chen, Zhenguang Liu, Yifang Yin, Yukang Lin, Yingying Jiao
Abstract:
Grasping the intricacies of human motion, which involve perceiving spatio-temporal dependence and multi-scale effects, is essential for predicting human motion. While humans inherently possess the requisite skills to navigate this issue, it proves to be markedly more challenging for machines to emulate. To bridge the gap, we propose the Human-like Vision and Inference System (HVIS) for human motion prediction, which is designed to emulate human observation and forecast future movements. HVIS comprises two components: the human-like vision encode (HVE) module and the human-like motion inference (HMI) module. The HVE module mimics and refines the human visual process, incorporating a retina-analog component that captures spatiotemporal information separately to avoid unnecessary crosstalk. Additionally, a visual cortex-analogy component is designed to hierarchically extract and treat complex motion features, focusing on both global and local features of human poses. The HMI is employed to simulate the multi-stage learning model of the human brain. The spontaneous learning network simulates the neuronal fracture generation process for the adversarial generation of future motions. Subsequently, the deliberate learning network is optimized for hard-to-train joints to prevent misleading learning. Experimental results demonstrate that our method achieves new state-of-the-art performance, significantly outperforming existing methods by 19.8% on Human3.6M, 15.7% on CMU Mocap, and 11.1% on G3D.
Authors: Sang-Eun Lee, Ko Nishino, Shohei Nobuhara
Abstract:
We propose a novel method for spatiotemporal multi-camera calibration using freely moving people in multiview videos. Since calibrating multiple cameras and finding matches across their views are inherently interdependent, performing both in a unified framework poses a significant challenge. We address these issues as a single registration problem of matching two sets of 3D points, leveraging human motion in dynamic multi-person scenes. To this end, we utilize 3D human poses obtained from an off-the-shelf monocular 3D human pose estimator and transform them into 3D points on a unit sphere, to solve the rotation, time offset, and the association alternatingly. We employ a probabilistic approach that can jointly solve both problems of aligning spatiotemporal data and establishing correspondences through soft assignment between two views. The translation is determined by applying coplanarity constraints. The pairwise registration results are integrated into a multiview setup, and then a nonlinear optimization method is used to improve the accuracy of the camera poses, temporal offsets, and multi-person associations. Extensive experiments on synthetic and real data demonstrate the effectiveness and flexibility of the proposed method as a practical marker-free calibration tool.
Authors: Xiaohan Zhang, Sebastian Starke, Vladimir Guzov, Zhensong Zhang, Eduardo Pérez Pellitero, Gerard Pons-Moll
Abstract:
Synthesizing natural human motion that adapts to complex environments while allowing creative control remains a fundamental challenge in motion synthesis. Existing models often fall short, either by assuming flat terrain or lacking the ability to control motion semantics through text. To address these limitations, we introduce SCENIC, a diffusion model designed to generate human motion that adapts to dynamic terrains within virtual scenes while enabling semantic control through natural language. The key technical challenge lies in simultaneously reasoning about complex scene geometry while maintaining text control. This requires understanding both high-level navigation goals and fine-grained environmental constraints. The model must ensure physical plausibility and precise navigation across varied terrain, while also preserving user-specified text control, such as ``carefully stepping over obstacles" or ``walking upstairs like a zombie." Our solution introduces a hierarchical scene reasoning approach. At its core is a novel scene-dependent, goal-centric canonicalization that handles high-level goal constraint, and is complemented by an ego-centric distance field that captures local geometric details. This dual representation enables our model to generate physically plausible motion across diverse 3D scenes. By implementing frame-wise text alignment, our system achieves seamless transitions between different motion styles while maintaining scene constraints. Experiments demonstrate our novel diffusion model generates arbitrarily long human motions that both adapt to complex scenes with varying terrain surfaces and respond to textual prompts. Additionally, we show SCENIC can generalize to four real-scene datasets. Our code, dataset, and models will be released at \url{https://virtualhumans.mpi-inf.mpg.de/scenic/}.
Authors: Soon Yau Cheong, Duygu Ceylan, Armin Mustafa, Andrew Gilbert, Chun-Hao Paul Huang
Abstract:
Recent advancements in diffusion models have significantly enhanced the quality of video generation. However, fine-grained control over camera pose remains a challenge. While U-Net-based models have shown promising results for camera control, transformer-based diffusion models (DiT)-the preferred architecture for large-scale video generation - suffer from severe degradation in camera motion accuracy. In this paper, we investigate the underlying causes of this issue and propose solutions tailored to DiT architectures. Our study reveals that camera control performance depends heavily on the choice of conditioning methods rather than camera pose representations that is commonly believed. To address the persistent motion degradation in DiT, we introduce Camera Motion Guidance (CMG), based on classifier-free guidance, which boosts camera control by over 400%. Additionally, we present a sparse camera control pipeline, significantly simplifying the process of specifying camera poses for long videos. Our method universally applies to both U-Net and DiT models, offering improved camera control for video generation tasks.
Authors: Kanghao Chen, Zeyu Wang, Lin Wang
Abstract:
Recent years have witnessed tremendous progress in the 3D reconstruction of dynamic humans from a monocular video with the advent of neural rendering techniques. This task has a wide range of applications, including the creation of virtual characters for virtual reality (VR) environments. However, it is still challenging to reconstruct clear humans when the monocular video is affected by motion blur, particularly caused by rapid human motion (e.g., running, dancing), as often occurs in the wild. This leads to distinct inconsistency of shape and appearance for the rendered 3D humans, especially in the blurry regions with rapid motion, e.g., hands and legs. In this paper, we propose ExFMan, the first neural rendering framework that unveils the possibility of rendering high-quality humans in rapid motion with a hybrid frame-based RGB and bio-inspired event camera. The ``out-of-the-box'' insight is to leverage the high temporal information of event data in a complementary manner and adaptively reweight the effect of losses for both RGB frames and events in the local regions, according to the velocity of the rendered human. This significantly mitigates the inconsistency associated with motion blur in the RGB frames. Specifically, we first formulate a velocity field of the 3D body in the canonical space and render it to image space to identify the body parts with motion blur. We then propose two novel losses, i.e., velocity-aware photometric loss and velocity-relative event loss, to optimize the neural human for both modalities under the guidance of the estimated velocity. In addition, we incorporate novel pose regularization and alpha losses to facilitate continuous pose and clear boundary. Extensive experiments on synthetic and real-world datasets demonstrate that ExFMan can reconstruct sharper and higher quality humans.
Authors: Vladimir Guzov, Yifeng Jiang, Fangzhou Hong, Gerard Pons-Moll, Richard Newcombe, C. Karen Liu, Yuting Ye, Lingni Ma
Abstract:
This paper investigates the generation of realistic full-body human motion using a single head-mounted device with an outward-facing color camera and the ability to perform visual SLAM. To address the ambiguity of this setup, we present HMD^2, a novel system that balances motion reconstruction and generation. From a reconstruction standpoint, it aims to maximally utilize the camera streams to produce both analytical and learned features, including head motion, SLAM point cloud, and image embeddings. On the generative front, HMD^2 employs a multi-modal conditional motion diffusion model with a Transformer backbone to maintain temporal coherence of generated motions, and utilizes autoregressive inpainting to facilitate online motion inference with minimal latency (0.17 seconds). We show that our system provides an effective and robust solution that scales to a diverse dataset of over 200 hours of motion in complex indoor and outdoor environments.
Authors: Sylvain Bertrand, Luigi Penco, Dexton Anderson, Duncan Calvert, Valentine Roy, Stephen McCrory, Khizar Mohammed, Sebastian Sanchez, Will Griffith, Steve Morfey, Alexis Maslyczyk, Achintya Mohan, Cody Castello, Bingyin Ma, Kartik Suryavanshi, Patrick Dills, Jerry Pratt, Victor Ragusila, Brandon Shrewsbury, Robert Griffin
Abstract:
Teleoperation of humanoid robots has long been a challenging domain, necessitating advances in both hardware and software to achieve seamless and intuitive control. This paper presents an integrated solution based on several elements: calibration-free motion capture and retargeting, low-latency fast whole-body kinematics streaming toolbox and high-bandwidth cycloidal actuators. Our motion retargeting approach stands out for its simplicity, requiring only 7 IMUs to generate full-body references for the robot. The kinematics streaming toolbox, ensures real-time, responsive control of the robot's movements, significantly reducing latency and enhancing operational efficiency. Additionally, the use of cycloidal actuators makes it possible to withstand high speeds and impacts with the environment. Together, these approaches contribute to a teleoperation framework that offers unprecedented performance. Experimental results on the humanoid robot Nadia demonstrate the effectiveness of the integrated system.
Authors: Yifei Liu, Changxing Ding, Ling Guo, Huaiguang Jiang, Qiong Cao
Abstract:
Diffusion models have seen widespread adoption for text-driven human motion generation and related tasks due to their impressive generative capabilities and flexibility. However, current motion diffusion models face two major limitations: a representational gap caused by pre-trained text encoders that lack motion-specific information, and error propagation during the iterative denoising process. This paper introduces Reconstruction-Anchored Diffusion Model (RAM) to address these challenges. First, RAM leverages a motion latent space as intermediate supervision for text-to-motion generation. To this end, RAM co-trains a motion reconstruction branch with two key objective functions: self-regularization to enhance the discrimination of the motion space and motion-centric latent alignment to enable accurate mapping from text to the motion latent space. Second, we propose Reconstructive Error Guidance (REG), a testing-stage guidance mechanism that exploits the diffusion model's inherent self-correction ability to mitigate error propagation. At each denoising step, REG uses the motion reconstruction branch to reconstruct the previous estimate, reproducing the prior error patterns. By amplifying the residual between the current prediction and the reconstructed estimate, REG highlights the improvements in the current prediction. Extensive experiments demonstrate that RAM achieves significant improvements and state-of-the-art performance. Our code will be released.
Authors: Yifan Xue, Ze Zhang, Knut Åkesson, Nadia Figueroa
Abstract:
This work addresses the challenge of safe and efficient mobile robot navigation in complex dynamic environments with concave moving obstacles. Reactive safe controllers like Control Barrier Functions (CBFs) design obstacle avoidance strategies based only on the current states of the obstacles, risking future collisions. To alleviate this problem, we use Gaussian processes to learn barrier functions online from multimodal motion predictions of obstacles generated by neural networks trained with energy-based learning. The learned barrier functions are then fed into quadratic programs using modulated CBFs (MCBFs), a local-minimum-free version of CBFs, to achieve safe and efficient navigation. The proposed framework makes two key contributions. First, it develops a prediction-to-barrier function online learning pipeline. Second, it introduces an autonomous parameter tuning algorithm that adapts MCBFs to deforming, prediction-based barrier functions. The framework is evaluated in both simulations and real-world experiments, consistently outperforming baselines and demonstrating superior safety and efficiency in crowded dynamic environments.
Authors: Mengyu Ji, Shiliang Guo, Zhengzhen Li, Jiahao Shen, Huazi Cao, Shiyu Zhao
Abstract:
An aerial manipulator, comprising a multirotor base and a robotic arm, is subject to significant dynamic coupling between these two components. Therefore, achieving precise and robust motion control is a challenging yet important objective. Here, we propose a novel prescribed performance motion control framework based on variable-gain extended state observers (ESOs), referred to as PreGME. The method includes variable-gain ESOs for real-time estimation of dynamic coupling and a prescribed performance flight control that incorporates error trajectory constraints. Compared with existing methods, the proposed approach exhibits the following two characteristics. First, the adopted variable-gain ESOs can accurately estimate rapidly varying dynamic coupling. This enables the proposed method to handle manipulation tasks that require aggressive motion of the robotic arm. Second, by prescribing the performance, a preset error trajectory is generated to guide the system evolution along this trajectory. This strategy allows the proposed method to ensure the tracking error remains within the prescribed performance envelope, thereby achieving high-precision control. Experiments on a real platform, including aerial staff twirling, aerial mixology, and aerial cart-pulling experiments, are conducted to validate the effectiveness of the proposed method. Experimental results demonstrate that even under the dynamic coupling caused by rapid robotic arm motion (end-effector velocity: 1.02 m/s, acceleration: 5.10 m/s$^2$), the proposed method achieves high tracking performance.
Authors: Naichuan Zheng, Xiahai Lun, Weiyi Li, Yuchen Du
Abstract:
Graph Convolutional Networks (GCNs) demonstrate strong capability in modeling skeletal topology for action recognition, yet their dense floating-point computations incur high energy costs. Spiking Neural Networks (SNNs), characterized by event-driven and sparse activation, offer energy efficiency but remain limited in capturing coupled temporal-frequency and topological dependencies of human motion. To bridge this gap, this article proposes Signal-SGN++, a topology-aware spiking graph framework that integrates structural adaptivity with time-frequency spiking dynamics. The network employs a backbone composed of 1D Spiking Graph Convolution (1D-SGC) and Frequency Spiking Convolution (FSC) for joint spatiotemporal and spectral feature extraction. Within this backbone, a Topology-Shift Self-Attention (TSSA) mechanism is embedded to adaptively route attention across learned skeletal topologies, enhancing graph-level sensitivity without increasing computational complexity. Moreover, an auxiliary Multi-Scale Wavelet Transform Fusion (MWTF) branch decomposes spiking features into multi-resolution temporal-frequency representations, wherein a Topology-Aware Time-Frequency Fusion (TATF) unit incorporates structural priors to preserve topology-consistent spectral fusion. Comprehensive experiments on large-scale benchmarks validate that Signal-SGN++ achieves superior accuracy-efficiency trade-offs, outperforming existing SNN-based methods and achieving competitive results against state-of-the-art GCNs under substantially reduced energy consumption.
Authors: Siqi Zhu, Yixuan Li, Junfu Li, Qi Wu, Zan Wang, Haozhe Ma, Wei Liang
Abstract:
While on-body device-based human motion estimation is crucial for applications such as XR interaction, existing methods often suffer from poor wearability, expensive hardware, and cumbersome calibration, which hinder their adoption in daily life. To address these challenges, we present EveryWear, a lightweight and practical human motion capture approach based entirely on everyday wearables: a smartphone, smartwatch, earbuds, and smart glasses equipped with one forward-facing and two downward-facing cameras, requiring no explicit calibration before use. We introduce Ego-Elec, a 9-hour real-world dataset covering 56 daily activities across 17 diverse indoor and outdoor environments, with ground-truth 3D annotations provided by the motion capture (MoCap), to facilitate robust research and benchmarking in this direction. Our approach employs a multimodal teacher-student framework that integrates visual cues from egocentric cameras with inertial signals from consumer devices. By training directly on real-world data rather than synthetic data, our model effectively eliminates the sim-to-real gap that constrains prior work. Experiments demonstrate that our method outperforms baseline models, validating its effectiveness for practical full-body motion estimation.
Authors: Alexey Yermakov, Yue Zhao, Marine Denolle, Yiyu Ni, Philippe M. Wyder, Judah Goldfeder, Stefano Riva, Jan Williams, David Zoro, Amy Sara Rude, Matteo Tomasetto, Joe Germany, Joseph Bakarji, Georg Maierhofer, Miles Cranmer, J. Nathan Kutz
Abstract:
Seismology faces fundamental challenges in state forecasting and reconstruction (e.g., earthquake early warning and ground motion prediction) and managing the parametric variability of source locations, mechanisms, and Earth models (e.g., subsurface structure and topography effects). Addressing these with simulations is hindered by their massive scale, both in synthetic data volumes and numerical complexity, while real-data efforts are constrained by models that inadequately reflect the Earth's complexity and by sparse sensor measurements from the field. Recent machine learning (ML) efforts offer promise, but progress is obscured by a lack of proper characterization, fair reporting, and rigorous comparisons. To address this, we introduce a Common Task Framework (CTF) for ML for seismic wavefields, starting with three distinct wavefield datasets. Our CTF features a curated set of datasets at various scales (global, crustal, and local) and task-specific metrics spanning forecasting, reconstruction, and generalization under realistic constraints such as noise and limited data. Inspired by CTFs in fields like natural language processing, this framework provides a structured and rigorous foundation for head-to-head algorithm evaluation. We illustrate the evaluation procedure with scores reported for two of the datasets, showcasing the performance of various methods and foundation models for reconstructing seismic wavefields from both simulated and real-world sensor measurements. The CTF scores reveal the strengths, limitations, and suitability for specific problem classes. Our vision is to replace ad hoc comparisons with standardized evaluations on hidden test sets, raising the bar for rigor and reproducibility in scientific ML.
Authors: Chunggi Lee, Ut Gong, Tica Lin, Stefanie Zollmann, Scott A Epsley, Adam Petway, Hanspeter Pfister
Abstract:
Injury prevention in sports requires understanding how bio-mechanical risks emerge from movement patterns captured in real-world scenarios. However, identifying and interpreting injury prone events from raw video remains difficult and time-consuming. We present VAIR, a visual analytics system that supports injury risk analysis using 3D human motion reconstructed from sports video. VAIR combines pose estimation, bio-mechanical simulation, and synchronized visualizations to help users explore how joint-level risk indicators evolve over time. Domain experts can inspect movement segments through temporally aligned joint angles, angular velocity, and internal forces to detect patterns associated with known injury mechanisms. Through case studies involving Achilles tendon and Anterior cruciate ligament (ACL) injuries in basketball, we show that VAIR enables more efficient identification and interpretation of risky movements. Expert feedback confirms that VAIR improves diagnostic reasoning and supports both retrospective analysis and proactive intervention planning.
Authors: Mahathir Monjur, Shahriar Nirjon
Abstract:
Realistic signal generation and dataset augmentation are essential for advancing mmWave radar applications such as activity recognition and pose estimation, which rely heavily on diverse, and environment-specific signal datasets. However, mmWave signals are inherently complex, sparse, and high-dimensional, making physical simulation computationally expensive. This paper presents mmWeaver, a novel framework that synthesizes realistic, environment-specific complex mmWave signals by modeling them as continuous functions using Implicit Neural Representations (INRs), achieving up to 49-fold compression. mmWeaver incorporates hypernetworks that dynamically generate INR parameters based on environmental context (extracted from RGB-D images) and human motion features (derived from text-to-pose generation via MotionGPT), enabling efficient and adaptive signal synthesis. By conditioning on these semantic and geometric priors, mmWeaver generates diverse I/Q signals at multiple resolutions, preserving phase information critical for downstream tasks such as point cloud estimation and activity classification. Extensive experiments show that mmWeaver achieves a complex SSIM of 0.88 and a PSNR of 35 dB, outperforming existing methods in signal realism while improving activity recognition accuracy by up to 7% and reducing human pose estimation error by up to 15%, all while operating 6-35 times faster than simulation-based approaches.
Authors: Hua Chang, Xin Xu, Wei Liu, Wei Wang, Xin Yuan, Kui Jiang
Abstract:
Chinese opera is celebrated for preserving classical art. However, early filming equipment limitations have degraded videos of last-century performances by renowned artists (e.g., low frame rates and resolution), hindering archival efforts. Although space-time video super-resolution (STVSR) has advanced significantly, applying it directly to opera videos remains challenging. The scarcity of datasets impedes the recovery of high frequency details, and existing STVSR methods lack global modeling capabilities, compromising visual quality when handling opera's characteristic large motions. To address these challenges, we pioneer a large scale Chinese Opera Video Clip (COVC) dataset and propose the Mamba-based multiscale fusion network for space-time Opera Video Super-Resolution (MambaOVSR). Specifically, MambaOVSR involves three novel components: the Global Fusion Module (GFM) for motion modeling through a multiscale alternating scanning mechanism, and the Multiscale Synergistic Mamba Module (MSMM) for alignment across different sequence lengths. Additionally, our MambaVR block resolves feature artifacts and positional information loss during alignment. Experimental results on the COVC dataset show that MambaOVSR significantly outperforms the SOTA STVSR method by an average of 1.86 dB in terms of PSNR. Dataset and Code will be publicly released.
Authors: Claire McLean, Makenzie Meendering, Tristan Swartz, Orri Gabbay, Alexandra Olsen, Rachel Jacobs, Nicholas Rosen, Philippe de Bree, Tony Garcia, Gadsden Merrill, Jake Sandakly, Julia Buffalini, Neham Jain, Steven Krenn, Moneish Kumar, Dejan Markovic, Evonne Ng, Fabian Prada, Andrew Saba, Siwei Zhang, Vasu Agrawal, Tim Godisart, Alexander Richard, Michael Zollhoefer
Abstract:
The Codec Avatars Lab at Meta introduces Embody 3D, a multimodal dataset of 500 individual hours of 3D motion data from 439 participants collected in a multi-camera collection stage, amounting to over 54 million frames of tracked 3D motion. The dataset features a wide range of single-person motion data, including prompted motions, hand gestures, and locomotion; as well as multi-person behavioral and conversational data like discussions, conversations in different emotional states, collaborative activities, and co-living scenarios in an apartment-like space. We provide tracked human motion including hand tracking and body shape, text annotations, and a separate audio track for each participant.
Authors: Joshua Li, Brendan Chharawala, Chang Shu, Xue Bin Peng, Pengcheng Xi
Abstract:
Animating realistic character interactions with the surrounding environment is important for autonomous agents in gaming, AR/VR, and robotics. However, current methods for human motion reconstruction struggle with accurately placing humans in 3D space. We introduce Scene-Human Aligned REconstruction (SHARE), a technique that leverages the scene geometry's inherent spatial cues to accurately ground human motion reconstruction. Each reconstruction relies solely on a monocular RGB video from a stationary camera. SHARE first estimates a human mesh and segmentation mask for every frame, alongside a scene point map at keyframes. It iteratively refines the human's positions at these keyframes by comparing the human mesh against the human point map extracted from the scene using the mask. Crucially, we also ensure that non-keyframe human meshes remain consistent by preserving their relative root joint positions to keyframe root joints during optimization. Our approach enables more accurate 3D human placement while reconstructing the surrounding scene, facilitating use cases on both curated datasets and in-the-wild web videos. Extensive experiments demonstrate that SHARE outperforms existing methods.
Authors: Min Dai, Aaron D. Ames
Abstract:
We present RoMoCo, an open-source C++ toolbox for the synthesis and evaluation of reduced-order model-based planners and whole-body controllers for bipedal and humanoid robots. RoMoCo's modular architecture unifies state-of-the-art planners and whole-body locomotion controllers under a consistent API, enabling rapid prototyping and reproducible benchmarking. By leveraging reduced-order models for platform-agnostic gait generation, RoMoCo enables flexible controller design across diverse robots. We demonstrate its versatility and performance through extensive simulations on the Cassie, Unitree H1, and G1 robots, and validate its real-world efficacy with hardware experiments on the Cassie and G1 humanoids.
Authors: Chen Zhu, Buzhen Huang, Zijing Wu, Binghui Zuo, Yangang Wang
Abstract:
Emotion serves as an essential component in daily human interactions. Existing human motion generation frameworks do not consider the impact of emotions, which reduces naturalness and limits their application in interactive tasks, such as human reaction synthesis. In this work, we introduce a novel task: generating diverse reaction motions in response to different emotional cues. However, learning emotion representation from limited motion data and incorporating it into a motion generation framework remains a challenging problem. To address the above obstacles, we introduce a semi-supervised emotion prior in an actor-reactor diffusion model to facilitate emotion-driven reaction synthesis. Specifically, based on the observation that motion clips within a short sequence tend to share the same emotion, we first devise a semi-supervised learning framework to train an emotion prior. With this prior, we further train an actor-reactor diffusion model to generate reactions by considering both spatial interaction and emotional response. Finally, given a motion sequence of an actor, our approach can generate realistic reactions under various emotional conditions. Experimental results demonstrate that our model outperforms existing reaction generation methods. The code and data will be made publicly available at https://ereact.github.io/
Authors: Markus Buchholz, Ignacio Carlucho, Michele Grimaldi, Yvan R. Petillot
Abstract:
This paper introduces a novel simulation framework for evaluating motion control in tethered multi-robot systems within dynamic marine environments. Specifically, it focuses on the coordinated operation of an Autonomous Underwater Vehicle (AUV) and an Autonomous Surface Vehicle(ASV). The framework leverages GazeboSim, enhanced with realistic marine environment plugins and ArduPilots SoftwareIn-The-Loop (SITL) mode, to provide a high-fidelity simulation platform. A detailed tether model, combining catenary equations and physical simulation, is integrated to accurately represent the dynamic interactions between the vehicles and the environment. This setup facilitates the development and testing of advanced control strategies under realistic conditions, demonstrating the frameworks capability to analyze complex tether interactions and their impact on system performance.
Authors: Sungjae Park, Homanga Bharadhwaj, Shubham Tulsiani
Abstract:
We propose DemoDiffusion, a simple and scalable method for enabling robots to perform manipulation tasks in natural environments by imitating a single human demonstration. Our approach is based on two key insights. First, the hand motion in a human demonstration provides a useful prior for the robot's end-effector trajectory, which we can convert into a rough open-loop robot motion trajectory via kinematic retargeting. Second, while this retargeted motion captures the overall structure of the task, it may not align well with plausible robot actions in-context. To address this, we leverage a pre-trained generalist diffusion policy to modify the trajectory, ensuring it both follows the human motion and remains within the distribution of plausible robot actions. Our approach avoids the need for online reinforcement learning or paired human-robot data, enabling robust adaptation to new tasks and scenes with minimal manual effort. Experiments in both simulation and real-world settings show that DemoDiffusion outperforms both the base policy and the retargeted trajectory, enabling the robot to succeed even on tasks where the pre-trained generalist policy fails entirely. Project page: https://demodiffusion.github.io/
Authors: Qing Wang, Xiaohang Yang, Yilan Dong, Naveen Raj Govindaraj, Gregory Slabaugh, Shanxin Yuan
Abstract:
Music-to-dance generation aims to synthesize human dance motion conditioned on musical input. Despite recent progress, significant challenges remain due to the semantic gap between music and dance motion, as music offers only abstract cues, such as melody, groove, and emotion, without explicitly specifying the physical movements. Moreover, a single piece of music can produce multiple plausible dance interpretations. This one-to-many mapping demands additional guidance, as music alone provides limited information for generating diverse dance movements. The challenge is further amplified by the scarcity of paired music and dance data, which restricts the modelâÄŹs ability to learn diverse dance patterns. In this paper, we introduce DanceChat, a Large Language Model (LLM)-guided music-to-dance generation approach. We use an LLM as a choreographer that provides textual motion instructions, offering explicit, high-level guidance for dance generation. This approach goes beyond implicit learning from music alone, enabling the model to generate dance that is both more diverse and better aligned with musical styles. Our approach consists of three components: (1) an LLM-based pseudo instruction generation module that produces textual dance guidance based on music style and structure, (2) a multi-modal feature extraction and fusion module that integrates music, rhythm, and textual guidance into a shared representation, and (3) a diffusion-based motion synthesis module together with a multi-modal alignment loss, which ensures that the generated dance is aligned with both musical and textual cues. Extensive experiments on AIST++ and human evaluations show that DanceChat outperforms state-of-the-art methods both qualitatively and quantitatively.
Authors: Yi Yang, Jiaxuan Sun, Siqi Kou, Yihan Wang, Zhijie Deng
Abstract:
Real-world embodied agents face long-horizon tasks, characterized by high-level goals demanding multi-step solutions beyond single actions. Successfully navigating these requires both high-level task planning (i.e., decomposing goals into sub-tasks) and low-level motion control (i.e., generating precise robot actions). While existing vision language action (VLA) models and hierarchical architectures offer potential in embodied tasks, the former often falter in planning, and the latter can suffer from coordination issues, both hampering performance. We introduce a new unified VLA framework for long-horizon tasks, dubbed LoHoVLA, to overcome these limitations. LoHoVLA leverages a large pretrained vision language model (VLM) as the backbone to jointly generate language and action tokens for sub-task generation and robot action prediction, respectively. This shared representation promotes better generalization across tasks. Additionally, LoHoVLA embraces a hierarchical closed-loop control mechanism to mitigate errors originating from both high-level planning and low-level control. To train LoHoVLA, we introduce LoHoSet, a dataset built on the Ravens simulator, containing 20 long-horizon tasks, each with 1,000 expert demonstrations composed of visual observations, linguistic goals, sub-tasks, and robot actions. Experimental results show that LoHoVLA significantly surpasses both hierarchical and standard VLA approaches on long-horizon embodied tasks in the Ravens simulator. These findings underscore the promise of unified architectures for advancing generalizable embodied intelligence.
Authors: Ting-Hsuan Liao, Yi Zhou, Yu Shen, Chun-Hao Paul Huang, Saayan Mitra, Jia-Bin Huang, Uttaran Bhattacharya
Abstract:
We explore how body shapes influence human motion synthesis, an aspect often overlooked in existing text-to-motion generation methods due to the ease of learning a homogenized, canonical body shape. However, this homogenization can distort the natural correlations between different body shapes and their motion dynamics. Our method addresses this gap by generating body-shape-aware human motions from natural language prompts. We utilize a finite scalar quantization-based variational autoencoder (FSQ-VAE) to quantize motion into discrete tokens and then leverage continuous body shape information to de-quantize these tokens back into continuous, detailed motion. Additionally, we harness the capabilities of a pretrained language model to predict both continuous shape parameters and motion tokens, facilitating the synthesis of text-aligned motions and decoding them into shape-aware motions. We evaluate our method quantitatively and qualitatively, and also conduct a comprehensive perceptual study to demonstrate its efficacy in generating shape-aware motions.
Authors: Jingyu Liu, Zijie Xin, Yuhan Fu, Ruixiang Zhao, Bangxiang Lan, Xirong Li
Abstract:
Sketch animation, which brings static sketches to life by generating dynamic video sequences, has found widespread applications in GIF design, cartoon production, and daily entertainment. While current methods for sketch animation perform well in single-object sketch animation, they struggle in multi-object scenarios. By analyzing their failures, we identify two major challenges of transitioning from single-object to multi-object sketch animation: object-aware motion modeling and complex motion optimization. For multi-object sketch animation, we propose MoSketch based on iterative optimization through Score Distillation Sampling (SDS) and thus animating a multi-object sketch in a training-data free manner. To tackle the two challenges in a divide-and-conquer strategy, MoSketch has four novel modules, i.e., LLM-based scene decomposition, LLM-based motion planning, multi-grained motion refinement, and compositional SDS. Extensive qualitative and quantitative experiments demonstrate the superiority of our method over existing sketch animation approaches. MoSketch takes a pioneering step towards multi-object sketch animation, opening new avenues for future research and applications.
Authors: Yikun Ma, Yiqing Li, Jiawei Wu, Xing Luo, Zhi Jin
Abstract:
Generative models have made remarkable advancements and are capable of producing high-quality content. However, performing controllable editing with generative models remains challenging, due to their inherent uncertainty in outputs. This challenge is praticularly pronounced in motion editing, which involves the processing of spatial information. While some physics-based generative methods have attempted to implement motion editing, they typically operate on single-view images with simple motions, such as translation and dragging. These methods struggle to handle complex rotation and stretching motions and ensure multi-view consistency, often necessitating resource-intensive retraining. To address these challenges, we propose MotionDiff, a training-free zero-shot diffusion method that leverages optical flow for complex multi-view motion editing. Specifically, given a static scene, users can interactively select objects of interest to add motion priors. The proposed Point Kinematic Model (PKM) then estimates corresponding multi-view optical flows during the Multi-view Flow Estimation Stage (MFES). Subsequently, these optical flows are utilized to generate multi-view motion results through decoupled motion representation in the Multi-view Motion Diffusion Stage (MMDS). Extensive experiments demonstrate that MotionDiff outperforms other physics-based generative motion editing methods in achieving high-quality multi-view consistent motion results. Notably, MotionDiff does not require retraining, enabling users to conveniently adapt it for various down-stream tasks.
Authors: Junyi Shen, Tetsuro Miyazaki, Kenji Kawashima
Abstract:
The intrinsic nonlinearities of soft robots present significant control but simultaneously provide them with rich computational potential. Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators. Conventional RC can be extended into physical reservoir computing (PRC) by leveraging the nonlinear dynamics of soft actuators for computation. This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator, utilizing another pneumatic soft actuator as the PRC model. Unlike conventional designs requiring two RC models, the proposed control system employs a more compact architecture with a single RC model. Additionally, the framework enables zero-shot online learning, addressing limitations of previous PRC-based control systems reliant on offline training. Simulations and experiments validated the performance of the proposed system. Experimental results indicate that the PRC model achieved superior control performance compared to a linear model, reducing the root-mean-square error (RMSE) by an average of over 37% in bending motion control tasks. The proposed PRC-based online learning control framework provides a novel approach for harnessing physical systems' inherent nonlinearities to enhance the control of soft actuators.
Authors: Yilan Dong, Haohe Liu, Qing Wang, Jiahao Yang, Wenqing Wang, Gregory Slabaugh, Shanxin Yuan
Abstract:
Existing 3D Gaussian Splatting (3DGS) methods for hand rendering rely on rigid skeletal motion with an oversimplified non-rigid motion model, which fails to capture fine geometric and appearance details. Additionally, they perform densification based solely on per-point gradients and process poses independently, ignoring spatial and temporal correlations. These limitations lead to geometric detail loss, temporal instability, and inefficient point distribution. To address these issues, we propose HandSplat, a novel Gaussian Splatting-based framework that enhances both fidelity and stability for hand rendering. To improve fidelity, we extend standard 3DGS attributes with implicit geometry and appearance embeddings for finer non-rigid motion modeling while preserving the static hand characteristic modeled by original 3DGS attributes. Additionally, we introduce a local gradient-aware densification strategy that dynamically refines Gaussian density in high-variation regions. To improve stability, we incorporate pose-conditioned attribute regularization to encourage attribute consistency across similar poses, mitigating temporal artifacts. Extensive experiments on InterHand2.6M demonstrate that HandSplat surpasses existing methods in fidelity and stability while achieving real-time performance. We will release the code and pre-trained models upon acceptance.
Authors: Junjia Liu, Zhuo Li, Minghao Yu, Zhipeng Dong, Sylvain Calinon, Darwin Caldwell, Fei Chen
Abstract:
Humanoid robots are envisioned as embodied intelligent agents capable of performing a wide range of human-level loco-manipulation tasks, particularly in scenarios requiring strenuous and repetitive labor. However, learning these skills is challenging due to the high degrees of freedom of humanoid robots, and collecting sufficient training data for humanoid is a laborious process. Given the rapid introduction of new humanoid platforms, a cross-embodiment framework that allows generalizable skill transfer is becoming increasingly critical. To address this, we propose a transferable framework that reduces the data bottleneck by using a unified digital human model as a common prototype and bypassing the need for re-training on every new robot platform. The model learns behavior primitives from human demonstrations through adversarial imitation, and the complex robot structures are decomposed into functional components, each trained independently and dynamically coordinated. Task generalization is achieved through a human-object interaction graph, and skills are transferred to different robots via embodiment-specific kinematic motion retargeting and dynamic fine-tuning. Our framework is validated on five humanoid robots with diverse configurations, demonstrating stable loco-manipulation and highlighting its effectiveness in reducing data requirements and increasing the efficiency of skill transfer across platforms.
Authors: Ziyun Wang, Ruijun Zhang, Zi-Yan Liu, Yufu Wang, Kostas Daniilidis
Abstract:
This paper addresses the challenges of estimating a continuous-time human motion field from a stream of events. Existing Human Mesh Recovery (HMR) methods rely predominantly on frame-based approaches, which are prone to aliasing and inaccuracies due to limited temporal resolution and motion blur. In this work, we predict a continuous-time human motion field directly from events by leveraging a recurrent feed-forward neural network to predict human motion in the latent space of possible human motions. Prior state-of-the-art event-based methods rely on computationally intensive optimization across a fixed number of poses at high frame rates, which becomes prohibitively expensive as we increase the temporal resolution. In comparison, we present the first work that replaces traditional discrete-time predictions with a continuous human motion field represented as a time-implicit function, enabling parallel pose queries at arbitrary temporal resolutions. Despite the promises of event cameras, few benchmarks have tested the limit of high-speed human motion estimation. We introduce Beam-splitter Event Agile Human Motion Dataset-a hardware-synchronized high-speed human dataset to fill this gap. On this new data, our method improves joint errors by 23.8% compared to previous event human methods while reducing the computational time by 69%.
Authors: Ananya Trivedi, Sarvesh Prajapati, Anway Shirgaonkar, Mark Zolotas, Taskin Padir
Abstract:
Traditional approaches to motion modeling for skid-steer robots struggle with capturing nonlinear tire-terrain dynamics, especially during high-speed maneuvers. In this paper, we tackle such nonlinearities by enhancing a dynamic unicycle model with Gaussian Process (GP) regression outputs. This enables us to develop an adaptive, uncertainty-informed navigation formulation. We solve the resultant stochastic optimal control problem using a chance-constrained Model Predictive Path Integral (MPPI) control method. This approach formulates both obstacle avoidance and path-following as chance constraints, accounting for residual uncertainties from the GP to ensure safety and reliability in control. Leveraging GPU acceleration, we efficiently manage the non-convex nature of the problem, ensuring real-time performance. Our approach unifies path-following and obstacle avoidance across different terrains, unlike prior works which typically focus on one or the other. We compare our GP-MPPI method against unicycle and data-driven kinematic models within the MPPI framework. In simulations, our approach shows superior tracking accuracy and obstacle avoidance. We further validate our approach through hardware experiments on a skid-steer robot platform, demonstrating its effectiveness in high-speed navigation. The GPU implementation of the proposed method and supplementary video footage are available at https: //stochasticmppi.github.io.
Authors: Jeongeun Park, Sungjoon Choi, Sangdoo Yun
Abstract:
Recent advancements in large language models (LLMs) have significantly improved their ability to generate natural and contextually relevant text, enabling more human-like AI interactions. However, generating and understanding interactive human-like motion, where multiple individuals engage in coordinated movements, remains challenging due to the complexity of modeling these interactions. Additionally, a unified and versatile model is needed to handle diverse interactive scenarios, such as chat systems that dynamically adapt to user instructions and assigned roles. To address these challenges, we introduce VIM, the Versatile Interactive Motion-language model, which integrates both language and motion modalities to effectively understand, generate, and control interactive motions in multi-turn conversational contexts. Unlike previous studies that primarily focus on uni-directional tasks such as text-to-motion or motion-to-text, VIM employs a unified architecture capable of simultaneously understanding and generating both motion and text modalities. Given the absence of an appropriate dataset to support this task, we introduce Inter-MT2, a large-scale instruction-tuning dataset containing 82.7K multi-turn interactive motion instructions, covering 153K interactive motion samples. Inter-MT2 spans diverse instructional scenarios, including motion editing, question answering, and story generation, leveraging off-the-shelf large language models and motion diffusion models to construct a broad set of interactive motion instructions. We extensively evaluate the versatility of VIM across multiple interactive motion-related tasks, including motion-to-text, text-to-motion, reaction generation, motion editing, and reasoning about motion sequences.
Authors: Haoyang Wang, Haoran Guo, He Ba, Zhengxiong Li, Lingfeng Tao
Abstract:
In-hand dexterous telemanipulation requires not only precise remote motion control of the robot but also effective haptic feedback to the human operator to ensure stable and intuitive interactions between them. Most existing haptic devices for dexterous telemanipulation focus on force feedback and lack effective torque rendering, which is essential for tasks involving object rotation. While some torque feedback solutions in virtual reality applications-such as those based on geared motors or mechanically coupled actuators-have been explored, they often rely on bulky mechanical designs, limiting their use in portable or in-hand applications. In this paper, we propose a Bi-directional Momentum-based Haptic Feedback and Control (Bi-Hap) system that utilizes a palm-sized momentum-actuated mechanism to enable real-time haptic and torque feedback. The Bi-Hap system also integrates an Inertial Measurement Unit (IMU) to extract the human's manipulation command to establish a closed-loop learning-based telemanipulation framework. Furthermore, an error-adaptive feedback strategy is introduced to enhance operator perception and task performance in different error categories. Experimental evaluations demonstrate that Bi-Hap achieved feedback capability with low command following latency (Delay < 0.025 s) and highly accurate torque feedback (RMSE < 0.010 Nm).
Authors: Andrew Stratton, Phani Teja Singamaneni, Pranav Goyal, Rachid Alami, Christoforos Mavrogiannis
Abstract:
Motivated by the vision of integrating mobile robots closer to humans in warehouses, hospitals, manufacturing plants, and the home, we focus on robot navigation in dynamic and spatially constrained environments. Ensuring human safety, comfort, and efficiency in such settings requires that robots are endowed with a model of how humans move around them. Human motion prediction around robots is especially challenging due to the stochasticity of human behavior, differences in user preferences, and data scarcity. In this work, we perform a methodical investigation of the effects of human motion prediction quality on robot navigation performance, as well as human productivity and impressions. We design a scenario involving robot navigation among two human subjects in a constrained workspace and instantiate it in a user study ($N=80$) involving two different robot platforms, conducted across two sites from different world regions. Key findings include evidence that: 1) the widely adopted average displacement error is not a reliable predictor of robot navigation performance and human impressions; 2) the common assumption of human cooperation breaks down in constrained environments, with users often not reciprocating robot cooperation, and causing performance degradations; 3) more efficient robot navigation often comes at the expense of human efficiency and comfort.
Authors: Shaoheng Fang, Hanwen Jiang, Yunpeng Bai, Niloy J. Mitra, Qixing Huang
Abstract:
Recent video generators achieve striking photorealism, yet remain fundamentally inconsistent in 3D. We present WorldReel, a 4D video generator that is natively spatio-temporally consistent. WorldReel jointly produces RGB frames together with 4D scene representations, including pointmaps, camera trajectory, and dense flow mapping, enabling coherent geometry and appearance modeling over time. Our explicit 4D representation enforces a single underlying scene that persists across viewpoints and dynamic content, yielding videos that remain consistent even under large non-rigid motion and significant camera movement. We train WorldReel by carefully combining synthetic and real data: synthetic data providing precise 4D supervision (geometry, motion, and camera), while real videos contribute visual diversity and realism. This blend allows WorldReel to generalize to in-the-wild footage while preserving strong geometric fidelity. Extensive experiments demonstrate that WorldReel sets a new state-of-the-art for consistent video generation with dynamic scenes and moving cameras, improving metrics of geometric consistency, motion coherence, and reducing view-time artifacts over competing methods. We believe that WorldReel brings video generation closer to 4D-consistent world modeling, where agents can render, interact, and reason about scenes through a single and stable spatiotemporal representation.
Authors: Yao-Chih Lee, Zhoutong Zhang, Jiahui Huang, Jui-Hsien Wang, Joon-Young Lee, Jia-Bin Huang, Eli Shechtman, Zhengqi Li
Abstract:
Camera and object motions are central to a video's narrative. However, precisely editing these captured motions remains a significant challenge, especially under complex object movements. Current motion-controlled image-to-video (I2V) approaches often lack full-scene context for consistent video editing, while video-to-video (V2V) methods provide viewpoint changes or basic object translation, but offer limited control over fine-grained object motion. We present a track-conditioned V2V framework that enables joint editing of camera and object motion. We achieve this by conditioning a video generation model on a source video and paired 3D point tracks representing source and target motions. These 3D tracks establish sparse correspondences that transfer rich context from the source video to new motions while preserving spatiotemporal coherence. Crucially, compared to 2D tracks, 3D tracks provide explicit depth cues, allowing the model to resolve depth order and handle occlusions for precise motion editing. Trained in two stages on synthetic and real data, our model supports diverse motion edits, including joint camera/object manipulation, motion transfer, and non-rigid deformation, unlocking new creative potential in video editing.
Authors: Yushi Wang, Changsheng Luo, Penghui Chen, Jianran Liu, Weijian Sun, Tong Guo, Kechang Yang, Biao Hu, Yangang Zhang, Mingguo Zhao
Abstract:
Humanoid soccer poses a representative challenge for embodied intelligence, requiring robots to operate within a tightly coupled perception-action loop. However, existing systems typically rely on decoupled modules, resulting in delayed responses and incoherent behaviors in dynamic environments, while real-world perceptual limitations further exacerbate these issues. In this work, we present a unified reinforcement learning-based controller that enables humanoid robots to acquire reactive soccer skills through the direct integration of visual perception and motion control. Our approach extends Adversarial Motion Priors to perceptual settings in real-world dynamic environments, bridging motion imitation and visually grounded dynamic control. We introduce an encoder-decoder architecture combined with a virtual perception system that models real-world visual characteristics, allowing the policy to recover privileged states from imperfect observations and establish active coordination between perception and action. The resulting controller demonstrates strong reactivity, consistently executing coherent and robust soccer behaviors across various scenarios, including real RoboCup matches.
Authors: Jungbin Cho, Minsu Kim, Jisoo Kim, Ce Zheng, Laszlo A. Jeni, Ming-Hsuan Yang, Youngjae Yu, Seonjoo Kim
Abstract:
Human motion is inherently diverse and semantically rich, while also shaped by the surrounding scene. However, existing motion generation approaches address either motion semantics or scene-awareness in isolation, since constructing large-scale datasets with both rich text--motion coverage and precise scene interactions is extremely challenging. In this work, we introduce SceneAdapt, a framework that injects scene awareness into text-conditioned motion models by leveraging disjoint scene--motion and text--motion datasets through two adaptation stages: inbetweening and scene-aware inbetweening. The key idea is to use motion inbetweening, learnable without text, as a proxy task to bridge two distinct datasets and thereby inject scene-awareness to text-to-motion models. In the first stage, we introduce keyframing layers that modulate motion latents for inbetweening while preserving the latent manifold. In the second stage, we add a scene-conditioning layer that injects scene geometry by adaptively querying local context through cross-attention. Experimental results show that SceneAdapt effectively injects scene awareness into text-to-motion models, and we further analyze the mechanisms through which this awareness emerges. Code and models will be released.
Authors: Peiyin Chen, Zhuowei Yang, Hui Feng, Sheng Jiang, Rui Yan
Abstract:
Audio-driven talking-head generation has advanced rapidly with diffusion-based generative models, yet producing temporally coherent videos with fine-grained motion control remains challenging. We propose DEMO, a flow-matching generative framework for audio-driven talking-portrait video synthesis that delivers disentangled, high-fidelity control of lip motion, head pose, and eye gaze. The core contribution is a motion auto-encoder that builds a structured latent space in which motion factors are independently represented and approximately orthogonalized. On this disentangled motion space, we apply optimal-transport-based flow matching with a transformer predictor to generate temporally smooth motion trajectories conditioned on audio. Extensive experiments across multiple benchmarks show that DEMO outperforms prior methods in video realism, lip-audio synchronization, and motion fidelity. These results demonstrate that combining fine-grained motion disentanglement with flow-based generative modeling provides a powerful new paradigm for controllable talking-head video synthesis.
Authors: Onur Keleş, Aslı Özyürek, Gerardo Ortega, Kadir Gökgö, Esam Ghaleb
Abstract:
Iconicity, the resemblance between linguistic form and meaning, is pervasive in signed languages, offering a natural testbed for visual grounding. For vision-language models (VLMs), the challenge is to recover such essential mappings from dynamic human motion rather than static context. We introduce the \textit{Visual Iconicity Challenge}, a novel video-based benchmark that adapts psycholinguistic measures to evaluate VLMs on three tasks: (i) phonological sign-form prediction (e.g., handshape, location), (ii) transparency (inferring meaning from visual form), and (iii) graded iconicity ratings. We assess $13$ state-of-the-art VLMs in zero- and few-shot settings on Sign Language of the Netherlands and compare them to human baselines. On \textit{phonological form prediction}, VLMs recover some handshape and location detail but remain below human performance; on \textit{transparency}, they are far from human baselines; and only top models correlate moderately with human \textit{iconicity ratings}. Interestingly, \textit{models with stronger phonological form prediction correlate better with human iconicity judgment}, indicating shared sensitivity to visually grounded structure. Our findings validate these diagnostic tasks and motivate human-centric signals and embodied learning methods for modelling iconicity and improving visual grounding in multimodal models.
Authors: Anamika J H, Anujith Muraleedharan
Abstract:
Robots manipulating in changing environments must act on percepts that are late, noisy, or stale. We present U-LAG, a mid-execution goal-retargeting layer that leaves the low-level controller unchanged while re-aiming task goals (pre-contact, contact, post) as new observations arrive. Unlike motion retargeting or generic visual servoing, U-LAG treats in-flight goal re-aiming as a first-class, pluggable module between perception and control. Our main technical contribution is UAR-PF, an uncertainty-aware retargeter that maintains a distribution over object pose under sensing lag and selects goals that maximize expected progress. We instantiate a reproducible Shift x Lag stress test in PyBullet/PandaGym for pick, push, stacking, and peg insertion, where the object undergoes abrupt in-plane shifts while synthetic perception lag is injected during approach. Across 0-10 cm shifts and 0-400 ms lags, UAR-PF and ICP degrade gracefully relative to a no-retarget baseline, achieving higher success with modest end-effector travel and fewer aborts; simple operational safeguards further improve stability. Contributions: (1) UAR-PF for lag-adaptive, uncertainty-aware goal retargeting; (2) a pluggable retargeting interface; and (3) a reproducible Shift x Lag benchmark with evaluation on pick, push, stacking, and peg insertion.
Authors: Zewen He, Chenyuan Chen, Dilshod Azizov, Yoshihiko Nakamura
Abstract:
Humanoid whole-body locomotion control is a critical approach for humanoid robots to leverage their inherent advantages. Learning-based control methods derived from retargeted human motion data provide an effective means of addressing this issue. However, because most current human datasets lack measured force data, and learning-based robot control is largely position-based, achieving appropriate compliance during interaction with real environments remains challenging. This paper presents Compliant Task Pipeline (CoTaP): a pipeline that leverages compliance information in the learning-based structure of humanoid robots. A two-stage dual-agent reinforcement learning framework combined with model-based compliance control for humanoid robots is proposed. In the training process, first a base policy with a position-based controller is trained; then in the distillation, the upper-body policy is combined with model-based compliance control, and the lower-body agent is guided by the base policy. In the upper-body control, adjustable task-space compliance can be specified and integrated with other controllers through compliance modulation on the symmetric positive definite (SPD) manifold, ensuring system stability. We validated the feasibility of the proposed strategy in simulation, primarily comparing the responses to external disturbances under different compliance settings.
Authors: Chenxi Song, Yanming Yang, Tong Zhao, Ruibo Li, Chi Zhang
Abstract:
Recent video diffusion models show immense potential for spatial intelligence tasks due to their rich world priors, but this is undermined by limited controllability, poor spatial-temporal consistency, and entangled scene-camera dynamics. Existing solutions, such as model fine-tuning and warping-based repainting, struggle with scalability, generalization, and robustness against artifacts. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. 1) Intra-Step Recursive Refinement injects fine-grained trajectory guidance at denoising steps through a recursive correction loop, ensuring motion remains aligned with the target path. 2) Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. 3) Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Our framework is plug-and-play and model-agnostic, enabling broad applicability across various 3D/4D tasks. Extensive experiments demonstrate that our method achieves state-of-the-art performance in trajectory adherence, geometric consistency, and perceptual quality, outperforming both training-intensive and inference-only baselines.
Authors: Xing Gao, Zherui Huang, Weiyao Lin, Xiao Sun
Abstract:
Accurate motion prediction of surrounding agents is crucial for the safe planning of autonomous vehicles. Recent advancements have extended prediction techniques from individual agents to joint predictions of multiple interacting agents, with various strategies to address complex interactions within future motions of agents. However, these methods overlook the evolving nature of these interactions. To address this limitation, we propose a novel progressive multi-scale decoding strategy, termed ProgD, with the help of dynamic heterogeneous graph-based scenario modeling. In particular, to explicitly and comprehensively capture the evolving social interactions in future scenarios, given their inherent uncertainty, we design a progressive modeling of scenarios with dynamic heterogeneous graphs. With the unfolding of such dynamic heterogeneous graphs, a factorized architecture is designed to process the spatio-temporal dependencies within future scenarios and progressively eliminate uncertainty in future motions of multiple agents. Furthermore, a multi-scale decoding procedure is incorporated to improve on the future scenario modeling and consistent prediction of agents' future motion. The proposed ProgD achieves state-of-the-art performance on the INTERACTION multi-agent prediction benchmark, ranking $1^{st}$, and the Argoverse 2 multi-world forecasting benchmark.
Authors: Shaoshu Yang, Zhe Kong, Feng Gao, Meng Cheng, Xiangyu Liu, Yong Zhang, Zhuoliang Kang, Wenhan Luo, Xunliang Cai, Ran He, Xiaoming Wei
Abstract:
Recent breakthroughs in video AIGC have ushered in a transformative era for audio-driven human animation. However, conventional video dubbing techniques remain constrained to mouth region editing, resulting in discordant facial expressions and body gestures that compromise viewer immersion. To overcome this limitation, we introduce sparse-frame video dubbing, a novel paradigm that strategically preserves reference keyframes to maintain identity, iconic gestures, and camera trajectories while enabling holistic, audio-synchronized full-body motion editing. Through critical analysis, we identify why naive image-to-video models fail in this task, particularly their inability to achieve adaptive conditioning. Addressing this, we propose InfiniteTalk, a streaming audio-driven generator designed for infinite-length long sequence dubbing. This architecture leverages temporal context frames for seamless inter-chunk transitions and incorporates a simple yet effective sampling strategy that optimizes control strength via fine-grained reference frame positioning. Comprehensive evaluations on HDTF, CelebV-HQ, and EMTD datasets demonstrate state-of-the-art performance. Quantitative metrics confirm superior visual realism, emotional coherence, and full-body motion synchronization.
Authors: Rajan Das Gupta, Lei Wei, Md Yeasin Rahat, Nafiz Fahad, Abir Ahmed, Liew Tze Hui
Abstract:
This study investigates the use of large language models (LLMs) for human behavior understanding by jointly leveraging motion and video data. We argue that integrating these complementary modalities is essential for capturing both fine-grained motion dynamics and contextual semantics of human actions, addressing the limitations of prior motion-only or video-only approaches. To this end, we propose ViMoNet, a multimodal vision-language framework trained through a two-stage alignment and instruction-tuning strategy that combines precise motion-text supervision with large-scale video-text data. We further introduce VIMOS, a multimodal dataset comprising human motion sequences, videos, and instruction-level annotations, along with ViMoNet-Bench, a standardized benchmark for evaluating behavior-centric reasoning. Experimental results demonstrate that ViMoNet consistently outperforms existing methods across caption generation, motion understanding, and human behavior interpretation tasks. The proposed framework shows significant potential in assistive healthcare applications, such as elderly monitoring, fall detection, and early identification of health risks in aging populations. This work contributes to the United Nations Sustainable Development Goal 3 (SDG 3: Good Health and Well-being) by enabling accessible AI-driven tools that promote universal health coverage, reduce preventable health issues, and enhance overall well-being.
Authors: Heran Wu, Zirun Zhou, Jingfeng Zhang
Abstract:
Traditional robotic systems typically decompose intelligence into independent modules for computer vision, natural language processing, and motion control. Vision-Language-Action (VLA) models fundamentally transform this approach by employing a single neural network that can simultaneously process visual observations, understand human instructions, and directly output robot actions -- all within a unified framework. However, these systems are highly dependent on high-quality training datasets that can capture the complex relationships between visual observations, language instructions, and robotic actions. This tutorial reviews three representative systems: the PyBullet simulation framework for flexible customized data generation, the LIBERO benchmark suite for standardized task definition and evaluation, and the RT-X dataset collection for large-scale multi-robot data acquisition. We demonstrated dataset generation approaches in PyBullet simulation and customized data collection within LIBERO, and provide an overview of the characteristics and roles of the RT-X dataset for large-scale multi-robot data acquisition.
Authors: Jiayuan Wang, Farhad Pourpanah, Q. M. Jonathan Wu, Ning Zhang
Abstract:
Connected autonomous vehicles (CAVs) must simultaneously perform multiple tasks, such as object detection, semantic segmentation, depth estimation, trajectory prediction, motion prediction, and behaviour prediction, to ensure safe and reliable navigation in complex environments. Vehicle-to-everything (V2X) communication enables cooperative driving among CAVs, thereby mitigating the limitations of individual sensors, reducing occlusions, and improving perception over long distances. Traditionally, these tasks are addressed using distinct models, which leads to high deployment costs, increased computational overhead, and challenges in achieving real-time performance. Multi-task learning (MTL) has recently emerged as a promising solution that enables the joint learning of multiple tasks within a single unified model. This offers improved efficiency and resource utilization. To the best of our knowledge, this survey is the first comprehensive review focused on MTL in the context of CAVs. We begin with an overview of CAVs and MTL to provide foundational background. We then explore the application of MTL across key functional modules, including perception, prediction, planning, control, and multi-agent collaboration. Finally, we discuss the strengths and limitations of existing methods, identify key research gaps, and provide directions for future research aimed at advancing MTL methodologies for CAV systems.
Authors: Andreas Spilz, Heiko Oppel, Jochen Werner, Kathrin Stucke-Straub, Felix Capanni, Michael Munz
Abstract:
Wearable inertial measurement units (IMUs) offer a cost-effective and scalable means to assess human movement quality in clinical and everyday settings. However, the development of robust sensor-based classification models for physiotherapeutic exercises and gait analysis requires large, diverse datasets, which are costly and time-consuming to collect. Here, we present a multimodal dataset of physiotherapeutic exercises - including correct and clinically relevant variants - and gait-related exercises - including both normal and impaired gait patterns - recorded from 19 participants using synchronized IMUs and marker-based motion capture (MoCap). The dataset includes raw data from nine IMUs and thirty-five optical markers capturing full-body kinematics. Each IMU is additionally equipped with four optical markers, enabling precise comparison between IMU-derived orientation estimates and reference values from the MoCap system. To support further analysis, we also provide processed IMU orientations aligned with common segment coordinate systems, subject-specific OpenSim models, inverse kinematics results, and tools for visualizing IMU orientations in the musculoskeletal context. Detailed annotations of movement execution quality and time-stamped segmentations support diverse analysis goals. This dataset supports the development and benchmarking of machine learning models for tasks such as automatic exercise evaluation, gait analysis, temporal activity segmentation, and biomechanical parameter estimation. To facilitate reproducibility, we provide code for postprocessing, sensor-to-segment alignment, inverse kinematics computation, and technical validation. This resource is intended to accelerate research in machine learning-driven human movement analysis.
Authors: Xiaoyi Feng, Kaifeng Zou, Caichun Cen, Tao Huang, Hui Guo, Zizhou Huang, Yingli Zhao, Mingqing Zhang, Ziyuan Zheng, Diwei Wang, Yuntao Zou, Dagang Li
Abstract:
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
Authors: Maksym Ivashechkin, Oscar Mendez, Richard Bowden
Abstract:
State-of-the-art approaches for conditional human body rendering via Gaussian splatting typically focus on simple body motions captured from many views. This is often in the context of dancing or walking. However, for more complex use cases, such as sign language, we care less about large body motion and more about subtle and complex motions of the hands and face. The problems of building high fidelity models are compounded by the complexity of capturing multi-view data of sign. The solution is to make better use of sequence data, ensuring that we can overcome the limited information from only a few views by exploiting temporal variability. Nevertheless, learning from sequence-level data requires extremely accurate and consistent model fitting to ensure that appearance is consistent across complex motions. We focus on how to achieve this, constraining mesh parameters to build an accurate Gaussian splatting framework from few views capable of modelling subtle human motion. We leverage regularization techniques on the Gaussian parameters to mitigate overfitting and rendering artifacts. Additionally, we propose a new adaptive control method to densify Gaussians and prune splat points on the mesh surface. To demonstrate the accuracy of our approach, we render novel sequences of sign language video, building on neural machine translation approaches to sign stitching. On benchmark datasets, our approach achieves state-of-the-art performance; and on highly articulated and complex sign language motion, we significantly outperform competing approaches.
Authors: Zesheng Wang, Alexandre Bruckert, Patrick Le Callet, Guangtao Zhai
Abstract:
Generating realistic listener facial motions in dyadic conversations remains challenging due to the high-dimensional action space and temporal dependency requirements. Existing approaches usually consider extracting 3D Morphable Model (3DMM) coefficients and modeling in the 3DMM space. However, this makes the computational speed of the 3DMM a bottleneck, making it difficult to achieve real-time interactive responses. To tackle this problem, we propose Facial Action Diffusion (FAD), which introduces the diffusion methods from the field of image generation to achieve efficient facial action generation. We further build the Efficient Listener Network (ELNet) specially designed to accommodate both the visual and audio information of the speaker as input. Considering of FAD and ELNet, the proposed method learns effective listener facial motion representations and leads to improvements of performance over the state-of-the-art methods while reducing 99% computational time.
Authors: Li Yu, Situo Wang, Wei Zhou, Moncef Gabbouj
Abstract:
Inspired by the dual-stream theory of the human visual system (HVS) - where the ventral stream is responsible for object recognition and detail analysis, while the dorsal stream focuses on spatial relationships and motion perception - an increasing number of video quality assessment (VQA) works built upon this framework are proposed. Recent advancements in large multi-modal models, notably Contrastive Language-Image Pretraining (CLIP), have motivated researchers to incorporate CLIP into dual-stream-based VQA methods. This integration aims to harness the model's superior semantic understanding capabilities to replicate the object recognition and detail analysis in ventral stream, as well as spatial relationship analysis in dorsal stream. However, CLIP is originally designed for images and lacks the ability to capture temporal and motion information inherent in videos. To address the limitation, this paper propose a Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment (DVLTA-VQA), which decouples CLIP's visual and textual components, and integrates them into different stages of the NR-VQA pipeline. Specifically, a Video-Based Temporal CLIP module is proposed to explicitly model temporal dynamics and enhance motion perception, aligning with the dorsal stream. Additionally, a Temporal Context Module is developed to refine inter-frame dependencies, further improving motion modeling. On the ventral stream side, a Basic Visual Feature Extraction Module is employed to strengthen detail analysis. Finally, a text-guided adaptive fusion strategy is proposed to enable dynamic weighting of features, facilitating more effective integration of spatial and temporal information.
Authors: Kaushik Bhargav Sivangi, Idris Zakariyya, Paul Henderson, Fani Deligianni
Abstract:
Human pose estimation (HPE) has become essential in numerous applications including healthcare, activity recognition, and human-computer interaction. However, the privacy implications of processing sensitive visual data present significant deployment barriers in critical domains. While traditional anonymization techniques offer limited protection and often compromise data utility for broader motion analysis, Differential Privacy (DP) provides formal privacy guarantees but typically degrades model performance when applied naively. In this work, we present the first differentially private 2D human pose estimation (2D-HPE) by applying Differentially Private Stochastic Gradient Descent (DP-SGD) to this task. To effectively balance privacy with performance, we adopt Projected DP-SGD (PDP-SGD), which projects the noisy gradients to a low-dimensional subspace. Additionally, we adapt TinyViT, a compact and efficient vision transformer for coordinate classification in HPE, providing a lightweight yet powerful backbone that enhances privacy-preserving deployment feasibility on resource-limited devices. Our approach is particularly valuable for multimedia interpretation tasks, enabling privacy-safe analysis and understanding of human motion across diverse visual media while preserving the semantic meaning required for downstream applications. Comprehensive experiments on the MPII Human Pose Dataset demonstrate significant performance enhancement with PDP-SGD achieving 78.48% PCKh@0.5 at a strict privacy budget ($ε=0.2$), compared to 63.85% for standard DP-SGD. This work lays foundation for privacy-preserving human pose estimation in real-world, sensitive applications.
Authors: Xiangyue Zhang, Jianfang Li, Jiaxu Zhang, Jianqiang Ren, Liefeng Bo, Zhigang Tu
Abstract:
Masked modeling framework has shown promise in co-speech motion generation. However, it struggles to identify semantically significant frames for effective motion masking. In this work, we propose a speech-queried attention-based mask modeling framework for co-speech motion generation. Our key insight is to leverage motion-aligned speech features to guide the masked motion modeling process, selectively masking rhythm-related and semantically expressive motion frames. Specifically, we first propose a motion-audio alignment module (MAM) to construct a latent motion-audio joint space. In this space, both low-level and high-level speech features are projected, enabling motion-aligned speech representation using learnable speech queries. Then, a speech-queried attention mechanism (SQA) is introduced to compute frame-level attention scores through interactions between motion keys and speech queries, guiding selective masking toward motion frames with high attention scores. Finally, the motion-aligned speech features are also injected into the generation network to facilitate co-speech motion generation. Qualitative and quantitative evaluations confirm that our method outperforms existing state-of-the-art approaches, successfully producing high-quality co-speech motion.
Authors: Yilin Wang, Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Xinxin Zuo, Juwei Lu, Hai Jiang, Li Cheng
Abstract:
Generative masked transformers have demonstrated remarkable success across various content generation tasks, primarily due to their ability to effectively model large-scale dataset distributions with high consistency. However, in the animation domain, large datasets are not always available. Applying generative masked modeling to generate diverse instances from a single MoCap reference may lead to overfitting, a challenge that remains unexplored. In this work, we present MotionDreamer, a localized masked modeling paradigm designed to learn internal motion patterns from a given motion with arbitrary topology and duration. By embedding the given motion into quantized tokens with a novel distribution regularization method, MotionDreamer constructs a robust and informative codebook for local motion patterns. Moreover, a sliding window local attention is introduced in our masked transformer, enabling the generation of natural yet diverse animations that closely resemble the reference motion patterns. As demonstrated through comprehensive experiments, MotionDreamer outperforms the state-of-the-art methods that are typically GAN or Diffusion-based in both faithfulness and diversity. Thanks to the consistency and robustness of the quantization-based approach, MotionDreamer can also effectively perform downstream tasks such as temporal motion editing, \textcolor{update}{crowd animation}, and beat-aligned dance generation, all using a single reference motion. Visit our project page: https://motiondreamer.github.io/
Authors: Jiexin Wang, Wenwen Qiang, Zhao Yang, Bing Su
Abstract:
Expressive representation of pose sequences is crucial for accurate motion modeling in human motion prediction (HMP). While recent deep learning-based methods have shown promise in learning motion representations, these methods tend to overlook the varying relevance and dependencies between historical information and future moments, with a stronger correlation for short-term predictions and weaker for distant future predictions. This limits the learning of motion representation and then hampers prediction performance. In this paper, we propose a novel approach called multi-range decoupling decoding with gating-adjusting aggregation ($MD2GA$), which leverages the temporal correlations to refine motion representation learning. This approach employs a two-stage strategy for HMP. In the first stage, a multi-range decoupling decoding adeptly adjusts feature learning by decoding the shared features into distinct future lengths, where different decoders offer diverse insights into motion patterns. In the second stage, a gating-adjusting aggregation dynamically combines the diverse insights guided by input motion data. Extensive experiments demonstrate that the proposed method can be easily integrated into other motion prediction methods and enhance their prediction performance.
Authors: Qiming Wang, Yulong Gao, Yang Wang, Xiongwei Zhao, Yijiao Sun, Xiangyan Kong
Abstract:
Conventional algorithms in autonomous exploration face challenges due to their inability to accurately and efficiently identify the spatial distribution of convex regions in the real-time map. These methods often prioritize navigation toward the nearest or information-rich frontiers -- the boundaries between known and unknown areas -- resulting in incomplete convex region exploration and requiring excessive backtracking to revisit these missed areas. To address these limitations, this paper introduces an innovative dual-level topological analysis approach. First, we introduce a Low-level Topological Graph (LTG), generated through uniform sampling of the original map data, which captures essential geometric and connectivity details. Next, the LTG is transformed into a High-level Topological Graph (HTG), representing the spatial layout and exploration completeness of convex regions, prioritizing the exploration of convex regions that are not fully explored and minimizing unnecessary backtracking. Finally, an novel Local Artificial Potential Field (LAPF) method is employed for motion control, replacing conventional path planning and boosting overall efficiency. Experimental results highlight the effectiveness of our approach. Simulation tests reveal that our framework significantly reduces exploration time and travel distance, outperforming existing methods in both speed and efficiency. Ablation studies confirm the critical role of each framework component. Real-world tests demonstrate the robustness of our method in environments with poor mapping quality, surpassing other approaches in adaptability to mapping inaccuracies and inaccessible areas.
Authors: Qiuxia Lin, Rongyu Chen, Kerui Gu, Angela Yao
Abstract:
This work highlights a semantics misalignment in 3D human pose estimation. For the task of test-time adaptation, the misalignment manifests as overly smoothed and unguided predictions. The smoothing settles predictions towards some average pose. Furthermore, when there are occlusions or truncations, the adaptation becomes fully unguided. To this end, we pioneer the integration of a semantics-aware motion prior for the test-time adaptation of 3D pose estimation. We leverage video understanding and a well-structured motion-text space to adapt the model motion prediction to adhere to video semantics during test time. Additionally, we incorporate a missing 2D pose completion based on the motion-text similarity. The pose completion strengthens the motion prior's guidance for occlusions and truncations. Our method significantly improves state-of-the-art 3D human pose estimation TTA techniques, with more than 12% decrease in PA-MPJPE on 3DPW and 3DHP.
Authors: Jinbo Xing, Long Mai, Cusuh Ham, Jiahui Huang, Aniruddha Mahapatra, Chi-Wing Fu, Tien-Tsin Wong, Feng Liu
Abstract:
This paper presents a method that allows users to design cinematic video shots in the context of image-to-video generation. Shot design, a critical aspect of filmmaking, involves meticulously planning both camera movements and object motions in a scene. However, enabling intuitive shot design in modern image-to-video generation systems presents two main challenges: first, effectively capturing user intentions on the motion design, where both camera movements and scene-space object motions must be specified jointly; and second, representing motion information that can be effectively utilized by a video diffusion model to synthesize the image animations. To address these challenges, we introduce MotionCanvas, a method that integrates user-driven controls into image-to-video (I2V) generation models, allowing users to control both object and camera motions in a scene-aware manner. By connecting insights from classical computer graphics and contemporary video generation techniques, we demonstrate the ability to achieve 3D-aware motion control in I2V synthesis without requiring costly 3D-related training data. MotionCanvas enables users to intuitively depict scene-space motion intentions, and translates them into spatiotemporal motion-conditioning signals for video diffusion models. We demonstrate the effectiveness of our method on a wide range of real-world image content and shot-design scenarios, highlighting its potential to enhance the creative workflows in digital content creation and adapt to various image and video editing applications.
Authors: Paul Janson, Tiberiu Popa, Eugene Belilovsky
Abstract:
Text-conditioned video diffusion models have emerged as a powerful tool in the realm of video generation and editing. But their ability to capture the nuances of human movement remains under-explored. Indeed the ability of these models to faithfully model an array of text prompts can lead to a wide host of applications in human and character animation. In this work, we take initial steps to investigate whether these models can effectively guide the synthesis of realistic human body animations. Specifically we propose to synthesize human motion by deforming an SMPL-X body representation guided by Score distillation sampling (SDS) calculated using a video diffusion model. By analyzing the fidelity of the resulting animations, we gain insights into the extent to which we can obtain motion using publicly available text-to-video diffusion models using SDS. Our findings shed light on the potential and limitations of these models for generating diverse and plausible human motions, paving the way for further research in this exciting area.
Authors: Youyuan Zhang, Zehua Liu, Zenan Li, Zhaoyu Li, James J. Clark, Xujie Si
Abstract:
In this paper, we consider the conditional generation problem by guiding off-the-shelf unconditional diffusion models with differentiable loss functions in a plug-and-play fashion. While previous research has primarily focused on balancing the unconditional diffusion model and the guided loss through a tuned weight hyperparameter, we propose a novel framework that distinctly decouples these two components. Specifically, we introduce two variables ${x}$ and ${z}$, to represent the generated samples governed by the unconditional generation model and the guidance function, respectively. This decoupling reformulates conditional generation into two manageable subproblems, unified by the constraint ${x} = {z}$. Leveraging this setup, we develop a new algorithm based on the Alternating Direction Method of Multipliers (ADMM) to adaptively balance these components. Additionally, we establish the equivalence between the diffusion reverse step and the proximal operator of ADMM and provide a detailed convergence analysis of our algorithm under certain mild assumptions. Our experiments demonstrate that our proposed method ADMMDiff consistently generates high-quality samples while ensuring strong adherence to the conditioning criteria. It outperforms existing methods across a range of conditional generation tasks, including image generation with various guidance and controllable motion synthesis.
Authors: Idris Zakariyya, Linda Tran, Kaushik Bhargav Sivangi, Paul Henderson, Fani Deligianni
Abstract:
Human motion analysis offers significant potential for healthcare monitoring and early detection of diseases. The advent of radar-based sensing systems has captured the spotlight for they are able to operate without physical contact and they can integrate with pre-existing Wi-Fi networks. They are also seen as less privacy-invasive compared to camera-based systems. However, recent research has shown high accuracy in recognizing subjects or gender from radar gait patterns, raising privacy concerns. This study addresses these issues by investigating privacy vulnerabilities in radar-based Human Activity Recognition (HAR) systems and proposing a novel method for privacy preservation using Differential Privacy (DP) driven by attributions derived with Integrated Decision Gradient (IDG) algorithm. We investigate Black-box Membership Inference Attack (MIA) Models in HAR settings across various levels of attacker-accessible information. We extensively evaluated the effectiveness of the proposed IDG-DP method by designing a CNN-based HAR model and rigorously assessing its resilience against MIAs. Experimental results demonstrate the potential of IDG-DP in mitigating privacy attacks while maintaining utility across all settings, particularly excelling against label-only and shadow model black-box MIA attacks. This work represents a crucial step towards balancing the need for effective radar-based HAR with robust privacy protection in healthcare environments.
Authors: Yashuai Yan, Dongheui Lee
Abstract:
We present a scalable framework for cross-embodiment humanoid robot control by learning a shared latent representation that unifies motion across humans and diverse humanoid platforms, including single-arm, dual-arm, and legged humanoid robots. Our method proceeds in two stages: first, we construct a decoupled latent space that captures localized motion patterns across different body parts using contrastive learning, enabling accurate and flexible motion retargeting even across robots with diverse morphologies. To enhance alignment between embodiments, we introduce tailored similarity metrics that combine joint rotation and end-effector positioning for critical segments, such as arms. Then, we train a goal-conditioned control policy directly within this latent space using only human data. Leveraging a conditional variational autoencoder, our policy learns to predict latent space displacements guided by intended goal directions. We show that the trained policy can be directly deployed on multiple robots without any adaptation. Furthermore, our method supports the efficient addition of new robots to the latent space by learning only a lightweight, robot-specific embedding layer. The learned latent policies can also be directly applied to the new robots. Experimental results demonstrate that our approach enables robust, scalable, and embodiment-agnostic robot control across a wide range of humanoid platforms.
Authors: Shifa Sulaiman, Mohammad Gohari, Francesco Schetter, Fanny Ficuciello
Abstract:
Development of dexterous robotic joints is essential for advancing manipulation capabilities in robotic systems. This paper presents the design and implementation of a tendon-driven robotic wrist joint together with an efficient Sliding Mode Controller (SMC) for precise motion control. The wrist mechanism is modeled using a Timoshenko-based approach to accurately capture its kinematic and dynamic properties, which serve as the foundation for tendon force calculations within the controller. The proposed SMC is designed to deliver fast dynamic response and computational efficiency, enabling accurate trajectory tracking under varying operating conditions. The effectiveness of the controller is validated through comparative analyses with existing controllers for similar wrist mechanisms. The proposed SMC demonstrates superior performance in both simulation and experimental studies. The Root Mean Square Error (RMSE) in simulation is approximately 1.67e-2 radians, while experimental validation yields an error of 0.2 radians. Additionally, the controller achieves a settling time of less than 3 seconds and a steady-state error below 1e-1 radians, consistently observed across both simulation and experimental evaluations. Comparative analyses confirm that the developed SMC surpasses alternative control strategies in motion accuracy, rapid convergence, and steady-state precision. This work establishes a foundation for future exploration of tendon-driven wrist mechanisms and control strategies in robotic applications.
Authors: Zhaorui Meng, Lu Yin, Xinrui Chen, Anjun Chen, Shihui Guo, Yipeng Qin
Abstract:
Physics-based motion imitation is central to humanoid control, yet current evaluation metrics (e.g., joint position error) only measure how well a policy imitates but not how difficult the motion itself is. This conflates policy performance with motion difficulty, obscuring whether failures stem from poor learning or inherently challenging motions. In this work, we address this gap with Motion Difficulty Score (MDS), a novel metric that defines and quantifies imitation difficulty independent of policy performance. Grounded in rigid-body dynamics, MDS interprets difficulty as the torque variation induced by small pose perturbations: larger torque-to-pose variation yields flatter reward landscapes and thus higher learning difficulty. MDS captures this through three properties of the perturbation-induced torque space: volume, variance, and temporal variability. We also use it to construct MD-AMASS, a difficulty-aware repartitioning of the AMASS dataset. Empirically, we rigorously validate MDS by demonstrating its explanatory power on the performance of state-of-the-art motion imitation policies. We further demonstrate the utility of MDS through two new MDS-based metrics: Maximum Imitable Difficulty (MID) and Difficulty-Stratified Joint Error (DSJE), providing fresh insights into imitation learning.
Authors: Zhaorui Meng, Lu Yin, Yangqing Hou, Anjun Chen, Shihui Guo, Yipeng Qin
Abstract:
Sparse Inertial Measurement Units (IMUs) based human motion capture has gained significant momentum, driven by the adaptation of fundamental AI tools such as recurrent neural networks (RNNs) and transformers that are tailored for temporal and spatial modeling. Despite these achievements, current research predominantly focuses on pipeline and architectural designs, with comparatively little attention given to regularization methods, highlighting a critical gap in developing a comprehensive AI toolkit for this task. To bridge this gap, we propose motion label smoothing, a novel method that adapts the classic label smoothing strategy from classification to the sparse IMU-based motion capture task. Specifically, we first demonstrate that a naive adaptation of label smoothing, including simply blending a uniform vector or a ``uniform'' motion representation (e.g., dataset-average motion or a canonical T-pose), is suboptimal; and argue that a proper adaptation requires increasing the entropy of the smoothed labels. Second, we conduct a thorough analysis of human motion labels, identifying three critical properties: 1) Temporal Smoothness, 2) Joint Correlation, and 3) Low-Frequency Dominance, and show that conventional approaches to entropy enhancement (e.g., blending Gaussian noise) are ineffective as they disrupt these properties. Finally, we propose the blend of a novel skeleton-based Perlin noise for motion label smoothing, designed to raise label entropy while satisfying motion properties. Extensive experiments applying our motion label smoothing to three state-of-the-art methods across four real-world IMU datasets demonstrate its effectiveness and robust generalization (plug-and-play) capability.
Authors: Yi-Yang Zhang, Tengjiao Sun, Pengcheng Fang, Deng-Bao Wang, Xiaohao Cai, Min-Ling Zhang, Hansung Kim
Abstract:
3D Human motion generation is pivotal across film, animation, gaming, and embodied intelligence. Traditional 3D motion synthesis relies on costly motion capture, while recent work shows that 2D videos provide rich, temporally coherent observations of human behavior. Existing approaches, however, either map high-level text descriptions to motion or rely solely on video conditioning, leaving a gap between generated dynamics and real-world motion statistics. We introduce MotionDuet, a multimodal framework that aligns motion generation with the distribution of video-derived representations. In this dual-conditioning paradigm, video cues extracted from a pretrained model (e.g., VideoMAE) ground low-level motion dynamics, while textual prompts provide semantic intent. To bridge the distribution gap across modalities, we propose Dual-stream Unified Encoding and Transformation (DUET) and a Distribution-Aware Structural Harmonization (DASH) loss. DUET fuses video-informed cues into the motion latent space via unified encoding and dynamic attention, while DASH aligns motion trajectories with both distributional and structural statistics of video features. An auto-guidance mechanism further balances textual and visual signals by leveraging a weakened copy of the model, enhancing controllability without sacrificing diversity. Extensive experiments demonstrate that MotionDuet generates realistic and controllable human motions, surpassing strong state-of-the-art baselines.
Authors: Enrico Pallotta, Sina Mokhtarzadeh Azar, Lars Doorenbos, Serdar Ozsoy, Umar Iqbal, Juergen Gall
Abstract:
Egocentric video generation with fine-grained control through body motion is a key requirement towards embodied AI agents that can simulate, predict, and plan actions. In this work, we propose EgoControl, a pose-controllable video diffusion model trained on egocentric data. We train a video prediction model to condition future frame generation on explicit 3D body pose sequences. To achieve precise motion control, we introduce a novel pose representation that captures both global camera dynamics and articulated body movements, and integrate it through a dedicated control mechanism within the diffusion process. Given a short sequence of observed frames and a sequence of target poses, EgoControl generates temporally coherent and visually realistic future frames that align with the provided pose control. Experimental results demonstrate that EgoControl produces high-quality, pose-consistent egocentric videos, paving the way toward controllable embodied video simulation and understanding.
Authors: Shiyao Xu, Benedetta Liberatori, Gül Varol, Paolo Rota
Abstract:
Recent advances in 3D human motion and language integration have primarily focused on text-to-motion generation, leaving the task of motion understanding relatively unexplored. We introduce Dense Motion Captioning, a novel task that aims to temporally localize and caption actions within 3D human motion sequences. Current datasets fall short in providing detailed temporal annotations and predominantly consist of short sequences featuring few actions. To overcome these limitations, we present the Complex Motion Dataset (CompMo), the first large-scale dataset featuring richly annotated, complex motion sequences with precise temporal boundaries. Built through a carefully designed data generation pipeline, CompMo includes 60,000 motion sequences, each composed of multiple actions ranging from at least two to ten, accurately annotated with their temporal extents. We further present DEMO, a model that integrates a large language model with a simple motion adapter, trained to generate dense, temporally grounded captions. Our experiments show that DEMO substantially outperforms existing methods on CompMo as well as on adapted benchmarks, establishing a robust baseline for future research in 3D motion understanding and captioning.
Authors: Lianzi Jiang, Jianxin Zhang, Xinyu Han, Huanhe Dong, Xiangrong Wang
Abstract:
Accurate motion response prediction for elastic Bragg breakwaters is critical for their structural safety and operational integrity in marine environments. However, conventional deep learning models often exhibit limited generalization capabilities when presented with unseen sea states. These deficiencies stem from the neglect of natural decay observed in marine systems and inadequate modeling of wave-structure interaction (WSI). To overcome these challenges, this study proposes a novel Physics Prior-Guided Dual-Stream Attention Network (PhysAttnNet). First, the decay bidirectional self-attention (DBSA) module incorporates a learnable temporal decay to assign higher weights to recent states, aiming to emulate the natural decay phenomenon. Meanwhile, the phase differences guided bidirectional cross-attention (PDG-BCA) module explicitly captures the bidirectional interaction and phase relationship between waves and the structure using a cosine-based bias within a bidirectional cross-computation paradigm. These streams are synergistically integrated through a global context fusion (GCF) module. Finally, PhysAttnNet is trained with a hybrid time-frequency loss that jointly minimizes time-domain prediction errors and frequency-domain spectral discrepancies. Comprehensive experiments on wave flume datasets demonstrate that PhysAttnNet significantly outperforms mainstream models. Furthermore,cross-scenario generalization tests validate the model's robustness and adaptability to unseen environments, highlighting its potential as a framework to develop predictive models for complex systems in ocean engineering.
Authors: Girolamo Macaluso, Lorenzo Mandelli, Mirko Bicchierai, Stefano Berretti, Andrew D. Bagdanov
Abstract:
Diffusion models have recently advanced human motion generation, producing realistic and diverse animations from textual prompts. However, adapting these models to unseen actions or styles typically requires additional motion capture data and full retraining, which is costly and difficult to scale. We propose a post-training framework based on Reinforcement Learning that fine-tunes pretrained motion diffusion models using only textual prompts, without requiring any motion ground truth. Our approach employs a pretrained text-motion retrieval network as a reward signal and optimizes the diffusion policy with Denoising Diffusion Policy Optimization, effectively shifting the model's generative distribution toward the target domain without relying on paired motion data. We evaluate our method on cross-dataset adaptation and leave-one-out motion experiments using the HumanML3D and KIT-ML datasets across both latent- and joint-space diffusion architectures. Results from quantitative metrics and user studies show that our approach consistently improves the quality and diversity of generated motions, while preserving performance on the original distribution. Our approach is a flexible, data-efficient, and privacy-preserving solution for motion adaptation.
Authors: Zhengdi Yu, Simone Foti, Linguang Zhang, Amy Zhao, Cem Keskin, Stefanos Zafeiriou, Tolga Birdal
Abstract:
We introduce Neural Riemannian Motion Fields (NRMF), a novel 3D generative human motion prior that enables robust, temporally consistent, and physically plausible 3D motion recovery. Unlike existing VAE or diffusion-based methods, our higher-order motion prior explicitly models the human motion in the zero level set of a collection of neural distance fields (NDFs) corresponding to pose, transition (velocity), and acceleration dynamics. Our framework is rigorous in the sense that our NDFs are constructed on the product space of joint rotations, their angular velocities, and angular accelerations, respecting the geometry of the underlying articulations. We further introduce: (i) a novel adaptive-step hybrid algorithm for projecting onto the set of plausible motions, and (ii) a novel geometric integrator to "roll out" realistic motion trajectories during test-time-optimization and generation. Our experiments show significant and consistent gains: trained on the AMASS dataset, NRMF remarkably generalizes across multiple input modalities and to diverse tasks ranging from denoising to motion in-betweening and fitting to partial 2D / 3D observations.
Authors: Xuan Wang, Kai Ruan, Liyang Qian, Zhizhi Guo, Chang Su, Gaoang Wang
Abstract:
Text-driven motion generation has attracted increasing attention due to its broad applications in virtual reality, animation, and robotics. While existing methods typically model human and animal motion separately, a joint cross-species approach offers key advantages, such as a unified representation and improved generalization. However, morphological differences across species remain a key challenge, often compromising motion plausibility. To address this, we propose \textbf{X-MoGen}, the first unified framework for cross-species text-driven motion generation covering both humans and animals. X-MoGen adopts a two-stage architecture. First, a conditional graph variational autoencoder learns canonical T-pose priors, while an autoencoder encodes motion into a shared latent space regularized by morphological loss. In the second stage, we perform masked motion modeling to generate motion embeddings conditioned on textual descriptions. During training, a morphological consistency module is employed to promote skeletal plausibility across species. To support unified modeling, we construct \textbf{UniMo4D}, a large-scale dataset of 115 species and 119k motion sequences, which integrates human and animal motions under a shared skeletal topology for joint training. Extensive experiments on UniMo4D demonstrate that X-MoGen outperforms state-of-the-art methods on both seen and unseen species.
Authors: Pulkit Kumar, Shuaiyi Huang, Matthew Walmer, Sai Saketh Rambhatla, Abhinav Shrivastava
Abstract:
Video understanding requires effective modeling of both motion and appearance information, particularly for few-shot action recognition. While recent advances in point tracking have been shown to improve few-shot action recognition, two fundamental challenges persist: selecting informative points to track and effectively modeling their motion patterns. We present Trokens, a novel approach that transforms trajectory points into semantic-aware relational tokens for action recognition. First, we introduce a semantic-aware sampling strategy to adaptively distribute tracking points based on object scale and semantic relevance. Second, we develop a motion modeling framework that captures both intra-trajectory dynamics through the Histogram of Oriented Displacements (HoD) and inter-trajectory relationships to model complex action patterns. Our approach effectively combines these trajectory tokens with semantic features to enhance appearance features with motion information, achieving state-of-the-art performance across six diverse few-shot action recognition benchmarks: Something-Something-V2 (both full and small splits), Kinetics, UCF101, HMDB51, and FineGym. For project page see https://trokens-iccv25.github.io
Authors: Shiyao Yu, Zi-An Wang, Kangning Yin, Zheng Tian, Mingyuan Zhang, Weixin Si, Shihao Zou
Abstract:
Motion retrieval is crucial for motion acquisition, offering superior precision, realism, controllability, and editability compared to motion generation. Existing approaches leverage contrastive learning to construct a unified embedding space for motion retrieval from text or visual modality. However, these methods lack a more intuitive and user-friendly interaction mode and often overlook the sequential representation of most modalities for improved retrieval performance. To address these limitations, we propose a framework that aligns four modalities -- text, audio, video, and motion -- within a fine-grained joint embedding space, incorporating audio for the first time in motion retrieval to enhance user immersion and convenience. This fine-grained space is achieved through a sequence-level contrastive learning approach, which captures critical details across modalities for better alignment. To evaluate our framework, we augment existing text-motion datasets with synthetic but diverse audio recordings, creating two multi-modal motion retrieval datasets. Experimental results demonstrate superior performance over state-of-the-art methods across multiple sub-tasks, including an 10.16% improvement in R@10 for text-to-motion retrieval and a 25.43% improvement in R@1 for video-to-motion retrieval on the HumanML3D dataset. Furthermore, our results show that our 4-modal framework significantly outperforms its 3-modal counterpart, underscoring the potential of multi-modal motion retrieval for advancing motion acquisition.
Authors: Ali Ismail-Fawaz, Maxime Devanne, Stefano Berretti, Jonathan Weber, Germain Forestier
Abstract:
Automated assessment of human motion plays a vital role in rehabilitation, enabling objective evaluation of patient performance and progress. Unlike general human activity recognition, rehabilitation motion assessment focuses on analyzing the quality of movement within the same action class, requiring the detection of subtle deviations from ideal motion. Recent advances in deep learning and video-based skeleton extraction have opened new possibilities for accessible, scalable motion assessment using affordable devices such as smartphones or webcams. However, the field lacks standardized benchmarks, consistent evaluation protocols, and reproducible methodologies, limiting progress and comparability across studies. In this work, we address these gaps by (i) aggregating existing rehabilitation datasets into a unified archive called Rehab-Pile, (ii) proposing a general benchmarking framework for evaluating deep learning methods in this domain, and (iii) conducting extensive benchmarking of multiple architectures across classification and regression tasks. All datasets and implementations are released to the community to support transparency and reproducibility. This paper aims to establish a solid foundation for future research in automated rehabilitation assessment and foster the development of reliable, accessible, and personalized rehabilitation solutions. The datasets, source-code and results of this article are all publicly available.
Authors: Jingting Li, Yu Qian, Lin Zhao, Su-Jing Wang
Abstract:
Micro-expressions (MEs) are brief, low-intensity, often localized facial expressions. They could reveal genuine emotions individuals may attempt to conceal, valuable in contexts like criminal interrogation and psychological counseling. However, ME recognition (MER) faces challenges, such as small sample sizes and subtle features, which hinder efficient modeling. Additionally, real-world applications encounter ME data privacy issues, leaving the task of enhancing recognition across settings under privacy constraints largely unexplored. To address these issues, we propose a FED-PsyAU research framework. We begin with a psychological study on the coordination of upper and lower facial action units (AUs) to provide structured prior knowledge of facial muscle dynamics. We then develop a DPK-GAT network that combines these psychological priors with statistical AU patterns, enabling hierarchical learning of facial motion features from regional to global levels, effectively enhancing MER performance. Additionally, our federated learning framework advances MER capabilities across multiple clients without data sharing, preserving privacy and alleviating the limited-sample issue for each client. Extensive experiments on commonly-used ME databases demonstrate the effectiveness of our approach.
Authors: Dongjie Fu, Tengjiao Sun, Pengcheng Fang, Xiaohao Cai, Hansung Kim
Abstract:
Recent advances in transformer-based text-to-motion generation have led to impressive progress in synthesizing high-quality human motion. Nevertheless, jointly achieving high fidelity, streaming capability, real-time responsiveness, and scalability remains a fundamental challenge. In this paper, we propose MOGO (Motion Generation with One-pass), a novel autoregressive framework tailored for efficient and real-time 3D motion generation. MOGO comprises two key components: (1) MoSA-VQ, a motion scale-adaptive residual vector quantization module that hierarchically discretizes motion sequences with learnable scaling to produce compact yet expressive representations; and (2) RQHC-Transformer, a residual quantized hierarchical causal transformer that generates multi-layer motion tokens in a single forward pass, significantly reducing inference latency. To enhance semantic fidelity, we further introduce a text condition alignment mechanism that improves motion decoding under textual control. Extensive experiments on benchmark datasets including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves competitive or superior generation quality compared to state-of-the-art transformer-based methods, while offering substantial improvements in real-time performance, streaming generation, and generalization under zero-shot settings.
Authors: Leon Tolksdorf, Arturo Tejada, Christian Birkner, Nathan van de Wouw
Abstract:
Many motion planning algorithms for automated driving require estimating the probability of collision (POC) to account for uncertainties in the measurement and estimation of the motion of road users. Common POC estimation techniques often utilize sampling-based methods that suffer from computational inefficiency and a non-deterministic estimation, i.e., each estimation result for the same inputs is slightly different. In contrast, optimization-based motion planning algorithms require computationally efficient POC estimation, ideally using deterministic estimation, such that typical optimization algorithms for motion planning retain feasibility. Estimating the POC analytically, however, is challenging because it depends on understanding the collision conditions (e.g., vehicle's shape) and characterizing the uncertainty in motion prediction. In this paper, we propose an approach in which we estimate the POC between two vehicles by over-approximating their shapes by a multi-circular shape approximation. The position and heading of the predicted vehicle are modelled as random variables, contrasting with the literature, where the heading angle is often neglected. We guarantee that the provided POC is an over-approximation, which is essential in providing safety guarantees, and present a computationally efficient algorithm for computing the POC estimate for Gaussian uncertainty in the position and heading. This algorithm is then used in a path-following stochastic model predictive controller (SMPC) for motion planning. With the proposed algorithm, the SMPC generates reproducible trajectories while the controller retains its feasibility in the presented test cases and demonstrates the ability to handle varying levels of uncertainty.
Authors: Masaki Murooka, Kensuke Fukumitsu, Marwan Hamze, Mitsuharu Morisawa, Hiroshi Kaminaga, Fumio Kanehiro, Eiichi Yoshida
Abstract:
To enable humanoid robots to work robustly in confined environments, multi-contact motion that makes contacts not only at extremities, such as hands and feet, but also at intermediate areas of the limbs, such as knees and elbows, is essential. We develop a method to realize such whole-body multi-contact motion involving contacts at intermediate areas by a humanoid robot. Deformable sheet-shaped distributed tactile sensors are mounted on the surface of the robot's limbs to measure the contact force without significantly changing the robot body shape. The multi-contact motion controller developed earlier, which is dedicated to contact at extremities, is extended to handle contact at intermediate areas, and the robot motion is stabilized by feedback control using not only force/torque sensors but also distributed tactile sensors. Through verification on dynamics simulations, we show that the developed tactile feedback improves the stability of whole-body multi-contact motion against disturbances and environmental errors. Furthermore, the life-sized humanoid RHP Kaleido demonstrates whole-body multi-contact motions, such as stepping forward while supporting the body with forearm contact and balancing in a sitting posture with thigh contacts.
Authors: Yu Hua, Weiming Liu, Gui Xu, Yaqing Hou, Yew-Soon Ong, Qiang Zhang
Abstract:
Human motion synthesis aims to generate plausible human motion sequences, which has raised widespread attention in computer animation. Recent score-based generative models (SGMs) have demonstrated impressive results on this task. However, their training process involves complex curvature trajectories, leading to unstable training process. In this paper, we propose a Deterministic-to-Stochastic Diverse Latent Feature Mapping (DSDFM) method for human motion synthesis. DSDFM consists of two stages. The first human motion reconstruction stage aims to learn the latent space distribution of human motions. The second diverse motion generation stage aims to build connections between the Gaussian distribution and the latent space distribution of human motions, thereby enhancing the diversity and accuracy of the generated human motions. This stage is achieved by the designed deterministic feature mapping procedure with DerODE and stochastic diverse output generation procedure with DivSDE.DSDFM is easy to train compared to previous SGMs-based methods and can enhance diversity without introducing additional training parameters.Through qualitative and quantitative experiments, DSDFM achieves state-of-the-art results surpassing the latest methods, validating its superiority in human motion synthesis.
Authors: Ze Zhang, Georg Hess, Junjie Hu, Emmanuel Dean, Lennart Svensson, Knut Ã
kesson
Abstract:
This paper proposes an integrated approach for the safe and efficient control of mobile robots in dynamic and uncertain environments. The approach consists of two key steps: one-shot multimodal motion prediction to anticipate motions of dynamic obstacles and model predictive control to incorporate these predictions into the motion planning process. Motion prediction is driven by an energy-based neural network that generates high-resolution, multi-step predictions in a single operation. The prediction outcomes are further utilized to create geometric shapes formulated as mathematical constraints. Instead of treating each dynamic obstacle individually, predicted obstacles are grouped by proximity in an unsupervised way to improve performance and efficiency. The overall collision-free navigation is handled by model predictive control with a specific design for proactive dynamic obstacle avoidance. The proposed approach allows mobile robots to navigate effectively in dynamic environments. Its performance is accessed across various scenarios that represent typical warehouse settings. The results demonstrate that the proposed approach outperforms other existing dynamic obstacle avoidance methods.
Authors: Ruineng Li, Daitao Xing, Huiming Sun, Yuanzhou Ha, Jinglin Shen, Chiuman Ho
Abstract:
Human-centric motion control in video generation remains a critical challenge, particularly when jointly controlling camera movements and human poses in scenarios like the iconic Grammy Glambot moment. While recent video diffusion models have made significant progress, existing approaches struggle with limited motion representations and inadequate integration of camera and human motion controls. In this work, we present TokenMotion, the first DiT-based video diffusion framework that enables fine-grained control over camera motion, human motion, and their joint interaction. We represent camera trajectories and human poses as spatio-temporal tokens to enable local control granularity. Our approach introduces a unified modeling framework utilizing a decouple-and-fuse strategy, bridged by a human-aware dynamic mask that effectively handles the spatially-and-temporally varying nature of combined motion signals. Through extensive experiments, we demonstrate TokenMotion's effectiveness across both text-to-video and image-to-video paradigms, consistently outperforming current state-of-the-art methods in human-centric motion control tasks. Our work represents a significant advancement in controllable video generation, with particular relevance for creative production applications.
Authors: Congyi Fan, Jian Guan, Xuanjia Zhao, Dongli Xu, Youtian Lin, Tong Ye, Pengming Feng, Haiwei Pan
Abstract:
Automatically generating natural, diverse and rhythmic human dance movements driven by music is vital for virtual reality and film industries. However, generating dance that naturally follows music remains a challenge, as existing methods lack proper beat alignment and exhibit unnatural motion dynamics. In this paper, we propose Danceba, a novel framework that leverages gating mechanism to enhance rhythm-aware feature representation for music-driven dance generation, which achieves highly aligned dance poses with enhanced rhythmic sensitivity. Specifically, we introduce Phase-Based Rhythm Extraction (PRE) to precisely extract rhythmic information from musical phase data, capitalizing on the intrinsic periodicity and temporal structures of music. Additionally, we propose Temporal-Gated Causal Attention (TGCA) to focus on global rhythmic features, ensuring that dance movements closely follow the musical rhythm. We also introduce Parallel Mamba Motion Modeling (PMMM) architecture to separately model upper and lower body motions along with musical features, thereby improving the naturalness and diversity of generated dance movements. Extensive experiments confirm that Danceba outperforms state-of-the-art methods, achieving significantly better rhythmic alignment and motion diversity. Project page: https://danceba.github.io/ .
Authors: Yiwen Dong, Jessica Rose, Hae Young Noh
Abstract:
Quantitative estimation of human joint motion in daily living spaces is essential for early detection and rehabilitation tracking of neuromusculoskeletal disorders (e.g., Parkinson's) and mitigating trip and fall risks for older adults. Existing approaches involve monitoring devices such as cameras, wearables, and pressure mats, but have operational constraints such as direct line-of-sight, carrying devices, and dense deployment. To overcome these limitations, we leverage gait-induced floor vibration to estimate lower-limb joint motion (e.g., ankle, knee, and hip flexion angles), allowing non-intrusive and contactless gait health monitoring in people's living spaces. To overcome the high uncertainty in lower-limb movement given the limited information provided by the gait-induced floor vibrations, we formulate a physics-informed graph to integrate domain knowledge of gait biomechanics and structural dynamics into the model. Specifically, different types of nodes represent heterogeneous information from joint motions and floor vibrations; Their connecting edges represent the physiological relationships between joints and forces governed by gait biomechanics, as well as the relationships between forces and floor responses governed by the structural dynamics. As a result, our model poses physical constraints to reduce uncertainty while allowing information sharing between the body and the floor to make more accurate predictions. We evaluate our approach with 20 participants through a real-world walking experiment. We achieved an average of 3.7 degrees of mean absolute error in estimating 12 joint flexion angles (38% error reduction from baseline), which is comparable to the performance of cameras and wearables in current medical practices.
Authors: Inwoo Hwang, Jinseok Bae, Donggeun Lim, Young Min Kim
Abstract:
Creating expressive character animations is labor-intensive, requiring intricate manual adjustment of animators across space and time. Previous works on controllable motion generation often rely on a predefined set of dense spatio-temporal specifications (e.g., dense pelvis trajectories with exact per-frame timing), limiting practicality for animators. To process high-level intent and intuitive control in diverse scenarios, we propose a practical controllable motions synthesis framework that respects sparse and flexible keyjoint signals. Our approach employs a decomposed diffusion-based motion synthesis framework that first synthesizes keyjoint movements from sparse input control signals and then synthesizes full-body motion based on the completed keyjoint trajectories. The low-dimensional keyjoint movements can easily adapt to various control signal types, such as end-effector position for diverse goal-driven motion synthesis, or incorporate functional constraints on a subset of keyjoints. Additionally, we introduce a time-agnostic control formulation, eliminating the need for frame-specific timing annotations and enhancing control flexibility. Then, the shared second stage can synthesize a natural whole-body motion that precisely satisfies the task requirement from dense keyjoint movements. We demonstrate the effectiveness of sparse and flexible keyjoint control through comprehensive experiments on diverse datasets and scenarios.
Authors: Tommaso Van Der Meer, Andrea Garulli, Antonio Giannitrapani, Renato Quartullo
Abstract:
Social robot navigation is an evolving research field that aims to find efficient strategies to safely navigate dynamic environments populated by humans. A critical challenge in this domain is the accurate modeling of human motion, which directly impacts the design and evaluation of navigation algorithms. This paper presents a comparative study of two popular categories of human motion models used in social robot navigation, namely velocity-based models and force-based models. A system-theoretic representation of both model types is presented, which highlights their common feedback structure, although with different state variables. Several navigation policies based on reinforcement learning are trained and tested in various simulated environments involving pedestrian crowds modeled with these approaches. A comparative study is conducted to assess performance across multiple factors, including human motion model, navigation policy, scenario complexity and crowd density. The results highlight advantages and challenges of different approaches to modeling human behavior, as well as their role during training and testing of learning-based navigation policies. The findings offer valuable insights and guidelines for selecting appropriate human motion models when designing socially-aware robot navigation systems.
Authors: Jinseok Bae, Inwoo Hwang, Young Yoon Lee, Ziyu Guo, Joseph Liu, Yizhak Ben-Shabat, Young Min Kim, Mubbasir Kapadia
Abstract:
Recent advances in motion diffusion models have led to remarkable progress in diverse motion generation tasks, including text-to-motion synthesis. However, existing approaches represent motions as dense frame sequences, requiring the model to process redundant or less informative frames. The processing of dense animation frames imposes significant training complexity, especially when learning intricate distributions of large motion datasets even with modern neural architectures. This severely limits the performance of generative motion models for downstream tasks. Inspired by professional animators who mainly focus on sparse keyframes, we propose a novel diffusion framework explicitly designed around sparse and geometrically meaningful keyframes. Our method reduces computation by masking non-keyframes and efficiently interpolating missing frames. We dynamically refine the keyframe mask during inference to prioritize informative frames in later diffusion steps. Extensive experiments show that our approach consistently outperforms state-of-the-art methods in text alignment and motion realism, while also effectively maintaining high performance at significantly fewer diffusion steps. We further validate the robustness of our framework by using it as a generative prior and adapting it to different downstream tasks.
Authors: Zixi Kang, Xinghan Wang, Yadong Mu
Abstract:
Human pose, action, and motion generation are critical for applications in digital humans, character animation, and humanoid robotics. However, many existing methods struggle to produce physically plausible movements that are consistent with biomechanical principles. Although recent autoregressive and diffusion models deliver impressive visual quality, they often neglect key biodynamic features and fail to ensure physically realistic motions. Reinforcement Learning (RL) approaches can address these shortcomings but are highly dependent on simulation environments, limiting their generalizability. To overcome these challenges, we propose BioVAE, a biomechanics-aware framework with three core innovations: (1) integration of muscle electromyography (EMG) signals and kinematic features with acceleration constraints to enable physically plausible motion without simulations; (2) seamless coupling with diffusion models for stable end-to-end training; and (3) biomechanical priors that promote strong generalization across diverse motion generation and estimation tasks. Extensive experiments demonstrate that BioVAE achieves state-of-the-art performance on multiple benchmarks, bridging the gap between data-driven motion synthesis and biomechanical authenticity while setting new standards for physically accurate motion generation and pose estimation.
Authors: Liying Yang, Chen Liu, Zhenwei Zhu, Ajian Liu, Hui Ma, Jian Nong, Yanyan Liang
Abstract:
Recently, the generation of dynamic 3D objects from a video has shown impressive results. Existing methods directly optimize Gaussians using whole information in frames. However, when dynamic regions are interwoven with static regions within frames, particularly if the static regions account for a large proportion, existing methods often overlook information in dynamic regions and are prone to overfitting on static regions. This leads to producing results with blurry textures. We consider that decoupling dynamic-static features to enhance dynamic representations can alleviate this issue. Thus, we propose a dynamic-static feature decoupling module (DSFD). Along temporal axes, it regards the regions of current frame features that possess significant differences relative to reference frame features as dynamic features. Conversely, the remaining parts are the static features. Then, we acquire decoupled features driven by dynamic features and current frame features. Moreover, to further enhance the dynamic representation of decoupled features from different viewpoints and ensure accurate motion prediction, we design a temporal-spatial similarity fusion module (TSSF). Along spatial axes, it adaptively selects similar information of dynamic regions. Hinging on the above, we construct a novel approach, DS4D. Experimental results verify our method achieves state-of-the-art (SOTA) results in video-to-4D. In addition, the experiments on a real-world scenario dataset demonstrate its effectiveness on the 4D scene. Our code will be publicly available.
Authors: Simon Hanisch, Julian Todt, Thorsten Strufe
Abstract:
Human motion is a behavioral biometric trait that can be used to identify individuals and infer private attributes such as medical conditions. This poses a serious threat to privacy as motion extraction from video and motion capture are increasingly used for a variety of applications, including mixed reality, robotics, medicine, and the quantified self. In order to protect the privacy of the tracked individuals, anonymization techniques that preserve the utility of the data are required. However, anonymizing motion data is a challenging task because there are many dependencies in motion sequences (such as physiological constraints) that, if ignored, make the anonymized motion sequence appear unnatural. In this paper, we propose Pantomime, a full-body anonymization technique for motion data, which uses foundation motion models to generate motion sequences that adhere to the dependencies in the data, thus keeping the utility of the anonymized data high. Our results show that Pantomime can maintain the naturalness of the motion sequences while reducing the identification accuracy to 10%.
Authors: Jiawei Mo, Yixuan Chen, Rifen Lin, Yongkang Ni, Min Zeng, Xiping Hu, Min Li
Abstract:
Despite continuous advancements in deep learning for understanding human motion, existing models often struggle to accurately identify action timing and specific body parts, typically supporting only single-round interaction. Such limitations in capturing fine-grained motion details reduce their effectiveness in motion understanding tasks. In this paper, we propose MoChat, a multimodal large language model capable of spatio-temporal grounding of human motion and understanding multi-turn dialogue context. To achieve these capabilities, we group the spatial information of each skeleton frame based on human anatomical structure and then apply them with Joints-Grouped Skeleton Encoder, whose outputs are combined with LLM embeddings to create spatio-aware and temporal-aware embeddings separately. Additionally, we develop a pipeline for extracting timestamps from skeleton sequences based on textual annotations, and construct multi-turn dialogues for spatially grounding. Finally, various task instructions are generated for jointly training. Experimental results demonstrate that MoChat achieves state-of-the-art performance across multiple metrics in motion understanding tasks, making it as the first model capable of fine-grained spatio-temporal grounding of human motion.
Authors: James R. Han, Hugues Thomas, Jian Zhang, Nicholas Rhinehart, Timothy D. Barfoot
Abstract:
How can a robot safely navigate around people with complex motion patterns? Deep Reinforcement Learning (DRL) in simulation holds some promise, but much prior work relies on simulators that fail to capture the nuances of real human motion. Thus, we propose Deep Residual Model Predictive Control (DR-MPC) to enable robots to quickly and safely perform DRL from real-world crowd navigation data. By blending MPC with model-free DRL, DR-MPC overcomes the DRL challenges of large data requirements and unsafe initial behavior. DR-MPC is initialized with MPC-based path tracking, and gradually learns to interact more effectively with humans. To further accelerate learning, a safety component estimates out-of-distribution states to guide the robot away from likely collisions. In simulation, we show that DR-MPC substantially outperforms prior work, including traditional DRL and residual DRL models. Hardware experiments show our approach successfully enables a robot to navigate a variety of crowded situations with few errors using less than 4 hours of training data.
Authors: Wenhai Liu, Junbo Wang, Yiming Wang, Weiming Wang, Cewu Lu
Abstract:
In most contact-rich manipulation tasks, humans apply time-varying forces to the target object, compensating for inaccuracies in the vision-guided hand trajectory. However, current robot learning algorithms primarily focus on trajectory-based policy, with limited attention given to learning force-related skills. To address this limitation, we introduce ForceMimic, a force-centric robot learning system, providing a natural, force-aware and robot-free robotic demonstration collection system, along with a hybrid force-motion imitation learning algorithm for robust contact-rich manipulation. Using the proposed ForceCapture system, an operator can peel a zucchini in 5 minutes, while force-feedback teleoperation takes over 13 minutes and struggles with task completion. With the collected data, we propose HybridIL to train a force-centric imitation learning model, equipped with hybrid force-position control primitive to fit the predicted wrench-position parameters during robot execution. Experiments demonstrate that our approach enables the model to learn a more robust policy under the contact-rich task of vegetable peeling, increasing the success rates by 54.5% relatively compared to state-ofthe-art pure-vision-based imitation learning. Hardware, code, data and more results can be found on the project website at https://forcemimic.github.io.
Authors: Jean Pierre Sleiman, He Li, Alphonsus Adu-Bredu, Robin Deits, Arun Kumar, Kevin Bergamin, Mohak Bhardwaj, Scott Biddlestone, Nicola Burger, Matthew A. Estrada, Francesco Iacobelli, Twan Koolen, Alexander Lambert, Erica Lin, M. Eva Mungai, Zach Nobles, Shane Rozen-Levy, Yuyao Shi, Jiashun Wang, Jakob Welner, Fangzhou Yu, Mike Zhang, Alfred Rizzi, Jessica Hodgins, Sylvain Bertrand, Yeuhi Abe, Scott Kuindersma, Farbod Farshidian
Abstract:
Achieving robust, human-like whole-body control on humanoid robots for agile, contact-rich behaviors remains a central challenge, demanding heavy per-skill engineering and a brittle process of tuning controllers. We introduce ZEST (Zero-shot Embodied Skill Transfer), a streamlined motion-imitation framework that trains policies via reinforcement learning from diverse sources -- high-fidelity motion capture, noisy monocular video, and non-physics-constrained animation -- and deploys them to hardware zero-shot. ZEST generalizes across behaviors and platforms while avoiding contact labels, reference or observation windows, state estimators, and extensive reward shaping. Its training pipeline combines adaptive sampling, which focuses training on difficult motion segments, and an automatic curriculum using a model-based assistive wrench, together enabling dynamic, long-horizon maneuvers. We further provide a procedure for selecting joint-level gains from approximate analytical armature values for closed-chain actuators, along with a refined model of actuators. Trained entirely in simulation with moderate domain randomization, ZEST demonstrates remarkable generality. On Boston Dynamics' Atlas humanoid, ZEST learns dynamic, multi-contact skills (e.g., army crawl, breakdancing) from motion capture. It transfers expressive dance and scene-interaction skills, such as box-climbing, directly from videos to Atlas and the Unitree G1. Furthermore, it extends across morphologies to the Spot quadruped, enabling acrobatics, such as a continuous backflip, through animation. Together, these results demonstrate robust zero-shot deployment across heterogeneous data sources and embodiments, establishing ZEST as a scalable interface between biological movements and their robotic counterparts.
Authors: Guocun Wang, Kenkun Liu, Jing Lin, Guorui Song, Jian Li, Xiaoguang Han
Abstract:
Existing 3D human motion generation and understanding methods often exhibit limited interpretability, restricting effective mutual enhancement between these inherently related tasks. While current unified frameworks based on large language models (LLMs) leverage linguistic priors, they frequently encounter challenges in semantic alignment and task coherence. Moreover, the next-token prediction paradigm in LLMs is ill-suited for motion sequences, causing cumulative prediction errors. To address these limitations, we propose UniMo, a novel framework that integrates motion-language information and interpretable chain of thought (CoT) reasoning into the LLM via supervised fine-tuning (SFT). We further introduce reinforcement learning with Group Relative Policy Optimization (GRPO) as a post-training strategy that optimizes over groups of tokens to enforce structural correctness and semantic alignment, mitigating cumulative errors in motion token prediction. Extensive experiments demonstrate that UniMo significantly outperforms existing unified and task-specific models, achieving state-of-the-art performance in both motion generation and understanding.
Authors: Yigal Koifman, Eran Iceland, Erez Koifman, Ariel Barel, Alfred M. Bruckstein
Abstract:
This study highlights the potential of image-based reinforcement learning methods for addressing swarm-related tasks. In multi-agent reinforcement learning, effective policy learning depends on how agents sense, interpret, and process inputs. Traditional approaches often rely on handcrafted feature extraction or raw vector-based representations, which limit the scalability and efficiency of learned policies concerning input order and size. In this work we propose an image-based reinforcement learning method for decentralized control of a multi-agent system, where observations are encoded as structured visual inputs that can be processed by Neural Networks, extracting its spatial features and producing novel decentralized motion control rules. We evaluate our approach on a multi-agent convergence task of agents with limited-range and bearing-only sensing that aim to keep the swarm cohesive during the aggregation. The algorithm's performance is evaluated against two benchmarks: an analytical solution proposed by Bellaiche and Bruckstein, which ensures convergence but progresses slowly, and VariAntNet, a neural network-based framework that converges much faster but shows medium success rates in hard constellations. Our method achieves high convergence, with a pace nearly matching that of VariAntNet. In some scenarios, it serves as the only practical alternative.
Authors: Xiaoyu Mo, Jintian Ge, Zifan Wang, Chen Lv, Karl Henrik Johansson
Abstract:
Multi-agent trajectory generation is a core problem for autonomous driving and intelligent transportation systems. However, efficiently modeling the dynamic interactions between numerous road users and infrastructures in complex scenes remains an open problem. Existing methods typically employ distance-based or fully connected dense graph structures to capture interaction information, which not only introduces a large number of redundant edges but also requires complex and heavily parameterized networks for encoding, thereby resulting in low training and inference efficiency, limiting scalability to large and complex traffic scenes. To overcome the limitations of existing methods, we propose SparScene, a sparse graph learning framework designed for efficient and scalable traffic scene representation. Instead of relying on distance thresholds, SparScene leverages the lane graph topology to construct structure-aware sparse connections between agents and lanes, enabling efficient yet informative scene graph representation. SparScene adopts a lightweight graph encoder that efficiently aggregates agent-map and agent-agent interactions, yielding compact scene representations with substantially improved efficiency and scalability. On the motion prediction benchmark of the Waymo Open Motion Dataset (WOMD), SparScene achieves competitive performance with remarkable efficiency. It generates trajectories for more than 200 agents in a scene within 5 ms and scales to more than 5,000 agents and 17,000 lanes with merely 54 ms of inference time with a GPU memory of 2.9 GB, highlighting its superior scalability for large-scale traffic scenes.
Authors: Sisi Dai, Kai Xu
Abstract:
Despite significant progress in text-driven 4D human-object interaction (HOI) generation with supervised methods, the scalability remains limited by the scarcity of large-scale 4D HOI datasets. To overcome this, recent approaches attempt zero-shot 4D HOI generation with pre-trained image diffusion models. However, interaction cues are minimally distilled during the generation process, restricting their applicability across diverse scenarios. In this paper, we propose AnchorHOI, a novel framework that thoroughly exploits hybrid priors by incorporating video diffusion models beyond image diffusion models, advancing 4D HOI generation. Nevertheless, directly optimizing high-dimensional 4D HOI with such priors remains challenging, particularly for human pose and compositional motion. To address this challenge, AnchorHOI introduces an anchor-based prior distillation strategy, which constructs interaction-aware anchors and then leverages them to guide generation in a tractable two-step process. Specifically, two tailored anchors are designed for 4D HOI generation: anchor Neural Radiance Fields (NeRFs) for expressive interaction composition, and anchor keypoints for realistic motion synthesis. Extensive experiments demonstrate that AnchorHOI outperforms previous methods with superior diversity and generalization.
Authors: Lei Hu, Yongjing Ye, Shihong Xia
Abstract:
The expansion of instruction-tuning data has enabled foundation language models to exhibit improved instruction adherence and superior performance across diverse downstream tasks. Semantically-rich 3D human motion is being progressively integrated with these foundation models to enhance multimodal understanding and cross-modal generation capabilities. However, the modality gap between human motion and text raises unresolved concerns about catastrophic forgetting during this integration. In addition, developing autoregressive-compatible pose representations that preserve generalizability across heterogeneous downstream tasks remains a critical technical barrier. To address these issues, we propose the Human Motion-Vision-Language Model (HMVLM), a unified framework based on the Mixture of Expert Low-Rank Adaption(MoE LoRA) strategy. The framework leverages the gating network to dynamically allocate LoRA expert weights based on the input prompt, enabling synchronized fine-tuning of multiple tasks. To mitigate catastrophic forgetting during instruction-tuning, we introduce a novel zero expert that preserves the pre-trained parameters for general linguistic tasks. For pose representation, we implement body-part-specific tokenization by partitioning the human body into different joint groups, enhancing the spatial resolution of the representation. Experiments show that our method effectively alleviates knowledge forgetting during instruction-tuning and achieves remarkable performance across diverse human motion downstream tasks.
Authors: Ieva Bagdonaviciute, Vibhav Vineet
Abstract:
Leading Vision-Language Models (VLMs) show strong results in visual perception and general reasoning, but their ability to understand and predict physical dynamics remains unclear. We benchmark six frontier VLMs on three physical simulation datasets - CLEVRER, Physion, and Physion++ - where the evaluation tasks test whether a model can predict outcomes or hypothesize about alternative situations. To probe deeper, we design diagnostic subtests that isolate perception (objects, colors, occluders) from physics reasoning (motion prediction, spatial relations). Intuitively, stronger diagnostic performance should support higher evaluation accuracy. Yet our analysis reveals weak correlations: models that excel at perception or physics reasoning do not consistently perform better on predictive or counterfactual evaluation. This counterintuitive gap exposes a central limitation of current VLMs: perceptual and physics skills remain fragmented and fail to combine into causal understanding, underscoring the need for architectures that bind perception and reasoning more tightly.
Authors: Zong Chen, Shaoyang Li, Ben Liu, Min Li, Zhouping Yin, Yiqun Li
Abstract:
Wheel-legged robots with integrated manipulators hold great promise for mobile manipulation in logistics, industrial automation, and human-robot collaboration. However, unified control of such systems remains challenging due to the redundancy in degrees of freedom, complex wheel-ground contact dynamics, and the need for seamless coordination between locomotion and manipulation. In this work, we present the design and whole-body motion control of an omnidirectional wheel-legged quadrupedal robot equipped with a dexterous manipulator. The proposed platform incorporates independently actuated steering modules and hub-driven wheels, enabling agile omnidirectional locomotion with high maneuverability in structured environments. To address the challenges of contact-rich interaction, we develop a contact-aware whole-body dynamic optimization framework that integrates point-contact modeling for manipulation with line-contact modeling for wheel-ground interactions. A warm-start strategy is introduced to accelerate online optimization, ensuring real-time feasibility for high-dimensional control. Furthermore, a unified kinematic model tailored for the robot's 4WIS-4WID actuation scheme eliminates the need for mode switching across different locomotion strategies, improving control consistency and robustness. Simulation and experimental results validate the effectiveness of the proposed framework, demonstrating agile terrain traversal, high-speed omnidirectional mobility, and precise manipulation under diverse scenarios, underscoring the system's potential for factory automation, urban logistics, and service robotics in semi-structured environments.
Authors: Zongyao Yi, Joachim Hertzberg, Martin Atzmueller
Abstract:
We present a learnable physics simulator that provides accurate motion and force-torque prediction of robot end effectors in contact-rich manipulation. The proposed model extends the state-of-the-art GNN-based simulator (FIGNet) with novel node and edge types, enabling action-conditional predictions for control and state estimation tasks. In simulation, the MPC agent using our model matches the performance of the same controller with the ground truth dynamics model in a challenging peg-in-hole task, while in the real-world experiment, our model achieves a 50% improvement in motion prediction accuracy and 3$\times$ increase in force-torque prediction precision over the baseline physics simulator. Source code and data are publicly available.
Authors: BaiChen Fan, Sifan Zhou, Jian Li, Shibo Zhao, Muqing Cao, Qin Wang
Abstract:
LiDAR-based 3D single object tracking (3D SOT) is a critical task in robotics and autonomous systems. Existing methods typically follow frame-wise motion estimation or a sequence-based paradigm. However, the two-frame methods are efficient but lack long-term temporal context, making them vulnerable in sparse or occluded scenes, while sequence-based methods that process multiple point clouds gain robustness at a significant computational cost. To resolve this dilemma, we propose a novel trajectory-based paradigm and its instantiation, TrajTrack. TrajTrack is a lightweight framework that enhances a base two-frame tracker by implicitly learning motion continuity from historical bounding box trajectories alone-without requiring additional, costly point cloud inputs. It first generates a fast, explicit motion proposal and then uses an implicit motion modeling module to predict the future trajectory, which in turn refines and corrects the initial proposal. Extensive experiments on the large-scale NuScenes benchmark show that TrajTrack achieves new state-of-the-art performance, dramatically improving tracking precision by 4.48% over a strong baseline while running at 56 FPS. Besides, we also demonstrate the strong generalizability of TrajTrack across different base trackers. Video is available at https://www.bilibili.com/video/BV1ahYgzmEWP.
Authors: Jie Zhou, Linzi Qu, Miu-Ling Lam, Hongbo Fu
Abstract:
Hand-drawn character animation is a vibrant field in computer graphics, presenting challenges in achieving geometric consistency while conveying expressive motion. Traditional skeletal animation methods maintain geometric consistency but struggle with complex non-rigid elements like flowing hair and skirts, leading to unnatural deformation. Conversely, video diffusion models synthesize realistic dynamics but often create geometric distortions in stylized drawings due to domain gaps. This work proposes a hybrid animation system that combines skeletal animation and video diffusion. Initially, coarse images are generated from characters retargeted with skeletal animations for geometric guidance. These images are then enhanced in texture and secondary dynamics using video diffusion priors, framing this enhancement as an inpainting task. A domain-adapted diffusion model refines user-masked regions needing improvement, especially for secondary dynamics. To enhance motion realism further, we introduce a Secondary Dynamics Injection (SDI) strategy in the denoising process, incorporating features from a pre-trained diffusion model enriched with human motion priors. Additionally, to tackle unnatural deformations from low-poly single-mesh character modeling, we present a Hair Layering Modeling (HLM) technique that uses segmentation maps to separate hair from the body, allowing for more natural animation of long-haired characters. Extensive experiments show that our system outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
Authors: Lei Zhong, Yi Yang, Changjian Li
Abstract:
Stylized motion generation is actively studied in computer graphics, especially benefiting from the rapid advances in diffusion models. The goal of this task is to produce a novel motion respecting both the motion content and the desired motion style, e.g., ``walking in a loop like a Monkey''. Existing research attempts to address this problem via motion style transfer or conditional motion generation. They typically embed the motion style into a latent space and guide the motion implicitly in a latent space as well. Despite the progress, their methods suffer from low interpretability and control, limited generalization to new styles, and fail to produce motions other than ``walking'' due to the strong bias in the public stylization dataset. In this paper, we propose to solve the stylized motion generation problem from a new perspective of reasoning-composition-generation, based on our observations: i) human motion can often be effectively described using natural language in a body-part centric manner, ii) LLMs exhibit a strong ability to understand and reason about human motion, and iii) human motion has an inherently compositional nature, facilitating the new motion content or style generation via effective recomposing. We thus propose utilizing body-part text space as an intermediate representation, and present SMooGPT, a fine-tuned LLM, acting as a reasoner, composer, and generator when generating the desired stylized motion. Our method executes in the body-part text space with much higher interpretability, enabling fine-grained motion control, effectively resolving potential conflicts between motion content and style, and generalizes well to new styles thanks to the open-vocabulary ability of LLMs. Comprehensive experiments and evaluations, and a user perceptual study, demonstrate the effectiveness of our approach, especially under the pure text-driven stylized motion generation.
Authors: Jinghe Yang, Minh-Quan Le, Mingming Gong, Ye Pu
Abstract:
Autonomous underwater navigation remains a challenging problem due to limited sensing capabilities and the difficulty of constructing accurate maps in underwater environments. In this paper, we propose a Diffusion-based Underwater Visual Navigation policy via knowledge-transferred depth features, named DUViN, which enables vision-based end-to-end 4-DoF motion control for underwater vehicles in unknown environments. DUViN guides the vehicle to avoid obstacles and maintain a safe and perception awareness altitude relative to the terrain without relying on pre-built maps. To address the difficulty of collecting large-scale underwater navigation datasets, we propose a method that ensures robust generalization under domain shifts from in-air to underwater environments by leveraging depth features and introducing a novel model transfer strategy. Specifically, our training framework consists of two phases: we first train the diffusion-based visual navigation policy on in-air datasets using a pre-trained depth feature extractor. Secondly, we retrain the extractor on an underwater depth estimation task and integrate the adapted extractor into the trained navigation policy from the first step. Experiments in both simulated and real-world underwater environments demonstrate the effectiveness and generalization of our approach. The experimental videos are available at https://www.youtube.com/playlist?list=PLqt2s-RyCf1gfXJgFzKjmwIqYhrP4I-7Y.
Authors: Chao Ning, Han Wang, Longyan Li, Yang Shi
Abstract:
This paper develops a novel COllaborative-Online-Learning (COOL)-enabled motion control framework for multi-robot systems to avoid collision amid randomly moving obstacles whose motion distributions are partially observable through decentralized data streams. To address the notable challenge of data acquisition due to occlusion, a COOL approach based on the Dirichlet process mixture model is proposed to efficiently extract motion distribution information by exchanging among robots selected learning structures. By leveraging the fine-grained local-moment information learned through COOL, a data-stream-driven ambiguity set for obstacle motion is constructed. We then introduce a novel ambiguity set propagation method, which theoretically admits the derivation of the ambiguity sets for obstacle positions over the entire prediction horizon by utilizing obstacle current positions and the ambiguity set for obstacle motion. Additionally, we develop a compression scheme with its safety guarantee to automatically adjust the complexity and granularity of the ambiguity set by aggregating basic ambiguity sets that are close in a measure space, thereby striking an attractive trade-off between control performance and computation time. Then the probabilistic collision-free trajectories are generated through distributionally robust optimization problems. The distributionally robust obstacle avoidance constraints based on the compressed ambiguity set are equivalently reformulated by deriving separating hyperplanes through tractable semi-definite programming. Finally, we establish the probabilistic collision avoidance guarantee and the long-term tracking performance guarantee for the proposed framework. The numerical simulations are used to demonstrate the efficacy and superiority of the proposed approach compared with state-of-the-art methods.
Authors: Hua Yu, Yaqing Hou, Xu Gui, Shanshan Feng, Dongsheng Zhou, Qiang Zhang
Abstract:
Stochastic Human Motion Prediction (HMP) has received increasing attention due to its wide applications. Despite the rapid progress in generative fields, existing methods often face challenges in learning continuous temporal dynamics and predicting stochastic motion sequences. They tend to overlook the flexibility inherent in complex human motions and are prone to mode collapse. To alleviate these issues, we propose a novel method called STCN, for stochastic and continuous human motion prediction, which consists of two stages. Specifically, in the first stage, we propose a spatio-temporal continuous network to generate smoother human motion sequences. In addition, the anchor set is innovatively introduced into the stochastic HMP task to prevent mode collapse, which refers to the potential human motion patterns. In the second stage, STCN endeavors to acquire the Gaussian mixture distribution (GMM) of observed motion sequences with the aid of the anchor set. It also focuses on the probability associated with each anchor, and employs the strategy of sampling multiple sequences from each anchor to alleviate intra-class differences in human motions. Experimental results on two widely-used datasets (Human3.6M and HumanEva-I) demonstrate that our model obtains competitive performance on both diversity and accuracy.
Authors: S. Ali Hosseini, Fabian R. Quinten, Luke F. van Eijk, Dragan Kostic, S. Hassan HosseinNia
Abstract:
This study introduces a modified version of the Constant-in-Gain, Lead-in-Phase (CgLp) filter, which incorporates a feedthrough term in the First-Order Reset Element (FORE) to reduce the undesirable nonlinearities and achieve an almost constant gain across all frequencies. A backward calculation approach is proposed to derive the additional parameter introduced by the feedthrough term, enabling designers to easily tune the filter to generate the required phase. The paper also presents an add-on filter structure that can enhance the performance of an existing LTI controller without altering its robustness margins. A sensitivity improvement indicator is proposed to guide the tuning process, enabling designers to visualize the improvements in closed-loop performance. The proposed methodology is demonstrated through a case study of an industrial wire bonder machine, showcasing its effectiveness in addressing low-frequency vibrations and improving overall control performance.
Authors: Yang Zhao, Yan Zhang, Xubo Yang
Abstract:
Existing human motion generation methods with trajectory and pose inputs operate global processing on both modalities, leading to suboptimal outputs. In this paper, we propose IKMo, an image-keyframed motion generation method based on the diffusion model with trajectory and pose being decoupled. The trajectory and pose inputs go through a two-stage conditioning framework. In the first stage, the dedicated optimization module is applied to refine inputs. In the second stage, trajectory and pose are encoded via a Trajectory Encoder and a Pose Encoder in parallel. Then, motion with high spatial and semantic fidelity is guided by a motion ControlNet, which processes the fused trajectory and pose data. Experiment results based on HumanML3D and KIT-ML datasets demonstrate that the proposed method outperforms state-of-the-art on all metrics under trajectory-keyframe constraints. In addition, MLLM-based agents are implemented to pre-process model inputs. Given texts and keyframe images from users, the agents extract motion descriptions, keyframe poses, and trajectories as the optimized inputs into the motion generation model. We conducts a user study with 10 participants. The experiment results prove that the MLLM-based agents pre-processing makes generated motion more in line with users' expectation. We believe that the proposed method improves both the fidelity and controllability of motion generation by the diffusion model.
Authors: Huakun Liu, Hiroki Ota, Xin Wei, Yutaro Hirao, Monica Perusquia-Hernandez, Hideaki Uchiyama, Kiyoshi Kiyokawa
Abstract:
Sparse wearable inertial measurement units (IMUs) have gained popularity for estimating 3D human motion. However, challenges such as pose ambiguity, data drift, and limited adaptability to diverse bodies persist. To address these issues, we propose UMotion, an uncertainty-driven, online fusing-all state estimation framework for 3D human shape and pose estimation, supported by six integrated, body-worn ultra-wideband (UWB) distance sensors with IMUs. UWB sensors measure inter-node distances to infer spatial relationships, aiding in resolving pose ambiguities and body shape variations when combined with anthropometric data. Unfortunately, IMUs are prone to drift, and UWB sensors are affected by body occlusions. Consequently, we develop a tightly coupled Unscented Kalman Filter (UKF) framework that fuses uncertainties from sensor data and estimated human motion based on individual body shape. The UKF iteratively refines IMU and UWB measurements by aligning them with uncertain human motion constraints in real-time, producing optimal estimates for each. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of UMotion in stabilizing sensor data and the improvement over state of the art in pose accuracy.
Authors: Hanle Zheng, Xujie Han, Zegang Peng, Shangbin Zhang, Guangxun Du, Zhuo Zou, Xilin Wang, Jibin Wu, Hao Guo, Lei Deng
Abstract:
Video Frame Interpolation (VFI) is a fundamental yet challenging task in computer vision, particularly under conditions involving large motion, occlusion, and lighting variation. Recent advancements in event cameras have opened up new opportunities for addressing these challenges. While existing event-based VFI methods have succeeded in recovering large and complex motions by leveraging handcrafted intermediate representations such as optical flow, these designs often compromise high-fidelity image reconstruction under subtle motion scenarios due to their reliance on explicit motion modeling. Meanwhile, diffusion models provide a promising alternative for VFI by reconstructing frames through a denoising process, eliminating the need for explicit motion estimation or warping operations. In this work, we propose EventDiff, a unified and efficient event-based diffusion model framework for VFI. EventDiff features a novel Event-Frame Hybrid AutoEncoder (HAE) equipped with a lightweight Spatial-Temporal Cross Attention (STCA) module that effectively fuses dynamic event streams with static frames. Unlike previous event-based VFI methods, EventDiff performs interpolation directly in the latent space via a denoising diffusion process, making it more robust across diverse and challenging VFI scenarios. Through a two-stage training strategy that first pretrains the HAE and then jointly optimizes it with the diffusion model, our method achieves state-of-the-art performance across multiple synthetic and real-world event VFI datasets. The proposed method outperforms existing state-of-the-art event-based VFI methods by up to 1.98dB in PSNR on Vimeo90K-Triplet and shows superior performance in SNU-FILM tasks with multiple difficulty levels. Compared to the emerging diffusion-based VFI approach, our method achieves up to 5.72dB PSNR gain on Vimeo90K-Triplet and 4.24X faster inference.
Authors: Ziyu Zhang, Sergey Bashkirov, Dun Yang, Michael Taylor, Xue Bin Peng
Abstract:
Multi-objective optimization problems, which require the simultaneous optimization of multiple terms, are prevalent across numerous applications. Existing multi-objective optimization methods often rely on manually tuned aggregation functions to formulate a joint optimization target. The performance of such hand-tuned methods is heavily dependent on careful weight selection, a time-consuming and laborious process. These limitations also arise in the setting of reinforcement-learning-based motion tracking for physically simulated characters, where intricately crafted reward functions are typically used to achieve high-fidelity results. Such solutions not only require domain expertise and significant manual adjustment, but also limit the applicability of the resulting reward function across diverse skills. To bridge this gap, we present a novel adversarial multi-objective optimization technique that is broadly applicable to a range of multi-objective optimization problems, including motion tracking. The proposed adversarial differential discriminator receives a single positive sample, yet is still effective at guiding the optimization process. We demonstrate that our technique can enable characters to closely replicate a variety of acrobatic and agile behaviors, achieving comparable quality to state-of-the-art motion-tracking methods, without relying on manually tuned reward functions. Results are best visualized through https://youtu.be/rz8BYCE9E2w.
Authors: Yingqing Chen, Christos G. Cassandras
Abstract:
This paper develops an Optimal Safe Sequencing (OSS) control framework for Connected and Automated Vehicles (CAVs) navigating a single-lane roundabout in mixed traffic, where both CAVs and Human-Driven Vehicles (HDVs) coexist. The framework jointly optimizes vehicle sequencing and motion control to minimize travel time, energy consumption, and discomfort while ensuring speed-dependent safety guarantees and adhering to velocity and acceleration constraints. This is achieved by integrating (a) a Safe Sequencing (SS) policy that ensures merging safety without requiring any knowledge of HDV behavior, and (b) a Model Predictive Control with Control Lyapunov Barrier Functions (MPC-CLBF) framework, which optimizes CAV motion control while mitigating infeasibility and myopic control issues common in the use of Control Barrier Functions (CBFs) to provide safety guarantees. Simulation results across various traffic demands, CAV penetration rates, and control parameters demonstrate the framework's effectiveness and stability.
Authors: Rui Zhao, Qirui Yuan, Jinyu Li, Haofeng Hu, Yun Li, Chengyuan Zheng, Fei Gao
Abstract:
End-to-end autonomous driving, which directly maps raw sensor inputs to low-level vehicle controls, is an important part of Embodied AI. Despite successes in applying Multimodal Large Language Models (MLLMs) for high-level traffic scene semantic understanding, it remains challenging to effectively translate these conceptual semantics understandings into low-level motion control commands and achieve generalization and consensus in cross-scene driving. We introduce Sce2DriveX, a human-like driving chain-of-thought (CoT) reasoning MLLM framework. Sce2DriveX utilizes multimodal joint learning from local scene videos and global BEV maps to deeply understand long-range spatiotemporal relationships and road topology, enhancing its comprehensive perception and reasoning capabilities in 3D dynamic/static scenes and achieving driving generalization across scenes. Building on this, it reconstructs the implicit cognitive chain inherent in human driving, covering scene understanding, meta-action reasoning, behavior interpretation analysis, motion planning and control, thereby further bridging the gap between autonomous driving and human thought processes. To elevate model performance, we have developed the first extensive Visual Question Answering (VQA) driving instruction dataset tailored for 3D spatial understanding and long-axis task reasoning. Extensive experiments demonstrate that Sce2DriveX achieves state-of-the-art performance from scene understanding to end-to-end driving, as well as robust generalization on the CARLA Bench2Drive benchmark.
Authors: Xinrui Zhang, Lu Xiong, Peizhi Zhang, Junpeng Huang, Yining Ma
Abstract:
Track testing plays a critical role in the safety evaluation of autonomous driving systems (ADS), as it provides a real-world interaction environment. However, the inflexibility in motion control of object targets and the absence of intelligent interactive testing methods often result in pre-fixed and limited testing scenarios. To address these limitations, we propose a novel 5G cloud-controlled track testing framework, Real-world Troublemaker. This framework overcomes the rigidity of traditional pre-programmed control by leveraging 5G cloud-controlled object targets integrated with the Internet of Things (IoT) and vehicle teleoperation technologies. Unlike conventional testing methods that rely on pre-set conditions, we propose a dynamic game strategy based on a quadratic risk interaction utility function, facilitating intelligent interactions with the vehicle under test (VUT) and creating a more realistic and dynamic interaction environment. The proposed framework has been successfully implemented at the Tongji University Intelligent Connected Vehicle Evaluation Base. Field test results demonstrate that Troublemaker can perform dynamic interactive testing of ADS accurately and effectively. Compared to traditional methods, Troublemaker improves scenario reproduction accuracy by 65.2\%, increases the diversity of interaction strategies by approximately 9.2 times, and enhances exposure frequency of safety-critical scenarios by 3.5 times in unprotected left-turn scenarios.
Authors: Jiexin Wang, Yiju Guo, Bing Su
Abstract:
Human motion prediction (HMP) involves forecasting future human motion based on historical data. Graph Convolutional Networks (GCNs) have garnered widespread attention in this field for their proficiency in capturing relationships among joints in human motion. However, existing GCN-based methods tend to focus on either temporal-domain or spatial-domain features, or they combine spatio-temporal features without fully leveraging the complementarity and cross-dependency of these two features. In this paper, we propose the Spatial-Temporal Multi-Subgraph Graph Convolutional Network (STMS-GCN) to capture complex spatio-temporal dependencies in human motion. Specifically, we decouple the modeling of temporal and spatial dependencies, enabling cross-domain knowledge transfer at multiple scales through a spatio-temporal information consistency constraint mechanism. Besides, we utilize multiple subgraphs to extract richer motion information and enhance the learning associations of diverse subgraphs through a homogeneous information constraint mechanism. Extensive experiments on the standard HMP benchmarks demonstrate the superiority of our method.
Authors: Jiexin Wang, Yiju Guo, Bing Su
Abstract:
Exploring the bridge between historical and future motion behaviors remains a central challenge in human motion prediction. While most existing methods incorporate a reconstruction task as an auxiliary task into the decoder, thereby improving the modeling of spatio-temporal dependencies, they overlook the potential conflicts between reconstruction and prediction tasks. In this paper, we propose a novel approach: Temporal Decoupling Decoding with Inverse Processing (\textbf{$TD^2IP$}). Our method strategically separates reconstruction and prediction decoding processes, employing distinct decoders to decode the shared motion features into historical or future sequences. Additionally, inverse processing reverses motion information in the temporal dimension and reintroduces it into the model, leveraging the bidirectional temporal correlation of human motion behaviors. By alleviating the conflicts between reconstruction and prediction tasks and enhancing the association of historical and future information, \textbf{$TD^2IP$} fosters a deeper understanding of motion patterns. Extensive experiments demonstrate the adaptability of our method within existing methods.
Authors: Aykut İÅleyen, Abhidnya Kadu, René van de Molengraft, Ãmür Arslan
Abstract:
Safe, smooth, and optimal motion planning for nonholonomically constrained mobile robots and autonomous vehicles is essential for achieving reliable, seamless, and efficient autonomy in logistics, mobility, and service industries. In many such application settings, nonholonomic robots, like unicycles with restricted motion, require precise planning and control of both translational and orientational motion to approach specific locations in a designated orientation, such as for approaching changing, parking, and loading areas. In this paper, we introduce a new dual-headway unicycle pose control method by leveraging an adaptively placed headway point in front of the unicycle pose and a tailway point behind the goal pose. In summary, the unicycle robot continuously follows its headway point, which chases the tailway point of the goal pose and the asymptotic motion of the tailway point towards the goal position guides the unicycle robot to approach the goal location with the correct orientation. The simple and intuitive geometric construction of dual-headway unicycle pose control enables an explicit convex feedback motion prediction bound on the closed-loop unicycle motion trajectory for fast and accurate safety verification. We present an application of dual-headway unicycle control for optimal sampling-based motion planning around obstacles. In numerical simulations, we show that optimal unicycle motion planning using dual-headway translation and orientation distances significantly outperforms Euclidean translation and cosine orientation distances in generating smooth motion with minimal travel and turning effort.
Authors: Seong-Eun Hong, Soobin Lim, Juyeong Hwang, Minwook Chang, Hyeongyeop Kang
Abstract:
Generating natural and expressive human motions from textual descriptions is challenging due to the complexity of coordinating full-body dynamics and capturing nuanced motion patterns over extended sequences that accurately reflect the given text. To address this, we introduce BiPO, Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis, a novel model that enhances text-to-motion synthesis by integrating part-based generation with a bidirectional autoregressive architecture. This integration allows BiPO to consider both past and future contexts during generation while enhancing detailed control over individual body parts without requiring ground-truth motion length. To relax the interdependency among body parts caused by the integration, we devise the Partial Occlusion technique, which probabilistically occludes the certain motion part information during training. In our comprehensive experiments, BiPO achieves state-of-the-art performance on the HumanML3D dataset, outperforming recent methods such as ParCo, MoMask, and BAMM in terms of FID scores and overall motion quality. Notably, BiPO excels not only in the text-to-motion generation task but also in motion editing tasks that synthesize motion based on partially generated motion sequences and textual descriptions. These results reveal the BiPO's effectiveness in advancing text-to-motion synthesis and its potential for practical applications.
Authors: Yiming Wu, Wei Ji, Kecheng Zheng, Zicheng Wang, Dong Xu
Abstract:
Recently, human motion analysis has experienced great improvement due to inspiring generative models such as the denoising diffusion model and large language model. While the existing approaches mainly focus on generating motions with textual descriptions and overlook the reciprocal task. In this paper, we present~\textbf{MoTe}, a unified multi-modal model that could handle diverse tasks by learning the marginal, conditional, and joint distributions of motion and text simultaneously. MoTe enables us to handle the paired text-motion generation, motion captioning, and text-driven motion generation by simply modifying the input context. Specifically, MoTe is composed of three components: Motion Encoder-Decoder (MED), Text Encoder-Decoder (TED), and Moti-on-Text Diffusion Model (MTDM). In particular, MED and TED are trained for extracting latent embeddings, and subsequently reconstructing the motion sequences and textual descriptions from the extracted embeddings, respectively. MTDM, on the other hand, performs an iterative denoising process on the input context to handle diverse tasks. Experimental results on the benchmark datasets demonstrate the superior performance of our proposed method on text-to-motion generation and competitive performance on motion captioning.
Authors: Zeyu Ling, Bo Han, Shiyang Li, Jikang Cheng, Hongdeng Shen, Changqing Zou
Abstract:
Large language models (LLMs) are, by design, inherently capable of multi-task learning: through a unified next-token prediction paradigm, they can naturally address a wide variety of downstream tasks. Prior work in the motion domain has demonstrated some generality by adapting LLMs via a Motion Tokenizer coupled with an autoregressive Transformer to generate and understand human motion. However, this generality remains limited in scope and yields only modest performance gains. We introduce VersatileMotion, a unified multimodal motion LLM that combines a novel motion tokenizer, integrating VQ-VAE with flow matching, and an autoregressive transformer backbone to seamlessly support at least nine distinct motion-related tasks. VersatileMotion is the first method to handle single-agent and multi-agent motions in a single framework and enable cross-modal conversion between motion, text, music, and speech, achieving state-of-the-art performance on seven of these tasks. Each sequence in MotionHub may include one or more of the following annotations: natural-language captions, music or audio clips, speech transcripts, and multi-agent interaction data. To facilitate evaluation, we define and release benchmark splits covering nine core tasks. Extensive experiments demonstrate the superior performance, versatility, and potential of VersatileMotion as a foundational model for future understanding and generation of motion.
Authors: Leo Bringer, Joey Wilson, Kira Barton, Maani Ghaffari
Abstract:
This paper introduces a Multi-modal Diffusion model for Motion Prediction (MDMP) that integrates and synchronizes skeletal data and textual descriptions of actions to generate refined long-term motion predictions with quantifiable uncertainty. Existing methods for motion forecasting or motion generation rely solely on either prior motions or text prompts, facing limitations with precision or control, particularly over extended durations. The multi-modal nature of our approach enhances the contextual understanding of human motion, while our graph-based transformer framework effectively capture both spatial and temporal motion dynamics. As a result, our model consistently outperforms existing generative techniques in accurately predicting long-term motions. Additionally, by leveraging diffusion models' ability to capture different modes of prediction, we estimate uncertainty, significantly improving spatial awareness in human-robot interactions by incorporating zones of presence with varying confidence levels for each body joint.
Authors: Ameya Salvi, Pardha Sai Krishna Ala, Jonathon M. Smereka, Mark Brudnak, David Gorsich, Matthias Schmid, Venkat Krovi
Abstract:
Skid-steered wheel mobile robots (SSWMRs) operate in a variety of outdoor environments exhibiting motion behaviors dominated by the effects of complex wheel-ground interactions. Characterizing these interactions is crucial both from the immediate robot autonomy perspective (for motion prediction and control) as well as a long-term predictive maintenance and diagnostics perspective. An ideal solution entails capturing precise state measurements for decisions and controls, which is considerably difficult, especially in increasingly unstructured outdoor regimes of operations for these robots. In this milieu, a framework to identify pre-determined discrete modes of operation can considerably simplify the motion model identification process. To this end, we propose an interactive multiple model (IMM) based filtering framework to probabilistically identify predefined robot operation modes that could arise due to traversal in different terrains or loss of wheel traction.
Authors: Hua Yu, Yaqing Hou, Wenbin Pei, Qiang Zhang
Abstract:
Diverse human motion prediction (HMP) aims to predict multiple plausible future motions given an observed human motion sequence. It is a challenging task due to the diversity of potential human motions while ensuring an accurate description of future human motions. Current solutions are either low-diversity or limited in expressiveness. Recent denoising diffusion models (DDPM) hold potential generative capabilities in generative tasks. However, introducing DDPM directly into diverse HMP incurs some issues. Although DDPM can increase the diversity of the potential patterns of human motions, the predicted human motions become implausible over time because of the significant noise disturbances in the forward process of DDPM. This phenomenon leads to the predicted human motions being hard to control, seriously impacting the quality of predicted motions and restricting their practical applicability in real-world scenarios. To alleviate this, we propose a novel conditional diffusion-based generative model, called DivDiff, to predict more diverse and realistic human motions. Specifically, the DivDiff employs DDPM as our backbone and incorporates Discrete Cosine Transform (DCT) and transformer mechanisms to encode the observed human motion sequence as a condition to instruct the reverse process of DDPM. More importantly, we design a diversified reinforcement sampling function (DRSF) to enforce human skeletal constraints on the predicted human motions. DRSF utilizes the acquired information from human skeletal as prior knowledge, thereby reducing significant disturbances introduced during the forward process. Extensive results received in the experiments on two widely-used datasets (Human3.6M and HumanEva-I) demonstrate that our model obtains competitive performance on both diversity and accuracy.
Authors: Zhenxiao Liang, Ning Zhang, Youbao Tang, Ruei-Sung Lin, Qixing Huang, Peng Chang, Jing Xiao
Abstract:
We introduce ShapeGaussian, a high-fidelity, template-free method for 4D human reconstruction from casual monocular videos. Generic reconstruction methods lacking robust vision priors, such as 4DGS, struggle to capture high-deformation human motion without multi-view cues. While template-based approaches, primarily relying on SMPL, such as HUGS, can produce photorealistic results, they are highly susceptible to errors in human pose estimation, often leading to unrealistic artifacts. In contrast, ShapeGaussian effectively integrates template-free vision priors to achieve both high-fidelity and robust scene reconstructions. Our method follows a two-step pipeline: first, we learn a coarse, deformable geometry using pretrained models that estimate data-driven priors, providing a foundation for reconstruction. Then, we refine this geometry using a neural deformation model to capture fine-grained dynamic details. By leveraging 2D vision priors, we mitigate artifacts from erroneous pose estimation in template-based methods and employ multiple reference frames to resolve the invisibility issue of 2D keypoints in a template-free manner. Extensive experiments demonstrate that ShapeGaussian surpasses template-based methods in reconstruction accuracy, achieving superior visual quality and robustness across diverse human motions in casual monocular videos.
Authors: Nyi Nyi Aung, Bradley Wight, Adrian Stein
Abstract:
We propose a feedforward input-shaping framework with online parameter estimation for unknown second-order systems. The proposed approach eliminates the need for prior knowledge of system parameters when designing input shaping for precise switching times by incorporating online estimation for a black-box system. The adaptive input shaping scheme accounts for the system's periodic switching behavior and enables reference shaping even when initial switching instants are missed. The proposed framework is evaluated in simulation and is intended for vibration suppression in motion control applications such as gantry cranes and 3D printer headers.
Authors: Ho Yin Au, Junkun Jiang, Jie Chen
Abstract:
Traditional text-to-motion frameworks often lack precise control, and existing approaches based on joint keyframe locations provide only positional guidance, making it challenging and unintuitive to specify body part orientations and motion timing. To address these limitations, we introduce the Salient Orientation Symbolic (SOS) script, a programmable symbolic framework for specifying body part orientations and motion timing at keyframes. We further propose an automatic SOS extraction pipeline that employs temporally-constrained agglomerative clustering for frame saliency detection and a Saliency-based Masking Scheme (SMS) to generate sparse, interpretable SOS scripts directly from motion data. Moreover, we present the SOSControl framework, which treats the available orientation symbols in the sparse SOS script as salient and prioritizes satisfying these constraints during motion generation. By incorporating SMS-based data augmentation and gradient-based iterative optimization, the framework enhances alignment with user-specified constraints. Additionally, it employs a ControlNet-based ACTOR-PAE Decoder to ensure smooth and natural motion outputs. Extensive experiments demonstrate that the SOS extraction pipeline generates human-interpretable scripts with symbolic annotations at salient keyframes, while the SOSControl framework outperforms existing baselines in motion quality, controllability, and generalizability with respect to motion timing and body part orientation control.
Authors: Xiaoyu Li, Peidong Li, Xian Wu, Long Shi, Dedong Liu, Yitao Wu, Jiajia Fu, Dixiao Cui, Lijun Zhao, Lining Sun
Abstract:
Spatio-temporal alignment is crucial for temporal modeling of end-to-end (E2E) perception in autonomous driving (AD), providing valuable structural and textural prior information. Existing methods typically rely on the attention mechanism to align objects across frames, simplifying the motion model with a unified explicit physical model (constant velocity, etc.). These approaches prefer semantic features for implicit alignment, challenging the importance of explicit motion modeling in the traditional perception paradigm. However, variations in motion states and object features across categories and frames render this alignment suboptimal. To address this, we propose HAT, a spatio-temporal alignment module that allows each object to adaptively decode the optimal alignment proposal from multiple hypotheses without direct supervision. Specifically, HAT first utilizes multiple explicit motion models to generate spatial anchors and motion-aware feature proposals for historical instances. It then performs multi-hypothesis decoding by incorporating semantic and motion cues embedded in cached object queries, ultimately providing the optimal alignment proposal for the target frame. On nuScenes, HAT consistently improves 3D temporal detectors and trackers across diverse baselines. It achieves state-of-the-art tracking results with 46.0% AMOTA on the test set when paired with the DETR3D detector. In an object-centric E2E AD method, HAT enhances perception accuracy (+1.3% mAP, +3.1% AMOTA) and reduces the collision rate by 32%. When semantics are corrupted (nuScenes-C), the enhancement of motion modeling by HAT enables more robust perception and planning in the E2E AD.
Authors: Bowen Dang, Lin Wu, Xiaohang Yang, Zheng Yuan, Zhixiang Chen
Abstract:
Generating 3D human motions from textual descriptions is an important research problem with broad applications in video games, virtual reality, and augmented reality. Recent methods align the textual description with human motion at the sequence level, neglecting the internal semantic structure of modalities. However, both motion descriptions and motion sequences can be naturally decomposed into smaller and semantically coherent segments, which can serve as atomic alignment units to achieve finer-grained correspondence. Motivated by this, we propose SegMo, a novel Segment-aligned text-conditioned human Motion generation framework to achieve fine-grained text-motion alignment. Our framework consists of three modules: (1) Text Segment Extraction, which decomposes complex textual descriptions into temporally ordered phrases, each representing a simple atomic action; (2) Motion Segment Extraction, which partitions complete motion sequences into corresponding motion segments; and (3) Fine-grained Text-Motion Alignment, which aligns text and motion segments with contrastive learning. Extensive experiments demonstrate that SegMo improves the strong baseline on two widely used datasets, achieving an improved TOP 1 score of 0.553 on the HumanML3D test set. Moreover, thanks to the learned shared embedding space for text and motion segments, SegMo can also be applied to retrieval-style tasks such as motion grounding and motion-to-text retrieval.
Authors: Maxime Lacour, Pu Ren, Rie Nakata, Nori Nakata, Michael Mahoney
Abstract:
Recent developments in non-ergodic ground-motion models (GMMs) explicitly model systematic spatial variations in source, site, and path effects, reducing standard deviation to 30-40% of ergodic models and enabling more accurate site-specific seismic hazard analysis. Current non-ergodic GMMs rely on Gaussian Process (GP) methods with prescribed correlation functions and thus have computational limitations for large-scale predictions. This study proposes a deep-learning approach called Conditional Generative Modeling for Fourier Amplitude Spectra (CGM-FAS) as an alternative to GP-based methods for modeling non-ergodic path effects in Fourier Amplitude Spectra (FAS). CGM-FAS uses a Conditional Variational Autoencoder architecture to learn spatial patterns and interfrequency correlation directly from data by using geographical coordinates of earthquakes and stations as conditional variables. Using San Francisco Bay Area earthquake data, we compare CGM-FAS against a recent GP-based GMM for the region and demonstrate consistent predictions of non-ergodic path effects. Additionally, CGM-FAS offers advantages compared to GP-based approaches in learning spatial patterns without prescribed correlation functions, capturing interfrequency correlations, and enabling rapid predictions, generating maps for 10,000 sites across 1,000 frequencies within 10 seconds using a few GB of memory. CGM-FAS hyperparameters can be tuned to ensure generated path effects exhibit variability consistent with the GP-based empirical GMM. This work demonstrates a promising direction for efficient non-ergodic ground-motion prediction across multiple frequencies and large spatial domains.
Authors: David Müller, Espen Knoop, Dario Mylonopoulos, Agon Serifi, Michael A. Hopkins, Ruben Grandia, Moritz Bächer
Abstract:
Animated characters often move in non-physical ways and have proportions that are far from a typical walking robot. This provides an ideal platform for innovation in both mechanical design and stylized motion control. In this paper, we bring Olaf to life in the physical world, relying on reinforcement learning guided by animation references for control. To create the illusion of Olaf's feet moving along his body, we hide two asymmetric legs under a soft foam skirt. To fit actuators inside the character, we use spherical and planar linkages in the arms, mouth, and eyes. Because the walk cycle results in harsh contact sounds, we introduce additional rewards that noticeably reduce impact noise. The large head, driven by small actuators in the character's slim neck, creates a risk of overheating, amplified by the costume. To keep actuators from overheating, we feed temperature values as additional inputs to policies, introducing new rewards to keep them within bounds. We validate the efficacy of our modeling in simulation and on hardware, demonstrating an unmatched level of believability for a costumed robotic character.
Authors: Xavier Thomas, Youngsun Lim, Ananya Srinivasan, Audrey Zheng, Deepti Ghadiyaram
Abstract:
Despite rapid advances in video generative models, robust metrics for evaluating visual and temporal correctness of complex human actions remain elusive. Critically, existing pure-vision encoders and Multimodal Large Language Models (MLLMs) are strongly appearance-biased, lack temporal understanding, and thus struggle to discern intricate motion dynamics and anatomical implausibilities in generated videos. We tackle this gap by introducing a novel evaluation metric derived from a learned latent space of real-world human actions. Our method first captures the nuances, constraints, and temporal smoothness of real-world motion by fusing appearance-agnostic human skeletal geometry features with appearance-based features. We posit that this combined feature space provides a robust representation of action plausibility. Given a generated video, our metric quantifies its action quality by measuring the distance between its underlying representations and this learned real-world action distribution. For rigorous validation, we develop a new multi-faceted benchmark specifically designed to probe temporally challenging aspects of human action fidelity. Through extensive experiments, we show that our metric achieves substantial improvement of more than 68% compared to existing state-of-the-art methods on our benchmark, performs competitively on established external benchmarks, and has a stronger correlation with human perception. Our in-depth analysis reveals critical limitations in current video generative models and establishes a new standard for advanced research in video generation.
Authors: Qingzhou Lu, Yao Feng, Baiyu Shi, Michael Piseno, Zhenan Bao, C. Karen Liu
Abstract:
Humanoid robots are expected to operate in human-centered environments where safe and natural physical interaction is essential. However, most recent reinforcement learning (RL) policies emphasize rigid tracking and suppress external forces. Existing impedance-augmented approaches are typically restricted to base or end-effector control and focus on resisting extreme forces rather than enabling compliance. We introduce GentleHumanoid, a framework that integrates impedance control into a whole-body motion tracking policy to achieve upper-body compliance. At its core is a unified spring-based formulation that models both resistive contacts (restoring forces when pressing against surfaces) and guiding contacts (pushes or pulls sampled from human motion data). This formulation ensures kinematically consistent forces across the shoulder, elbow, and wrist, while exposing the policy to diverse interaction scenarios. Safety is further supported through task-adjustable force thresholds. We evaluate our approach in both simulation and on the Unitree G1 humanoid across tasks requiring different levels of compliance, including gentle hugging, sit-to-stand assistance, and safe object manipulation. Compared to baselines, our policy consistently reduces peak contact forces while maintaining task success, resulting in smoother and more natural interactions. These results highlight a step toward humanoid robots that can safely and effectively collaborate with humans and handle objects in real-world environments.
Authors: Golnaz Raja, Ruslan Agishev, Miloš Prágr, Joni Pajarinen, Karel Zimmermann, Arun Kumar Singh, Reza Ghabcheloo
Abstract:
Uncertainty-aware robot motion prediction is crucial for downstream traversability estimation and safe autonomous navigation in unstructured, off-road environments, where terrain is heterogeneous and perceptual uncertainty is high. Most existing methods assume deterministic or spatially independent terrain uncertainties, ignoring the inherent local correlations of 3D spatial data and often producing unreliable predictions. In this work, we introduce an efficient probabilistic framework that explicitly models spatially correlated aleatoric uncertainty over terrain parameters as a probabilistic world model and propagates this uncertainty through a differentiable physics engine for probabilistic trajectory forecasting. By leveraging structured convolutional operators, our approach provides high-resolution multivariate predictions at manageable computational cost. Experimental evaluation on a publicly available dataset shows significantly improved uncertainty estimation and trajectory prediction accuracy over aleatoric uncertainty estimation baselines.
Authors: Liu Haojie, Gao Suixiang
Abstract:
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
Authors: Kai Yang, Yuqi Huang, Junheng Tao, Wanyu Wang, Qitian Wu
Abstract:
Modeling 3D dynamics is a fundamental problem in multi-body systems across scientific and engineering domains and has important practical implications in trajectory prediction and simulation. While recent GNN-based approaches have achieved strong performance by enforcing geometric symmetries, encoding high-order features or incorporating neural-ODE mechanics, they typically depend on explicitly observed structures and inherently fail to capture the unobserved interactions that are crucial to complex physical behaviors and dynamics mechanism. In this paper, we propose PAINET, a principled SE(3)-equivariant neural architecture for learning all-pair interactions in multi-body systems. The model comprises: (1) a novel physics-inspired attention network derived from the minimization trajectory of an energy function, and (2) a parallel decoder that preserves equivariance while enabling efficient inference. Empirical results on diverse real-world benchmarks, including human motion capture, molecular dynamics, and large-scale protein simulations, show that PAINET consistently outperforms recently proposed models, yielding 4.7% to 41.5% error reductions in 3D dynamics prediction with comparable computation costs in terms of time and memory.
Authors: Shubham Singh, Anoop Jain
Abstract:
This paper addresses the problem of collective circular motion control for unicycle agents, with the objective of achieving phase coordination of their velocity vectors while ensuring that their trajectories remain confined within a prescribed non-concentric circular boundary. To accommodate such nonuniform motion constraints, we build upon our earlier work and extend the use of Mobius transformation to a multi-agent framework. The Mobius transformation maps two nonconcentric circles to concentric ones, thereby converting spatially nonuniform constraints into uniform ones in the transformed plane. Leveraging this property, we introduce the notion of a phase-shifted order parameter, along with the associated concepts of Mobius phase-shift coupled synchronization and balancing, which characterize the phase-coordinated patterns studied in this paper. We establish an equivalence between the unicycle dynamics in the original and transformed planes under the Mobius transformation and its inverse, and show that synchronization is preserved across both planes, whereas balancing is generally not. Distributed control laws are then designed in the transformed plane using barrier Lyapunov functions, under the assumption of an undirected and connected communication topology among agents. These controllers are subsequently mapped back to the original plane to obtain the linear acceleration and turn-rate control inputs applied to the actual agents. Both simulations and experimental results are provided to illustrate the proposed framework.
Authors: Qijun Ying, Zhongyuan Hu, Rui Zhang, Ronghui Li, Yu Lu, Zijiao Zeng
Abstract:
Global human motion reconstruction from in-the-wild monocular videos is increasingly demanded across VR, graphics, and robotics applications, yet requires accurate mapping of human poses from camera to world coordinates-a task challenged by depth ambiguity, motion ambiguity, and the entanglement between camera and human movements. While human-motion-centric approaches excel in preserving motion details and physical plausibility, they suffer from two critical limitations: insufficient exploitation of camera orientation information and ineffective integration of camera translation cues. We present WATCH (World-aware Allied Trajectory and pose reconstruction for Camera and Human), a unified framework addressing both challenges. Our approach introduces an analytical heading angle decomposition technique that offers superior efficiency and extensibility compared to existing geometric methods. Additionally, we design a camera trajectory integration mechanism inspired by world models, providing an effective pathway for leveraging camera translation information beyond naive hard-decoding approaches. Through experiments on in-the-wild benchmarks, WATCH achieves state-of-the-art performance in end-to-end trajectory reconstruction. Our work demonstrates the effectiveness of jointly modeling camera-human motion relationships and offers new insights for addressing the long-standing challenge of camera translation integration in global human motion reconstruction. The code will be available publicly.
Authors: Zhiwei Zheng, Dongyin Hu, Mingmin Zhao
Abstract:
Radio Frequency (RF) sensing has emerged as a powerful, privacy-preserving alternative to vision-based methods for indoor perception tasks. However, collecting high-quality RF data in dynamic and diverse indoor environments remains a major challenge. To address this, we introduce WaveVerse, a prompt-based, scalable framework that simulates realistic RF signals from generated indoor scenes with human motions. WaveVerse introduces a language-guided 4D world generator, which includes a state-aware causal transformer for human motion generation conditioned on spatial constraints and texts, and a phase-coherent ray tracing simulator that enables the simulation of accurate and coherent RF signals. Experiments demonstrate the effectiveness of our approach in conditioned human motion generation and highlight how phase coherence is applied to beamforming and respiration monitoring. We further present two case studies in ML-based high-resolution imaging and human activity recognition, demonstrating that WaveVerse not only enables data generation for RF imaging for the first time, but also consistently achieves performance gain in both data-limited and data-adequate scenarios.
Authors: Yu Liu, Zhijie Liu, Xiao Ren, You-Fu Li, He Kong
Abstract:
Predicting pedestrian motion trajectories is critical for the path planning and motion control of autonomous vehicles. Recent diffusion-based models have shown promising results in capturing the inherent stochasticity of pedestrian behavior for trajectory prediction. However, the absence of explicit semantic modelling of pedestrian intent in many diffusion-based methods may result in misinterpreted behaviors and reduced prediction accuracy. To address the above challenges, we propose a diffusion-based pedestrian trajectory prediction framework that incorporates both short-term and long-term motion intentions. Short-term intent is modelled using a residual polar representation, which decouples direction and magnitude to capture fine-grained local motion patterns. Long-term intent is estimated through a learnable, token-based endpoint predictor that generates multiple candidate goals with associated probabilities, enabling multimodal and context-aware intention modelling. Furthermore, we enhance the diffusion process by incorporating adaptive guidance and a residual noise predictor that dynamically refines denoising accuracy. The proposed framework is evaluated on the widely used ETH, UCY, and SDD benchmarks, demonstrating competitive results against state-of-the-art methods.
Authors: Yifan Zhou, Beizhen Zhao, Pengcheng Wu, Hao Wang
Abstract:
While 3D Gaussian Splatting (3DGS) excels in static scene modeling, its extension to dynamic scenes introduces significant challenges. Existing dynamic 3DGS methods suffer from either over-smoothing due to low-rank decomposition or feature collision from high-dimensional grid sampling. This is because of the inherent spectral conflicts between preserving motion details and maintaining deformation consistency at different frequency. To address these challenges, we propose a novel dynamic 3DGS framework with hybrid explicit-implicit functions. Our approach contains three key innovations: a spectral-aware Laplacian encoding architecture which merges Hash encoding and Laplacian-based module for flexible frequency motion control, an enhanced Gaussian dynamics attribute that compensates for photometric distortions caused by geometric deformation, and an adaptive Gaussian split strategy guided by KDTree-based primitive control to efficiently query and optimize dynamic areas. Through extensive experiments, our method demonstrates state-of-the-art performance in reconstructing complex dynamic scenes, achieving better reconstruction fidelity.
Authors: Yu Liu, Zhijie Liu, Xiao Ren, You-Fu Li, He Kong
Abstract:
Predicting pedestrian motion trajectories is critical for path planning and motion control of autonomous vehicles. However, accurately forecasting crowd trajectories remains a challenging task due to the inherently multimodal and uncertain nature of human motion. Recent diffusion-based models have shown promising results in capturing the stochasticity of pedestrian behavior for trajectory prediction. However, few diffusion-based approaches explicitly incorporate the underlying motion intentions of pedestrians, which can limit the interpretability and precision of prediction models. In this work, we propose a diffusion-based multimodal trajectory prediction model that incorporates pedestrians' motion intentions into the prediction framework. The motion intentions are decomposed into lateral and longitudinal components, and a pedestrian intention recognition module is introduced to enable the model to effectively capture these intentions. Furthermore, we adopt an efficient guidance mechanism that facilitates the generation of interpretable trajectories. The proposed framework is evaluated on two widely used human trajectory prediction benchmarks, ETH and UCY, on which it is compared against state-of-the-art methods. The experimental results demonstrate that our method achieves competitive performance.
Authors: Haocheng Xu, Haodong Zhang, Zhenghan Chen, Rong Xiong
Abstract:
To support humanoid robots in performing manipulation tasks, it is essential to study stable standing while accommodating upper-body motions. However, the limited controllable range of humanoid robots in a standing position affects the stability of the entire body. Thus we introduce a reinforcement learning based framework for humanoid robots to imitate human upper-body motions while maintaining overall stability. Our approach begins with designing a retargeting network that generates a large-scale upper-body motion dataset for training the reinforcement learning (RL) policy, which enables the humanoid robot to track upper-body motion targets, employing domain randomization for enhanced robustness. To avoid exceeding the robot's execution capability and ensure safety and stability, we propose an Executable Motion Prior (EMP) module, which adjusts the input target movements based on the robot's current state. This adjustment improves standing stability while minimizing changes to motion amplitude. We evaluate our framework through simulation and real-world tests, demonstrating its practical applicability.
Authors: Xiaotang Zhang, Ziyi Chang, Qianhui Men, Hubert Shum
Abstract:
We propose a real-time method for reactive motion synthesis based on the known trajectory of input character, predicting instant reactions using only historical, user-controlled motions. Our method handles the uncertainty of future movements by introducing an intention predictor, which forecasts key joint intentions to make pose prediction more deterministic from the historical interaction. The intention is later encoded into the latent space of its reactive motion, matched with a codebook which represents mappings between input and output. It samples a categorical distribution for pose generation and strengthens model robustness through adversarial training. Unlike previous offline approaches, the system can recursively generate intentions and reactive motions using feedback from earlier steps, enabling real-time, long-term realistic interactive synthesis. Both quantitative and qualitative experiments show our approach outperforms other matching-based motion synthesis approaches, delivering superior stability and generalizability. In our method, user can also actively influence the outcome by controlling the moving directions, creating a personalized interaction path that deviates from predefined trajectories.
Authors: Michael Neumeier, Jules Lecomte, Nils Kazinski, Soubarna Banik, Bing Li, Axel von Arnim
Abstract:
Recognizing human activities early is crucial for the safety and responsiveness of human-robot and human-machine interfaces. Due to their high temporal resolution and low latency, event-based vision sensors are a perfect match for this early recognition demand. However, most existing processing approaches accumulate events to low-rate frames or space-time voxels which limits the early prediction capabilities. In contrast, spiking neural networks (SNNs) can process the events at a high-rate for early predictions, but most works still fall short on final accuracy. In this work, we introduce a high-rate two-stream SNN which closes this gap by outperforming previous work by 2% in final accuracy on the large-scale THU EACT-50 dataset. We benchmark the SNNs within a novel early event-based recognition framework by reporting Top-1 and Top-5 recognition scores for growing observation time. Finally, we exemplify the impact of these methods on a real-world task of early action triggering for human motion capture in sports.
Authors: Ziye Li, Hao Luo, Xincheng Shuai, Henghui Ding
Abstract:
Recent advancements in video generation, particularly in diffusion models, have driven notable progress in text-to-video (T2V) and image-to-video (I2V) synthesis. However, challenges remain in effectively integrating dynamic motion signals and flexible spatial constraints. Existing T2V methods typically rely on text prompts, which inherently lack precise control over the spatial layout of generated content. In contrast, I2V methods are limited by their dependence on real images, which restricts the editability of the synthesized content. Although some methods incorporate ControlNet to introduce image-based conditioning, they often lack explicit motion control and require computationally expensive training. To address these limitations, we propose AnyI2V, a training-free framework that animates any conditional images with user-defined motion trajectories. AnyI2V supports a broader range of modalities as the conditional image, including data types such as meshes and point clouds that are not supported by ControlNet, enabling more flexible and versatile video generation. Additionally, it supports mixed conditional inputs and enables style transfer and editing via LoRA and text prompts. Extensive experiments demonstrate that the proposed AnyI2V achieves superior performance and provides a new perspective in spatial- and motion-controlled video generation. Code is available at https://henghuiding.com/AnyI2V/.
Authors: Lin Wu, Zhixiang Chen, Jianglin Lan
Abstract:
Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
Authors: Da Li, Donggang Jia, Markus Hadwiger, Ivan Viola
Abstract:
Reconstructing an interactive human avatar and the background from a monocular video of a dynamic human scene is highly challenging. In this work we adopt a strategy of point cloud decoupling and joint optimization to achieve the decoupled reconstruction of backgrounds and human bodies while preserving the interactivity of human motion. We introduce a position texture to subdivide the Skinned Multi-Person Linear (SMPL) body model's surface and grow the human point cloud. To capture fine details of human dynamics and deformations, we incorporate a convolutional neural network structure to predict human body point cloud features based on texture. This strategy makes our approach free of hyperparameter tuning for densification and efficiently represents human points with half the point cloud of HUGS. This approach ensures high-quality human reconstruction and reduces GPU resource consumption during training. As a result, our method surpasses the previous state-of-the-art HUGS in reconstruction metrics while maintaining the ability to generalize to novel poses and views. Furthermore, our technique achieves real-time rendering at over 100 FPS, $\sim$6$\times$ the HUGS speed using only Linear Blend Skinning (LBS) weights for human transformation. Additionally, this work demonstrates that this framework can be extended to animal scene reconstruction when an accurately-posed model of an animal is available.
Authors: Sepehr Samavi, Garvish Bhutani, Florian Shkurti, Angela P. Schoellig
Abstract:
Safe and efficient navigation in crowded environments remains a critical challenge for robots that provide a variety of service tasks such as food delivery or autonomous wheelchair mobility. Classical robot crowd navigation methods decouple human motion prediction from robot motion planning, which neglects the closed-loop interactions between humans and robots. This lack of a model for human reactions to the robot plan (e.g. moving out of the way) can cause the robot to get stuck. Our proposed Safe and Interactive Crowd Navigation (SICNav) method is a bilevel Model Predictive Control (MPC) framework that combines prediction and planning into one optimization problem, explicitly modeling interactions among agents. In this paper, we present a systems overview of the crowd navigation platform we use to deploy SICNav in previously unseen indoor and outdoor environments. We provide a preliminary analysis of the system's operation over the course of nearly 7 km of autonomous navigation over two hours in both indoor and outdoor environments.
Authors: Muhammad Islam, Tao Huang, Euijoon Ahn, Usman Naseem
Abstract:
This paper presents an in-depth survey on the use of multimodal Generative Artificial Intelligence (GenAI) and autoregressive Large Language Models (LLMs) for human motion understanding and generation, offering insights into emerging methods, architectures, and their potential to advance realistic and versatile motion synthesis. Focusing exclusively on text and motion modalities, this research investigates how textual descriptions can guide the generation of complex, human-like motion sequences. The paper explores various generative approaches, including autoregressive models, diffusion models, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and transformer-based models, by analyzing their strengths and limitations in terms of motion quality, computational efficiency, and adaptability. It highlights recent advances in text-conditioned motion generation, where textual inputs are used to control and refine motion outputs with greater precision. The integration of LLMs further enhances these models by enabling semantic alignment between instructions and motion, improving coherence and contextual relevance. This systematic survey underscores the transformative potential of text-to-motion GenAI and LLM architectures in applications such as healthcare, humanoids, gaming, animation, and assistive technologies, while addressing ongoing challenges in generating efficient and realistic human motion.
Authors: Xiaojuan Wang, Aleksander Holynski, Brian Curless, Ira Kemelmacher, Steve Seitz
Abstract:
We present a keyframe-based framework for generating music-synchronized, choreography aware animal dance videos. Starting from a few keyframes representing distinct animal poses -- generated via text-to-image prompting or GPT-4o -- we formulate dance synthesis as a graph optimization problem: find the optimal keyframe structure that satisfies a specified choreography pattern of beats, which can be automatically estimated from a reference dance video. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 second dance videos across a wide range of animals and music tracks.
Authors: Amartya Purushottam, Jack Yan, Christopher Yu, Joao Ramos
Abstract:
Humanoid robots can support human workers in physically demanding environments by performing tasks that require whole-body coordination, such as lifting and transporting heavy objects.These tasks, which we refer to as Dynamic Mobile Manipulation (DMM), require the simultaneous control of locomotion, manipulation, and posture under dynamic interaction forces. This paper presents a teleoperation framework for DMM on a height-adjustable wheeled humanoid robot for carrying heavy payloads. A Human-Machine Interface (HMI) enables whole-body motion retargeting from the human pilot to the robot by capturing the motion of the human and applying haptic feedback. The pilot uses body motion to regulate robot posture and locomotion, while arm movements guide manipulation.Real time haptic feedback delivers end effector wrenches and balance related cues, closing the loop between human perception and robot environment interaction. We evaluate the different telelocomotion mappings that offer varying levels of balance assistance, allowing the pilot to either manually or automatically regulate the robot's lean in response to payload-induced disturbances. The system is validated in experiments involving dynamic lifting of barbells and boxes up to 2.5 kg (21% of robot mass), demonstrating coordinated whole-body control, height variation, and disturbance handling under pilot guidance. Video demo can be found at: https://youtu.be/jF270_bG1h8?feature=shared
Authors: Zichen Geng, Zeeshan Hayder, Wei Liu, Ajmal Mian
Abstract:
Human motion synthesis in complex scenes presents a fundamental challenge, extending beyond conventional Text-to-Motion tasks by requiring the integration of diverse modalities such as static environments, movable objects, natural language prompts, and spatial waypoints. Existing language-conditioned motion models often struggle with scene-aware motion generation due to limitations in motion tokenization, which leads to information loss and fails to capture the continuous, context-dependent nature of 3D human movement. To address these issues, we propose UniHM, a unified motion language model that leverages diffusion-based generation for synthesizing scene-aware human motion. UniHM is the first framework to support both Text-to-Motion and Text-to-Human-Object Interaction (HOI) in complex 3D scenes. Our approach introduces three key contributions: (1) a mixed-motion representation that fuses continuous 6DoF motion with discrete local motion tokens to improve motion realism; (2) a novel Look-Up-Free Quantization VAE (LFQ-VAE) that surpasses traditional VQ-VAEs in both reconstruction accuracy and generative performance; and (3) an enriched version of the Lingo dataset augmented with HumanML3D annotations, providing stronger supervision for scene-specific motion learning. Experimental results demonstrate that UniHM achieves comparative performance on the OMOMO benchmark for text-to-HOI synthesis and yields competitive results on HumanML3D for general text-conditioned motion generation.
Authors: Zhizhuo Yin, Yuk Hang Tsui, Pan Hui
Abstract:
Generating full-body human gestures encompassing face, body, hands, and global movements from audio is a valuable yet challenging task in virtual avatar creation. Previous systems focused on tokenizing the human gestures framewisely and predicting the tokens of each frame from the input audio. However, one observation is that the number of frames required for a complete expressive human gesture, defined as granularity, varies among different human gesture patterns. Existing systems fail to model these gesture patterns due to the fixed granularity of their gesture tokens. To solve this problem, we propose a novel framework named Multi-Granular Gesture Generator (M3G) for audio-driven holistic gesture generation. In M3G, we propose a novel Multi-Granular VQ-VAE (MGVQ-VAE) to tokenize motion patterns and reconstruct motion sequences from different temporal granularities. Subsequently, we proposed a multi-granular token predictor that extracts multi-granular information from audio and predicts the corresponding motion tokens. Then M3G reconstructs the human gestures from the predicted tokens using the MGVQ-VAE. Both objective and subjective experiments demonstrate that our proposed M3G framework outperforms the state-of-the-art methods in terms of generating natural and expressive full-body human gestures.
Authors: Katsuki Shimbo, Hiromu Taketsugu, Norimichi Ukita
Abstract:
In 3D Human Motion Prediction (HMP), conventional methods train HMP models with expensive motion capture data. However, the data collection cost of such motion capture data limits the data diversity, which leads to poor generalizability to unseen motions or subjects. To address this issue, this paper proposes to enhance HMP with additional learning using estimated poses from easily available videos. The 2D poses estimated from the monocular videos are carefully transformed into motion capture-style 3D motions through our pipeline. By additional learning with the obtained motions, the HMP model is adapted to the test domain. The experimental results demonstrate the quantitative and qualitative impact of our method.
Authors: Mohammad Merati, David Castañón
Abstract:
This paper presents a novel approach for optimizing the scheduling and control of Pan-Tilt-Zoom (PTZ) cameras in dynamic surveillance environments. The proposed method integrates Kalman filters for motion prediction with a dynamic network flow model to enhance real-time video capture efficiency. By assigning Kalman filters to tracked objects, the system predicts future locations, enabling precise scheduling of camera tasks. This prediction-driven approach is formulated as a network flow optimization, ensuring scalability and adaptability to various surveillance scenarios. To further reduce redundant monitoring, we also incorporate group-tracking nodes, allowing multiple objects to be captured within a single camera focus when appropriate. In addition, a value-based system is introduced to prioritize camera actions, focusing on the timely capture of critical events. By adjusting the decay rates of these values over time, the system ensures prompt responses to tasks with imminent deadlines. Extensive simulations demonstrate that this approach improves coverage, reduces average wait times, and minimizes missed events compared to traditional master-slave camera systems. Overall, our method significantly enhances the efficiency, scalability, and effectiveness of surveillance systems, particularly in dynamic and crowded environments.
Authors: Yingjie Xi, Jian Jun Zhang, Xiaosong Yang
Abstract:
In computer animation, game design, and human-computer interaction, synthesizing human motion that aligns with user intent remains a significant challenge. Existing methods have notable limitations: textual approaches offer high-level semantic guidance but struggle to describe complex actions accurately; trajectory-based techniques provide intuitive global motion direction yet often fall short in generating precise or customized character movements; and anchor poses-guided methods are typically confined to synthesize only simple motion patterns. To generate more controllable and precise human motions, we propose \textbf{ProMoGen (Progressive Motion Generation)}, a novel framework that integrates trajectory guidance with sparse anchor motion control. Global trajectories ensure consistency in spatial direction and displacement, while sparse anchor motions only deliver precise action guidance without displacement. This decoupling enables independent refinement of both aspects, resulting in a more controllable, high-fidelity, and sophisticated motion synthesis. ProMoGen supports both dual and single control paradigms within a unified training process. Moreover, we recognize that direct learning from sparse motions is inherently unstable, we introduce \textbf{SAP-CL (Sparse Anchor Posture Curriculum Learning)}, a curriculum learning strategy that progressively adjusts the number of anchors used for guidance, thereby enabling more precise and stable convergence. Extensive experiments demonstrate that ProMoGen excels in synthesizing vivid and diverse motions guided by predefined trajectory and arbitrary anchor frames. Our approach seamlessly integrates personalized motion with structured guidance, significantly outperforming state-of-the-art methods across multiple control scenarios.
Authors: Lansu Dai, Burak Kantarci
Abstract:
This paper integrates Fault Tree Analysis (FTA) and Bayesian Networks (BN) to assess collision risk and establish Automotive Safety Integrity Level (ASIL) B failure rate targets for critical autonomous vehicle (AV) components. The FTA-BN integration combines the systematic decomposition of failure events provided by FTA with the probabilistic reasoning capabilities of BN, which allow for dynamic updates in failure probabilities, enhancing the adaptability of risk assessment. A fault tree is constructed based on AV subsystem architecture, with collision as the top event, and failure rates are assigned while ensuring the total remains within 100 FIT. Bayesian inference is applied to update posterior probabilities, and the results indicate that perception system failures (46.06 FIT) are the most significant contributor, particularly failures to detect existing objects (PF5) and misclassification (PF6). Mitigation strategies are proposed for sensors, perception, decision-making, and motion control to reduce the collision risk. The FTA-BN integration approach provides dynamic risk quantification, offering system designers refined failure rate targets to improve AV safety.
Authors: Tinghui Li, Pamuditha Somarathne, Zhanna Sarsenbayeva, Anusha Withana
Abstract:
Continuous prediction of finger joint movement using historical joint positions/rotations is vital in a multitude of applications, especially related to virtual reality, computer graphics, robotics, and rehabilitation. However, finger motions are highly articulated with multiple degrees of freedom, making them significantly harder to model and predict. To address this challenge, we propose a physics-inspired time-agnostic graph neural network (TA-GNN) to accurately predict human finger motions. The proposed encoder comprises a kinematic feature extractor to generate filtered velocity and acceleration and a physics-based encoder that follows linear kinematics. The model is designed to be prediction-time-agnostic so that it can seamlessly provide continuous predictions. The graph-based decoder for learning the topological motion between finger joints is designed to address the higher degree articulation of fingers. We show the superiority of our model performance in virtual reality context. This novel approach enhances finger tracking without additional sensors, enabling predictive interactions such as haptic re-targeting and improving predictive rendering quality.
Authors: Ritik Batra, Narjes Pourjafarian, Samantha Chang, Margaret Tsai, Jacob Revelo, Cindy Hsin-Liu Kao
Abstract:
Recently, there has been a surge of interest in sustainable energy sources, particularly for wearable computing. Triboelectric nanogenerators (TENGs) have shown promise in converting human motion into electric power. Textile-based TENGs, valued for their flexibility and breathability, offer an ideal form factor for wearables. However, uptake in maker communities has been slow due to commercially unavailable materials, complex fabrication processes, and structures incompatible with human motion. This paper introduces texTENG, a textile-based framework simplifying the fabrication of power harvesting and self-powered sensing applications. By leveraging accessible materials and familiar tools, texTENG bridges the gap between advanced TENG research and wearable applications. We explore a design menu for creating multidimensional TENG structures using braiding, weaving, and knitting. Technical evaluations and example applications highlight the performance and feasibility of these designs, offering DIY-friendly pathways for fabricating textile-based TENGs and promoting sustainable prototyping practices within the HCI and maker communities.
Authors: Xuehao Gao, Yang Yang, Shaoyi Du, Guo-Jun Qi, Junwei Han
Abstract:
As two intimate reciprocal tasks, scene-aware human motion synthesis and analysis require a joint understanding between multiple modalities, including 3D body motions, 3D scenes, and textual descriptions. In this paper, we integrate these two paired processes into a Co-Evolving Synthesis-Analysis (CESA) pipeline and mutually benefit their learning. Specifically, scene-aware text-to-human synthesis generates diverse indoor motion samples from the same textual description to enrich human-scene interaction intra-class diversity, thus significantly benefiting training a robust human motion analysis system. Reciprocally, human motion analysis would enforce semantic scrutiny on each synthesized motion sample to ensure its semantic consistency with the given textual description, thus improving realistic motion synthesis. Considering that real-world indoor human motions are goal-oriented and path-guided, we propose a cascaded generation strategy that factorizes text-driven scene-specific human motion generation into three stages: goal inferring, path planning, and pose synthesizing. Coupling CESA with this powerful cascaded motion synthesis model, we jointly improve realistic human motion synthesis and robust human motion analysis in 3D scenes.
Authors: Jaehyung Kim, Jiho Kim, Dongryung Lee, Yujin Jang, Beomjoon Kim
Abstract:
Dynamic and contact-rich object manipulation, such as striking, snatching, or hammering, remains challenging for robotic systems due to hardware limitations. Most existing robots are constrained by high-inertia design, limited compliance, and reliance on expensive torque sensors. To address this, we introduce ARMADA (Affordable Robot for Manipulation and Dynamic Actions), a 6 degrees-of-freedom bimanual robot designed for dynamic manipulation research. ARMADA combines low-inertia, back-drivable actuators with a lightweight design, using readily available components and 3D-printed links for ease of assembly in research labs. The entire system, including both arms, is built for just $6,100. Each arm achieves speeds up to 6.16m/s, almost twice that of most collaborative robots, with a comparable payload of 2.5kg. We demonstrate ARMADA can perform dynamic manipulation like snatching, hammering, and bimanual throwing in real-world environments. We also showcase its effectiveness in reinforcement learning (RL) by training a non-prehensile manipulation policy in simulation and transferring it zero-shot to the real world, as well as human motion shadowing for dynamic bimanual object throwing. ARMADA is fully open-sourced with detailed assembly instructions, CAD models, URDFs, simulation, and learning codes. We highly recommend viewing the supplementary video at https://sites.google.com/view/im2-humanoid-arm.
Authors: Che-Jui Chang, Qingze Tony Liu, Honglu Zhou, Vladimir Pavlovic, Mubbasir Kapadia
Abstract:
Recent advances in generative modeling and tokenization have driven significant progress in text-to-motion generation, leading to enhanced quality and realism in generated motions. However, effectively leveraging textual information for conditional motion generation remains an open challenge. We observe that current approaches, primarily relying on fixed-length text embeddings (e.g., CLIP) for global semantic injection, struggle to capture the composite nature of human motion, resulting in suboptimal motion quality and controllability. To address this limitation, we propose the Composite Aware Semantic Injection Mechanism (CASIM), comprising a composite-aware semantic encoder and a text-motion aligner that learns the dynamic correspondence between text and motion tokens. Notably, CASIM is model and representation-agnostic, readily integrating with both autoregressive and diffusion-based methods. Experiments on HumanML3D and KIT benchmarks demonstrate that CASIM consistently improves motion quality, text-motion alignment, and retrieval scores across state-of-the-art methods. Qualitative analyses further highlight the superiority of our composite-aware approach over fixed-length semantic injection, enabling precise motion control from text prompts and stronger generalization to unseen text inputs.
Authors: Lei Jiang, Ye Wei, Hao Ni
Abstract:
Diffusion models have become a popular choice for human motion synthesis due to their powerful generative capabilities. However, their high computational complexity and large sampling steps pose challenges for real-time applications. Fortunately, the Consistency Model (CM) provides a solution to greatly reduce the number of sampling steps from hundreds to a few, typically fewer than four, significantly accelerating the synthesis of diffusion models. However, applying CM to text-conditioned human motion synthesis in latent space yields unsatisfactory generation results. In this paper, we introduce \textbf{MotionPCM}, a phased consistency model-based approach designed to improve the quality and efficiency for real-time motion synthesis in latent space. Experimental results on the HumanML3D dataset show that our model achieves real-time inference at over 30 frames per second in a single sampling step while outperforming the previous state-of-the-art with a 38.9\% improvement in FID. The code will be available for reproduction.
Authors: Jaeheun Jung, Jaehyuk Lee, Changhae Jung, Hanyoung Kim, Bosung Jung, Donghun Lee
Abstract:
Shock waves caused by earthquakes can be devastating. Generating realistic earthquake-caused ground motion waveforms help reducing losses in lives and properties, yet generative models for the task tend to generate subpar waveforms. We present High-fidelity Earthquake Groundmotion Generation System (HEGGS) and demonstrate its superior performance using earthquakes from North American, East Asian, and European regions. HEGGS exploits the intrinsic characteristics of earthquake dataset and learns the waveforms using an end-to-end differentiable generator containing conditional latent diffusion model and hi-fidelity waveform construction model. We show the learning efficiency of HEGGS by training it on a single GPU machine and validate its performance using earthquake databases from North America, East Asia, and Europe, using diverse criteria from waveform generation tasks and seismology. Once trained, HEGGS can generate three dimensional E-N-Z seismic waveforms with accurate P/S phase arrivals, envelope correlation, signal-to-noise ratio, GMPE analysis, frequency content analysis, and section plot analysis.
Authors: Hee Jae Kim, Kathakoli Sengupta, Masaki Kuribayashi, Hernisa Kacorri, Eshed Ohn-Bar
Abstract:
People who are blind perceive the world differently than those who are sighted, which can result in distinct motion characteristics. For instance, when crossing at an intersection, blind individuals may have different patterns of movement, such as veering more from a straight path or using touch-based exploration around curbs and obstacles. These behaviors may appear less predictable to motion models embedded in technologies such as autonomous vehicles. Yet, the ability of 3D motion models to capture such behavior has not been previously studied, as existing datasets for 3D human motion currently lack diversity and are biased toward people who are sighted. In this work, we introduce BlindWays, the first multimodal motion benchmark for pedestrians who are blind. We collect 3D motion data using wearable sensors with 11 blind participants navigating eight different routes in a real-world urban setting. Additionally, we provide rich textual descriptions that capture the distinctive movement characteristics of blind pedestrians and their interactions with both the navigation aid (e.g., a white cane or a guide dog) and the environment. We benchmark state-of-the-art 3D human prediction models, finding poor performance with off-the-shelf and pre-training-based methods for our novel task. To contribute toward safer and more reliable systems that can seamlessly reason over diverse human movements in their environments, our text-and-motion benchmark is available at https://blindways.github.io.
Authors: Yuhang Zhang, Yuan Zhou, Zeyu Liu, Yuxuan Cai, Qiuyue Wang, Aidong Men, Huan Yang
Abstract:
Current methods for generating human motion videos rely on extracting pose sequences from reference videos, which restricts flexibility and control. Additionally, due to the limitations of pose detection techniques, the extracted pose sequences can sometimes be inaccurate, leading to low-quality video outputs. We introduce a novel task aimed at generating human motion videos solely from reference images and natural language. This approach offers greater flexibility and ease of use, as text is more accessible than the desired guidance videos. However, training an end-to-end model for this task requires millions of high-quality text and human motion video pairs, which are challenging to obtain. To address this, we propose a new framework called Fleximo, which leverages large-scale pre-trained text-to-3D motion models. This approach is not straightforward, as the text-generated skeletons may not consistently match the scale of the reference image and may lack detailed information. To overcome these challenges, we introduce an anchor point based rescale method and design a skeleton adapter to fill in missing details and bridge the gap between text-to-motion and motion-to-video generation. We also propose a video refinement process to further enhance video quality. A large language model (LLM) is employed to decompose natural language into discrete motion sequences, enabling the generation of motion videos of any desired length. To assess the performance of Fleximo, we introduce a new benchmark called MotionBench, which includes 400 videos across 20 identities and 20 motions. We also propose a new metric, MotionScore, to evaluate the accuracy of motion following. Both qualitative and quantitative results demonstrate that our method outperforms existing text-conditioned image-to-video generation methods. All code and model weights will be made publicly available.
Authors: Boqi Li, Haojie Zhu, Henry X. Liu
Abstract:
Motion prediction is critical for autonomous vehicles to effectively navigate complex environments and accurately anticipate the behaviors of other traffic participants. As autonomous driving continues to evolve, the need to assimilate new and varied driving scenarios necessitates frequent model updates through retraining. To address these demands, we introduce DECODE, a novel continual learning framework that begins with a pre-trained generalized model and incrementally develops specialized models for distinct domains. Unlike existing continual learning approaches that attempt to develop a unified model capable of generalizing across diverse scenarios, DECODE uniquely balances specialization with generalization, dynamically adjusting to real-time demands. The proposed framework leverages a hypernetwork to generate model parameters, significantly reducing storage requirements, and incorporates a normalizing flow mechanism for real-time model selection based on likelihood estimation. Furthermore, DECODE merges outputs from the most relevant specialized and generalized models using deep Bayesian uncertainty estimation techniques. This integration ensures optimal performance in familiar conditions while maintaining robustness in unfamiliar scenarios. Extensive evaluations confirm the effectiveness of the framework, achieving a notably low forgetting rate of 0.044 and an average minADE of 0.584 m, significantly surpassing traditional learning strategies and demonstrating adaptability across a wide range of driving conditions.
Authors: Clayton Leite, Yu Xiao
Abstract:
Text-to-motion models that generate sequences of human poses from textual descriptions are garnering significant attention. However, due to data scarcity, the range of motions these models can produce is still limited. For instance, current text-to-motion models cannot generate a motion of kicking a football with the instep of the foot, since the training data only includes martial arts kicks. We propose a novel method that uses short video clips or images as conditions to modify existing basic motions. In this approach, the model's understanding of a kick serves as the prior, while the video or image of a football kick acts as the posterior, enabling the generation of the desired motion. By incorporating these additional modalities as conditions, our method can create motions not present in the training set, overcoming the limitations of text-motion datasets. A user study with 26 participants demonstrated that our approach produces unseen motions with realism comparable to commonly represented motions in text-motion datasets (e.g., HumanML3D), such as walking, running, squatting, and kicking.
Authors: Ashish Kumar, Laxmidhar Behera
Abstract:
In this work, we propose an end-to-end Thrust Microstepping and Decoupled Control (TMDC) of quadrotors. TMDC focuses on precise off-centered aerial grasping of payloads dynamically, which are attached rigidly to the UAV body via a gripper contrary to the swinging payload. The dynamic payload grasping quickly changes UAV's mass, inertia etc, causing instability while performing a grasping operation in-air. We identify that to handle unknown payload grasping, the role of thrust controller is crucial. Hence, we focus on thrust control without involving system parameters such as mass etc. TMDC is based on our novel Thrust Microstepping via Acceleration Feedback (TMAF) thrust controller and Decoupled Motion Control (DMC). TMAF precisely estimates the desired thrust even at smaller loop rates while DMC decouples the horizontal and vertical motion to counteract disturbances in the case of dynamic payloads. We prove the controller's efficacy via exhaustive experiments in practically interesting and adverse real-world cases, such as fully onboard state estimation without any positioning sensor, narrow and indoor flying workspaces with intense wind turbulence, heavy payloads, non-uniform loop rates, etc. Our TMDC outperforms recent direct acceleration feedback thrust controller (DA) and geometric tracking control (GT) in flying stably for aerial grasping and achieves RMSE below 0.04m in contrast to 0.15m of DA and 0.16m of GT.
Authors: James Gao, Jacob Lee, Yuting Zhou, Yunze Hu, Chang Liu, Pingping Zhu
Abstract:
Swarm robotics, or very large-scale robotics (VLSR), has many meaningful applications for complicated tasks. However, the complexity of motion control and energy costs stack up quickly as the number of robots increases. In addressing this problem, our previous studies have formulated various methods employing macroscopic and microscopic approaches. These methods enable microscopic robots to adhere to a reference Gaussian mixture model (GMM) distribution observed at the macroscopic scale. As a result, optimizing the macroscopic level will result in an optimal overall result. However, all these methods require systematic and global generation of Gaussian components (GCs) within obstacle-free areas to construct the GMM trajectories. This work utilizes centroidal Voronoi tessellation to generate GCs methodically. Consequently, it demonstrates performance improvement while also ensuring consistency and reliability.
Authors: Lorenzo Mandelli, Stefano Berretti
Abstract:
In this paper, we address the challenge of generating realistic 3D human motions for action classes that were never seen during the training phase. Our approach involves decomposing complex actions into simpler movements, specifically those observed during training, by leveraging the knowledge of human motion contained in GPTs models. These simpler movements are then combined into a single, realistic animation using the properties of diffusion models. Our claim is that this decomposition and subsequent recombination of simple movements can synthesize an animation that accurately represents the complex input action. This method operates during the inference phase and can be integrated with any pre-trained diffusion model, enabling the synthesis of motion classes not present in the training data. We evaluate our method by dividing two benchmark human motion datasets into basic and complex actions, and then compare its performance against the state-of-the-art.
Authors: Michael Adewole, Oluwaseyi Giwa, Favour Nerrise, Martins Osifeko, Ajibola Oyedeji
Abstract:
Human motion generation is an important area of research in many fields. In this work, we tackle the problem of motion stitching and in-betweening. Current methods either require manual efforts, or are incapable of handling longer sequences. To address these challenges, we propose a diffusion model with a transformer-based denoiser to generate realistic human motion. Our method demonstrated strong performance in generating in-betweening sequences, transforming a variable number of input poses into smooth and realistic motion sequences consisting of 75 frames at 15 fps, resulting in a total duration of 5 seconds. We present the performance evaluation of our method using quantitative metrics such as Frechet Inception Distance (FID), Diversity, and Multimodality, along with visual assessments of the generated outputs.
Authors: Bingkun Huang, Xin Ma, Nilanjan Chakraborty, Riddhiman Laha
Abstract:
Robotic manipulation in unstructured environments requires planners to reason jointly about free-space motion and sustained, frictional contact with the environment. Existing (local) planning and simulation frameworks typically separate these regimes or rely on simplified contact representations, particularly when modeling non-convex or distributed contact patches. Such approximations limit the fidelity of contact-mode transitions and hinder the robust execution of contact-rich behaviors in real time. This paper presents a unified discrete-time modeling framework for robotic manipulation that consistently captures both free motion and frictional contact within a single mathematical formalism (Unicomp). Building on complementarity-based rigid-body dynamics, we formulate free-space motion and contact interactions as coupled linear and nonlinear complementarity problems, enabling principled transitions between contact modes without enforcing fixed-contact assumptions. For planar patch contact, we derive a frictional contact model from the maximum power dissipation principle in which the set of admissible contact wrenches is represented by an ellipsoidal limit surface. This representation captures coupled force-moment effects, including torsional friction, while remaining agnostic to the underlying pressure distribution across the contact patch. The resulting formulation yields a discrete-time predictive model that relates generalized velocities and contact wrenches through quadratic constraints and is suitable for real-time optimization-based planning. Experimental results show that the proposed approach enables stable, physically consistent behavior at interactive speeds across tasks, from planar pushing to contact-rich whole-body maneuvers.
Authors: Michał Patryk Miazga, Hannah Bussmann, Antti Oulasvirta, Patrick Ebel
Abstract:
Touch data from mobile devices are collected at scale but reveal little about the interactions that produce them. While biomechanical simulations can illuminate motor control processes, they have not yet been developed for touch interactions. To close this gap, we propose a novel computational problem: synthesizing plausible motion directly from logs. Our key insight is a reinforcement learning-driven musculoskeletal forward simulation that generates biomechanically plausible motion sequences consistent with events recorded in touch logs. We achieve this by integrating a software emulator into a physics simulator, allowing biomechanical models to manipulate real applications in real-time. Log2Motion produces rich syntheses of user movements from touch logs, including estimates of motion, speed, accuracy, and effort. We assess the plausibility of generated movements by comparing against human data from a motion capture study and prior findings, and demonstrate Log2Motion in a large-scale dataset. Biomechanical motion synthesis provides a new way to understand log data, illuminating the ergonomics and motor control underlying touch interactions.
Authors: Anh Dao, Manh Tran, Yufei Zhang, Xiaoming Liu, Zijun Cui
Abstract:
Human motion understanding has advanced rapidly through vision-based progress in recognition, tracking, and captioning. However, most existing methods overlook physical cues such as joint actuation forces that are fundamental in biomechanics. This gap motivates our study: if and when do physically inferred forces enhance motion understanding? By incorporating forces into established motion understanding pipelines, we systematically evaluate their impact across baseline models on 3 major tasks: gait recognition, action recognition, and fine-grained video captioning. Across 8 benchmarks, incorporating forces yields consistent performance gains; for example, on CASIA-B, Rank-1 gait recognition accuracy improved from 89.52% to 90.39% (+0.87), with larger gain observed under challenging conditions: +2.7% when wearing a coat and +3.0% at the side view. On Gait3D, performance also increases from 46.0% to 47.3% (+1.3). In action recognition, CTR-GCN achieved +2.00% on Penn Action, while high-exertion classes like punching/slapping improved by +6.96%. Even in video captioning, Qwen2.5-VL's ROUGE-L score rose from 0.310 to 0.339 (+0.029), indicating that physics-inferred forces enhance temporal grounding and semantic richness. These results demonstrate that force cues can substantially complement visual and kinematic features under dynamic, occluded, or appearance-varying conditions.
Authors: Qiping Zhang, Nathan Tsoi, Mofeed Nagib, Hao-Tien Lewis Chiang, Marynel Vázquez
Abstract:
Understanding how humans evaluate robot behavior during human-robot interactions is crucial for developing socially aware robots that behave according to human expectations. While the traditional approach to capturing these evaluations is to conduct a user study, recent work has proposed utilizing machine learning instead. However, existing data-driven methods require large amounts of labeled data, which limits their use in practice. To address this gap, we propose leveraging the few-shot learning capabilities of Large Language Models (LLMs) to improve how well a robot can predict a user's perception of its performance, and study this idea experimentally in social navigation tasks. To this end, we extend the SEAN TOGETHER dataset with additional real-world human-robot navigation episodes and participant feedback. Using this augmented dataset, we evaluate the ability of several LLMs to predict human perceptions of robot performance from a small number of in-context examples, based on observed spatio-temporal cues of the robot and surrounding human motion. Our results demonstrate that LLMs can match or exceed the performance of traditional supervised learning models while requiring an order of magnitude fewer labeled instances. We further show that prediction performance can improve with more in-context examples, confirming the scalability of our approach. Additionally, we investigate what kind of sensor-based information an LLM relies on to make these inferences by conducting an ablation study on the input features considered for performance prediction. Finally, we explore the novel application of personalized examples for in-context learning, i.e., drawn from the same user being evaluated, finding that they further enhance prediction accuracy. This work paves the path to improving robot behavior in a scalable manner through user-centered feedback.
Authors: Mattia Catellani, Marta Gabbi, Lorenzo Sabattini
Abstract:
We address the problem of coordinating a team of robots to cover an unknown environment while ensuring safe operation and avoiding collisions with non-cooperative agents. Traditional coverage strategies often rely on simplified assumptions, such as known or convex environments and static density functions, and struggle to adapt to real-world scenarios, especially when humans are involved. In this work, we propose a human-aware coverage framework based on Model Predictive Control (MPC), namely HMPCC, where human motion predictions are integrated into the planning process. By anticipating human trajectories within the MPC horizon, robots can proactively coordinate their actions %avoid redundant exploration, and adapt to dynamic conditions. The environment is modeled as a Gaussian Mixture Model (GMM), representing regions of interest. Team members operate in a fully decentralized manner, without relying on explicit communication, an essential feature in hostile or communication-limited scenarios. Our results show that human trajectory forecasting enables more efficient and adaptive coverage, improving coordination between human and robotic agents.
Authors: Yan Zhang, Han Zou, Lincong Feng, Cong Xie, Ruiqi Yu, Zhenpeng Zhan
Abstract:
Recent pose-to-video models can translate 2D pose sequences into photorealistic, identity-preserving dance videos, so the key challenge is to generate temporally coherent, rhythm-aligned 2D poses from music, especially under complex, high-variance in-the-wild distributions. We address this by reframing music-to-dance generation as a music-token-conditioned multi-channel image synthesis problem: 2D pose sequences are encoded as one-hot images, compressed by a pretrained image VAE, and modeled with a DiT-style backbone, allowing us to inherit architectural and training advances from modern text-to-image models and better capture high-variance 2D pose distributions. On top of this formulation, we introduce (i) a time-shared temporal indexing scheme that explicitly synchronizes music tokens and pose latents over time and (ii) a reference-pose conditioning strategy that preserves subject-specific body proportions and on-screen scale while enabling long-horizon segment-and-stitch generation. Experiments on a large in-the-wild 2D dance corpus and the calibrated AIST++2D benchmark show consistent improvements over representative music-to-dance methods in pose- and video-space metrics and human preference, and ablations validate the contributions of the representation, temporal indexing, and reference conditioning. See supplementary videos at https://hot-dance.github.io
Authors: Juncheng Hu, Zijian Zhang, Zeyu Wang, Guoyu Wang, Yingji Li, Kedi Lyu
Abstract:
Forecasting 3D human motion is an important embodiment of fine-grained understanding and cognition of human behavior by artificial agents. Current approaches excessively rely on implicit network modeling of spatiotemporal relationships and motion characteristics, falling into the passive learning trap that results in redundant and monotonous 3D coordinate information acquisition while lacking actively guided explicit learning mechanisms. To overcome these issues, we propose an Active Perceptual Strategy (APS) for human motion prediction, leveraging quotient space representations to explicitly encode motion properties while introducing auxiliary learning objectives to strengthen spatio-temporal modeling. Specifically, we first design a data perception module that projects poses into the quotient space, decoupling motion geometry from coordinate redundancy. By jointly encoding tangent vectors and Grassmann projections, this module simultaneously achieves geometric dimension reduction, semantic decoupling, and dynamic constraint enforcement for effective motion pose characterization. Furthermore, we introduce a network perception module that actively learns spatio-temporal dependencies through restorative learning. This module deliberately masks specific joints or injects noise to construct auxiliary supervision signals. A dedicated auxiliary learning network is designed to actively adapt and learn from perturbed information. Notably, APS is model agnostic and can be integrated with different prediction models to enhance active perceptual. The experimental results demonstrate that our method achieves the new state-of-the-art, outperforming existing methods by large margins: 16.3% on H3.6M, 13.9% on CMU Mocap, and 10.1% on 3DPW.
Authors: Jinyu Zhang, Lijun Han, Feng Jian, Lingxi Zhang, Hesheng Wang
Abstract:
In mobile robot shared control, effectively understanding human motion intention is critical for seamless human-robot collaboration. This paper presents a novel shared control framework featuring planning-level intention prediction. A path replanning algorithm is designed to adjust the robot's desired trajectory according to inferred human intentions. To represent future motion intentions, we introduce the concept of an intention domain, which serves as a constraint for path replanning. The intention-domain prediction and path replanning problems are jointly formulated as a Markov Decision Process and solved through deep reinforcement learning. In addition, a Voronoi-based human trajectory generation algorithm is developed, allowing the model to be trained entirely in simulation without human participation or demonstration data. Extensive simulations and real-world user studies demonstrate that the proposed method significantly reduces operator workload and enhances safety, without compromising task efficiency compared with existing assistive teleoperation approaches.
Authors: Kunal Bhosikar, Siddharth Katageri, Vivek Madhavaram, Kai Han, Charu Sharma
Abstract:
Generating realistic full-body motion interacting with objects is critical for applications in robotics, virtual reality, and human-computer interaction. While existing methods can generate full-body motion within 3D scenes, they often lack the fidelity for fine-grained tasks like object grasping. Conversely, methods that generate precise grasping motions typically ignore the surrounding 3D scene. This gap, generating full-body grasping motions that are physically plausible within a 3D scene, remains a significant challenge. To address this, we introduce MOGRAS (Human MOtion with GRAsping in 3D Scenes), a large-scale dataset that bridges this gap. MOGRAS provides pre-grasping full-body walking motions and final grasping poses within richly annotated 3D indoor scenes. We leverage MOGRAS to benchmark existing full-body grasping methods and demonstrate their limitations in scene-aware generation. Furthermore, we propose a simple yet effective method to adapt existing approaches to work seamlessly within 3D scenes. Through extensive quantitative and qualitative experiments, we validate the effectiveness of our dataset and highlight the significant improvements our proposed method achieves, paving the way for more realistic human-scene interactions.
Authors: Xiang Zhang, Suping Wu, Sheng Yang
Abstract:
Existing 3D human mesh recovery methods often fail to fully exploit the latent information (e.g., human motion, shape alignment), leading to issues with limb misalignment and insufficient local details in the reconstructed human mesh (especially in complex scenes). Furthermore, the performance improvement gained by modelling mesh vertices and pose node interactions using attention mechanisms comes at a high computational cost. To address these issues, we propose a two-stage network for human mesh recovery based on latent information and low dimensional learning. Specifically, the first stage of the network fully excavates global (e.g., the overall shape alignment) and local (e.g., textures, detail) information from the low and high-frequency components of image features and aggregates this information into a hybrid latent frequency domain feature. This strategy effectively extracts latent information. Subsequently, utilizing extracted hybrid latent frequency domain features collaborates to enhance 2D poses to 3D learning. In the second stage, with the assistance of hybrid latent features, we model the interaction learning between the rough 3D human mesh template and the 3D pose, optimizing the pose and shape of the human mesh. Unlike existing mesh pose interaction methods, we design a low-dimensional mesh pose interaction method through dimensionality reduction and parallel optimization that significantly reduces computational costs without sacrificing reconstruction accuracy. Extensive experimental results on large publicly available datasets indicate superiority compared to the most state-of-the-art.
Authors: Ashkan Sebghati, S. Hassan HosseinNia
Abstract:
In this paper, a robust nonlinear control scheme is designed for the motion control of a class of piezo-actuated nano-positioning systems using frequency-domain analysis. The hysteresis, the nonlinearity in the piezoelectric material, degrades the precision in tracking references with high frequency contents and different travel ranges. The hysteresis compensation by the inverse model, as the state-of-the-art solution, is not reliable alone. Therefore, a control framework with robustness against the remaining nonlinearity is needed. It is shown that there is an unavoidable limitation in robust linear control design to improve the performance. A robust control methodology based on a complex-order element is established to relax the limitation. Then, a constant-in-gain-lead-in-phase (CgLp) reset controller is utilized to realize the complex-order control. The control design is based on the sinusoidal input describing function (SIDF) and the higher-order SIDF (HOSIDF) tools. A constrained optimization problem is provided to tune the control parameters. The achieved improvements by the CgLp control is validated by the simulation.
Authors: Vaughn Gzenda, Robin Chhabra
Abstract:
Soft robotic crawlers are mobile robots that utilize soft body deformability and compliance to achieve locomotion through surface contact. Designing control strategies for such systems is challenging due to model inaccuracies, sensor noise, and the need to discover locomotor gaits. In this work, we present a model-based reinforcement learning (MB-RL) framework in which latent dynamics inferred from onboard sensors serve as a predictive model that guides an actor-critic algorithm to optimize locomotor policies. We evaluate the framework on a minimal crawler model in simulation using inertial measurement units and time-of-flight sensors as observations. The learned latent dynamics enable short-horizon motion prediction while the actor-critic discovers effective locomotor policies. This approach highlights the potential of latent-dynamics MB-RL for enabling embodied soft robotic adaptive locomotion based solely on noisy sensor feedback.
Authors: Vadivelan Murugesan, Rajasundaram Mathiazhagan, Sanjana Joshi, Aliasghar Arab
Abstract:
Human-robot collaboration requires precise prediction of human motion over extended horizons to enable proactive collision avoidance. Unlike existing planners that rely solely on kinodynamic models, we present a prediction-driven safe planning framework that leverages granular, joint-by-joint human motion forecasting validated in a physics-based digital twin. A capsule-based artificial potential field (APF) converts these granular predictions into collision risk metrics, triggering an Adaptive RRT* (A-RRT*) planner when thresholds are exceeded. The depth camera is used to extract 3D skeletal poses and a convolutional neural network-bidirectional long short-term memory (CNN-BiLSTM) model to predict individual joint trajectories ahead of time. A digital twin model integrates real-time human posture prediction placed in front of a simulated robot to evaluate motions and physical contacts. The proposed method enables validation of planned trajectories ahead of time and bridging potential latency gaps in updating planned trajectories in real-time. In 50 trials, our method achieved 100% proactive avoidance with > 250 mm clearance and sub-2 s replanning, demonstrating superior precision and reliability compared to existing kinematic-only planners through the integration of predictive human modeling with digital twin validation.
Authors: Akihisa Watanabe, Jiawei Ren, Li Siyao, Yichen Peng, Erwin Wu, Edgar Simo-Serra
Abstract:
Generating physically plausible human motion is crucial for applications such as character animation and virtual reality. Existing approaches often incorporate a simulator-based motion projection layer to the diffusion process to enforce physical plausibility. However, such methods are computationally expensive due to the sequential nature of the simulator, which prevents parallelization. We show that simulator-based motion projection can be interpreted as a form of guidance, either classifier-based or classifier-free, within the diffusion process. Building on this insight, we propose SimDiff, a Simulator-constrained Diffusion Model that integrates environment parameters (e.g., gravity, wind) directly into the denoising process. By conditioning on these parameters, SimDiff generates physically plausible motions efficiently, without repeated simulator calls at inference, and also provides fine-grained control over different physical coefficients. Moreover, SimDiff successfully generalizes to unseen combinations of environmental parameters, demonstrating compositional generalization.
Authors: Charan Gajjala Chenchu, Kinam Kim, Gao Lu, Zia Ud Din
Abstract:
Human-robot collaboration (HRC) in the construction industry depends on precise and prompt recognition of human motion intentions and actions by robots to maximize safety and workflow efficiency. There is a research gap in comparing data modalities, specifically signals and videos, for motion intention recognition. To address this, the study leverages deep learning to assess two different modalities in recognizing workers' motion intention at the early stage of movement in drywall installation tasks. The Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) model utilizing surface electromyography (sEMG) data achieved an accuracy of around 87% with an average time of 0.04 seconds to perform prediction on a sample input. Meanwhile, the pre-trained Video Swin Transformer combined with transfer learning harnessed video sequences as input to recognize motion intention and attained an accuracy of 94% but with a longer average time of 0.15 seconds for a similar prediction. This study emphasizes the unique strengths and trade-offs of both data formats, directing their systematic deployments to enhance HRC in real-world construction projects.
Authors: Koji Matsuno, Chien Chern Cheah
Abstract:
Deep learning, with its exceptional learning capabilities and flexibility, has been widely applied in various applications. However, its black-box nature poses a significant challenge in real-time robotic applications, particularly in robot control, where trustworthiness and robustness are critical in ensuring safety. In robot motion control, it is essential to analyze and ensure system stability, necessitating the establishment of methodologies that address this need. This paper aims to develop a theoretical framework for end-to-end deep learning control that can be integrated into existing robot control theories. The proposed control algorithm leverages a modular learning approach to update the weights of all layers in real time, ensuring system stability based on Lyapunov-like analysis. Experimental results on industrial robots are presented to illustrate the performance of the proposed deep learning controller. The proposed method offers an effective solution to the black-box problem in deep learning, demonstrating the possibility of deploying real-time deep learning strategies for robot kinematic control in a stable manner. This achievement provides a critical foundation for future advancements in deep learning based real-time robotic applications.
Authors: Martin Goubej, Lauria Clarke, Martin HrabaÄka, David Tolar
Abstract:
This paper presents a comprehensive refurbishment of the interactive robotic art installation Standards and Double Standards by Rafael Lozano-Hemmer. The installation features an array of belts suspended from the ceiling, each actuated by stepper motors and dynamically oriented by a vision-based tracking system that follows the movements of exhibition visitors. The original system was limited by oscillatory dynamics, resulting in torsional and pendulum-like vibrations that constrained rotational speed and reduced interactive responsiveness. To address these challenges, the refurbishment involved significant upgrades to both hardware and motion control algorithms. A detailed mathematical model of the flying belt system was developed to accurately capture its dynamic behavior, providing a foundation for advanced control design. An input shaping method, formulated as a convex optimization problem, was implemented to effectively suppress vibrations, enabling smoother and faster belt movements. Experimental results demonstrate substantial improvements in system performance and audience interaction. This work exemplifies the integration of robotics, control engineering, and interactive art, offering new solutions to technical challenges in real-time motion control and vibration damping for large-scale kinetic installations.
Authors: Maryam Kazemi Eskeri, Ville Kyrki, Dominik Baumann, Tomasz Piotr Kucner
Abstract:
Multi-robot systems are increasingly deployed in applications, such as intralogistics or autonomous delivery, where multiple robots collaborate to complete tasks efficiently. One of the key factors enabling their efficient cooperation is Multi-Robot Task Allocation (MRTA). Algorithms solving this problem optimize task distribution among robots to minimize the overall execution time. In shared environments, apart from the relative distance between the robots and the tasks, the execution time is also significantly impacted by the delay caused by navigating around moving people. However, most existing MRTA approaches are dynamics-agnostic, relying on static maps and neglecting human motion patterns, leading to inefficiencies and delays. In this paper, we introduce \acrfull{method name}. This method leverages Maps of Dynamics (MoDs), spatio-temporal queryable models designed to capture historical human movement patterns, to estimate the impact of humans on the task execution time during deployment. \acrshort{method name} utilizes a stochastic cost function that includes MoDs. Experimental results show that integrating MoDs enhances task allocation performance, resulting in reduced mission completion times by up to $26\%$ compared to the dynamics-agnostic method and up to $19\%$ compared to the baseline. This work underscores the importance of considering human dynamics in MRTA within shared environments and presents an efficient framework for deploying multi-robot systems in environments populated by humans.
Authors: Maryam Kazemi Eskeri, Thomas Wiedemann, Ville Kyrki, Dominik Baumann, Tomasz Piotr Kucner
Abstract:
Robots operating in human-populated environments must navigate safely and efficiently while minimizing social disruption. Achieving this requires estimating crowd movement to avoid congested areas in real-time. Traditional microscopic models struggle to scale in dense crowds due to high computational cost, while existing macroscopic crowd prediction models tend to be either overly simplistic or computationally intensive. In this work, we propose a lightweight, real-time macroscopic crowd prediction model tailored for human motion, which balances prediction accuracy and computational efficiency. Our approach simplifies both spatial and temporal processing based on the inherent characteristics of pedestrian flow, enabling robust generalization without the overhead of complex architectures. We demonstrate a 3.6 times reduction in inference time, while improving prediction accuracy by 3.1 %. Integrated into a socially aware planning framework, the model enables efficient and socially compliant robot navigation in dynamic environments. This work highlights that efficient human crowd modeling enables robots to navigate dense environments without costly computations.
Authors: Haichuan Li, Changda Tian, Panos Trahanias, Tomi Westerlund
Abstract:
Detecting diverse objects within complex indoor 3D point clouds presents significant challenges for robotic perception, particularly with varied object shapes, clutter, and the co-existence of static and dynamic elements where traditional bounding box methods falter. To address these limitations, we propose IndoorBEV, a novel mask-based Bird's-Eye View (BEV) method for indoor mobile robots.
In a BEV method, a 3D scene is projected into a 2D BEV grid which handles naturally occlusions and provides a consistent top-down view aiding to distinguish static obstacles from dynamic agents. The obtained 2D BEV results is directly usable to downstream robotic tasks like navigation, motion prediction, and planning. Our architecture utilizes an axis compact encoder and a window-based backbone to extract rich spatial features from this BEV map. A query-based decoder head then employs learned object queries to concurrently predict object classes and instance masks in the BEV space. This mask-centric formulation effectively captures the footprint of both static and dynamic objects regardless of their shape, offering a robust alternative to bounding box regression. We demonstrate the effectiveness of IndoorBEV on a custom indoor dataset featuring diverse object classes including static objects
and dynamic elements like robots and miscellaneous items, showcasing its potential for robust indoor scene understanding.
Authors: Kim P. Wabersich, Felix Berkel, Felix Gruber, Sven Reimann
Abstract:
High performance and formal safety guarantees are common requirements for industrial control applications. Control barrier function (CBF) methods provide a systematic approach to the modularization of safety and performance. However, the design of such CBFs can be challenging, which limits their applicability to large-scale or data-driven systems. This paper introduces the concept of a set-based CBF for linear systems with convex constraints. By leveraging control invariant sets from reachability analysis and predictive control, the set-based CBF is defined implicitly through the minimal scaling of such a set to contain the current system state. This approach enables the development of implicit, data-driven, and high-dimensional CBF representations. The paper demonstrates the design of a safety filter using set-based CBFs, which is suitable for real-time implementations and learning-based approximations to reduce online computational demands. The effectiveness of the method is illustrated through comprehensive simulations on a high-dimensional mass-spring-damper system and a motion control task, and it is validated experimentally using an electric drive application with short sampling times, highlighting its practical benefits for safety-critical control.
Authors: Rongfei Li, Francis Assadian
Abstract:
Image-based visual servoing (IBVS) methods have been well developed and used in many applications, especially in pose (position and orientation) alignment. However, most research papers focused on developing control solutions when 3D point features can be detected inside the field of view. This work proposes an innovative feedforward-feedback adaptive control algorithm structure with the Youla Parameterization method. A designed feature estimation loop ensures stable and fast motion control when point features are outside the field of view. As 3D point features move inside the field of view, the IBVS feedback loop preserves the precision of the pose at the end of the control period. Also, an adaptive controller is developed in the feedback loop to stabilize the system in the entire range of operations. The nonlinear camera and robot manipulator model is linearized and decoupled online by an adaptive algorithm. The adaptive controller is then computed based on the linearized model evaluated at current linearized point. The proposed solution is robust and easy to implement in different industrial robotic systems. Various scenarios are used in simulations to validate the effectiveness and robust performance of the proposed controller.
Authors: Jinlu Zhang, Zixi Kang, Yizhou Wang
Abstract:
Music-driven dance generation offers significant creative potential yet faces considerable challenges. The absence of fine-grained multimodal data and the difficulty of flexible multi-conditional generation limit previous works on generation controllability and diversity in practice. In this paper, we build OpenDance5D, an extensive human dance dataset comprising over 101 hours across 14 distinct genres. Each sample has five modalities to facilitate robust cross-modal learning: RGB video, audio, 2D keypoints, 3D motion, and fine-grained textual descriptions from human arts. Furthermore, we propose OpenDanceNet, a unified masked modeling framework for controllable dance generation conditioned on music and arbitrary combinations of text prompts, keypoints, or character positioning. Comprehensive experiments demonstrate that OpenDanceNet achieves high-fidelity and flexible controllability.
Authors: Qihang Fang, Chengcheng Tang, Bugra Tekin, Shugao Ma, Yanchao Yang
Abstract:
We present HuMoCon, a novel motion-video understanding framework designed for advanced human behavior analysis. The core of our method is a human motion concept discovery framework that efficiently trains multi-modal encoders to extract semantically meaningful and generalizable features. HuMoCon addresses key challenges in motion concept discovery for understanding and reasoning, including the lack of explicit multi-modality feature alignment and the loss of high-frequency information in masked autoencoding frameworks. Our approach integrates a feature alignment strategy that leverages video for contextual understanding and motion for fine-grained interaction modeling, further with a velocity reconstruction mechanism to enhance high-frequency feature expression and mitigate temporal over-smoothing. Comprehensive experiments on standard benchmarks demonstrate that HuMoCon enables effective motion concept discovery and significantly outperforms state-of-the-art methods in training large models for human motion understanding. We will open-source the associated code with our paper.
Authors: Max Grobbel, Daniel Flögel, Philipp Rigoll, Sören Hohmann
Abstract:
Task performance in terms of task completion time in teleoperation is still far behind compared to humans conducting tasks directly. One large identified impact on this is the human capability to perform transformations and alignments, which is directly influenced by the point of view and the motion retargeting strategy. In modern teleoperation systems, motion retargeting is usually implemented through a one time calibration or switching modes. Complex tasks, like concatenated screwing, might be difficult, because the operator has to align (e.g. mirror) rotational and translational input commands. Recent research has shown, that the separation of translation and rotation leads to increased task performance. This work proposes a formal motion retargeting method, which separates translational and rotational input commands. This method is then included in a optimal control based trajectory planner and shown to work on a UR5e manipulator.
Authors: Longze Zheng, Qinghe Liu
Abstract:
In multi-obstacle environments, real-time performance and safety in robot motion control have long been challenging issues, as conventional methods often struggle to balance the two. In this paper, we propose a novel motion control framework composed of a Neural network-based path planner and a Model Predictive Control (MPC) controller based on control Barrier function (NMPCB) . The planner predicts the next target point through a lightweight neural network and generates a reference trajectory for the controller. In the design of the controller, we introduce the dual problem of control barrier function (CBF) as the obstacle avoidance constraint, enabling it to ensure robot motion safety while significantly reducing computation time. The controller directly outputs control commands to the robot by tracking the reference trajectory. This framework achieves a balance between real-time performance and safety. We validate the feasibility of the framework through numerical simulations and real-world experiments.
Authors: Yizhou Huang, Yihua Cheng, Kezhi Wang
Abstract:
Understanding human motion is crucial for accurate pedestrian trajectory prediction. Conventional methods typically rely on supervised learning, where ground-truth labels are directly optimized against predicted trajectories. This amplifies the limitations caused by long-tailed data distributions, making it difficult for the model to capture abnormal behaviors. In this work, we propose a self-supervised pedestrian trajectory prediction framework that explicitly models position, velocity, and acceleration. We leverage velocity and acceleration information to enhance position prediction through feature injection and a self-supervised motion consistency mechanism. Our model hierarchically injects velocity features into the position stream. Acceleration features are injected into the velocity stream. This enables the model to predict position, velocity, and acceleration jointly. From the predicted position, we compute corresponding pseudo velocity and acceleration, allowing the model to learn from data-generated pseudo labels and thus achieve self-supervised learning. We further design a motion consistency evaluation strategy grounded in physical principles; it selects the most reasonable predicted motion trend by comparing it with historical dynamics and uses this trend to guide and constrain trajectory generation. We conduct experiments on the ETH-UCY and Stanford Drone datasets, demonstrating that our method achieves state-of-the-art performance on both datasets.
Authors: Zichen Geng, Zeeshan Hayder, Wei Liu, Ajmal Saeed Mian
Abstract:
Text-driven Human-Object Interaction (Text-to-HOI) generation is an emerging field with applications in animation, video games, virtual reality, and robotics. A key challenge in HOI generation is maintaining interaction consistency in long sequences. Existing Text-to-Motion-based approaches, such as discrete motion tokenization, cannot be directly applied to HOI generation due to limited data in this domain and the complexity of the modality. To address the problem of interaction consistency in long sequences, we propose an autoregressive diffusion model (ARDHOI) that predicts the next continuous token. Specifically, we introduce a Contrastive Variational Autoencoder (cVAE) to learn a physically plausible space of continuous HOI tokens, thereby ensuring that generated human-object motions are realistic and natural. For generating sequences autoregressively, we develop a Mamba-based context encoder to capture and maintain consistent sequential actions. Additionally, we implement an MLP-based denoiser to generate the subsequent token conditioned on the encoded context. Our model has been evaluated on the OMOMO and BEHAVE datasets, where it outperforms existing state-of-the-art methods in terms of both performance and inference speed. This makes ARDHOI a robust and efficient solution for text-driven HOI tasks
Authors: Angelo Di Porzio, Marco Coraggio
Abstract:
The deployment of autonomous virtual avatars (in extended reality) and robots in human group activities - such as rehabilitation therapy, sports, and manufacturing - is expected to increase as these technologies become more pervasive. Designing cognitive architectures and control strategies to drive these agents requires realistic models of human motion. However, existing models only provide simplified descriptions of human motor behavior. In this work, we propose a fully data-driven approach, based on Long Short-Term Memory neural networks, to generate original motion that captures the unique characteristics of specific individuals. We validate the architecture using real data of scalar oscillatory motion. Extensive analyses show that our model effectively replicates the velocity distribution and amplitude envelopes of the individual it was trained on, remaining different from other individuals, and outperforming state-of-the-art models in terms of similarity to human data.
Authors: Yizhou Huang, Yihua Cheng, Kezhi Wang
Abstract:
Motion prediction is crucial for autonomous driving, as it enables accurate forecasting of future vehicle trajectories based on historical inputs. This paper introduces Trajectory Mamba, a novel efficient trajectory prediction framework based on the selective state-space model (SSM). Conventional attention-based models face the challenge of computational costs that grow quadratically with the number of targets, hindering their application in highly dynamic environments. In response, we leverage the SSM to redesign the self-attention mechanism in the encoder-decoder architecture, thereby achieving linear time complexity. To address the potential reduction in prediction accuracy resulting from modifications to the attention mechanism, we propose a joint polyline encoding strategy to better capture the associations between static and dynamic contexts, ultimately enhancing prediction accuracy. Additionally, to balance prediction accuracy and inference speed, we adopted the decoder that differs entirely from the encoder. Through cross-state space attention, all target agents share the scene context, allowing the SSM to interact with the shared scene representation during decoding, thus inferring different trajectories over the next prediction steps. Our model achieves state-of-the-art results in terms of inference speed and parameter efficiency on both the Argoverse 1 and Argoverse 2 datasets. It demonstrates a four-fold reduction in FLOPs compared to existing methods and reduces parameter count by over 40% while surpassing the performance of the vast majority of previous methods. These findings validate the effectiveness of Trajectory Mamba in trajectory prediction tasks.
Authors: Yi Yang, Xiao Li, Xuchen Wang, Mei Liu, Junwei Yin, Weibing Li, Richard M. Voyles, Xin Ma
Abstract:
This paper proposes a strictly predefined-time convergent and anti-noise fractional-order zeroing neural network (SPTC-AN-FOZNN) model, meticulously designed for addressing time-variant quadratic programming (TVQP) problems. This model marks the first variable-gain ZNN to collectively manifest strictly predefined-time convergence and noise resilience, specifically tailored for kinematic motion control of robots. The SPTC-AN-FOZNN advances traditional ZNNs by incorporating a conformable fractional derivative in accordance with the Leibniz rule, a compliance not commonly achieved by other fractional derivative definitions. It also features a novel activation function designed to ensure favorable convergence independent of the model's order. When compared to five recently published recurrent neural networks (RNNs), the SPTC-AN-FOZNN, configured with $0<α\leq 1$, exhibits superior positional accuracy and robustness against additive noises for TVQP applications. Extensive empirical evaluations, including simulations with two types of robotic manipulators and experiments with a Flexiv Rizon robot, have validated the SPTC-AN-FOZNN's effectiveness in precise tracking and computational efficiency, establishing its utility for robust kinematic control.
Authors: Anshul Nayak, Azim Eskandarian
Abstract:
Human motion is stochastic and ensuring safe robot navigation in a pedestrian-rich environment requires proactive decision-making. Past research relied on incorporating deterministic future states of surrounding pedestrians which can be overconfident leading to unsafe robot behaviour. The current paper proposes a predictive uncertainty-aware planner that integrates neural network based probabilistic trajectory prediction into planning. Our method uses a deep ensemble based network for probabilistic forecasting of surrounding humans and integrates the predictive uncertainty as constraints into the planner. We compare numerous constraint satisfaction methods on the planner and evaluated its performance on real world pedestrian datasets. Further, offline robot navigation was carried out on out-of-distribution pedestrian trajectories inside a narrow corridor
Authors: Jiayi Zhao, Dongdong Weng, Qiuxin Du, Zeyu Tian
Abstract:
Human motion generation involves creating natural sequences of human body poses, widely used in gaming, virtual reality, and human-computer interaction. It aims to produce lifelike virtual characters with realistic movements, enhancing virtual agents and immersive experiences. While previous work has focused on motion generation based on signals like movement, music, text, or scene background, the complexity of human motion and its relationships with these signals often results in unsatisfactory outputs. Manifold learning offers a solution by reducing data dimensionality and capturing subspaces of effective motion. In this review, we present a comprehensive overview of manifold applications in human motion generation, one of the first in this domain. We explore methods for extracting manifolds from unstructured data, their application in motion generation, and discuss their advantages and future directions. This survey aims to provide a broad perspective on the field and stimulate new approaches to ongoing challenges.
Authors: Xinyue Hu, Wei Ye, Jiaxiang Tang, Eman Ramadan, Zhi-Li Zhang
Abstract:
Multiple Description Coding (MDC) is a promising error-resilient source coding method that is particularly suitable for dynamic networks with multiple (yet noisy and unreliable) paths. However, conventional MDC video codecs suffer from cumbersome architectures, poor scalability, limited loss resilience, and lower compression efficiency. As a result, MDC has never been widely adopted. Inspired by the potential of neural video codecs, this paper rethinks MDC design. We propose a novel MDC video codec, NeuralMDC, demonstrating how bidirectional transformers trained for masked token prediction can vastly simplify the design of MDC video codec. To compress a video, NeuralMDC starts by tokenizing each frame into its latent representation and then splits the latent tokens to create multiple descriptions containing correlated information. Instead of using motion prediction and warping operations, NeuralMDC trains a bidirectional masked transformer to model the spatial-temporal dependencies of latent representations and predict the distribution of the current representation based on the past. The predicted distribution is used to independently entropy code each description and infer any potentially lost tokens. Extensive experiments demonstrate NeuralMDC achieves state-of-the-art loss resilience with minimal sacrifices in compression efficiency, significantly outperforming the best existing residual-coding-based error-resilient neural video codec.
Authors: Anirudh S Chakravarthy, Shuai Kyle Zheng, Xin Huang, Sachithra Hemachandra, Xiao Zhang, Yuning Chai, Zhao Chen
Abstract:
Fine-tuning pre-trained models has become invaluable in computer vision and robotics. Recent fine-tuning approaches focus on improving efficiency rather than accuracy by using a mixture of smaller learning rates or frozen backbones. To return the spotlight to model accuracy, we present PROFIT (Proximally Restricted Optimizer For Iterative Training), one of the first optimizers specifically designed for incrementally fine-tuning converged models on new tasks or datasets. Unlike traditional optimizers such as SGD or Adam, which make minimal assumptions due to random initialization, PROFIT leverages the structure of a converged model to regularize the optimization process, leading to improved results. By employing a simple temporal gradient orthogonalization process, PROFIT outperforms traditional fine-tuning methods across various tasks: image classification, representation learning, and large-scale motion prediction. Moreover, PROFIT is encapsulated within the optimizer logic, making it easily integrated into any training pipeline with minimal engineering effort. A new class of fine-tuning optimizers like PROFIT can drive advancements as fine-tuning and incremental training become increasingly prevalent, reducing reliance on costly model training from scratch.
Authors: Matyas Bohacek, Hany Farid
Abstract:
AI-generated video generation continues its journey through the uncanny valley to produce content that is increasingly perceptually indistinguishable from reality. To better protect individuals, organizations, and societies from its malicious applications, we describe an effective and robust technique for distinguishing real from AI-generated human motion using multi-modal semantic embeddings. Our method is robust to the types of laundering that typically confound more low- to mid-level approaches, including resolution and compression attacks. This method is evaluated against DeepAction, a custom-built, open-sourced dataset of video clips with human actions generated by seven text-to-video AI models and matching real footage. The dataset is available under an academic license at https://www.huggingface.co/datasets/faridlab/deepaction_v1.
Authors: Jaewoo Heo, Kuan-Chieh Wang, Karen Liu, Serena Yeung-Levy
Abstract:
Motion capture technologies have transformed numerous fields, from the film and gaming industries to sports science and healthcare, by providing a tool to capture and analyze human movement in great detail. The holy grail in the topic of monocular global human mesh and motion reconstruction (GHMR) is to achieve accuracy on par with traditional multi-view capture on any monocular videos captured with a dynamic camera, in-the-wild. This is a challenging task as the monocular input has inherent depth ambiguity, and the moving camera adds additional complexity as the rendered human motion is now a product of both human and camera movement. Not accounting for this confusion, existing GHMR methods often output motions that are unrealistic, e.g. unaccounted root translation of the human causes foot sliding. We present DiffOpt, a novel 3D global HMR method using Diffusion Optimization. Our key insight is that recent advances in human motion generation, such as the motion diffusion model (MDM), contain a strong prior of coherent human motion. The core of our method is to optimize the initial motion reconstruction using the MDM prior. This step can lead to more globally coherent human motion. Our optimization jointly optimizes the motion prior loss and reprojection loss to correctly disentangle the human and camera motions. We validate DiffOpt with video sequences from the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild (EMDB) and Egobody, and demonstrate superior global human motion recovery capability over other state-of-the-art global HMR methods most prominently in long video settings.
Authors: Franz Franco Gallo, Hui-Yin Wu, Lucile Sassatelli
Abstract:
Virtual environments provide a rich and controlled setting for collecting detailed data on human behavior, offering unique opportunities for predicting human trajectories in dynamic scenes. However, most existing approaches have overlooked the potential of these environments, focusing instead on static contexts without considering userspecific factors. Employing the CREATTIVE3D dataset, our work models trajectories recorded in virtual reality (VR) scenes for diverse situations including road-crossing tasks with user interactions and simulated visual impairments. We propose Diverse Context VR Human Motion Prediction (DiVR), a cross-modal transformer based on the Perceiver architecture that integrates both static and dynamic scene context using a heterogeneous graph convolution network. We conduct extensive experiments comparing DiVR against existing architectures including MLP, LSTM, and transformers with gaze and point cloud context. Additionally, we also stress test our model's generalizability across different users, tasks, and scenes. Results show that DiVR achieves higher accuracy and adaptability compared to other models and to static graphs. This work highlights the advantages of using VR datasets for context-aware human trajectory modeling, with potential applications in enhancing user experiences in the metaverse. Our source code is publicly available at https://gitlab.inria.fr/ffrancog/creattive3d-divr-model.
Authors: Nian Liu, Libin Liu, Zilong Zhang, Zi Wang, Hongzhao Xie, Tengyu Liu, Xinyi Tong, Yaodong Yang, Zhaofeng He
Abstract:
Learning natural and diverse behaviors from human motion datasets remains challenging in physics-based character control. Existing conditional adversarial models often suffer from tight and biased embedding distributions where embeddings from the same motion are closely grouped in a small area and shorter motions occupy even less space. Our empirical observations indicate this limits the representational capacity and diversity under each skill. An ideal latent space should be maximally packed by all motion's embedding clusters. In this paper, we propose a skill-conditioned controller that learns diverse skills with expressive variations. Our approach leverages the Neural Collapse phenomenon, a natural outcome of the classification-based encoder, to uniformly distributed cluster centers. We additionally propose a novel Embedding Expansion technique to form stylistic embedding clusters for diverse skills that are uniformly distributed on a hypersphere, maximizing the representational area occupied by each skill and minimizing unmapped regions. This maximally packed and uniformly distributed embedding space ensures that embeddings within the same cluster generate behaviors conforming to the characteristics of the corresponding motion clips, yet exhibiting noticeable variations within each cluster. Compared to existing methods, our controller not only generates high-quality, diverse motions covering the entire dataset but also achieves superior controllability, motion coverage, and diversity under each skill. Both qualitative and quantitative results confirm these traits, enabling our controller to be applied to a wide range of downstream tasks and serving as a cornerstone for diverse applications.
Authors: Ariel Slepyan, Dian Li, Hongjun Cai, Ryan McGovern, Aidan Aug, Sriramana Sankar, Trac Tran, Nitish Thakor
Abstract:
Robots require full-body, high-resolution tactile sensing to operate safely in unstructured environments, enabling reflexive responses and closed-loop control. However, the pixel counts needed for dense, large-area coverage limit readout rates of most tactile arrays to <100 Hz, hindering their use in high-speed tasks. We present Adaptive Compressive Tactile Subsampling (ACTS), a scalable and data-driven method that greatly enhances traditional tactile matrices by leveraging adaptive sensor sampling and sparse recovery. By adaptively allocating measurements to informative regions, ACTS is especially effective for spatially sparse signals common in real-world interactions. Tested on a 1024-pixel tactile sensor array (32x32), ACTS achieved frame rates up to 1,000 Hz, an 18X improvement over conventional raster scanning, with minimal reconstruction error. For the first time, ACTS enables wearable, large-area, high-density tactile sensing systems that can deliver high-speed results. We demonstrate rapid object classification within 20 ms of contact, high-speed projectile detection, ricochet angle estimation, and soft deformation tracking, in tactile and robotics applications, all using flexible, high-density tactile arrays. These include high-resolution tactile gloves, pressure insoles, and full-body configurations covering robotic arms and human-sized mannequins. We further showcase tactile-based closed-loop control by guiding a metallic ball to trace letters using tactile feedback and by executing tactile-only whole-hand reflexes on a fully sensorized LEAP hand to stabilize grasps, prevent slip, and avoid sharp objects, validating ACTS for real-time interaction and motion control. ACTS transforms standard, low-cost, and robust tactile sensors into high-speed systems enabling scalable, responsive, and adaptive tactile perception for robots and wearables operating in dynamic environments.
Authors: Haoran Wang, Yaoru Sun, Zeshen Tang, Haibo Shi, Chenyuan Jiao
Abstract:
Goal-conditioned hierarchical reinforcement learning (HRL) decomposes complex reaching tasks into a sequence of simple subgoal-conditioned tasks, showing significant promise for addressing long-horizon planning in large-scale environments. This paper bridges the goal-conditioned HRL based on graph-based planning to brain mechanisms, proposing a hippocampus-striatum-like dual-controller hypothesis. Inspired by the brain mechanisms of organisms (i.e., the high-reward preferences observed in hippocampal replay) and instance-based theory, we propose a high-return sampling strategy for constructing memory graphs, improving sample efficiency. Additionally, we derive a model-free lower-level Q-function gradient penalty to resolve the model dependency issues present in prior work, improving the generalization of Lipschitz constraints in applications. Finally, we integrate these two extensions, High-reward Graph and model-free Gradient Penalty (HG2P), into the state-of-the-art framework ACLG, proposing a novel goal-conditioned HRL framework, HG2P+ACLG. Experimentally, the results demonstrate that our method outperforms state-of-the-art goal-conditioned HRL algorithms on a variety of long-horizon navigation tasks and robotic manipulation tasks.
Authors: Weicheng Gao, Xiaodong Qu, Xiaopeng Yang
Abstract:
Through-the-Wall radar (TWR) human activity recognition (HAR) is a technology that uses low-frequency ultra-wideband (UWB) signal to detect and analyze indoor human motion. However, the high dependence of existing end-to-end recognition models on the distribution of TWR training data makes it difficult to achieve good generalization across different indoor testers. In this regard, the generalization ability of TWR HAR is analyzed in this paper. In detail, an end-to-end linear neural network method for TWR HAR and its generalization error bound are first discussed. Second, a micro-Doppler corner representation method and the change of the generalization error before and after dimension reduction are presented. The appropriateness of the theoretical generalization errors is proved through numerical simulations and experiments. The results demonstrate that feature dimension reduction is effective in allowing recognition models to generalize across different indoor testers.
Authors: Chaohui Xu, Si Wang, Chip-Hong Chang
Abstract:
Precise future human motion prediction over sub-second horizons from past observations is crucial for various safety-critical applications. To date, only a few studies have examined the vulnerability of skeleton-based neural networks to evasion and backdoor attacks. In this paper, we propose BadHMP, a novel backdoor attack that targets specifically human motion prediction tasks. Our approach involves generating poisoned training samples by embedding a localized backdoor trigger in one limb of the skeleton, causing selected joints to follow predefined motion in historical time steps. Subsequently, the future sequences are globally modified that all the joints move following the target trajectories. Our carefully designed backdoor triggers and targets guarantee the smoothness and naturalness of the poisoned samples, making them stealthy enough to evade detection by the model trainer while keeping the poisoned model unobtrusive in terms of prediction fidelity to untainted sequences. The target sequences can be successfully activated by the designed input sequences even with a low poisoned sample injection ratio. Experimental results on two datasets (Human3.6M and CMU-Mocap) and two network architectures (LTD and HRI) demonstrate the high-fidelity, effectiveness, and stealthiness of BadHMP. Robustness of our attack against fine-tuning defense is also verified.
Authors: Haoyu Zhang, Shibo Jin, Lvsong Li, Jun Li, Liang Lin, Xiaodong He, Zecui Zeng
Abstract:
Retargeting human motion to heterogeneous robots is a fundamental challenge in robotics, primarily due to the severe kinematic and dynamic discrepancies between varying embodiments. Existing solutions typically resort to training embodiment-specific models, which scales poorly and fails to exploit shared motion semantics. To address this, we present AdaMorph, a unified neural retargeting framework that enables a single model to adapt human motion to diverse robot morphologies. Our approach treats retargeting as a conditional generation task. We map human motion into a morphology-agnostic latent intent space and utilize a dual-purpose prompting mechanism to condition the generation. Instead of simple input concatenation, we leverage Adaptive Layer Normalization (AdaLN) to dynamically modulate the decoder's feature space based on embodiment constraints. Furthermore, we enforce physical plausibility through a curriculum-based training objective that ensures orientation and trajectory consistency via integration. Experimental results on 12 distinct humanoid robots demonstrate that AdaMorph effectively unifies control across heterogeneous topologies, exhibiting strong zero-shot generalization to unseen complex motions while preserving the dynamic essence of the source behaviors.
Authors: Siqi Liu, Maoyu Wang, Bo Dai, Cewu Lu
Abstract:
Retargeting motion between characters with different skeleton structures is a fundamental challenge in computer animation. When source and target characters have vastly different bone arrangements, maintaining the original motion's semantics and quality becomes increasingly difficult. We present PALUM, a novel approach that learns common motion representations across diverse skeleton topologies by partitioning joints into semantic body parts and applying attention mechanisms to capture spatio-temporal relationships. Our method transfers motion to target skeletons by leveraging these skeleton-agnostic representations alongside target-specific structural information. To ensure robust learning and preserve motion fidelity, we introduce a cycle consistency mechanism that maintains semantic coherence throughout the retargeting process. Extensive experiments demonstrate superior performance in handling diverse skeletal structures while maintaining motion realism and semantic fidelity, even when generalizing to previously unseen skeleton-motion combinations. We will make our implementation publicly available to support future research.
Authors: Sukhyun Jeong, Yong-Hoon Choi
Abstract:
Text-based 3D motion generation aims to automatically synthesize diverse motions from natural-language descriptions to extend user creativity, whereas motion editing modifies an existing motion sequence in response to text while preserving its overall structure. Pose-code-based frameworks such as CoMo map quantifiable pose attributes into discrete pose codes that support interpretable motion control, but their frame-wise representation struggles to capture subtle temporal dynamics and high-frequency details, often degrading reconstruction fidelity and local controllability. To address this limitation, we introduce pose-guided residual refinement for motion (PGR$^2$M), a hybrid representation that augments interpretable pose codes with residual codes learned via residual vector quantization (RVQ). A pose-guided RVQ tokenizer decomposes motion into pose latents that encode coarse global structure and residual latents that model fine-grained temporal variations. Residual dropout further discourages over-reliance on residuals, preserving the semantic alignment and editability of the pose codes. On top of this tokenizer, a base Transformer autoregressively predicts pose codes from text, and a refine Transformer predicts residual codes conditioned on text, pose codes, and quantization stage. Experiments on HumanML3D and KIT-ML show that PGR$^2$M improves Fréchet inception distance and reconstruction metrics for both generation and editing compared with CoMo and recent diffusion- and tokenization-based baselines, while user studies confirm that it enables intuitive, structure-preserving motion edits.
Authors: Sreehari Rajan, Kunal Bhosikar, Charu Sharma
Abstract:
Generating realistic human motions that naturally respond to both spoken language and physical objects is crucial for interactive digital experiences. Current methods, however, address speech-driven gestures or object interactions independently, limiting real-world applicability due to a lack of integrated, comprehensive datasets. To overcome this, we introduce InteracTalker, a novel framework that seamlessly integrates prompt-based object-aware interactions with co-speech gesture generation. We achieve this by employing a multi-stage training process to learn a unified motion, speech, and prompt embedding space. To support this, we curate a rich human-object interaction dataset, formed by augmenting an existing text-to-motion dataset with detailed object interaction annotations. Our framework utilizes a Generalized Motion Adaptation Module that enables independent training, adapting to the corresponding motion condition, which is then dynamically combined during inference. To address the imbalance between heterogeneous conditioning signals, we propose an adaptive fusion strategy, which dynamically reweights the conditioning signals during diffusion sampling. InteracTalker successfully unifies these previously separate tasks, outperforming prior methods in both co-speech gesture generation and object-interaction synthesis, outperforming gesture-focused diffusion methods, yielding highly realistic, object-aware full-body motions with enhanced realism, flexibility, and control.
Authors: Yiheng Bian, Zechen Li, Lanqing Yang, Hao Pan, Yezhou Wang, Longyuan Ge, Jeffery Wu, Ruiheng Liu, Yongjian Fu, Yichao chen, Guangtao xue
Abstract:
Reconstructing 3D Radiance Field (RF) scenes through opaque obstacles is a long-standing goal, yet it is fundamentally constrained by a laborious data acquisition process requiring thousands of static measurements, which treats human motion as noise to be filtered. This work introduces a new paradigm with a core objective: to perform fast, data-efficient, and high-fidelity RF reconstruction of occluded 3D static scenes, using only a single, brief human walk. We argue that this unstructured motion is not noise, but is in fact an information-rich signal available for reconstruction. To achieve this, we design a factorization framework based on composite 3D Gaussian Splatting (3DGS) that learns to model the dynamic effects of human motion from the persistent static scene geometry within a raw RF stream. Trained on just a single 60-second casual walk, our model reconstructs the full static scene with a Structural Similarity Index (SSIM) of 0.96, remarkably outperforming heavily-sampled state-of-the-art (SOTA) by 12%. By transforming the human movements into its valuable signals, our method eliminates the data acquisition bottleneck and paves the way for on-the-fly 3D RF mapping of unseen environments.
Authors: Sheng Liu, Yuanzhi Liang, Sidan Du
Abstract:
Recent 3D human motion generation models demonstrate remarkable reconstruction accuracy yet struggle to generalize beyond training distributions. This limitation arises partly from the use of precise 3D supervision, which encourages models to fit fixed coordinate patterns instead of learning the essential 3D structure and motion semantic cues required for robust generalization.To overcome this limitation, we propose Free3D, a framework that synthesizes realistic 3D motions without any 3D motion annotations. Free3D introduces a Motion-Lifting Residual Quantized VAE (ML-RQ) that maps 2D motion sequences into 3D-consistent latent spaces, and a suite of 3D-free regularization objectives enforcing view consistency, orientation coherence, and physical plausibility. Trained entirely on 2D motion data, Free3D generates diverse, temporally coherent, and semantically aligned 3D motions, achieving performance comparable to or even surpassing fully 3D-supervised counterparts. These results suggest that relaxing explicit 3D supervision encourages stronger structural reasoning and generalization, offering a scalable and data-efficient paradigm for 3D motion generation.
Authors: Ahmed Alia, Mohcine Chraibi, Armin Seyfried
Abstract:
In dynamic and crowded environments, realistic pedestrian trajectory prediction remains a challenging task due to the complex nature of human motion and the mutual influences among individuals. Deep learning models have recently achieved promising results by implicitly learning such patterns from 2D trajectory data. However, most approaches treat pedestrians as point entities, ignoring the physical space that each person occupies. To address these limitations, this paper proposes a novel deep learning model that enhances the Social LSTM with a new Dynamic Occupied Space loss function. This loss function guides Social LSTM in learning to avoid realistic collisions without increasing displacement error across different crowd densities, ranging from low to high, in both homogeneous and heterogeneous density settings. Such a function achieves this by combining the average displacement error with a new collision penalty that is sensitive to scene density and individual spatial occupancy. For efficient training and evaluation, five datasets were generated from real pedestrian trajectories recorded during the Festival of Lights in Lyon 2022. Four datasets represent homogeneous crowd conditions -- low, medium, high, and very high density -- while the fifth corresponds to a heterogeneous density distribution. The experimental findings indicate that the proposed model not only lowers collision rates but also enhances displacement prediction accuracy in each dataset. Specifically, the model achieves up to a 31% reduction in the collision rate and reduces the average displacement error and the final displacement error by 5% and 6%, respectively, on average across all datasets compared to the baseline. Moreover, the proposed model consistently outperforms several state-of-the-art deep learning models across most test sets.
Authors: Yanbo Pang, Qingkai Li, Mingguo Zhao
Abstract:
As robotic arm applications expand beyond traditional industrial settings into service-oriented domains such as catering, household and retail, existing control algorithms struggle to achieve the level of agile manipulation required in unstructured environments characterized by dynamic trajectories, unpredictable interactions, and diverse objects. This paper presents a biomimetic control framework based on Spiking Neural Network (SNN), inspired by the human Central Nervous System (CNS), to address these challenges. The proposed framework comprises five control modules-cerebral cortex, cerebellum, thalamus, brainstem, and spinal cord-organized into three hierarchical control levels (first-order, second-order, and third-order) and two information pathways (ascending and descending). All modules are fully implemented using SNN. The framework is validated through both simulation and experiments on a commercial robotic arm platform across a range of control tasks. The results demonstrate that the proposed method outperforms the baseline in terms of agile motion control capability, offering a practical and effective solution for achieving agile manipulation.
Authors: Yucheng Xing, Jinxing Yin, Xiaodong Liu
Abstract:
Recently, diffusion models have shown their impressive ability in visual generation tasks. Besides static images, more and more research attentions have been drawn to the generation of realistic videos. The video generation not only has a higher requirement for the quality, but also brings a challenge in ensuring the video continuity. Among all the video generation tasks, human-involved contents, such as human dancing, are even more difficult to generate due to the high degrees of freedom associated with human motions. In this paper, we propose a novel framework, named as DANCER (Dance ANimation via Condition Enhancement and Rendering with Diffusion Model), for realistic single-person dance synthesis based on the most recent stable video diffusion model. As the video generation is generally guided by a reference image and a video sequence, we introduce two important modules into our framework to fully benefit from the two inputs. More specifically, we design an Appearance Enhancement Module (AEM) to focus more on the details of the reference image during the generation, and extend the motion guidance through a Pose Rendering Module (PRM) to capture pose conditions from extra domains. To further improve the generation capability of our model, we also collect a large amount of video data from Internet, and generate a novel datasetTikTok-3K to enhance the model training. The effectiveness of the proposed model has been evaluated through extensive experiments on real-world datasets, where the performance of our model is superior to that of the state-of-the-art methods. All the data and codes will be released upon acceptance.
Authors: Matsive Ali, Blake Gassen, Sen Liu
Abstract:
This paper presents an integrated robotic fused deposition modeling additive manufacturing system featuring closed-loop thermal control and intelligent in-situ defect correction using a 6-degree of freedom robotic arm and an Oak-D camera. The robot arm end effector was modified to mount an E3D hotend thermally regulated by an IoT microcontroller, enabling precise temperature control through real-time feedback. Filament extrusion system was synchronized with robotic motion, coordinated via ROS2, ensuring consistent deposition along complex trajectories. A vision system based on OpenCV detects layer-wise defects position, commanding autonomous re-extrusion at identified sites. Experimental validation demonstrated successful defect mitigation in printing operations. The integrated system effectively addresses challenges real-time quality assurance. Inverse kinematics were used for motion planning, while homography transformations corrected camera perspectives for accurate defect localization. The intelligent system successfully mitigated surface anomalies without interrupting the print process. By combining real-time thermal regulation, motion control, and intelligent defect detection & correction, this architecture establishes a scalable and adaptive robotic additive manufacturing framework suitable for aerospace, biomedical, and industrial applications.
Authors: Benedictus C. G. Cinun, Tua A. Tamba, Immanuel R. Santjoko, Xiaofeng Wang, Michael A. Gunarso, Bin Hu
Abstract:
This paper presents the complete design, control, and experimental validation of a low-cost Stewart platform prototype developed as an affordable yet capable robotic testbed for research and education. The platform combines off the shelf components with 3D printed and custom fabricated parts to deliver full six degrees of freedom motions using six linear actuators connecting a moving platform to a fixed base. The system software integrates dynamic modeling, data acquisition, and real time control within a unified framework. A robust trajectory tracking controller based on feedback linearization, augmented with an LQR scheme, compensates for the platform's nonlinear dynamics to achieve precise motion control. In parallel, an Extended Kalman Filter fuses IMU and actuator encoder feedback to provide accurate and reliable state estimation under sensor noise and external disturbances. Unlike prior efforts that emphasize only isolated aspects such as modeling or control, this work delivers a complete hardware-software platform validated through both simulation and experiments on static and dynamic trajectories. Results demonstrate effective trajectory tracking and real-time state estimation, highlighting the platform's potential as a cost effective and versatile tool for advanced research and educational applications.
Authors: Abhijeet M. Kulkarni, Ioannis Poulakakis, Guoquan Huang
Abstract:
Accurate full-body motion prediction is essential for the safe, autonomous navigation of legged robots, enabling critical capabilities like limb-level collision checking in cluttered environments. Simplified kinematic models often fail to capture the complex, closed-loop dynamics of the robot and its low-level controller, limiting their predictions to simple planar motion. To address this, we present a learning-based observer-predictor framework that accurately predicts this motion. Our method features a neural observer with provable UUB guarantees that provides a reliable latent state estimate from a history of proprioceptive measurements. This stable estimate initializes a computationally efficient predictor, designed for the rapid, parallel evaluation of thousands of potential trajectories required by modern sampling-based planners. We validated the system by integrating our neural predictor into an MPPI-based planner on a Vision 60 quadruped. Hardware experiments successfully demonstrated effective, limb-aware motion planning in a challenging, narrow passage and over small objects, highlighting our system's ability to provide a robust foundation for high-performance, collision-aware planning on dynamic robotic platforms.
Authors: David Björkstrand, Tiesheng Wang, Lars Bretzner, Josephine Sullivan
Abstract:
Recent work has explored a range of model families for human motion generation, including Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion-based models. Despite their differences, many methods rely on over-parameterized input features and auxiliary losses to improve empirical results. These strategies should not be strictly necessary for diffusion models to match the human motion distribution. We show that on par with state-of-the-art results in unconditional human motion generation are achievable with a score-based diffusion model using only careful feature-space normalization and analytically derived weightings for the standard L2 score-matching loss, while generating both motion and shape directly, thereby avoiding slow post hoc shape recovery from joints. We build the method step by step, with a clear theoretical motivation for each component, and provide targeted ablations demonstrating the effectiveness of each proposed addition in isolation.
Authors: Sukhyun Jeong, Hong-Gi Shin, Yong-Hoon Choi
Abstract:
Recent progress in text-to-motion has advanced both 3D human motion generation and text-based motion control. Controllable motion generation (CoMo), which enables intuitive control, typically relies on pose code representations, but discrete pose codes alone cannot capture fine-grained motion details, limiting expressiveness. To overcome this, we propose a method that augments pose code-based latent representations with continuous motion features using residual vector quantization (RVQ). This design preserves the interpretability and manipulability of pose codes while effectively capturing subtle motion characteristics such as high-frequency details. Experiments on the HumanML3D dataset show that our model reduces Frechet inception distance (FID) from 0.041 to 0.015 and improves Top-1 R-Precision from 0.508 to 0.510. Qualitative analysis of pairwise direction similarity between pose codes further confirms the model's controllability for motion editing.
Authors: Xiaohai Hu, Jason Laks, Guoxiao Guo, Xu Chen
Abstract:
This paper presents a numerically robust approach to multi-band disturbance rejection using an iterative Youla-Kucera parameterization technique. The proposed method offers precise control over shaping the frequency response of a feedback loop while maintaining numerical stability through a systematic design process. By implementing an iterative approach, we overcome a critical numerical issue in rejecting vibrations with multiple frequency bands. Meanwhile, our proposed modification of the all-stabilizing Youla-Kucera architecture enables intuitive design while respecting fundamental performance trade-offs and minimizing undesired waterbed amplifications. Numerical validation on a hard disk drive servo system demonstrates significant performance improvements, enabling enhanced positioning precision for increased storage density. The design methodology extends beyond storage systems to various high-precision control applications where multi-band disturbance rejection is critical.
Authors: Haozhe Zhou, Riku Arakawa, Yuvraj Agarwal, Mayank Goel
Abstract:
IMUs are regularly used to sense human motion, recognize activities, and estimate full-body pose. Users are typically required to place sensors in predefined locations that are often dictated by common wearable form factors and the machine learning model's training process. Consequently, despite the increasing number of everyday devices equipped with IMUs, the limited adaptability has seriously constrained the user experience to only using a few well-explored device placements (e.g., wrist and ears). In this paper, we rethink IMU-based motion sensing by acknowledging that signals can be captured from any point on the human body. We introduce IMU over Continuous Coordinates (IMUCoCo), a novel framework that maps signals from a variable number of IMUs placed on the body surface into a unified feature space based on their spatial coordinates. These features can be plugged into downstream models for pose estimation and activity recognition. Our evaluations demonstrate that IMUCoCo supports accurate pose estimation in a wide range of typical and atypical sensor placements. Overall, IMUCoCo supports significantly more flexible use of IMUs for motion sensing than the state-of-the-art, allowing users to place their sensors-laden devices according to their needs and preferences. The framework also supports the ability to change device locations depending on the context and suggests placement depending on the use case.
Authors: Yilin Lyu, Fan Yang, Xiaoyue Liu, Zichen Jiang, Joshua Dillon, Debbie Zhao, Martyn Nash, Charlene Mauger, Alistair Young, Ching-Hui Sia, Mark YY Chan, Lei Li
Abstract:
Accurate representation of myocardial infarct geometry is crucial for patient-specific cardiac modeling in MI patients. While Late gadolinium enhancement (LGE) MRI is the clinical gold standard for infarct detection, it requires contrast agents, introducing side effects and patient discomfort. Moreover, infarct reconstruction from LGE often relies on sparsely sampled 2D slices, limiting spatial resolution and accuracy. In this work, we propose a novel framework for automatically reconstructing high-fidelity 3D myocardial infarct geometry from 2D clinically standard cine MRI, eliminating the need for contrast agents. Specifically, we first reconstruct the 4D biventricular mesh from multi-view cine MRIs via an automatic deep shape fitting model, biv-me. Then, we design a infarction reconstruction model, CMotion2Infarct-Net, to explicitly utilize the motion patterns within this dynamic geometry to localize infarct regions. Evaluated on 205 cine MRI scans from 126 MI patients, our method shows reasonable agreement with manual delineation. This study demonstrates the feasibility of contrast-free, cardiac motion-driven 3D infarct reconstruction, paving the way for efficient digital twin of MI.
Authors: Muhammad Atta ur Rahman, Dooseop Choi, KyoungWook Min
Abstract:
Accurate motion forecasting is critical for safe and efficient autonomous driving, enabling vehicles to predict future trajectories and make informed decisions in complex traffic scenarios. Most of the current designs of motion prediction models are based on the major representation of lane centerlines, which limits their capability to capture critical road environments and traffic rules and constraints. In this work, we propose an enhanced motion forecasting model informed by multiple vector map elements, including lane boundaries and road edges, that facilitates a richer and more complete representation of driving environments. An effective feature fusion strategy is developed to merge information in different vector map components, where the model learns holistic information on road structures and their interactions with agents. Since encoding more information about the road environment increases memory usage and is computationally expensive, we developed an effective pruning mechanism that filters the most relevant map connections to the target agent, ensuring computational efficiency while maintaining essential spatial and semantic relationships for accurate trajectory prediction. Overcoming the limitations of lane centerline-based models, our method provides a more informative and efficient representation of the driving environment and advances the state of the art for autonomous vehicle motion forecasting. We verify our approach with extensive experiments on the Argoverse 2 motion forecasting dataset, where our method maintains competitiveness on AV2 while achieving improved performance.
Index Terms-Autonomous driving, trajectory prediction, vector map elements, road topology, connection pruning, Argoverse 2.
Authors: Bin Sun, Boao Zhang, Jiayi Lu, Xinjie Feng, Jiachen Shang, Rui Cao, Mengchao Zheng, Chuanye Wang, Shichun Yang, Yaoguang Cao, Ziying Song
Abstract:
In end-to-end autonomous driving,the motion prediction plays a pivotal role in ego-vehicle planning. However, existing methods often rely on globally aggregated motion features, ignoring the fact that planning decisions are primarily influenced by a small number of locally interacting agents. Failing to attend to these critical local interactions can obscure potential risks and undermine planning reliability. In this work, we propose FocalAD, a novel end-to-end autonomous driving framework that focuses on critical local neighbors and refines planning by enhancing local motion representations. Specifically, FocalAD comprises two core modules: the Ego-Local-Agents Interactor (ELAI) and the Focal-Local-Agents Loss (FLA Loss). ELAI conducts a graph-based ego-centric interaction representation that captures motion dynamics with local neighbors to enhance both ego planning and agent motion queries. FLA Loss increases the weights of decision-critical neighboring agents, guiding the model to prioritize those more relevant to planning. Extensive experiments show that FocalAD outperforms existing state-of-the-art methods on the open-loop nuScenes datasets and closed-loop Bench2Drive benchmark. Notably, on the robustness-focused Adv-nuScenes dataset, FocalAD achieves even greater improvements, reducing the average colilision rate by 41.9% compared to DiffusionDrive and by 15.6% compared to SparseDrive.
Authors: Xinyi Wu, Haohong Wang, Aggelos K. Katsaggelos
Abstract:
With the popularity of video-based user-generated content (UGC) on social media, harmony, as dictated by human perceptual principles, is critical in assessing the rhythmic consistency of audio-visual UGCs for better user engagement. In this work, we propose a novel harmony-aware GAN framework, following a specifically designed harmony evaluation strategy to enhance rhythmic synchronization in the automatic music-to-motion synthesis using a UGC dance dataset. This harmony strategy utilizes refined cross-modal beat detection to capture closely correlated audio and visual rhythms in an audio-visual pair. To mimic human attention mechanism, we introduce saliency-based beat weighting and interval-driven beat alignment, which ensures accurate harmony score estimation consistent with human perception. Building on this strategy, our model, employing efficient encoder-decoder and depth-lifting designs, is adversarially trained based on categorized musical meter segments to generate realistic and rhythmic 3D human motions. We further incorporate our harmony evaluation strategy as a weakly supervised perceptual constraint to flexibly guide the synchronized audio-visual rhythms during the generation process. Experimental results show that our proposed model significantly outperforms other leading music-to-motion methods in rhythmic harmony, both quantitatively and qualitatively, even with limited UGC training data. Live samples 15 can be watched at: https://youtu.be/tWwz7yq4aUs
Authors: Feiyang Pan, Shenghe Zheng, Chunyan Yin, Guangbin Dou
Abstract:
MEMS gyroscopes play a critical role in inertial navigation and motion control applications but typically suffer from a fundamental trade-off between measurement range and noise performance. Existing hardware-based solutions aimed at mitigating this issue introduce additional complexity, cost, and scalability challenges. Deep-learning methods primarily focus on noise reduction and typically require precisely aligned ground-truth signals, making them difficult to deploy in practical scenarios and leaving the fundamental trade-off unresolved. To address these challenges, we introduce Mixture of Experts for MEMS Gyroscopes (MoE-Gyro), a novel self-supervised framework specifically designed for simultaneous over-range signal reconstruction and noise suppression. MoE-Gyro employs two experts: an Over-Range Reconstruction Expert (ORE), featuring a Gaussian-Decay Attention mechanism for reconstructing saturated segments; and a Denoise Expert (DE), utilizing dual-branch complementary masking combined with FFT-guided augmentation for robust noise reduction. A lightweight gating module dynamically routes input segments to the appropriate expert. Furthermore, existing evaluation lack a comprehensive standard for assessing multi-dimensional signal enhancement. To bridge this gap, we introduce IMU Signal Enhancement Benchmark (ISEBench), an open-source benchmarking platform comprising the GyroPeak-100 dataset and a unified evaluation of IMU signal enhancement methods. We evaluate MoE-Gyro using our proposed ISEBench, demonstrating that our framework significantly extends the measurable range from 450 deg/s to 1500 deg/s, reduces Bias Instability by 98.4%, and achieves state-of-the-art performance, effectively addressing the long-standing trade-off in inertial sensing.
Authors: Zi-An Wang, Shihao Zou, Shiyao Yu, Mingyuan Zhang, Chao Dong
Abstract:
Recent advances in interactive technologies have highlighted the prominence of audio signals for semantic encoding. This paper explores a new task, where audio signals are used as conditioning inputs to generate motions that align with the semantics of the audio. Unlike text-based interactions, audio provides a more natural and intuitive communication method. However, existing methods typically focus on matching motions with music or speech rhythms, which often results in a weak connection between the semantics of the audio and generated motions. We propose an end-to-end framework using a masked generative transformer, enhanced by a memory-retrieval attention module to handle sparse and lengthy audio inputs. Additionally, we enrich existing datasets by converting descriptions into conversational style and generating corresponding audio with varied speaker identities. Experiments demonstrate the effectiveness and efficiency of the proposed framework, demonstrating that audio instructions can convey semantics similar to text while providing more practical and user-friendly interactions.
Authors: Antonio Grotta, Francesco De Lellis
Abstract:
Accurately estimating the phase of oscillatory systems is essential for analyzing cyclic activities such as repetitive gestures in human motion. In this work we introduce a learning-based approach for online phase estimation in three-dimensional motion trajectories, using a Long Short- Term Memory (LSTM) network. A calibration procedure is applied to standardize trajectory position and orientation, ensuring invariance to spatial variations. The proposed model is evaluated on motion capture data and further tested in a dynamical system, where the estimated phase is used as input to a reinforcement learning (RL)-based control to assess its impact on the synchronization of a network of Kuramoto oscillators.
Authors: Ian Groves, Andrew Campbell, James Fernandes, Diego RamÃrez RodrÃguez, Paul Murray, Massimiliano Vasile, Victoria Nockles
Abstract:
Foundation Models, pre-trained on large unlabelled datasets before task-specific fine-tuning, are increasingly being applied to specialised domains. Recent examples include ClimaX for climate and Clay for satellite Earth observation, but a Foundation Model for Space Object Behavioural Analysis has not yet been developed. As orbital populations grow, automated methods for characterising space object behaviour are crucial for space safety. We present a Space Safety and Sustainability Foundation Model focusing on space object behavioural analysis using light curves (LCs). We implemented a Perceiver-Variational Autoencoder (VAE) architecture, pre-trained with self-supervised reconstruction and masked reconstruction on 227,000 LCs from the MMT-9 observatory. The VAE enables anomaly detection, motion prediction, and LC generation. We fine-tuned the model for anomaly detection & motion prediction using two independent LC simulators (CASSANDRA and GRIAL respectively), using CAD models of boxwing, Sentinel-3, SMOS, and Starlink platforms. Our pre-trained model achieved a reconstruction error of 0.01%, identifying potentially anomalous light curves through reconstruction difficulty. After fine-tuning, the model scored 88% and 82% accuracy, with 0.90 and 0.95 ROC AUC scores respectively in both anomaly detection and motion mode prediction (sun-pointing, spin, etc.). Analysis of high-confidence anomaly predictions on real data revealed distinct patterns including characteristic object profiles and satellite glinting. Here, we demonstrate how self-supervised learning can simultaneously enable anomaly detection, motion prediction, and synthetic data generation from rich representations learned in pre-training. Our work therefore supports space safety and sustainability through automated monitoring and simulation capabilities.
Authors: Ziyu Guo, Young Yoon Lee, Joseph Liu, Yizhak Ben-Shabat, Victor Zordan, Mubbasir Kapadia
Abstract:
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
Authors: Binjie Liu, Lina Liu, Sanyi Zhang, Songen Gu, Yihao Zhi, Tianyi Zhu, Lei Yang, Long Ye
Abstract:
This work focuses on full-body co-speech gesture generation. Existing methods typically employ an autoregressive model accompanied by vector-quantized tokens for gesture generation, which results in information loss and compromises the realism of the generated gestures. To address this, inspired by the natural continuity of real-world human motion, we propose MAG, a novel multi-modal aligned framework for high-quality and diverse co-speech gesture synthesis without relying on discrete tokenization. Specifically, (1) we introduce a motion-text-audio-aligned variational autoencoder (MTA-VAE), which leverages pre-trained WavCaps' text and audio embeddings to enhance both semantic and rhythmic alignment with motion, ultimately producing more realistic gestures. (2) Building on this, we propose a multimodal masked autoregressive model (MMAG) that enables autoregressive modeling in continuous motion embeddings through diffusion without vector quantization. To further ensure multi-modal consistency, MMAG incorporates a hybrid granularity audio-text fusion block, which serves as conditioning for diffusion process. Extensive experiments on two benchmark datasets demonstrate that MAG achieves stateof-the-art performance both quantitatively and qualitatively, producing highly realistic and diverse co-speech gestures.The code will be released to facilitate future research.
Authors: ChangHee Yang, Hyeonseop Song, Seokhun Choi, Seungwoo Lee, Jaechul Kim, Hoseok Do
Abstract:
Despite considerable efforts to enhance the generalization of 3D pose estimators without costly 3D annotations, existing data augmentation methods struggle in real world scenarios with diverse human appearances and complex poses. We propose PoseSyn, a novel data synthesis framework that transforms abundant in the wild 2D pose dataset into diverse 3D pose image pairs. PoseSyn comprises two key components: Error Extraction Module (EEM), which identifies challenging poses from the 2D pose datasets, and Motion Synthesis Module (MSM), which synthesizes motion sequences around the challenging poses. Then, by generating realistic 3D training data via a human animation model aligned with challenging poses and appearances PoseSyn boosts the accuracy of various 3D pose estimators by up to 14% across real world benchmarks including various backgrounds and occlusions, challenging poses, and multi view scenarios. Extensive experiments further confirm that PoseSyn is a scalable and effective approach for improving generalization without relying on expensive 3D annotations, regardless of the pose estimator's model size or design.
Authors: Alexander Schperberg, Marcel Menner, Stefano Di Cairano
Abstract:
We propose an online motion planner for legged robot locomotion with the primary objective of achieving energy efficiency. The conceptual idea is to leverage a placement set of footstep positions based on the robot's body position to determine when and how to execute steps. In particular, the proposed planner uses virtual placement sets beneath the hip joints of the legs and executes a step when the foot is outside of such placement set. Furthermore, we propose a parameter design framework that considers both energy-efficiency and robustness measures to optimize the gait by changing the shape of the placement set along with other parameters, such as step height and swing time, as a function of walking speed. We show that the planner produces trajectories that have a low Cost of Transport (CoT) and high robustness measure, and evaluate our approach against model-free Reinforcement Learning (RL) and motion imitation using biological dog motion priors as the reference. Overall, within low to medium velocity range, we show a 50.4% improvement in CoT and improved robustness over model-free RL, our best performing baseline. Finally, we show ability to handle slippery surfaces, gait transitions, and disturbances in simulation and hardware with the Unitree A1 robot.
Authors: Adam Labiosa, Josiah P. Hanna
Abstract:
Teams of people coordinate to perform complex tasks by forming abstract mental models of world and agent dynamics. The use of abstract models contrasts with much recent work in robot learning that uses a high-fidelity simulator and reinforcement learning (RL) to obtain policies for physical robots. Motivated by this difference, we investigate the extent to which so-called abstract simulators can be used for multi-agent reinforcement learning (MARL) and the resulting policies successfully deployed on teams of physical robots. An abstract simulator models the robot's target task at a high-level of abstraction and discards many details of the world that could impact optimal decision-making. Policies are trained in an abstract simulator then transferred to the physical robot by making use of separately-obtained low-level perception and motion control modules. We identify three key categories of modifications to the abstract simulator that enable policy transfer to physical robots: simulation fidelity enhancements, training optimizations and simulation stochasticity. We then run an empirical study with extensive ablations to determine the value of each modification category for enabling policy transfer in cooperative robot soccer tasks. We also compare the performance of policies produced by our method with a well-tuned non-learning-based behavior architecture from the annual RoboCup competition and find that our approach leads to a similar level of performance. Broadly we show that MARL can be use to train cooperative physical robot behaviors using highly abstract models of the world.
Authors: Yuto Shibata, Yusuke Oumi, Go Irie, Akisato Kimura, Yoshimitsu Aoki, Mariko Isogawa
Abstract:
We propose BGM2Pose, a non-invasive 3D human pose estimation method using arbitrary music (e.g., background music) as active sensing signals. Unlike existing approaches that significantly limit practicality by employing intrusive chirp signals within the audible range, our method utilizes natural music that causes minimal discomfort to humans. Estimating human poses from standard music presents significant challenges. In contrast to sound sources specifically designed for measurement, regular music varies in both volume and pitch. These dynamic changes in signals caused by music are inevitably mixed with alterations in the sound field resulting from human motion, making it hard to extract reliable cues for pose estimation. To address these challenges, BGM2Pose introduces a Contrastive Pose Extraction Module that employs contrastive learning and hard negative sampling to eliminate musical components from the recorded data, isolating the pose information. Additionally, we propose a Frequency-wise Attention Module that enables the model to focus on subtle acoustic variations attributable to human movement by dynamically computing attention across frequency bands. Experiments suggest that our method outperforms the existing methods, demonstrating substantial potential for real-world applications. Our datasets and code will be made publicly available.
Authors: Stella DumenÄiÄ, Luka LanÄa, Karlo Jakac, Stefan IviÄ
Abstract:
Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging or inaccessible environments. This is why introducing unmanned aerial vehicles (UAVs) can be of great help to enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved in the mission. Motivated by this, we design and experiment with autonomous UAV search for humans in a Mediterranean karst environment. The UAVs are directed using Heat equation-driven area coverage (HEDAC) ergodic control method according to known probability density and detection function. The implemented sensing framework consists of a probabilistic search model, motion control system, and computer vision object detection. It enables calculation of the probability of the target being detected in the SAR mission, and this paper focuses on experimental validation of proposed probabilistic framework and UAV control. The uniform probability density to ensure the even probability of finding the targets in the desired search area is achieved by assigning suitably thought-out tasks to 78 volunteers. The detection model is based on YOLO and trained with a previously collected ortho-photo image database. The experimental search is carefully planned and conducted, while as many parameters as possible are recorded. The thorough analysis consists of the motion control system, object detection, and the search validation. The assessment of the detection and search performance provides strong indication that the designed detection model in the UAV control algorithm is aligned with real-world results.
Authors: Zhang Minghao, Yang Xiaojun, Wang Zhihe, Wang Liang
Abstract:
This paper introduces the CRL2RT algorithm, an advanced reinforcement learning method aimed at improving the real-time control performance of the Direct-Drive Tandem-Wing Experimental Platform (DDTWEP). Inspired by dragonfly flight, DDTWEP's tandem wing structure causes nonlinear and unsteady aerodynamic interactions, leading to complex load behaviors during pitch, roll, and yaw maneuvers. These complexities challenge stable motion control at high frequencies (2000 Hz). To overcome these issues, we developed the CRL2RT algorithm, which combines classical control elements with reinforcement learning-based controllers using a time-interleaved architecture and a rule-based policy composer. This integration ensures finite-time convergence and single-life adaptability. Experimental results under various conditions, including different flapping frequencies and yaw disturbances, show that CRL2RT achieves a control frequency surpassing 2500 Hz on standard CPUs. Additionally, when integrated with classical controllers like PID, Adaptive PID, and Model Reference Adaptive Control (MRAC), CRL2RT enhances tracking performance by 18.3% to 60.7%. These findings demonstrate CRL2RT's broad applicability and superior performance in complex real-time control scenarios, validating its effectiveness in overcoming existing control strategy limitations and advancing robust, efficient real-time control for biomimetic aerial vehicles.
Authors: Arvin Tashakori, Arash Tashakori, Gongbo Yang, Z. Jane Wang, Peyman Servati
Abstract:
Lightweight, controllable, and physically plausible human motion synthesis is crucial for animation, virtual reality, robotics, and human-computer interaction applications. Existing methods often compromise between computational efficiency, physical realism, or spatial controllability. We propose FlexMotion, a novel framework that leverages a computationally lightweight diffusion model operating in the latent space, eliminating the need for physics simulators and enabling fast and efficient training. FlexMotion employs a multimodal pre-trained Transformer encoder-decoder, integrating joint locations, contact forces, joint actuations and muscle activations to ensure the physical plausibility of the generated motions. FlexMotion also introduces a plug-and-play module, which adds spatial controllability over a range of motion parameters (e.g., joint locations, joint actuations, contact forces, and muscle activations). Our framework achieves realistic motion generation with improved efficiency and control, setting a new benchmark for human motion synthesis. We evaluate FlexMotion on extended datasets and demonstrate its superior performance in terms of realism, physical plausibility, and controllability.
Authors: Kaleab A. Kinfu, Carolina Pacheco, Alice D. Sperry, Deana Crocetti, Bahar Tunçgenç, Stewart H. Mostofsky, René Vidal
Abstract:
Motor imitation impairments are commonly reported in individuals with autism spectrum conditions (ASCs), suggesting that motor imitation could be used as a phenotype for addressing autism heterogeneity. Traditional methods for assessing motor imitation are subjective, labor-intensive, and require extensive human training. Modern Computerized Assessment of Motor Imitation (CAMI) methods, such as CAMI-3D for motion capture data and CAMI-2D for video data, are less subjective. However, they rely on labor-intensive data normalization and cleaning techniques, and human annotations for algorithm training. To address these challenges, we propose CAMI-2DNet, a scalable and interpretable deep learning-based approach to motor imitation assessment in video data, which eliminates the need for data normalization, cleaning and annotation. CAMI-2DNet uses an encoder-decoder architecture to map a video to a motion encoding that is disentangled from nuisance factors such as body shape and camera views. To learn a disentangled representation, we employ synthetic data generated by motion retargeting of virtual characters through the reshuffling of motion, body shape, and camera views, as well as real participant data. To automatically assess how well an individual imitates an actor, we compute a similarity score between their motion encodings, and use it to discriminate individuals with ASCs from neurotypical (NT) individuals. Our comparative analysis demonstrates that CAMI-2DNet has a strong correlation with human scores while outperforming CAMI-2D in discriminating ASC vs NT children. Moreover, CAMI-2DNet performs comparably to CAMI-3D while offering greater practicality by operating directly on video data and without the need for ad-hoc data normalization and human annotations.
Authors: Avinash Amballa, Gayathri Akkinapalli, Vinitra Muralikrishnan
Abstract:
Human motion synthesis conditioned on textual input has gained significant attention in recent years due to its potential applications in various domains such as gaming, film production, and virtual reality. Conditioned Motion synthesis takes a text input and outputs a 3D motion corresponding to the text. While previous works have explored motion synthesis using raw motion data and latent space representations with diffusion models, these approaches often suffer from high training and inference times. In this paper, we introduce a novel framework that utilizes Generative Adversarial Networks (GANs) in the latent space to enable faster training and inference while achieving results comparable to those of the state-of-the-art diffusion methods. We perform experiments on the HumanML3D, HumanAct12 benchmarks and demonstrate that a remarkably simple GAN in the latent space achieves a FID of 0.482 with more than 91% in FLOPs reduction compared to latent diffusion model. Our work opens up new possibilities for efficient and high-quality motion synthesis using latent space GANs.
Authors: Wenqing Wang, Yun Fu
Abstract:
Text-to-3D generation is a valuable technology in virtual reality and digital content creation. While recent works have pushed the boundaries of text-to-3D generation, producing high-fidelity 3D objects with inefficient prompts and simulating their physics-grounded motion accurately still remain unsolved challenges. To address these challenges, we present an innovative framework that utilizes the Large Language Model (LLM)-refined prompts and diffusion priors-guided Gaussian Splatting (GS) for generating 3D models with accurate appearances and geometric structures. We also incorporate a continuum mechanics-based deformation map and color regularization to synthesize vivid physics-grounded motion for the generated 3D Gaussians, adhering to the conservation of mass and momentum. By integrating text-to-3D generation with physics-grounded motion synthesis, our framework renders photo-realistic 3D objects that exhibit physics-aware motion, accurately reflecting the behaviors of the objects under various forces and constraints across different materials. Extensive experiments demonstrate that our approach achieves high-quality 3D generations with realistic physics-grounded motion.
Authors: Qihang Fang, Chengcheng Tang, Bugra Tekin, Yanchao Yang
Abstract:
Recent advancements in models linking natural language with human motions have shown significant promise in motion generation and editing based on instructional text. Motivated by applications in sports coaching and motor skill learning, we investigate the inverse problem: generating corrective instructional text, leveraging motion editing and generation models. We introduce a novel approach that, given a user's current motion (source) and the desired motion (target), generates text instructions to guide the user towards achieving the target motion. We leverage large language models to generate corrective texts and utilize existing motion generation and editing frameworks to compile datasets of triplets (source motion, target motion, and corrective text). Using this data, we propose a new motion-language model for generating corrective instructions. We present both qualitative and quantitative results across a diverse range of applications that largely improve upon baselines. Our approach demonstrates its effectiveness in instructional scenarios, offering text-based guidance to correct and enhance user performance.
Authors: Haopeng Fang, Di Qiu, Binjie Mao, Pengfei Yan, He Tang
Abstract:
Recent advancements in personalized Text-to-Video (T2V) generation highlight the importance of integrating character-specific identities and actions. However, previous T2V models struggle with identity consistency and controllable motion dynamics, mainly due to limited fine-grained facial and action-based textual prompts, and datasets that overlook key human attributes and actions. To address these challenges, we propose MotionCharacter, an efficient and high-fidelity human video generation framework designed for identity preservation and fine-grained motion control. We introduce an ID-preserving module to maintain identity fidelity while allowing flexible attribute modifications, and further integrate ID-consistency and region-aware loss mechanisms, significantly enhancing identity consistency and detail fidelity. Additionally, our approach incorporates a motion control module that prioritizes action-related text while maintaining subject consistency, along with a dataset, Human-Motion, which utilizes large language models to generate detailed motion descriptions. For simplify user control during inference, we parameterize motion intensity through a single coefficient, allowing for easy adjustments. Extensive experiments highlight the effectiveness of MotionCharacter, demonstrating significant improvements in ID-preserving, high-quality video generation.
Authors: Dexian Ma, Yirong Liu, Wenbo Liu, Bo Zhou
Abstract:
This work proposes a data-driven modeling and the corresponding hybrid motion control framework for unmanned and automated operation of industrial heavy-load hydraulic manipulator. Rather than the direct use of a neural network black box, we construct a reversible nonlinear model by using multilayer perceptron to approximate dynamics in the physical integrator chain system after reversible transformations. The reversible nonlinear model is trained offline using supervised learning techniques, and the data are obtained from simulations or experiments. Entire hybrid motion control framework consists of the model inversion controller that compensates for the nonlinear dynamics and proportional-derivative controller that enhances the robustness. The stability is proved with Lyapunov theory. Co-simulation and Experiments show the effectiveness of proposed modeling and hybrid control framework. With a commercial 39-ton class hydraulic excavator for motion control tasks, the root mean square error of trajectory tracking error decreases by at least 50\% compared to traditional control methods. In addition, by analyzing the system model, the proposed framework can be rapidly applied to different control plants.
Authors: Kilian Freitag, Yiannis Karayiannidis, Jan Zbinden, Rita Laezza
Abstract:
Objective: Enhancing the reliability of myoelectric controllers that decode motor intent is a pressing challenge in the field of bionic prosthetics. State-of-the-art research has mostly focused on Supervised Learning (SL) techniques to tackle this problem. However, obtaining high-quality labeled data that accurately represents muscle activity during daily usage remains difficult. We investigate the potential of Reinforcement Learning (RL) to further improve the decoding of human motion intent by incorporating usage-based data. Methods: The starting point of our method is a SL control policy, pretrained on a static recording of electromyographic (EMG) ground truth data. We then apply RL to fine-tune the pretrained classifier with dynamic EMG data obtained during interaction with a game environment developed for this work. We conducted real-time experiments to evaluate our approach and achieved significant improvements in human-in-the-loop performance. Results: The method effectively predicts simultaneous finger movements, leading to a two-fold increase in decoding accuracy during gameplay and a 39\% improvement in a separate motion test. Conclusion: By employing RL and incorporating usage-based EMG data during fine-tuning, our method achieves significant improvements in accuracy and robustness. Significance: These results showcase the potential of RL for enhancing the reliability of myoelectric controllers, of particular importance for advanced bionic limbs. See our project page for visual demonstrations: https://sites.google.com/view/bionic-limb-rl
Authors: Arthur Candalot, James Hurrell, Malik Manel Hashim, Brigid Hickey, Mickael Laine, Kazuya Yoshida
Abstract:
Wheeled rovers have been the primary choice for lunar exploration due to their speed and efficiency. However, deeper areas, such as lunar caves and craters, require the mobility of legged robots. To do so, appropriate end effectors must be designed to enable climbing and walking on the granular surface of the Moon. This paper investigates the behavior of an underactuated soft gripper on deformable granular material when a legged robot is walking in soft soil. A modular test bench and a simulation model were developed to observe the gripper sinkage behavior under load. The gripper uses tendon-driven fingers to match its target shape and grasp on the target surface using multiple micro-spines. The sinkage of the gripper in silica sand was measured by comparing the axial displacement of the gripper with the nominal load of the robot mass. Multiple experiments were performed to observe the sinkage of the gripper over a range of slope angles. A simulation model accounting for the degrees of compliance of the gripper fingers was created using Altair MotionSolve software and coupled to Altair EDEM to compute the gripper interaction with particles utilizing the discrete element method. After validation of the model, complementary simulations using Lunar gravity and a regolith particle model were performed. The results show that a satisfactory gripper model with accurate freedom of motion can be created in simulation using the Altair simulation packages and expected sinkage under load in a particle-filled environment can be estimated using this model. By computing the sinkage of the end effector of legged robots, the results can be directly integrated into the motion control algorithm and improve the accuracy of mobility in a granular material environment.
Authors: Zhang Minghao, Song Bifeng, Yang Xiaojun, Wang Liang
Abstract:
The nonlinear and unstable aerodynamic interference generated by the tandem wings of such biomimetic systems poses substantial challenges for motion control, especially under multiple random operating conditions. To address these challenges, the Concerto Reinforcement Learning Extension (CRL2E) algorithm has been developed. This plug-and-play, fully on-the-job, real-time reinforcement learning algorithm incorporates a novel Physics-Inspired Rule-Based Policy Composer Strategy with a Perturbation Module alongside a lightweight network optimized for real-time control. To validate the performance and the rationality of the module design, experiments were conducted under six challenging operating conditions, comparing seven different algorithms. The results demonstrate that the CRL2E algorithm achieves safe and stable training within the first 500 steps, improving tracking accuracy by 14 to 66 times compared to the Soft Actor-Critic, Proximal Policy Optimization, and Twin Delayed Deep Deterministic Policy Gradient algorithms. Additionally, CRL2E significantly enhances performance under various random operating conditions, with improvements in tracking accuracy ranging from 8.3% to 60.4% compared to the Concerto Reinforcement Learning (CRL) algorithm. The convergence speed of CRL2E is 36.11% to 57.64% faster than the CRL algorithm with only the Composer Perturbation and 43.52% to 65.85% faster than the CRL algorithm when both the Composer Perturbation and Time-Interleaved Capability Perturbation are introduced, especially in conditions where the standard CRL struggles to converge. Hardware tests indicate that the optimized lightweight network structure excels in weight loading and average inference time, meeting real-time control requirements.
Authors: Aron Distelzweig, Andreas Look, Eitan Kosman, Faris Janjoš, Jörg Wagner, Abhinav Valada
Abstract:
In autonomous driving, accurate motion prediction is crucial for safe and efficient motion planning. To ensure safety, planners require reliable uncertainty estimates of the predicted behavior of surrounding agents, yet this aspect has received limited attention. In particular, decomposing uncertainty into its aleatoric and epistemic components is essential for distinguishing between inherent environmental randomness and model uncertainty, thereby enabling more robust and informed decision-making. This paper addresses the challenge of uncertainty modeling in trajectory prediction with a holistic approach that emphasizes uncertainty quantification, decomposition, and the impact of model composition. Our method, grounded in information theory, provides a theoretically principled way to measure uncertainty and decompose it into aleatoric and epistemic components. Unlike prior work, our approach is compatible with state-of-the-art motion predictors, allowing for broader applicability. We demonstrate its utility by conducting extensive experiments on the nuScenes dataset, which shows how different architectures and configurations influence uncertainty quantification and model robustness.
Authors: Xingrui Gu, Chuyi Jiang, Erte Wang, Qiang Cui, Leimin Tian, Lianlong Wu, Siyang Song, Chuang Yu
Abstract:
Traditional machine learning methods for movement recognition often struggle with limited model interpretability and a lack of insight into human movement dynamics. This study introduces a novel representation learning framework based on causal inference to address these challenges. Our two-stage approach combines the Peter-Clark (PC) algorithm and Kullback-Leibler (KL) divergence to identify and quantify causal relationships between human joints. By capturing joint interactions, the proposed causal Graph Convolutional Network (GCN) produces interpretable and robust representations. Experimental results on the EmoPain dataset demonstrate that the causal GCN outperforms traditional GCNs in accuracy, F1 score, and recall, particularly in detecting protective behaviors. This work contributes to advancing human motion analysis and lays a foundation for adaptive and intelligent healthcare solutions.
Authors: Longyun Liao, Rong Zheng
Abstract:
2D-to-3D human pose lifting is an ill-posed problem due to depth ambiguity and occlusion. Existing methods relying on spatial and temporal consistency alone are insufficient to resolve these problems because they lack semantic information of the motions. To overcome this, we propose ActionPose, a framework that leverages action knowledge by aligning motion embeddings with text embeddings of fine-grained action labels. ActionPose operates in two stages: pretraining and fine-tuning. In the pretraining stage, the model learns to recognize actions and reconstruct 3D poses from masked and noisy 2D poses. During the fine-tuning stage, the model is further refined using real-world 3D human pose estimation datasets without action labels. Additionally, our framework incorporates masked body parts and masked time windows in motion modeling to mitigate the effects of ambiguous boundaries between actions in both temporal and spatial domains. Experiments demonstrate the effectiveness of ActionPose, achieving state-of-the-art performance in 3D pose estimation on public datasets, including Human3.6M and MPI-INF-3DHP. Specifically, ActionPose achieves an MPJPE of 36.7mm on Human3.6M with detected 2D poses as input and 15.5mm on MPI-INF-3DHP with ground-truth 2D poses as input.
Authors: Seong-Eun Hong, JaeYoung Seon, JuYeong Hwang, JongHwan Shin, HyeongYeop Kang
Abstract:
Text-to-motion generation has advanced with diffusion models, yet existing systems often collapse complex multi-action prompts into a single embedding, leading to omissions, reordering, or unnatural transitions. In this work, we shift perspective by introducing a principled definition of an event as the smallest semantically self-contained action or state change in a text prompt that can be temporally aligned with a motion segment. Building on this definition, we propose Event-T2M, a diffusion-based framework that decomposes prompts into events, encodes each with a motion-aware retrieval model, and integrates them through event-based cross-attention in Conformer blocks. Existing benchmarks mix simple and multi-event prompts, making it unclear whether models that succeed on single actions generalize to multi-action cases. To address this, we construct HumanML3D-E, the first benchmark stratified by event count. Experiments on HumanML3D, KIT-ML, and HumanML3D-E show that Event-T2M matches state-of-the-art baselines on standard tests while outperforming them as event complexity increases. Human studies validate the plausibility of our event definition, the reliability of HumanML3D-E, and the superiority of Event-T2M in generating multi-event motions that preserve order and naturalness close to ground-truth. These results establish event-level conditioning as a generalizable principle for advancing text-to-motion generation beyond single-action prompts.
Authors: Xingzu Zhan, Chen Xie, Honghang Chen, Yixun Lin, Xiaochun Mai
Abstract:
Text-to-motion generation, which converts motion language descriptions into coherent 3D human motion sequences, has attracted increasing attention in fields, such as avatar animation and humanoid robotic interaction. Though existing models have achieved significant fidelity, they still suffer from two core limitations: (i) They treat motion periodicity and keyframe saliency as independent factors, overlooking their coupling and causing generation drift in long sequences. (ii) They are fragile to semantically equivalent paraphrases, where minor synonym substitutions distort textual embeddings, propagating through the decoder and producing unstable or erroneous motions. In this work, we propose T2M Mamba to address these limitations by (i) proposing Periodicity-Saliency Aware Mamba, which utilizes novel algorithms for keyframe weight estimation via enhanced Density Peaks Clustering and motion periodicity estimation via FFT-accelerated autocorrelation to capture coupled dynamics with minimal computational overhead, and (ii) constructing a Periodic Differential Cross-modal Alignment Module (PDCAM) to enhance robust alignment of textual and motion embeddings. Extensive experiments on HumanML3D and KIT-ML datasets have been conducted, confirming the effectiveness of our approach, achieving an FID of 0.068 and consistent gains on all other metrics.
Authors: John Flynn, Wolfgang Paier, Dimitar Dinev, Sam Nhut Nguyen, Hayk Poghosyan, Manuel Toribio, Sandipan Banerjee, Guy Gafni
Abstract:
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
Authors: Linyong Gan, Zimo Li, Wenxin Xu, Xingjian Li, Jianhua Z. Huang, Enmei Tu, Shuhang Chen
Abstract:
Accurate long-horizon vessel trajectory prediction remains challenging due to compounded uncertainty from complex navigation behaviors and environmental factors. Existing methods often struggle to maintain global directional consistency, leading to drifting or implausible trajectories when extrapolated over long time horizons. To address this issue, we propose a semantic-key-point-conditioned trajectory modeling framework, in which future trajectories are predicted by conditioning on a high-level Next Key Point (NKP) that captures navigational intent. This formulation decomposes long-horizon prediction into global semantic decision-making and local motion modeling, effectively restricting the support of future trajectories to semantically feasible subsets. To efficiently estimate the NKP prior from historical observations, we adopt a pretrain-finetune strategy. Extensive experiments on real-world AIS data demonstrate that the proposed method consistently outperforms state-of-the-art approaches, particularly for long travel durations, directional accuracy, and fine-grained trajectory prediction.
Authors: Zheng Xing, Weibing Zhao
Abstract:
Unsupervised human motion segmentation (HMS) can be effectively achieved using subspace clustering techniques. However, traditional methods overlook the role of temporal semantic exploration in HMS. This paper explores the use of temporal vision semantics (TVS) derived from human motion sequences, leveraging the image-to-text capabilities of a large language model (LLM) to enhance subspace clustering performance. The core idea is to extract textual motion information from consecutive frames via LLM and incorporate this learned information into the subspace clustering framework. The primary challenge lies in learning TVS from human motion sequences using LLM and integrating this information into subspace clustering. To address this, we determine whether consecutive frames depict the same motion by querying the LLM and subsequently learn temporal neighboring information based on its response. We then develop a TVS-integrated subspace clustering approach, incorporating subspace embedding with a temporal regularizer that induces each frame to share similar subspace embeddings with its temporal neighbors. Additionally, segmentation is performed based on subspace embedding with a temporal constraint that induces the grouping of each frame with its temporal neighbors. We also introduce a feedback-enabled framework that continuously optimizes subspace embedding based on the segmentation output. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art approaches on four benchmark human motion datasets.
Authors: Yan Gao, Jiliang Wang, Minghan Wang, Xiaohua Chen, Demin Chen, Zhiyong Ren, Tian-Yun Huang
Abstract:
In the field of gas pipeline location, existing pipeline location methods mostly rely on pipeline location instruments. However, when faced with complex and curved pipeline scenarios, these methods often fail due to problems such as cable entanglement and insufficient equipment flexibility. To address this pain point, we designed a self-propelled pipeline robot. This robot can autonomously complete the location work of complex and curved pipelines in complex pipe networks without external dragging. In terms of pipeline mapping technology, traditional visual mapping and laser mapping methods are easily affected by lighting conditions and insufficient features in the confined space of pipelines, resulting in mapping drift and divergence problems. In contrast, the pipeline location method that integrates inertial navigation and wheel odometers is less affected by pipeline environmental factors. Based on this, this paper proposes a pipeline robot location method based on extended Kalman filtering (EKF). Firstly, the body attitude angle is initially obtained through an inertial measurement unit (IMU). Then, the extended Kalman filtering algorithm is used to improve the accuracy of attitude angle estimation. Finally, high-precision pipeline location is achieved by combining wheel odometers. During the testing phase, the roll wheels of the pipeline robot needed to fit tightly against the pipe wall to reduce slippage. However, excessive tightness would reduce the flexibility of motion control due to excessive friction. Therefore, a balance needed to be struck between the robot's motion capability and positioning accuracy. Experiments were conducted using the self-propelled pipeline robot in a rectangular loop pipeline, and the results verified the effectiveness of the proposed dead reckoning algorithm.
Authors: Yan Gao, Jiliang Wang, Ming Cheng, Tianyun Huang
Abstract:
In pipeline inspection, traditional tethered inspection robots are severely constrained by cable length and weight, which greatly limit their travel range and accessibility. To address these issues, this paper proposes a self-propelled pipeline robot design based on force analysis and dynamic simulation, with a specific focus on solving core challenges including vertical climbing failure and poor passability in T-branch pipes. Adopting a wheeled configuration and modular design, the robot prioritizes the core demand of body motion control. Specifically, 3D modeling of the robot was first completed using SolidWorks. Subsequently, the model was imported into ADAMS for dynamic simulation, which provided a basis for optimizing the drive module and motion control strategy.To verify the robot's dynamic performance, an experimental platform with acrylic pipes was constructed. Through adjusting its body posture to surmount obstacles and select directions, the robot has demonstrated its ability to stably traverse various complex pipeline scenarios. Notably, this work offers a technical feasibility reference for the application of pipeline robots in the inspection of medium and low-pressure urban gas pipelines.
Authors: Chen Huang, Ronghui Hou
Abstract:
Connected and automated vehicles (CAVs) rely on wireless communication to exchange state information for distributed control, making communication delays a critical factor that can affect vehicle motion and degrade control performance, particularly in high-speed scenarios. To address these challenges in the complex environment of roundabout intersections, this paper proposes a roundabout control algorithm, which takes into account the uncertainty of interactive information caused by time delays. First, to maintain the required distance between the current vehicle and its preceding and following vehicles, conflicting vehicles are identified based on the time-to-collision (TTC) in the conflict zone. To fully consider communication performance, a vehicle motion model incorporating time delays is established. According to the distributed model predictive control (DMPC) mechanism, the vehicle motion control that satisfies the roundabout constraints is determined. Second, by scheduling the sequence of vehicles entering the roundabout, a multiscale optimization objective is developed by integrating vehicle motion indicators and roundabout system indicators. Traffic density and travel time are embedded into the optimization problem to guide vehicles to enter the roundabout safely and stably. Through a variety of simulation experiments, the effectiveness of the proposed control algorithm is verified by comparing its performance with that of multiple control algorithms under different autonomous vehicle penetration rates and heavy traffic load scenarios.
Authors: Junqiao Fan, Pengfei Liu, Haocong Rao
Abstract:
With intelligent room-side sensing and service robots widely deployed, human motion prediction (HMP) is essential for safe, proactive assistance. However, many existing HMP methods either produce a single, deterministic forecast that ignores uncertainty or rely on probabilistic models that sacrifice kinematic plausibility. Diffusion models improve the accuracy-diversity trade-off but often depend on multi-stage pipelines that are costly for edge deployment. This work focuses on how to ensure spatial-temporal coherence within a single-stage diffusion model for HMP. We introduce SMamDiff, a Spatial Mamba-based Diffusion model with two novel designs: (i) a residual-DCT motion encoding that subtracts the last observed pose before a temporal DCT, reducing the first DC component ($f=0$) dominance and highlighting informative higher-frequency cues so the model learns how joints move rather than where they are; and (ii) a stickman-drawing spatial-mamba module that processes joints in an ordered, joint-by-joint manner, making later joints condition on earlier ones to induce long-range, cross-joint dependencies. On Human3.6M and HumanEva, these coherence mechanisms deliver state-of-the-art results among single-stage probabilistic HMP methods while using less latency and memory than multi-stage diffusion baselines.
Authors: Dohun Lim, Minji Kim, Jaewoon Lim, Sungchan Kim
Abstract:
We propose BRIC, a novel test-time adaptation (TTA) framework that enables long-term human motion generation by resolving execution discrepancies between diffusion-based kinematic motion planners and reinforcement learning-based physics controllers. While diffusion models can generate diverse and expressive motions conditioned on text and scene context, they often produce physically implausible outputs, leading to execution drift during simulation. To address this, BRIC dynamically adapts the physics controller to noisy motion plans at test time, while preserving pre-trained skills via a loss function that mitigates catastrophic forgetting. In addition, BRIC introduces a lightweight test-time guidance mechanism that steers the diffusion model in the signal space without updating its parameters. By combining both adaptation strategies, BRIC ensures consistent and physically plausible long-term executions across diverse environments in an effective and efficient manner. We validate the effectiveness of BRIC on a variety of long-term tasks, including motion composition, obstacle avoidance, and human-scene interaction, achieving state-of-the-art performance across all tasks.
Authors: Mohan Ramesh, Mark Azer, Fabian B. Flohr
Abstract:
Current autonomous driving (AD) simulations are critically limited by their inadequate representation of realistic and diverse human behavior, which is essential for ensuring safety and reliability. Existing benchmarks often simplify pedestrian interactions, failing to capture complex, dynamic intentions and varied responses critical for robust system deployment. To overcome this, we introduce HABIT (Human Action Benchmark for Interactive Traffic), a high-fidelity simulation benchmark. HABIT integrates real-world human motion, sourced from mocap and videos, into CARLA (Car Learning to Act, a full autonomous driving simulator) via a modular, extensible, and physically consistent motion retargeting pipeline. From an initial pool of approximately 30,000 retargeted motions, we curate 4,730 traffic-compatible pedestrian motions, standardized in SMPL format for physically consistent trajectories. HABIT seamlessly integrates with CARLA's Leaderboard, enabling automated scenario generation and rigorous agent evaluation. Our safety metrics, including Abbreviated Injury Scale (AIS) and False Positive Braking Rate (FPBR), reveal critical failure modes in state-of-the-art AD agents missed by prior evaluations. Evaluating three state-of-the-art autonomous driving agents, InterFuser, TransFuser, and BEVDriver, demonstrates how HABIT exposes planner weaknesses that remain hidden in scripted simulations. Despite achieving close or equal to zero collisions per kilometer on the CARLA Leaderboard, the autonomous agents perform notably worse on HABIT, with up to 7.43 collisions/km and a 12.94% AIS 3+ injury risk, and they brake unnecessarily in up to 33% of cases. All components are publicly released to support reproducible, pedestrian-aware AI research.
Authors: Victor Li, Naveenraj Kamalakannan, Avinash Parnandi, Heidi Schambra, Carlos Fernandez-Granda
Abstract:
Vision-language models (VLMs) have demonstrated remarkable performance across a wide range of computer-vision tasks, sparking interest in their potential for digital health applications. Here, we apply VLMs to two fundamental challenges in data-driven stroke rehabilitation: automatic quantification of rehabilitation dose and impairment from videos. We formulate these problems as motion-identification tasks, which can be addressed using VLMs. We evaluate our proposed framework on a cohort of 29 healthy controls and 51 stroke survivors. Our results show that current VLMs lack the fine-grained motion understanding required for precise quantification: dose estimates are comparable to a baseline that excludes visual information, and impairment scores cannot be reliably predicted. Nevertheless, several findings suggest future promise. With optimized prompting and post-processing, VLMs can classify high-level activities from a few frames, detect motion and grasp with moderate accuracy, and approximate dose counts within 25% of ground truth for mildly impaired and healthy participants, all without task-specific training or finetuning. These results highlight both the current limitations and emerging opportunities of VLMs for data-driven stroke rehabilitation and broader clinical video analysis.
Authors: Bokyung Jang, Eunho Jung, Yoonsang Lee
Abstract:
Human motion naturally integrates body movements and facial expressions, forming a unified perception. If a virtual character's facial expression does not align well with its body movements, it may weaken the perception of the character as a cohesive whole. Motivated by this, we propose B2F, a model that generates facial motions aligned with body movements. B2F takes a facial style reference as input, generating facial animations that reflect the provided style while maintaining consistency with the associated body motion. To achieve this, B2F learns a disentangled representation of content and style, using alignment and consistency-based objectives. We represent style using discrete latent codes learned via the Gumbel-Softmax trick, enabling diverse expression generation with a structured latent representation. B2F outputs facial motion in the FLAME format, making it compatible with SMPL-X characters, and supports ARKit-style avatars through a dedicated conversion module. Our evaluations show that B2F generates expressive and engaging facial animations that synchronize with body movements and style intent, while mitigating perceptual dissonance from mismatched cues, and generalizing across diverse characters and styles.
Authors: Ali Mashhadireza, Ali Sadighi
Abstract:
This paper proposes a robust control strategy that integrates Iterative Learning Control (ILC) with a simple lateral neural network to enhance the trajectory tracking performance of a linear Lorentz force actuator under friction and model uncertainties. The ILC compensates for nonlinear friction effects, while the neural network estimates the nonlinear ILC effort for varying reference commands. By dynamically adjusting the ILC effort, the method adapts to time-varying friction, reduces errors at reference changes, and accelerates convergence. Compared to previous approaches using complex neural networks, this method simplifies online training and implementation, making it practical for real-time applications. Experimental results confirm its effectiveness in achieving precise tracking across multiple tasks with different reference trajectories.
Authors: Xin Nie, Zhiyuan Cheng, Yuan Zhang, Chao Ji, Jiajia Wu, Yuhan Zhang, Jia Pan
Abstract:
We introduce iFlyBot-VLM, a general-purpose Vision-Language Model (VLM) used to improve the domain of Embodied Intelligence. The central objective of iFlyBot-VLM is to bridge the cross-modal semantic gap between high-dimensional environmental perception and low-level robotic motion control. To this end, the model abstracts complex visual and spatial information into a body-agnostic and transferable Operational Language, thereby enabling seamless perception-action closed-loop coordination across diverse robotic platforms. The architecture of iFlyBot-VLM is systematically designed to realize four key functional capabilities essential for embodied intelligence: 1) Spatial Understanding and Metric Reasoning; 2) Interactive Target Grounding; 3) Action Abstraction and Control Parameter Generation; 4) Task Planning and Skill Sequencing. We envision iFlyBot-VLM as a scalable and generalizable foundation model for embodied AI, facilitating the progression from specialized task-oriented systems toward generalist, cognitively capable agents. We conducted evaluations on 10 current mainstream embodied intelligence-related VLM benchmark datasets, such as Blink and Where2Place, and achieved optimal performance while preserving the model's general capabilities. We will publicly release both the training data and model weights to foster further research and development in the field of Embodied Intelligence.
Authors: Taito Tashiro, Tomoko Yonezawa, Hirotake Yamazoe
Abstract:
This study investigates how human motion cues can be used to design expressive robot-arm movements. Using the imperfect-information game Geister, we analyzed two types of human piece-moving motions: natural gameplay (unconscious tendencies) and instructed expressions (intentional cues). Based on these findings, we created phase-specific robot motions by varying movement speed and stop duration, and evaluated observer impressions under two presentation modalities: a physical robot and a recorded video. Results indicate that late-phase motion timing, particularly during withdrawal, plays an important role in impression formation and that physical embodiment enhances the interpretability of motion cues. These findings provide insights for designing expressive robot motions based on human timing behavior.
Authors: Ziqi Ma, Changda Tian, Yue Gao
Abstract:
In recent years, there has been growing interest in developing robots and autonomous systems that can interact with human in a more natural and intuitive way. One of the key challenges in achieving this goal is to enable these systems to manipulate objects and tools in a manner that is similar to that of humans. In this paper, we propose a novel approach for learning human-style manipulation skills by using adversarial motion priors, which we name HMAMP. The approach leverages adversarial networks to model the complex dynamics of tool and object manipulation, as well as the aim of the manipulation task. The discriminator is trained using a combination of real-world data and simulation data executed by the agent, which is designed to train a policy that generates realistic motion trajectories that match the statistical properties of human motion. We evaluated HMAMP on one challenging manipulation task: hammering, and the results indicate that HMAMP is capable of learning human-style manipulation skills that outperform current baseline methods. Additionally, we demonstrate that HMAMP has potential for real-world applications by performing real robot arm hammering tasks. In general, HMAMP represents a significant step towards developing robots and autonomous systems that can interact with humans in a more natural and intuitive way, by learning to manipulate tools and objects in a manner similar to how humans do.
Authors: Ziyang Li, Chunfeng Cui, Jiaxin Xie
Abstract:
Dual quaternions have gained significant attention due to their wide applications in areas such as multi-agent formation control, 3D motion modeling, and robotics. A fundamental aspect in dual quaternion research involves the projection onto unit dual quaternion sets. In this paper, we systematically study such projections under the $2^R$-norm, which is commonly used in practical applications. We identify several distinct cases based on the relationship between the standard and dual parts in vector form, and demonstrate the effectiveness of the proposed algorithm through numerical experiments.
Authors: Reza Akbari Movahed, Abuzar Rezaee, Arezoo Zakeri, Colin Berry, Edmond S. L. Ho, Ali Gooya
Abstract:
Accurate cardiac motion estimation from cine cardiac magnetic resonance (CMR) images is vital for assessing cardiac function and detecting its abnormalities. Existing methods often struggle to capture heart motion accurately because they rely on intensity-based image registration similarity losses that may overlook cardiac anatomical regions. To address this, we propose CardioMorphNet, a recurrent Bayesian deep learning framework for 3D cardiac shape-guided deformable registration using short-axis (SAX) CMR images. It employs a recurrent variational autoencoder to model spatio-temporal dependencies over the cardiac cycle and two posterior models for bi-ventricular segmentation and motion estimation. The derived loss function from the Bayesian formulation guides the framework to focus on anatomical regions by recursively registering segmentation maps without using intensity-based image registration similarity loss, while leveraging sequential SAX volumes and spatio-temporal features. The Bayesian modelling also enables computation of uncertainty maps for the estimated motion fields. Validated on the UK Biobank dataset by comparing warped mask shapes with ground truth masks, CardioMorphNet demonstrates superior performance in cardiac motion estimation, outperforming state-of-the-art methods. Uncertainty assessment shows that it also yields lower uncertainty values for estimated motion fields in the cardiac region compared with other probabilistic-based cardiac registration methods, indicating higher confidence in its predictions.
Authors: Eleni Tselepi, Spyridon Thermos, Gerasimos Potamianos
Abstract:
Training a generative model on a single human skeletal motion sequence without being bound to a specific kinematic tree has drawn significant attention from the animation community. Unlike text-to-motion generation, single-shot models allow animators to controllably generate variations of existing motion patterns without requiring additional data or extensive retraining. However, existing single-shot methods do not explicitly offer a controllable framework for blending two or more motions within a single generative pass. In this paper, we present the first single-shot motion blending framework that enables seamless blending by temporally conditioning the generation process. Our method introduces a skeleton-aware normalization mechanism to guide the transition between motions, allowing smooth, data-driven control over when and how motions blend. We perform extensive quantitative and qualitative evaluations across various animation styles and different kinematic skeletons, demonstrating that our approach produces plausible, smooth, and controllable motion blends in a unified and efficient manner.
Authors: Yifei Yao, Chengyuan Luo, Jiaheng Du, Wentao He, Jun-Guo Lu
Abstract:
The creation of human-like humanoid robots is hindered by a fundamental fragmentation: data processing and learning algorithms are rarely universal across different robot morphologies. This paper introduces the Generalized Behavior Cloning (GBC) framework, a comprehensive and unified solution designed to solve this end-to-end challenge. GBC establishes a complete pathway from human motion to robot action through three synergistic innovations. First, an adaptive data pipeline leverages a differentiable IK network to automatically retarget any human MoCap data to any humanoid. Building on this foundation, our novel DAgger-MMPPO algorithm with its MMTransformer architecture learns robust, high-fidelity imitation policies. To complete the ecosystem, the entire framework is delivered as an efficient, open-source platform based on Isaac Lab, empowering the community to deploy the full workflow via simple configuration scripts. We validate the power and generality of GBC by training policies on multiple heterogeneous humanoids, demonstrating excellent performance and transfer to novel motions. This work establishes the first practical and unified pathway for creating truly generalized humanoid controllers.
Authors: Zewei Wu, César Teixeira, Wei Ke, Zhang Xiong
Abstract:
Visual pedestrian tracking represents a promising research field, with extensive applications in intelligent surveillance, behavior analysis, and human-computer interaction. However, real-world applications face significant occlusion challenges. When multiple pedestrians interact or overlap, the loss of target features severely compromises the tracker's ability to maintain stable trajectories. Traditional tracking methods, which typically rely on full-body bounding box features extracted from {Re-ID} models and linear constant-velocity motion assumptions, often struggle in severe occlusion scenarios. To address these limitations, this work proposes an enhanced tracking framework that leverages richer feature representations and a more robust motion model. Specifically, the proposed method incorporates detection features from both the regression and classification branches of an object detector, embedding spatial and positional information directly into the feature representations. To further mitigate occlusion challenges, a head keypoint detection model is introduced, as the head is less prone to occlusion compared to the full body. In terms of motion modeling, we propose an iterative Kalman filtering approach designed to align with modern detector assumptions, integrating 3D priors to better complete motion trajectories in complex scenes. By combining these advancements in appearance and motion modeling, the proposed method offers a more robust solution for multi-object tracking in crowded environments where occlusions are prevalent.
Authors: Md Zahidul Hasan, A. Ben Hamza, Nizar Bouguila
Abstract:
The goal of 3D human motion prediction is to forecast future 3D poses of the human body based on historical motion data. Existing methods often face limitations in achieving a balance between prediction accuracy and computational efficiency. In this paper, we present LuKAN, an effective model based on Kolmogorov-Arnold Networks (KANs) with Lucas polynomial activations. Our model first applies the discrete wavelet transform to encode temporal information in the input motion sequence. Then, a spatial projection layer is used to capture inter-joint dependencies, ensuring structural consistency of the human body. At the core of LuKAN is the Temporal Dependency Learner, which employs a KAN layer parameterized by Lucas polynomials for efficient function approximation. These polynomials provide computational efficiency and an enhanced capability to handle oscillatory behaviors. Finally, the inverse discrete wavelet transform reconstructs motion sequences in the time domain, generating temporally coherent predictions. Extensive experiments on three benchmark datasets demonstrate the competitive performance of our model compared to strong baselines, as evidenced by both quantitative and qualitative evaluations. Moreover, its compact architecture coupled with the linear recurrence of Lucas polynomials, ensures computational efficiency.
Authors: Jonas Leo Mueller, Lukas Engel, Eva Dorschky, Daniel Krauss, Ingrid Ullmann, Martin Vossiek, Bjoern M. Eskofier
Abstract:
Radar-based human pose estimation (HPE) provides a privacy-preserving, illumination-invariant sensing modality but is challenged by noisy, multipath-affected measurements. We introduce RadProPoser, a probabilistic encoder-decoder architecture that processes complex-valued radar tensors from a compact 3-transmitter, 4-receiver MIMO radar. By incorporating variational inference into keypoint regression, RadProPoser jointly predicts 26 three-dimensional joint locations alongside heteroscedastic aleatoric uncertainties and can be recalibrated to predict total uncertainty. We explore different probabilistic formulations using both Gaussian and Laplace distributions for latent priors and likelihoods. On our newly released dataset with optical motion-capture ground truth, RadProPoser achieves an overall mean per-joint position error (MPJPE) of 6.425 cm, with 5.678 cm at the 45 degree aspect angle. The learned uncertainties exhibit strong alignment with actual pose errors and can be calibrated to produce reliable prediction intervals, with our best configuration achieving an expected calibration error of 0.021. As an additional demonstration, sampling from these latent distributions enables effective data augmentation for downstream activity classification, resulting in an F1 score of 0.870. To our knowledge, this is the first end-to-end radar tensor-based HPE system to explicitly model and quantify per-joint uncertainty from raw radar tensor data, establishing a foundation for explainable and reliable human motion analysis in radar applications.
Authors: Haodong Huang, Shilong Sun, Yuanpeng Wang, Chiyao Li, Hailin Huang, Wenfu Xu
Abstract:
Reinforcement learning (RL), driven by data-driven methods, has become an effective solution for robot leg motion control problems. However, the mainstream RL methods for bipedal robot terrain traversal, such as teacher-student policy knowledge distillation, suffer from long training times, which limit development efficiency. To address this issue, this paper proposes BarlowWalk, an improved Proximal Policy Optimization (PPO) method integrated with self-supervised representation learning. This method employs the Barlow Twins algorithm to construct a decoupled latent space, mapping historical observation sequences into low-dimensional representations and implementing self-supervision. Meanwhile, the actor requires only proprioceptive information to achieve self-supervised learning over continuous time steps, significantly reducing the dependence on external terrain perception. Simulation experiments demonstrate that this method has significant advantages in complex terrain scenarios. To enhance the credibility of the evaluation, this study compares BarlowWalk with advanced algorithms through comparative tests, and the experimental results verify the effectiveness of the proposed method.
Authors: Danzhen Fu, Jiagao Hu, Daiguo Zhou, Fei Wang, Zepeng Wang, Wenhua Liao
Abstract:
Pedestrian detection models in autonomous driving systems often lack robustness due to insufficient representation of dangerous pedestrian scenarios in training datasets. To address this limitation, we present a novel framework for controllable pedestrian video editing in multi-view driving scenarios by integrating video inpainting and human motion control techniques. Our approach begins by identifying pedestrian regions of interest across multiple camera views, expanding detection bounding boxes with a fixed ratio, and resizing and stitching these regions into a unified canvas while preserving cross-view spatial relationships. A binary mask is then applied to designate the editable area, within which pedestrian editing is guided by pose sequence control conditions. This enables flexible editing functionalities, including pedestrian insertion, replacement, and removal. Extensive experiments demonstrate that our framework achieves high-quality pedestrian editing with strong visual realism, spatiotemporal coherence, and cross-view consistency. These results establish the proposed method as a robust and versatile solution for multi-view pedestrian video generation, with broad potential for applications in data augmentation and scenario simulation in autonomous driving.
Authors: Hari Iyer, Neel Macwan, Atharva Jitendra Hude, Heejin Jeong, Shenghan Guo
Abstract:
Human motion simulation (HMS) supports cost-effective evaluation of worker behavior, safety, and productivity in industrial tasks. However, existing methods often suffer from low motion fidelity. This study introduces Generative-AI-Enabled HMS (G-AI-HMS), which integrates text-to-text and text-to-motion models to enhance simulation quality for physical tasks. G-AI-HMS tackles two key challenges: (1) translating task descriptions into motion-aware language using Large Language Models aligned with MotionGPT's training vocabulary, and (2) validating AI-enhanced motions against real human movements using computer vision. Posture estimation algorithms are applied to real-time videos to extract joint landmarks, and motion similarity metrics are used to compare them with AI-enhanced sequences. In a case study involving eight tasks, the AI-enhanced motions showed lower error than human created descriptions in most scenarios, performing better in six tasks based on spatial accuracy, four tasks based on alignment after pose normalization, and seven tasks based on overall temporal similarity. Statistical analysis showed that AI-enhanced prompts significantly (p $<$ 0.0001) reduced joint error and temporal misalignment while retaining comparable posture accuracy.
Authors: Fathinah Izzati, Xinyue Li, Gus Xia
Abstract:
We propose Expotion (Facial Expression and Motion Control for Multimodal Music Generation), a generative model leveraging multimodal visual controls - specifically, human facial expressions and upper-body motion - as well as text prompts to produce expressive and temporally accurate music. We adopt parameter-efficient fine-tuning (PEFT) on the pretrained text-to-music generation model, enabling fine-grained adaptation to the multimodal controls using a small dataset. To ensure precise synchronization between video and music, we introduce a temporal smoothing strategy to align multiple modalities. Experiments demonstrate that integrating visual features alongside textual descriptions enhances the overall quality of generated music in terms of musicality, creativity, beat-tempo consistency, temporal alignment with the video, and text adherence, surpassing both proposed baselines and existing state-of-the-art video-to-music generation models. Additionally, we introduce a novel dataset consisting of 7 hours of synchronized video recordings capturing expressive facial and upper-body gestures aligned with corresponding music, providing significant potential for future research in multimodal and interactive music generation.
Authors: Wending Heng, Chaoyuan Liang, Yihui Zhao, Zhiqiang Zhang, Glen Cooper, Zhenhong Li
Abstract:
Accurately decoding human motion intentions from surface electromyography (sEMG) is essential for myoelectric control and has wide applications in rehabilitation robotics and assistive technologies. However, existing sEMG-based motion estimation methods often rely on subject-specific musculoskeletal (MSK) models that are difficult to calibrate, or purely data-driven models that lack physiological consistency. This paper introduces a novel Physics-Embedded Neural Network (PENN) that combines interpretable MSK forward-dynamics with data-driven residual learning, thereby preserving physiological consistency while achieving accurate motion estimation. The PENN employs a recursive temporal structure to propagate historical estimates and a lightweight convolutional neural network for residual correction, leading to robust and temporally coherent estimations. A two-phase training strategy is designed for PENN. Experimental evaluations on six healthy subjects show that PENN outperforms state-of-the-art baseline methods in both root mean square error (RMSE) and $R^2$ metrics.
Authors: Vaclav Knapp, Matyas Bohacek
Abstract:
In video understanding tasks, particularly those involving human motion, synthetic data generation often suffers from uncanny features, diminishing its effectiveness for training. Tasks such as sign language translation, gesture recognition, and human motion understanding in autonomous driving have thus been unable to exploit the full potential of synthetic data. This paper proposes a method for generating synthetic human action video data using pose transfer (specifically, controllable 3D Gaussian avatar models). We evaluate this method on the Toyota Smarthome and NTU RGB+D datasets and show that it improves performance in action recognition tasks. Moreover, we demonstrate that the method can effectively scale few-shot datasets, making up for groups underrepresented in the real training data and adding diverse backgrounds. We open-source the method along with RANDOM People, a dataset with videos and avatars of novel human identities for pose transfer crowd-sourced from the internet.
Authors: Woonho Ko, Jin Bok Park, Il Yong Chun
Abstract:
Existing long-term video prediction methods often rely on an autoregressive video prediction mechanism. However, this approach suffers from error propagation, particularly in distant future frames. To address this limitation, this paper proposes the first AutoRegression-Free (ARFree) video prediction framework using diffusion models. Different from an autoregressive video prediction mechanism, ARFree directly predicts any future frame tuples from the context frame tuple. The proposed ARFree consists of two key components: 1) a motion prediction module that predicts a future motion using motion feature extracted from the context frame tuple; 2) a training method that improves motion continuity and contextual consistency between adjacent future frame tuples. Our experiments with two benchmark datasets show that the proposed ARFree video prediction framework outperforms several state-of-the-art video prediction methods.
Authors: Gao Huayu, Huang Tengjiu, Ye Xiaolong, Tsuyoshi Okita
Abstract:
AI-based motion capture is an emerging technology that offers a cost-effective alternative to traditional motion capture systems. However, current AI motion capture methods rely entirely on observed video sequences, similar to conventional motion capture. This means that all human actions must be predefined, and movements outside the observed sequences are not possible. To address this limitation, we aim to apply AI motion capture to virtual humans, where flexible actions beyond the observed sequences are required. We assume that while many action fragments exist in the training data, the transitions between them may be missing. To bridge these gaps, we propose a diffusion-model-based action completion technique that generates complementary human motion sequences, ensuring smooth and continuous movements. By introducing a gate module and a position-time embedding module, our approach achieves competitive results on the Human3.6M dataset. Our experimental results show that (1) MDC-Net outperforms existing methods in ADE, FDE, and MMADE but is slightly less accurate in MMFDE, (2) MDC-Net has a smaller model size (16.84M) compared to HumanMAC (28.40M), and (3) MDC-Net generates more natural and coherent motion sequences. Additionally, we propose a method for extracting sensor data, including acceleration and angular velocity, from human motion sequences.
Authors: Naoki Agata, Takeo Igarashi
Abstract:
We introduce a novel method for controlling a motion sequence using an arbitrary temporal control sequence using temporal alignment. Temporal alignment of motion has gained significant attention owing to its applications in motion control and retargeting. Traditional methods rely on either learned or hand-craft cross-domain mappings between frames in the original and control domains, which often require large, paired, or annotated datasets and time-consuming training. Our approach, named Metric-Aligning Motion Matching, achieves alignment by solely considering within-domain distances. It computes distances among patches in each domain and seeks a matching that optimally aligns the two within-domain distances. This framework allows for the alignment of a motion sequence to various types of control sequences, including sketches, labels, audio, and another motion sequence, all without the need for manually defined mappings or training with annotated data. We demonstrate the effectiveness of our approach through applications in efficient motion control, showcasing its potential in practical scenarios.
Authors: Ziqi Wang, Jingyue Zhao, Jichao Yang, Yaohua Wang, Xun Xiao, Yuan Li, Chao Xiao, Lei Wang
Abstract:
The development of artificial intelligence towards real-time interaction with the environment is a key aspect of embodied intelligence and robotics. Inverse dynamics is a fundamental robotics problem, which maps from joint space to torque space of robotic systems. Traditional methods for solving it rely on direct physical modeling of robots which is difficult or even impossible due to nonlinearity and external disturbance. Recently, data-based model-learning algorithms are adopted to address this issue. However, they often require manual parameter tuning and high computational costs. Neuromorphic computing is inherently suitable to process spatiotemporal features in robot motion control at extremely low costs. However, current research is still in its infancy: existing works control only low-degree-of-freedom systems and lack performance quantification and comparison. In this paper, we propose a neuromorphic control framework to control 7 degree-of-freedom robotic manipulators. We use Spiking Neural Network to leverage the spatiotemporal continuity of the motion data to improve control accuracy, and eliminate manual parameters tuning. We validated the algorithm on two robotic platforms, which reduces torque prediction error by at least 60% and performs a target position tracking task successfully. This work advances embodied neuromorphic control by one step forward from proof of concept to applications in complex real-world tasks.
Authors: Mahir Gulzar, Yar Muhammad, Naveed Muhammad
Abstract:
Predicting future trajectories of surrounding vehicles heavily relies on what contextual information is given to a motion prediction model. The context itself can be static (lanes, regulatory elements, etc) or dynamic (traffic participants). This paper presents a lane graph-based motion prediction model that first predicts graph-based goal proposals and later fuses them with cross attention over multiple contextual elements. We follow the famous encoder-interactor-decoder architecture where the encoder encodes scene context using lightweight Gated Recurrent Units, the interactor applies cross-context attention over encoded scene features and graph goal proposals, and the decoder regresses multimodal trajectories via Laplacian Mixture Density Network from the aggregated encodings. Using cross-attention over graph-based goal proposals gives robust trajectory estimates since the model learns to attend to future goal-relevant scene elements for the intended agent. We evaluate our work on nuScenes motion prediction dataset, achieving state-of-the-art results.
Authors: Zhanbo Huang, Xiaoming Liu, Yu Kong
Abstract:
In this paper, we propose H-MoRe, a novel pipeline for learning precise human-centric motion representation. Our approach dynamically preserves relevant human motion while filtering out background movement. Notably, unlike previous methods relying on fully supervised learning from synthetic data, H-MoRe learns directly from real-world scenarios in a self-supervised manner, incorporating both human pose and body shape information. Inspired by kinematics, H-MoRe represents absolute and relative movements of each body point in a matrix format that captures nuanced motion details, termed world-local flows. H-MoRe offers refined insights into human motion, which can be integrated seamlessly into various action-related applications. Experimental results demonstrate that H-MoRe brings substantial improvements across various downstream tasks, including gait recognition(CL@R1: +16.01%), action recognition(Acc@1: +8.92%), and video generation(FVD: -67.07%). Additionally, H-MoRe exhibits high inference efficiency (34 fps), making it suitable for most real-time scenarios. Models and code will be released upon publication.
Authors: Harsh Yadav, Maximilian Schaefer, Kun Zhao, Tobias Meisen
Abstract:
Motion prediction plays an important role in autonomous driving. This study presents LMFormer, a lane-aware transformer network for trajectory prediction tasks. In contrast to previous studies, our work provides a simple mechanism to dynamically prioritize the lanes and shows that such a mechanism introduces explainability into the learning behavior of the network. Additionally, LMFormer uses the lane connection information at intersections, lane merges, and lane splits, in order to learn long-range dependency in lane structure. Moreover, we also address the issue of refining the predicted trajectories and propose an efficient method for iterative refinement through stacked transformer layers. For benchmarking, we evaluate LMFormer on the nuScenes dataset and demonstrate that it achieves SOTA performance across multiple metrics. Furthermore, the Deep Scenario dataset is used to not only illustrate cross-dataset network performance but also the unification capabilities of LMFormer to train on multiple datasets and achieve better performance.
Authors: Haodong Huang, Shilong Sun, Zida Zhao, Hailin Huang, Changqing Shen, Wenfu Xu
Abstract:
In the field of legged robot motion control, reinforcement learning (RL) holds great promise but faces two major challenges: high computational cost for training individual robots and poor generalization of trained models. To address these problems, this paper proposes a novel framework called Prior Transfer Reinforcement Learning (PTRL), which improves both training efficiency and model transferability across different robots. Drawing inspiration from model transfer techniques in deep learning, PTRL introduces a fine-tuning mechanism that selectively freezes layers of the policy network during transfer, making it the first to apply such a method in RL. The framework consists of three stages: pre-training on a source robot using the Proximal Policy Optimization (PPO) algorithm, transferring the learned policy to a target robot, and fine-tuning with partial network freezing. Extensive experiments on various robot platforms confirm that this approach significantly reduces training time while maintaining or even improving performance. Moreover, the study quantitatively analyzes how the ratio of frozen layers affects transfer results, providing valuable insights into optimizing the process. The experimental outcomes show that PTRL achieves better walking control performance and demonstrates strong generalization and adaptability, offering a promising solution for efficient and scalable RL-based control of legged robots.
Authors: Yunxiang Liu, Hongkuo Niu, Jianlin Zhu
Abstract:
Accurate motion prediction of traffic agents is crucial for the safety and stability of autonomous driving systems. In this paper, we introduce GAMDTP, a novel graph attention-based network tailored for dynamic trajectory prediction. Specifically, we fuse the result of self attention and mamba-ssm through a gate mechanism, leveraging the strengths of both to extract features more efficiently and accurately, in each graph convolution layer. GAMDTP encodes the high-definition map(HD map) data and the agents' historical trajectory coordinates and decodes the network's output to generate the final prediction results. Additionally, recent approaches predominantly focus on dynamically fusing historical forecast results and rely on two-stage frameworks including proposal and refinement. To further enhance the performance of the two-stage frameworks we also design a scoring mechanism to evaluate the prediction quality during the proposal and refinement processes. Experiments on the Argoverse dataset demonstrates that GAMDTP achieves state-of-the-art performance, achieving superior accuracy in dynamic trajectory prediction.
Authors: Shayan Sepahvand, Niloufar Amiri, Farrokh Janabi-Sharifi
Abstract:
The problem of image-based visual servoing (IBVS) of an aerial robot using deep-learning-based keypoint detection is addressed in this article. A monocular RGB camera mounted on the platform is utilized to collect the visual data. A convolutional neural network (CNN) is then employed to extract the features serving as the visual data for the servoing task. This paper contributes to the field by circumventing not only the challenge stemming from the need for man-made marker detection in conventional visual servoing techniques, but also enhancing the robustness against undesirable factors including occlusion, varying illumination, clutter, and background changes, thereby broadening the applicability of perception-guided motion control tasks in aerial robots. Additionally, extensive physics-based ROS Gazebo simulations are conducted to assess the effectiveness of this method, in contrast to many existing studies that rely solely on physics-less simulations. A demonstration video is available at https://youtu.be/Dd2Her8Ly-E.
Authors: Ido Rachbuch, Sinwook Park, Yuval Katz, Touvia Miloh, Gilad Yossifon
Abstract:
This study introduces the integration of hybrid magnetic and electric actuation mechanisms to achieve advanced motion capabilities for Janus particle (JP) microrobots. We demonstrate enhanced in-plane motion control through versatile control strategies and present the concepts of interplanar transitions and 2.5-dimensional (2.5D) trajectories, enabled by magnetic levitation and electrostatic trapping. These innovations expand the mobility of JPs into 3D space, allowing dynamic operation beyond the limitations of traditional surface-bound motion. Key functionalities include obstacle crossing, transitions to elevated surfaces, and discrete surface patterning enabling highly localized interventions. Using this set of tools, we also showcase the controlled out-of-plane transport of both synthetic and biological cargo. Together, these advancements lay the groundwork for novel microrobot-related applications in microfluidic systems and biomedical research.
Authors: Jean C. Pereira, Valter J. S. Leite, Guilherme V. Raffo
Abstract:
This paper addresses the motion control problem for underactuated mechanical systems with full attitude control and one translational force input to manage the six degrees of freedom involved in the three-dimensional Euclidean space. These systems are often classified as second-order nonholonomic due to their completely nonintegrable acceleration constraints. To tackle this complex control problem, we propose two nonlinear model predictive control (NMPC) schemes that ensure closed-loop stability and recursive feasibility without terminal conditions. The system dynamics are modeled on the SE(3) manifold for a globally and unique description of rigid body configurations. One NMPC scheme also aims to reduce mission time as an economic criterion. The controllers' effectiveness is validated through numerical experiments on a quadrotor UAV.
Authors: Václav TruhlaÅÃk, Tomáš PivoÅka, Michal Kasarda, Libor PÅeuÄil
Abstract:
Uniform and variable environments still remain a challenge for stable visual localization and mapping in mobile robot navigation. One of the possible approaches suitable for such environments is appearance-based teach-and-repeat navigation, relying on simplified localization and reactive robot motion control - all without a need for standard mapping. This work brings an innovative solution to such a system based on visual place recognition techniques. Here, the major contributions stand in the employment of a new visual place recognition technique, a novel horizontal shift computation approach, and a multi-platform system design for applications across various types of mobile robots. Secondly, a new public dataset for experimental testing of appearance-based navigation methods is introduced. Moreover, the work also provides real-world experimental testing and performance comparison of the introduced navigation system against other state-of-the-art methods. The results confirm that the new system outperforms existing methods in several testing scenarios, is capable of operation indoors and outdoors, and exhibits robustness to day and night scene variations.
Authors: Haotian Tan, Yuan-Hua Ni
Abstract:
Motion planning and trajectory generation are crucial technologies in various domains including the control of Unmanned Aerial Vehicles, manipulators, and rockets. However, optimization-based real-time motion planning becomes increasingly challenging due to the problem's probable non-convexity and the inherent limitations of non-linear programming algorithms. Highly nonlinear dynamics, obstacle avoidance constraints, and non-convex inputs can exacerbate these difficulties. In order to enhance the robustness and reduce the computational burden, this paper proposes a two-layer trajectory generating algorithm for intelligent ground vehicles with convex optimization methods, aiming to provide real-time guarantees for trajectory optimization and to improve the calculate speed of motion prediction. Our approach involves breaking down the original problem into small horizon-based planning cycles with fixed final times, referred to as planning cycles. Each planning cycle is then solved within a series of restricted convex sets constructed by some customized search algorithms incrementally. We rigorously establish these advantages through mathematical analysis under moderate assumptions and comprehensive experimental validations. For linear vehicle models, comparative experiments with general sequential convex programming algorithms demonstrate the superior performance of our proposed method, particularly in terms of the computational efficiency in dynamic maps and the reduced final time.
Authors: Evgeniia Vu, Andrei Boiarov, Dmitry Vetrov
Abstract:
Generating co-speech gestures in real time requires both temporal coherence and efficient sampling. We introduce Accelerated Rolling Diffusion, a novel framework for streaming gesture generation that extends rolling diffusion models with structured progressive noise scheduling, enabling seamless long-sequence motion synthesis while preserving realism and diversity. We further propose Rolling Diffusion Ladder Acceleration (RDLA), a new approach that restructures the noise schedule into a stepwise ladder, allowing multiple frames to be denoised simultaneously. This significantly improves sampling efficiency while maintaining motion consistency, achieving up to a 2x speedup with high visual fidelity and temporal coherence. We evaluate our approach on ZEGGS and BEAT, strong benchmarks for real-world applicability. Our framework is universally applicable to any diffusion-based gesture generation model, transforming it into a streaming approach. Applied to three state-of-the-art methods, it consistently outperforms them, demonstrating its effectiveness as a generalizable and efficient solution for real-time, high-fidelity co-speech gesture synthesis.
Authors: Haozhou Pang, Tianwei Ding, Lanshan He, Qi Gan
Abstract:
Dance serves as a profound and universal expression of human culture, conveying emotions and stories through movements synchronized with music. Although some current works have achieved satisfactory results in the task of single-person dance generation, the field of multi-person dance generation remains relatively novel. In this work, we present a group choreography framework that leverages recent advancements in Large Language Models (LLM) by modeling the group dance generation problem as a sequence-to-sequence translation task. Our framework consists of a tokenizer that transforms continuous features into discrete tokens, and an LLM that is fine-tuned to predict motion tokens given the audio tokens. We show that by proper tokenization of input modalities and careful design of the LLM training strategies, our framework can generate realistic and diverse group dances while maintaining strong music correlation and dancer-wise consistency. Extensive experiments and evaluations demonstrate that our framework achieves state-of-the-art performance.
Authors: Xingzu Zhan, Chen Xie, Honghang Chen, Haoran Sun, Xiaochun Mai
Abstract:
Text-to-motion generation sits at the intersection of multimodal learning and computer graphics and is gaining momentum because it can simplify content creation for games, animation, robotics and virtual reality. Most current methods stack spatial and temporal features in a straightforward way, which adds redundancy and still misses subtle joint-level cues. We introduce HiSTF Mamba, a framework with three parts: Dual-Spatial Mamba, Bi-Temporal Mamba and a Dynamic Spatiotemporal Fusion Module (DSFM). The Dual-Spatial module runs part-based and whole-body models in parallel, capturing both overall coordination and fine-grained joint motion. The Bi-Temporal module scans sequences forward and backward to encode short-term details and long-term dependencies. DSFM removes redundant temporal information, extracts complementary cues and fuses them with spatial features to build a richer spatiotemporal representation. Experiments on the HumanML3D benchmark show that HiSTF Mamba performs well across several metrics, achieving high fidelity and tight semantic alignment between text and motion.
Authors: Gerard Gómez-Izquierdo, Javier Laplaza, Alberto Sanfeliu, AnaÃs Garrell
Abstract:
Accurate human motion prediction (HMP) is critical for seamless human-robot collaboration, particularly in handover tasks that require real-time adaptability. Despite the high accuracy of state-of-the-art models, their computational complexity limits practical deployment in real-world robotic applications. In this work, we enhance human motion forecasting for handover tasks by leveraging siMLPe [1], a lightweight yet powerful architecture, and introducing key improvements. Our approach, named IntentMotion incorporates intention-aware conditioning, task-specific loss functions, and a novel intention classifier, significantly improving motion prediction accuracy while maintaining efficiency. Experimental results demonstrate that our method reduces body loss error by over 50%, achieves 200x faster inference, and requires only 3% of the parameters compared to existing state-of-the-art HMP models. These advancements establish our framework as a highly efficient and scalable solution for real-time human-robot interaction.
Authors: Hongyu Deng, Tianfan Xue, He Chen
Abstract:
Transparent objects are prevalent in everyday environments, but their distinct physical properties pose significant challenges for camera-guided robotic arms. Current research is mainly dependent on camera-only approaches, which often falter in suboptimal conditions, such as low-light environments. In response to this challenge, we present FuseGrasp, the first radar-camera fusion system tailored to enhance the transparent objects manipulation. FuseGrasp exploits the weak penetrating property of millimeter-wave (mmWave) signals, which causes transparent materials to appear opaque, and combines it with the precise motion control of a robotic arm to acquire high-quality mmWave radar images of transparent objects. The system employs a carefully designed deep neural network to fuse radar and camera imagery, thereby improving depth completion and elevating the success rate of object grasping. Nevertheless, training FuseGrasp effectively is non-trivial, due to limited radar image datasets for transparent objects. We address this issue utilizing large RGB-D dataset, and propose an effective two-stage training approach: we first pre-train FuseGrasp on a large public RGB-D dataset of transparent objects, then fine-tune it on a self-built small RGB-D-Radar dataset. Furthermore, as a byproduct, FuseGrasp can determine the composition of transparent objects, such as glass or plastic, leveraging the material identification capability of mmWave radar. This identification result facilitates the robotic arm in modulating its grip force appropriately. Extensive testing reveals that FuseGrasp significantly improves the accuracy of depth reconstruction and material identification for transparent objects. Moreover, real-world robotic trials have confirmed that FuseGrasp markedly enhances the handling of transparent items. A video demonstration of FuseGrasp is available at https://youtu.be/MWDqv0sRSok.
Authors: Iliana Loi, Konstantinos Moustakas
Abstract:
Fatigue modeling is essential for motion synthesis tasks to model human motions under fatigued conditions and biomechanical engineering applications, such as investigating the variations in movement patterns and posture due to fatigue, defining injury risk mitigation and prevention strategies, formulating fatigue minimization schemes and creating improved ergonomic designs. Nevertheless, employing data-driven methods for synthesizing the impact of fatigue on motion, receives little to no attention in the literature. In this work, we present Fatigue-PINN, a deep learning framework based on Physics-Informed Neural Networks, for modeling fatigued human movements, while providing joint-specific fatigue configurations for adaptation and mitigation of motion artifacts on a joint level, resulting in more realistic animations. To account for muscle fatigue, we simulate the fatigue-induced fluctuations in the maximum exerted joint torques by leveraging a PINN adaptation of the Three-Compartment Controller model to exploit physics-domain knowledge for improving accuracy. This model also introduces parametric motion alignment with respect to joint-specific fatigue, hence avoiding sharp frame transitions. Our results indicate that Fatigue-PINN accurately simulates the effects of externally perceived fatigue on open-type human movements being consistent with findings from real-world experimental fatigue studies. Since fatigue is incorporated in torque space, Fatigue-PINN provides an end-to-end encoder-decoder-like architecture, to ensure transforming joint angles to joint torques and vice-versa, thus, being compatible with motion synthesis frameworks operating on joint angles.
Authors: Christos Papandreou, Michail Mathioudakis, Theodoros Stouraitis, Petros Iatropoulos, Antonios Nikitakis, Stavros Paschalakis, Konstantinos Kyriakopoulos
Abstract:
The deployment of autonomous navigation systems on ships necessitates accurate motion prediction models tailored to individual vessels. Traditional physics-based models, while grounded in hydrodynamic principles, often fail to account for ship-specific behaviors under real-world conditions. Conversely, purely data-driven models offer specificity but lack interpretability and robustness in edge cases. This study proposes a data-driven physics-based model that integrates physics-based equations with data-driven parameter optimization, leveraging the strengths of both approaches to ensure interpretability and adaptability. The model incorporates physics-based components such as 3-DoF dynamics, rudder, and propeller forces, while parameters such as resistance curve and rudder coefficients are optimized using synthetic data. By embedding domain knowledge into the parameter optimization process, the fitted model maintains physical consistency. Validation of the approach is realized with two container ships by comparing, both qualitatively and quantitatively, predictions against ground-truth trajectories. The results demonstrate significant improvements, in predictive accuracy and reliability, of the data-driven physics-based models over baseline physics-based models tuned with traditional marine engineering practices. The fitted models capture ship-specific behaviors in diverse conditions with their predictions being, 51.6% (ship A) and 57.8% (ship B) more accurate, 72.36% (ship A) and 89.67% (ship B) more consistent.
Authors: Michail Mathioudakis, Christos Papandreou, Theodoros Stouraitis, Vicky Margari, Antonios Nikitakis, Stavros Paschalakis, Konstantinos Kyriakopoulos, Kostas J. Spyrou
Abstract:
The maritime industry aims towards a sustainable future, which requires significant improvements in operational efficiency. Current approaches focus on minimising fuel consumption and emissions through greater autonomy. Efficient and safe autonomous navigation requires high-fidelity ship motion models applicable to real-world conditions. Although physics-based ship motion models can predict ships' motion with sub-second resolution, their validation in real-world conditions is rarely found in the literature. This study presents a physics-based 3D dynamics motion model that is tailored to a container-ship, and compares its predictions against real-world voyages. The model integrates vessel motion over time and accounts for its hydrodynamic behavior under different environmental conditions. The model's predictions are evaluated against real vessel data both visually and using multiple distance measures. Both methodologies demonstrate that the model's predictions align closely with the real-world trajectories of the container-ship.
Authors: Loay Rashid, Siddharth Roheda, Amit Unde
Abstract:
Video restoration plays a pivotal role in revitalizing degraded video content by rectifying imperfections caused by various degradations introduced during capturing (sensor noise, motion blur, etc.), saving/sharing (compression, resizing, etc.) and editing. This paper introduces a novel algorithm designed for scenarios where noise is introduced during video capture, aiming to enhance the visual quality of videos by reducing unwanted noise artifacts. We propose the Latent space LSTM Video Denoiser (LLVD), an end-to-end blind denoising model. LLVD uniquely combines spatial and temporal feature extraction, employing Long Short Term Memory (LSTM) within the encoded feature domain. This integration of LSTM layers is crucial for maintaining continuity and minimizing flicker in the restored video. Moreover, processing frames in the encoded feature domain significantly reduces computations, resulting in a very lightweight architecture. LLVD's blind nature makes it versatile for real, in-the-wild denoising scenarios where prior information about noise characteristics is not available. Experiments reveal that LLVD demonstrates excellent performance for both synthetic and captured noise. Specifically, LLVD surpasses the current State-Of-The-Art (SOTA) in RAW denoising by 0.3dB, while also achieving a 59\% reduction in computational complexity.
Authors: Akane Tsuboya, Yu Kono, Tatsuji Takahashi
Abstract:
The objective of a reinforcement learning agent is to discover better actions through exploration. However, typical exploration techniques aim to maximize rewards, often incurring high costs in both exploration and learning processes. We propose a novel deep reinforcement learning method, which prioritizes achieving an aspiration level over maximizing expected return. This method flexibly adjusts the degree of exploration based on the proportion of target achievement. Through experiments on a motion control task and a navigation task, this method achieved returns equal to or greater than other standard methods. The results of the analysis showed two things: our method flexibly adjusts the exploration scope, and it has the potential to enable the agent to adapt to non-stationary environments. These findings indicated that this method may have effectiveness in improving exploration efficiency in practical applications of reinforcement learning.
Authors: Lucas Dal'Col, Miguel Oliveira, VÃtor Santos
Abstract:
Perception and prediction modules are critical components of autonomous driving systems, enabling vehicles to navigate safely through complex environments. The perception module is responsible for perceiving the environment, including static and dynamic objects, while the prediction module is responsible for predicting the future behavior of these objects. These modules are typically divided into three tasks: object detection, object tracking, and motion prediction. Traditionally, these tasks are developed and optimized independently, with outputs passed sequentially from one to the next. However, this approach has significant limitations: computational resources are not shared across tasks, the lack of joint optimization can amplify errors as they propagate throughout the pipeline, and uncertainty is rarely propagated between modules, resulting in significant information loss. To address these challenges, the joint perception and prediction paradigm has emerged, integrating perception and prediction into a unified model through multi-task learning. This strategy not only overcomes the limitations of previous methods, but also enables the three tasks to have direct access to raw sensor data, allowing richer and more nuanced environmental interpretations. This paper presents the first comprehensive survey of joint perception and prediction for autonomous driving. We propose a taxonomy that categorizes approaches based on input representation, scene context modeling, and output representation, highlighting their contributions and limitations. Additionally, we present a qualitative analysis and quantitative comparison of existing methods. Finally, we discuss future research directions based on identified gaps in the state-of-the-art.
Authors: Ehsan Asali, Prashant Doshi
Abstract:
We present a novel method for collaborative robots (cobots) to learn manipulation tasks and perform them in a human-like manner. Our method falls under the learn-from-observation (LfO) paradigm, where robots learn to perform tasks by observing human actions, which facilitates quicker integration into industrial settings compared to programming from scratch. We introduce Visual IRL that uses the RGB-D keypoints in each frame of the observed human task performance directly as state features, which are input to inverse reinforcement learning (IRL). The inversely learned reward function, which maps keypoints to reward values, is transferred from the human to the cobot using a novel neuro-symbolic dynamics model, which maps human kinematics to the cobot arm. This model allows similar end-effector positioning while minimizing joint adjustments, aiming to preserve the natural dynamics of human motion in robotic manipulation. In contrast with previous techniques that focus on end-effector placement only, our method maps multiple joint angles of the human arm to the corresponding cobot joints. Moreover, it uses an inverse kinematics model to then minimally adjust the joint angles, for accurate end-effector positioning. We evaluate the performance of this approach on two different realistic manipulation tasks. The first task is produce processing, which involves picking, inspecting, and placing onions based on whether they are blemished. The second task is liquid pouring, where the robot picks up bottles, pours the contents into designated containers, and disposes of the empty bottles. Our results demonstrate advances in human-like robotic manipulation, leading to more human-robot compatibility in manufacturing applications.
Authors: Simone Borelli, Francesco Giovinazzo, Francesco Grella, Giorgio Cannata
Abstract:
This paper presents a novel control algorithm for robotic manipulators in unstructured environments using proximity sensors partially distributed on the platform. The proposed approach exploits arrays of multi zone Time-of-Flight (ToF) sensors to generate a sparse point cloud representation of the robot surroundings. By employing computational geometry techniques, we fuse the knowledge of robot geometric model with ToFs sensory feedback to generate whole-body motion tasks, allowing to move both sensorized and non-sensorized links in response to unpredictable events such as human motion. In particular, the proposed algorithm computes the pair of closest points between the environment cloud and the robot links, generating a dynamic avoidance motion that is implemented as the highest priority task in a two-level hierarchical architecture. Such a design choice allows the robot to work safely alongside humans even without a complete sensorization over the whole surface. Experimental validation demonstrates the algorithm effectiveness both in static and dynamic scenarios, achieving comparable performances with respect to well established control techniques that aim to move the sensors mounting positions on the robot body. The presented algorithm exploits any arbitrary point on the robot surface to perform avoidance motion, showing improvements in the distance margin up to 100 mm, due to the rendering of virtual avoidance tasks on non-sensorized links.
Authors: Denys Rozumnyi, Nadine Bertsch, Othman Sbai, Filippo Arcadu, Yuhua Chen, Artsiom Sanakoyeu, Manoj Kumar, Catherine Herold, Robin Kips
Abstract:
Tracking the full body motions of users in XR (AR/VR) devices is a fundamental challenge to bring a sense of authentic social presence. Due to the absence of dedicated leg sensors, currently available body tracking methods adopt a synthesis approach to generate plausible motions given a 3-point signal from the head and controller tracking. In order to enable mixed reality features, modern XR devices are capable of estimating depth information of the headset surroundings using available sensors combined with dedicated machine learning models. Such egocentric depth sensing cannot drive the body directly, as it is not registered and is incomplete due to limited field-of-view and body self-occlusions. For the first time, we propose to leverage the available depth sensing signal combined with self-supervision to learn a multi-modal pose estimation model capable of tracking full body motions in real time on XR devices. We demonstrate how current 3-point motion synthesis models can be extended to point cloud modalities using a semantic point cloud encoder network combined with a residual network for multi-modal pose estimation. These modules are trained jointly in a self-supervised way, leveraging a combination of real unregistered point clouds and simulated data obtained from motion capture. We compare our approach against several state-of-the-art systems for XR body tracking and show that our method accurately tracks a diverse range of body motions. XR-MBT tracks legs in XR for the first time, whereas traditional synthesis approaches based on partial body tracking are blind.
Authors: Kehua Qu, Rui Ding, Jin Tang
Abstract:
Multi-person motion prediction is a complex and emerging field with significant real-world applications. Current state-of-the-art methods typically adopt dual-path networks to separately modeling spatial features and temporal features. However, the uncertain compatibility of the two networks brings a challenge for spatio-temporal features fusion and violate the spatio-temporal coherence and coupling of human motions by nature. To address this issue, we propose a novel graph structure, UnityGraph, which treats spatio-temporal features as a whole, enhancing model coherence and coupling.spatio-temporal features as a whole, enhancing model coherence and coupling. Specifically, UnityGraph is a hypervariate graph based network. The flexibility of the hypergraph allows us to consider the observed motions as graph nodes. We then leverage hyperedges to bridge these nodes for exploring spatio-temporal features. This perspective considers spatio-temporal dynamics unitedly and reformulates multi-person motion prediction into a problem on a single graph. Leveraging the dynamic message passing based on this hypergraph, our model dynamically learns from both types of relations to generate targeted messages that reflect the relevance among nodes. Extensive experiments on several datasets demonstrates that our method achieves state-of-the-art performance, confirming its effectiveness and innovative design.
Authors: Kehua Qu, Rui Ding, Jin Tang
Abstract:
Multi-person motion prediction is an emerging and intricate task with broad real-world applications. Unlike single person motion prediction, it considers not just the skeleton structures or human trajectories but also the interactions between others. Previous methods use various networks to achieve impressive predictions but often overlook that the joints relations within an individual (intra-relation) and interactions among groups (inter-relation) are distinct types of representations. These methods often lack explicit representation of inter&intra-relations, and inevitably introduce undesired dependencies. To address this issue, we introduce a new collaborative framework for multi-person motion prediction that explicitly modeling these relations:a GCN-based network for intra-relations and a novel reasoning network for inter-relations.Moreover, we propose a novel plug-and-play aggregation module called the Interaction Aggregation Module (IAM), which employs an aggregate-attention mechanism to seamlessly integrate these relations. Experiments indicate that the module can also be applied to other dual-path models. Extensive experiments on the 3DPW, 3DPW-RC, CMU-Mocap, MuPoTS-3D, as well as synthesized datasets Mix1 & Mix2 (9 to 15 persons), demonstrate that our method achieves state-of-the-art performance.
Authors: Kai-Yin Hong, Chieh-Chih Wang, Wen-Chieh Lin
Abstract:
Recent years have seen a shift towards learning-based methods for trajectory prediction, with challenges remaining in addressing uncertainty and capturing multi-modal distributions. This paper introduces Temporal Ensembling with Learning-based Aggregation, a meta-algorithm designed to mitigate the issue of missing behaviors in trajectory prediction, which leads to inconsistent predictions across consecutive frames. Unlike conventional model ensembling, temporal ensembling leverages predictions from nearby frames to enhance spatial coverage and prediction diversity. By confirming predictions from multiple frames, temporal ensembling compensates for occasional errors in individual frame predictions. Furthermore, trajectory-level aggregation, often utilized in model ensembling, is insufficient for temporal ensembling due to a lack of consideration of traffic context and its tendency to assign candidate trajectories with incorrect driving behaviors to final predictions. We further emphasize the necessity of learning-based aggregation by utilizing mode queries within a DETR-like architecture for our temporal ensembling, leveraging the characteristics of predictions from nearby frames. Our method, validated on the Argoverse 2 dataset, shows notable improvements: a 4% reduction in minADE, a 5% decrease in minFDE, and a 1.16% reduction in the miss rate compared to the strongest baseline, QCNet, highlighting its efficacy and potential in autonomous driving.
Authors: Mykhaylo Andriluka, Baruch Tabanpour, C. Daniel Freeman, Cristian Sminchisescu
Abstract:
We propose a novel neural network approach, LARP (Learned Articulated Rigid body Physics), to model the dynamics of articulated human motion with contact. Our goal is to develop a faster and more convenient methodological alternative to traditional physics simulators for use in computer vision tasks such as human motion reconstruction from video. To that end we introduce a training procedure and model components that support the construction of a recurrent neural architecture to accurately simulate articulated rigid body dynamics. Our neural architecture supports features typically found in traditional physics simulators, such as modeling of joint motors, variable dimensions of body parts, contact between body parts and objects, and is an order of magnitude faster than traditional systems when multiple simulations are run in parallel. To demonstrate the value of LARP we use it as a drop-in replacement for a state of the art classical non-differentiable simulator in an existing video-based reconstruction framework and show comparative or better 3D human pose reconstruction accuracy.
Authors: Niklas Gunnarsson, Jens Sjölund, Peter Kimstrand, Thomas. B Schön
Abstract:
Image monitoring and guidance during medical examinations can aid both diagnosis and treatment. However, the sampling frequency is often too low, which creates a need to estimate the missing images. We present a probabilistic motion model for sequential medical images, with the ability to both estimate motion between acquired images and forecast the motion ahead of time. The core is a low-dimensional temporal process based on a linear Gaussian state-space model with analytically tractable solutions for forecasting, simulation, and imputation of missing samples. The results, from two experiments on publicly available cardiac datasets, show reliable motion estimates and an improved forecasting performance using patient-specific adaptation by online learning.
Authors: Harsh Yadav, Maximilian Schaefer, Kun Zhao, Tobias Meisen
Abstract:
Motion prediction is an important aspect for Autonomous Driving (AD) and Advance Driver Assistance Systems (ADAS). Current state-of-the-art motion prediction methods rely on High Definition (HD) maps for capturing the surrounding context of the ego vehicle. Such systems lack scalability in real-world deployment as HD maps are expensive to produce and update in real-time. To overcome this issue, we propose Context Aware Scene Prediction Transformer (CASPFormer), which can perform multi-modal motion prediction from rasterized Bird-Eye-View (BEV) images. Our system can be integrated with any upstream perception module that is capable of generating BEV images. Moreover, CASPFormer directly decodes vectorized trajectories without any postprocessing. Trajectories are decoded recurrently using deformable attention, as it is computationally efficient and provides the network with the ability to focus its attention on the important spatial locations of the BEV images. In addition, we also address the issue of mode collapse for generating multiple scene-consistent trajectories by incorporating learnable mode queries. We evaluate our model on the nuScenes dataset and show that it reaches state-of-the-art across multiple metrics
Authors: Sai Shashank Kalakonda, Shubh Maheshwari, Ravi Kiran Sarvadevabhatla
Abstract:
We introduce MoRAG, a novel multi-part fusion based retrieval-augmented generation strategy for text-based human motion generation. The method enhances motion diffusion models by leveraging additional knowledge obtained through an improved motion retrieval process. By effectively prompting large language models (LLMs), we address spelling errors and rephrasing issues in motion retrieval. Our approach utilizes a multi-part retrieval strategy to improve the generalizability of motion retrieval across the language space. We create diverse samples through the spatial composition of the retrieved motions. Furthermore, by utilizing low-level, part-specific motion information, we can construct motion samples for unseen text descriptions. Our experiments demonstrate that our framework can serve as a plug-and-play module, improving the performance of motion diffusion models. Code, pretrained models and sample videos are available at: https://motion-rag.github.io/
Authors: Dayuan Tan, Mohamed Younis, Wassila Lalouani, Shuyao Fan, Guozhi Song
Abstract:
The major advances in intelligent transportation systems are pushing societal services toward autonomy where road management is to be more agile in order to cope with changes and continue to yield optimal performance. However, the pedestrian experience is not sufficiently considered. Particularly, signalized intersections are expected to be popular if not dominant in urban settings where pedestrian density is high. This paper presents the design of a novel environment for simulating human motion on signalized crosswalks at a fine-grained level. Such a simulation not only captures typical behavior, but also handles cases where large pedestrian groups cross from both directions. The proposed simulator is instrumental for optimized road configuration management where the pedestrians' quality of experience, for example, waiting time, is factored in. The validation results using field data show that an accuracy of 98.37 percent can be obtained for the estimated crossing time. Other results using synthetic data show that our simulator enables optimized traffic light scheduling that diminishes pedestrians' waiting time without sacrificing vehicular throughput.
Authors: Liang Feng, Zhixuan Shen, Lihua Wen, Shiyao Li, Ming Xu
Abstract:
This paper introduces GateAttentionPose, an innovative approach that enhances the UniRepLKNet architecture for pose estimation tasks. We present two key contributions: the Agent Attention module and the Gate-Enhanced Feedforward Block (GEFB). The Agent Attention module replaces large kernel convolutions, significantly improving computational efficiency while preserving global context modeling. The GEFB augments feature extraction and processing capabilities, particularly in complex scenes. Extensive evaluations on COCO and MPII datasets demonstrate that GateAttentionPose outperforms existing state-of-the-art methods, including the original UniRepLKNet, achieving superior or comparable results with improved efficiency. Our approach offers a robust solution for pose estimation across diverse applications, including autonomous driving, human motion capture, and virtual reality.
Authors: Liang Feng, Ming Xu, Lihua Wen, Zhixuan Shen
Abstract:
Pose estimation is a crucial task in computer vision, with wide applications in autonomous driving, human motion capture, and virtual reality. However, existing methods still face challenges in achieving high accuracy, particularly in complex scenes. This paper proposes a novel pose estimation method, GatedUniPose, which combines UniRepLKNet and Gated Convolution and introduces the GLACE module for embedding. Additionally, we enhance the feature map concatenation method in the head layer by using DySample upsampling. Compared to existing methods, GatedUniPose excels in handling complex scenes and occlusion challenges. Experimental results on the COCO, MPII, and CrowdPose datasets demonstrate that GatedUniPose achieves significant performance improvements with a relatively small number of parameters, yielding better or comparable results to models with similar or larger parameter sizes.
Authors: Xiong Yang, Hao Ren, Dong Guo, Zhengrong Ling, Tieshan Zhang, Gen Li, Yifeng Tang, Haoxiang Zhao, Jiale Wang, Hongyuan Chang, Jia Dong, Yajing Shen
Abstract:
The human skin exhibits remarkable capability to perceive contact forces and environmental temperatures, providing intricate information essential for nuanced manipulation. Despite recent advancements in soft tactile sensors, a significant challenge remains in accurately decoupling signals - specifically, separating force from directional orientation and temperature - resulting in fail to meet the advanced application requirements of robots. This research proposes a multi-layered soft sensor unit (F3T) designed to achieve isolated measurements and mathematical decoupling of normal pressure, omnidirectional tangential forces, and temperature. We developed a circular coaxial magnetic film featuring a floating-mountain multi-layer capacitor, facilitating the physical decoupling of normal and tangential forces in all directions. Additionally, we incorporated an ion gel-based temperature sensing film atop the tactile sensor. This sensor is resilient to external pressure and deformation, enabling it to measure temperature and, crucially, eliminate capacitor errors induced by environmental temperature changes. This innovative design allows for the decoupled measurement of multiple signals, paving the way for advancements in higher-level robot motion control, autonomous decision-making, and task planning.
Authors: Sohan Anisetty, James Hays
Abstract:
Our research presents a novel motion generation framework designed to produce whole-body motion sequences conditioned on multiple modalities simultaneously, specifically text and audio inputs. Leveraging Vector Quantized Variational Autoencoders (VQVAEs) for motion discretization and a bidirectional Masked Language Modeling (MLM) strategy for efficient token prediction, our approach achieves improved processing efficiency and coherence in the generated motions. By integrating spatial attention mechanisms and a token critic we ensure consistency and naturalness in the generated motions. This framework expands the possibilities of motion generation, addressing the limitations of existing approaches and opening avenues for multimodal motion synthesis.
Authors: Sorin Grigorescu, Mihai Zaha
Abstract:
The underlying framework for controlling autonomous robots and complex automation applications are Operating Systems (OS) capable of scheduling perception-and-control tasks, as well as providing real-time data communication to other robotic peers and remote cloud computers. In this paper, we introduce CyberCortex AI, a robotics OS designed to enable heterogeneous AI-based robotics and complex automation applications. CyberCortex AI is a decentralized distributed OS which enables robots to talk to each other, as well as to High Performance Computers (HPC) in the cloud. Sensory and control data from the robots is streamed towards HPC systems with the purpose of training AI algorithms, which are afterwards deployed on the robots. Each functionality of a robot (e.g. sensory data acquisition, path planning, motion control, etc.) is executed within a so-called DataBlock of Filters shared through the internet, where each filter is computed either locally on the robot itself, or remotely on a different robotic system. The data is stored and accessed via a so-called Temporal Addressable Memory (TAM), which acts as a gateway between each filter's input and output. CyberCortex AI has two main components: i) the CyberCortex AI inference system, which is a real-time implementation of the DataBlock running on the robots' embedded hardware, and ii) the CyberCortex AI dojo, which runs on an HPC computer in the cloud, and it is used to design, train and deploy AI algorithms. We present a quantitative and qualitative performance analysis of the proposed approach using two collaborative robotics applications: i) a forest fires prevention system based on an Unitree A1 legged robot and an Anafi Parrot 4K drone, as well as ii) an autonomous driving system which uses CyberCortex AI for collaborative perception and motion control.
Authors: Axel Duché, Clément Chatelain, Gilles Gasso
Abstract:
We propose a lightweight compressed-domain tracking model that operates directly on video streams, without requiring full RGB video decoding. Using motion vectors and transform coefficients from compressed data, our deep model propagates object bounding boxes across frames, achieving a computational speed-up of order up to 3.7 with only a slight 4% mAP@0.5 drop vs RGB baseline on MOTS15/17/20 datasets. These results highlight codec-domain motion modeling efficiency for real-time analytics in large monitoring systems.
Authors: Dang Dinh Nguyen, Decky Aspandi Latif, Titus Zaharia
Abstract:
In recent years, self-supervised representation learning for skeleton-based action recognition has advanced with the development of contrastive learning methods. However, most of contrastive paradigms are inherently discriminative and often struggle to capture the variability and uncertainty intrinsic to human motion. To address this issue, we propose a variational contrastive learning framework that integrates probabilistic latent modeling with contrastive self-supervised learning. This formulation enables the learning of structured and semantically meaningful representations that generalize across different datasets and supervision levels. Extensive experiments on three widely used skeleton-based action recognition benchmarks show that our proposed method consistently outperforms existing approaches, particularly in low-label regimes. Moreover, qualitative analyses show that the features provided by our method are more relevant given the motion and sample characteristics, with more focus on important skeleton joints, when compared to the other methods.
Authors: Zongyang Lv, Yanmei Jia, Yongqing Liu, Alan F. Lynch, Qing Zhao, Yuhu Wu
Abstract:
Unmanned aerial vehicle (UAV) with slung load system is a classic air transportation system. In practical applications, the suspension point of the slung load does not always align with the center of mass (CoM) of the UAV due to mission requirements or mechanical interference. This offset creates coupling in the system's nonlinear dynamics which leads to a complicated motion control problem. In existing research, modeling of the system are performed about the UAV's CoM. In this work we use the point of suspension instead. Based on the new model, a cascade control strategy is developed. In the middle-loop controller, the acceleration of the suspension point is used to regulate the swing angle of the slung load without the need for considering the coupling between the slung load and the UAV. An inner-loop controller is designed to track the UAV's attitude without the need of simplification on the coupling effects. We prove local exponential stability of the closed-loop using Lyapunov approach. Finally, simulations and experiments are conducted to validate the proposed control system.
Authors: Oran Duan, Yinghua Shen, Yingzhu Lv, Luyang Jie, Yaxin Liu, Qiong Wu
Abstract:
Advances in generative models and sequence learning have greatly promoted research in dance motion generation, yet current methods still suffer from coarse semantic control and poor coherence in long sequences. In this work, we present Listen to Rhythm, Choose Movements (LRCM), a multimodal-guided diffusion framework supporting both diverse input modalities and autoregressive dance motion generation. We explore a feature decoupling paradigm for dance datasets and generalize it to the Motorica Dance dataset, separating motion capture data, audio rhythm, and professionally annotated global and local text descriptions. Our diffusion architecture integrates an audio-latent Conformer and a text-latent Cross-Conformer, and incorporates a Motion Temporal Mamba Module (MTMM) to enable smooth, long-duration autoregressive synthesis. Experimental results indicate that LRCM delivers strong performance in both functional capability and quantitative metrics, demonstrating notable potential in multimodal input scenarios and extended sequence generation. We will release the full codebase, dataset, and pretrained models publicly upon acceptance.
Authors: Yongsheng Zhao, Lei Zhao, Baoping Cheng, Gongxin Yao, Xuanzhang Wen, Han Gao
Abstract:
Vision-Language-Action (VLA) models have achieved remarkable breakthroughs in robotics, with the action chunk playing a dominant role in these advances. Given the real-time and continuous nature of robotic motion control, the strategies for fusing a queue of successive action chunks have a profound impact on the overall performance of VLA models. Existing methods suffer from jitter, stalling, or even pauses in robotic action execution, which not only limits the achievable execution speed but also reduces the overall success rate of task completion. This paper introduces VLA-RAIL (A Real-Time Asynchronous Inference Linker), a novel framework designed to address these issues by conducting model inference and robot motion control asynchronously and guaranteeing smooth, continuous, and high-speed action execution. The core contributions of the paper are two fold: a Trajectory Smoother that effectively filters out the noise and jitter in the trajectory of one action chunk using polynomial fitting and a Chunk Fuser that seamlessly align the current executing trajectory and the newly arrived chunk, ensuring position, velocity, and acceleration continuity between two successive action chunks. We validate the effectiveness of VLA-RAIL on a benchmark of dynamic simulation tasks and several real-world manipulation tasks. Experimental results demonstrate that VLA-RAIL significantly reduces motion jitter, enhances execution speed, and improves task success rates, which will become a key infrastructure for the large-scale deployment of VLA models.
Authors: Yujie Yang, Zhichao Zhang, Jiazhou Chen, Zichao Wu
Abstract:
Existing text-driven 3D human motion editing methods have demonstrated significant progress, but are still difficult to precisely control over detailed, part-specific motions due to their global modeling nature. In this paper, we propose PartMotionEdit, a novel fine-grained motion editing framework that operates via part-level semantic modulation. The core of PartMotionEdit is a Part-aware Motion Modulation (PMM) module, which builds upon a predefined five-part body decomposition. PMM dynamically predicts time-varying modulation weights for each body part, enabling precise and interpretable editing of local motions. To guide the training of PMM, we also introduce a part-level similarity curve supervision mechanism enhanced with dual-layer normalization. This mechanism assists PMM in learning semantically consistent and editable distributions across all body parts. Furthermore, we design a Bidirectional Motion Interaction (BMI) module. It leverages bidirectional cross-modal attention to achieve more accurate semantic alignment between textual instructions and motion semantics. Extensive quantitative and qualitative evaluations on a well-known benchmark demonstrate that PartMotionEdit outperforms the state-of-the-art methods.
Authors: Zhangzheng Tu, Kailun Su, Shaolong Zhu, Yukun Zheng
Abstract:
Recovering world-coordinate human motion from monocular videos with humanoid robot retargeting is significant for embodied intelligence and robotics. To avoid complex SLAM pipelines or heavy temporal models, we propose a lightweight, engineering-oriented framework that leverages SAM 3D Body (3DB) as a frozen perception backbone and uses the Momentum HumanRig (MHR) representation as a robot-friendly intermediate. Our method (i) locks the identity and skeleton-scale parameters of per tracked subject to enforce temporally consistent bone lengths, (ii) smooths per-frame predictions via efficient sliding-window optimization in the low-dimensional MHR latent space, and (iii) recovers physically plausible global root trajectories with a differentiable soft foot-ground contact model and contact-aware global optimization. Finally, we retarget the reconstructed motion to the Unitree G1 humanoid using a kinematics-aware two-stage inverse kinematics pipeline. Results on real monocular videos show that our method has stable world trajectories and reliable robot retargeting, indicating that structured human representations with lightweight physical constraints can yield robot-ready motion from monocular input.
Authors: Lars Ole Häusler, Lena Uhlenberg, Göran Köber, Diyora Salimova, Oliver Amft
Abstract:
We propose a text-to-IMU (inertial measurement unit) motion-synthesis framework to obtain realistic IMU data by fine-tuning a pretrained diffusion model with an acceleration-based second-order loss (L_acc). L_acc enforces consistency in the discrete second-order temporal differences of the generated motion, thereby aligning the diffusion prior with IMU-specific acceleration patterns. We integrate L_acc into the training objective of an existing diffusion model, finetune the model to obtain an IMU-specific motion prior, and evaluate the model with an existing text-to-IMU framework that comprises surface modelling and virtual sensor simulation. We analysed acceleration signal fidelity and differences between synthetic motion representation and actual IMU recordings. As a downstream application, we evaluated Human Activity Recognition (HAR) and compared the classification performance using data of our method with the earlier diffusion model and two additional diffusion model baselines. When we augmented the earlier diffusion model objective with L_acc and continued training, L_acc decreased by 12.7% relative to the original model. The improvements were considerably larger in high-dynamic activities (i.e., running, jumping) compared to low-dynamic activities~(i.e., sitting, standing). In a low-dimensional embedding, the synthetic IMU data produced by our refined model shifts closer to the distribution of real IMU recordings. HAR classification trained exclusively on our refined synthetic IMU data improved performance by 8.7% compared to the earlier diffusion model and by 7.6% over the best-performing comparison diffusion model. We conclude that acceleration-aware diffusion refinement provides an effective approach to align motion generation and IMU synthesis and highlights how flexible deep learning pipelines are for specialising generic text-to-motion priors to sensor-specific tasks.
Authors: Yuduo Jin, Brandon Haworth
Abstract:
Diffusion models have emerged as a widely utilized and successful methodology in human motion synthesis. Task-oriented diffusion models have significantly advanced action-to-motion, text-to-motion, and audio-to-motion applications. In this paper, we investigate fundamental questions regarding motion representations and loss functions in a controlled study, and we enumerate the impacts of various decisions in the workflow of the generative motion diffusion model. To answer these questions, we conduct empirical studies based on a proxy motion diffusion model (MDM). We apply v loss as the prediction objective on MDM (vMDM), where v is the weighted sum of motion data and noise. We aim to enhance the understanding of latent data distributions and provide a foundation for improving the state of conditional motion diffusion models. First, we evaluate the six common motion representations in the literature and compare their performance in terms of quality and diversity metrics. Second, we compare the training time under various configurations to shed light on how to speed up the training process of motion diffusion models. Finally, we also conduct evaluation analysis on a large motion dataset. The results of our experiments indicate clear performance differences across motion representations in diverse datasets. Our results also demonstrate the impacts of distinct configurations on model training and suggest the importance and effectiveness of these decisions on the outcomes of motion diffusion models.
Authors: Eunjong Lee, Eunhee Kim, Sanghoon Hong, Eunho Jung, Jihoon Kim
Abstract:
Generating stable and controllable character motion in real-time is a key challenge in computer animation. Existing methods often fail to provide fine-grained control or suffer from motion degradation over long sequences, limiting their use in interactive applications. We propose COMET, an autoregressive framework that runs in real time, enabling versatile character control and robust long-horizon synthesis. Our efficient Transformer-based conditional VAE allows for precise, interactive control over arbitrary user-specified joints for tasks like goal-reaching and in-betweening from a single model. To ensure long-term temporal stability, we introduce a novel reference-guided feedback mechanism that prevents error accumulation. This mechanism also serves as a plug-and-play stylization module, enabling real-time style transfer. Extensive evaluations demonstrate that COMET robustly generates high-quality motion at real-time speeds, significantly outperforming state-of-the-art approaches in complex motion control tasks and confirming its readiness for demanding interactive applications.
Authors: Yusuf Baran Ates, Omer Morgul
Abstract:
Learning human-like, robust bipedal walking remains difficult due to hybrid dynamics and terrain variability. We propose a lightweight framework that combines a gait generator network learned from human motion with Proximal Policy Optimization (PPO) controller for torque control. Despite being trained only on flat or mildly sloped ground, the learned policies generalize to steeper ramps and rough surfaces. Results suggest that pairing spectral motion priors with Deep Reinforcement Learning (DRL) offers a practical path toward natural and robust bipedal locomotion with modest training cost.
Authors: Luis Luna, Isaac Chairez, Andrey Polyakov
Abstract:
Mobile robotic manipulators (MRMs), which integrate mobility and manipulation capabilities, present significant control challenges due to their nonlinear dynamics, underactuation, and coupling between the base and manipulator subsystems. This paper proposes a novel homogeneous Proportional-Integral-Derivative (hPID) control strategy tailored for MRMs to achieve robust and coordinated motion control. Unlike classical PID controllers, the hPID controller leverages the mathematical framework of homogeneous control theory to systematically enhance the stability and convergence properties of the closed-loop system, even in the presence of dynamic uncertainties and external disturbances involved into a system in a homogeneous way. A homogeneous PID structure is designed, ensuring improved convergence of tracking errors through a graded homogeneity approach that generalizes traditional PID gains to nonlinear, state-dependent functions. Stability analysis is conducted using Lyapunov-based methods, demonstrating that the hPID controller guarantees global asymptotic stability and finite-time convergence under mild assumptions. Experimental results on a representative MRM model validate the effectiveness of the hPID controller in achieving high-precision trajectory tracking for both the mobile base and manipulator arm, outperforming conventional linear PID controllers in terms of response time, steady-state error, and robustness to model uncertainties. This research contributes a scalable and analytically grounded control framework for enhancing the autonomy and reliability of next-generation mobile manipulation systems in structured and unstructured environments.
Authors: Mincong, Huang, Stefan T. Radev
Abstract:
Immersive rooms are increasingly popular augmented reality systems that support multi-agent interactions within a virtual world. However, despite extensive content creation and technological developments, insights about perceptually-driven social dynamics, such as the complex movement patterns during virtual world navigation, remain largely underexplored. Computational models of motion dynamics can help us understand the underlying mechanism of human interaction in immersive rooms and develop applications that better support spatially distributed interaction. In this work, we propose a new agent-based model of emergent human motion dynamics. The model represents human agents as simple spatial geometries in the room that relocate and reorient themselves based on the salient virtual spatial objects they approach. Agent motion is modeled as an interactive process combining external diffusion-driven influences from the environment with internal self-propelling interactions among agents. Further, we leverage simulation-based inference (SBI) to show that the governing parameters of motion patterns can be estimated from simple observables. Our results indicate that the model successfully captures action-related agent properties but exposes local non-identifiability linked to environmental awareness. We argue that our simulation-based approach paves the way for creating adaptive, responsive immersive rooms -- spaces that adjust their interfaces and interactions based on human collective movement patterns and spatial attention.
Authors: Alexander Okupnik, Johannes Schneider, Kyriakos Flouris
Abstract:
Recent success with large language models has sparked a new wave of verbal human-AI interaction. While such models support users in a variety of creative tasks, they lack the embodied nature of human interaction. Dance, as a primal form of human expression, is predestined to complement this experience. To explore creative human-AI interaction exemplified by dance, we build an interactive model based on motion capture (MoCap) data. It generates an artificial other by partially mimicking and also "creatively" enhancing an incoming sequence of movement data. It is the first model, which leverages single-person motion data and high level features in order to do so and, thus, it does not rely on low level human-human interaction data. It combines ideas of two diffusion models, motion inpainting, and motion style transfer to generate movement representations that are both temporally coherent and responsive to a chosen movement reference. The success of the model is demonstrated by quantitatively assessing the convergence of the feature distribution of the generated samples and the test set which serves as simulating the human performer. We show that our generations are first steps to creative dancing with AI as they are both diverse showing various deviations from the human partner while appearing realistic.
Authors: Yuki Tanaka, Seiichiro Katsura
Abstract:
Decreasing skilled workers is a very serious problem in the world. To deal with this problem, the skill transfer from experts to robots has been researched. These methods which teach robots by human motion are called imitation learning. Experts' skills generally appear in not only position data, but also force data. Thus, position and force data need to be saved and reproduced. To realize this, a lot of research has been conducted in the framework of a motion-copying system. Recent research uses machine learning methods to generate motion commands. However, most of them could not change tasks by following human intention. Some of them can change tasks by conditional training, but the labels are limited. Thus, we propose the flexible motion translation method by using Generative Adversarial Networks. The proposed method enables users to teach robots tasks by inputting data, and skills by a trained model. We evaluated the proposed system with a 3-DOF calligraphy robot.
Authors: Jingxuan He, Busheng Su, Finn Wong
Abstract:
Generating long, temporally coherent videos with precise control over subject identity and motion is a formidable challenge for current diffusion models, which often suffer from identity drift and are limited to short clips. We introduce PoseGen, a novel framework that generates arbitrarily long videos of a specific subject from a single reference image and a driving pose sequence. Our core innovation is an in-context LoRA finetuning strategy that injects subject appearance at the token level for identity preservation, while simultaneously conditioning on pose information at the channel level for fine-grained motion control. To overcome duration limits, PoseGen pioneers an interleaved segment generation method that seamlessly stitches video clips together, using a shared KV cache mechanism and a specialized transition process to ensure background consistency and temporal smoothness. Trained on a remarkably small 33-hour video dataset, extensive experiments show that PoseGen significantly outperforms state-of-the-art methods in identity fidelity, pose accuracy, and its unique ability to produce coherent, artifact-free videos of unlimited duration.
Authors: Mahmoud Ghorab, Matthias Lorenzen
Abstract:
There is a growing demand for autonomous mobile robots capable of navigating unstructured agricultural environments. Tasks such as weed control in meadows require efficient path planning through an unordered set of coordinates while minimizing travel distance and adhering to curvature constraints to prevent soil damage and protect vegetation. This paper presents an integrated navigation framework combining a global path planner based on the Dubins Traveling Salesman Problem (DTSP) with a Nonlinear Model Predictive Control (NMPC) strategy for local path planning and control. The DTSP generates a minimum-length, curvature-constrained path that efficiently visits all targets, while the NMPC leverages this path to compute control signals to accurately reach each waypoint. The system's performance was validated through comparative simulation analysis on real-world field datasets, demonstrating that the coupled DTSP-based planner produced smoother and shorter paths, with a reduction of about 16% in the provided scenario, compared to decoupled methods. Based thereon, the NMPC controller effectively steered the robot to the desired waypoints, while locally optimizing the trajectory and ensuring adherence to constraints. These findings demonstrate the potential of the proposed framework for efficient autonomous navigation in agricultural environments.
Authors: Yanghong Liu, Xingping Dong, Ming Li, Weixing Zhang, Yidong Lou
Abstract:
Pedestrian trajectory prediction is crucial for autonomous driving and robotics. While existing point-based and grid-based methods expose two main limitations: insufficiently modeling human motion dynamics, as they fail to balance local motion details with long-range spatiotemporal dependencies, and the time representations lack interaction with their frequency components in jointly modeling trajectory sequences. To address these challenges, we propose PatchTraj, a dynamic patch-based framework that integrates time-frequency joint modeling for trajectory prediction. Specifically, we decompose the trajectory into raw time sequences and frequency components, and employ dynamic patch partitioning to perform multi-scale segmentation, capturing hierarchical motion patterns. Each patch undergoes adaptive embedding with scale-aware feature extraction, followed by hierarchical feature aggregation to model both fine-grained and long-range dependencies. The outputs of the two branches are further enhanced via cross-modal attention, facilitating complementary fusion of temporal and spectral cues. The resulting enhanced embeddings exhibit strong expressive power, enabling accurate predictions even when using a vanilla Transformer architecture. Extensive experiments on ETH-UCY, SDD, NBA, and JRDB datasets demonstrate that our method achieves state-of-the-art performance. Notably, on the egocentric JRDB dataset, PatchTraj attains significant relative improvements of 26.7% in ADE and 17.4% in FDE, underscoring its substantial potential in embodied intelligence.
Authors: Deokjin Lee, Junho Song, Alireza Karimi, Sehoon Oh
Abstract:
Motion control of flexible joint robots (FJR) is challenged by inherent flexibility and configuration-dependent variations in system dynamics. While disturbance observers (DOB) can enhance system robustness, their performance is often limited by the elasticity of the joints and the variations in system parameters, which leads to a conservative design of the DOB. This paper presents a novel frequency response function (FRF)-based optimization method aimed at improving DOB performance, even in the presence of flexibility and system variability. The proposed method maximizes control bandwidth and effectively suppresses vibrations, thus enhancing overall system performance. Closed-loop stability is rigorously proven using the Nyquist stability criterion. Experimental validation on a FJR demonstrates that the proposed approach significantly improves robustness and motion performance, even under conditions of joint flexibility and system variation.
Authors: David Sinclair, Ademyemi Ademola, Babis Koniaris, Kenny Mitchell
Abstract:
DanceGraph is an architecture for synchronized online dancing overcoming the latency of networked body pose sharing. We break down this challenge by developing a real-time bandwidth-efficient architecture to minimize lag and reduce the timeframe of required motion prediction for synchronization with the music's rhythm. In addition, we show an interactive method for the parameterized stylization of dance motions for rhythmic dance using online dance correctives.
Authors: Ziyu Zhong, Björn Landfeldt, Günter Alce, Hector A Caltenco
Abstract:
As 6G networks are developed and defined, offloading of XR applications is emerging as one of the strong new use cases. The reduced 6G latency coupled with edge processing infrastructure will for the first time provide a realistic offloading scenario in cellular networks where several computationally intensive functions, including rendering, can migrate from the user device and into the network. A key advantage of doing so is the lowering of the battery needs in the user devices and the possibility to design new devices with smaller form factors. However, offloading introduces increased delays compared to local execution, primarily due to network transmission latency and queuing delays at edge servers, especially under multi-user concurrency. Despite the computational power of edge platforms, the resulting motion-to-photon (MTP) latency negatively impacts user experience. To mitigate this, motion prediction has been proposed to offset delays. Existing approaches build on either deep learning or Kalman filtering. Deep learning techniques face scalability limitations at the resource-constrained edge, as their computational expense intensifies with increasing user concurrency, while Kalman filtering suffers from poor handling of complex movements and fragility to packet loss inherent in 6G's high-frequency radio interfaces. In this work, we introduce a context-aware error-state Kalman filter (ESKF) prediction framework, which forecasts the user's head motion trajectory to compensate for MTP latency in remote XR. By integrating a motion classifier that categorizes head motions based on their predictability, our algorithm demonstrates reduced prediction error across different motion classes. Our findings demonstrate that the optimized ESKF not only surpasses traditional Kalman filters in positional and orientational accuracy but also exhibits enhanced robustness and resilience to packet loss.
Authors: Michal Heker, Sefy Kararlitsky, David Tolpin
Abstract:
We introduce a principled, data-driven approach for modeling a neural prior over human body poses using normalizing flows. Unlike heuristic or low-expressivity alternatives, our method leverages RealNVP to learn a flexible density over poses represented in the 6D rotation format. We address the challenge of modeling distributions on the manifold of valid 6D rotations by inverting the Gram-Schmidt process during training, enabling stable learning while preserving downstream compatibility with rotation-based frameworks. Our architecture and training pipeline are framework-agnostic and easily reproducible. We demonstrate the effectiveness of the learned prior through both qualitative and quantitative evaluations, and we analyze its impact via ablation studies. This work provides a sound probabilistic foundation for integrating pose priors into human motion capture and reconstruction pipelines.
Authors: Kazi Mahathir Rahman, Naveed Imtiaz Nafis, Md. Farhan Sadik, Mohammad Al Rafi, Mehedi Hasan Shahed
Abstract:
Helping deaf and hard-of-hearing people communicate more easily is the main goal of Automatic Sign Language Translation. Although most past research has focused on turning sign language into text, doing the reverse, turning spoken English into sign language animations, has been largely overlooked. That's because it involves multiple steps, such as understanding speech, translating it into sign-friendly grammar, and generating natural human motion. In this work, we introduce a complete pipeline that converts English speech into smooth, realistic 3D sign language animations. Our system starts with Whisper to translate spoken English into text. Then, we use a MarianMT machine translation model to translate that text into American Sign Language (ASL) gloss, a simplified version of sign language that captures meaning without grammar. This model performs well, reaching BLEU scores of 0.7714 and 0.8923. To make the gloss translation more accurate, we also use word embeddings such as Word2Vec and FastText to understand word meanings. Finally, we animate the translated gloss using a 3D keypoint-based motion system trained on Sign3D-WLASL, a dataset we created by extracting body, hand, and face key points from real ASL videos in the WLASL dataset. To support the gloss translation stage, we also built a new dataset called BookGlossCorpus-CG, which turns everyday English sentences from the BookCorpus dataset into ASL gloss using grammar rules. Our system stitches everything together by smoothly interpolating between signs to create natural, continuous animations. Unlike previous works like How2Sign and Phoenix-2014T that focus on recognition or use only one type of data, our pipeline brings together audio, text, and motion in a single framework that goes all the way from spoken English to lifelike 3D sign language animation.
Authors: Nikita Savin, Elena Ambrosovskaya, Dmitry Romaev, Anton Proskurnikov
Abstract:
Roll stabilization is a critical aspect of ship motion control, particularly for vessels operating in low-speed or zero-speed conditions, where traditional hydrodynamic fins lose their effectiveness. In this paper, we consider a roll damping system, developed by Navis JSC, based on two actively controlled zero-speed fins. Unlike conventional fin stabilizers, zero-speed fins employ a drag-based mechanism and active oscillations to generate stabilizing forces even when the vessel is stationary. We propose a simple linear control architecture that, however, accounts for nonlinear drag forces and actuator limitations. Simulation results on a high-fidelity vessel model used for HIL testing demonstrate the effectiveness of the proposed approach.
Authors: Edward Effendy, Kuan-Wei Tseng, Rei Kawakami
Abstract:
Accepted in the ICIP 2025
We present a novel transformer-based framework for whole-body grasping that addresses both pose generation and motion infilling, enabling realistic and stable object interactions. Our pipeline comprises three stages: Grasp Pose Generation for full-body grasp generation, Temporal Infilling for smooth motion continuity, and a LiftUp Transformer that refines downsampled joints back to high-resolution markers. To overcome the scarcity of hand-object interaction data, we introduce a data-efficient Generalized Pretraining stage on large, diverse motion datasets, yielding robust spatio-temporal representations transferable to grasping tasks. Experiments on the GRAB dataset show that our method outperforms state-of-the-art baselines in terms of coherence, stability, and visual realism. The modular design also supports easy adaptation to other human-motion applications.
Authors: David Tolpin, Sefy Kagarlitsky
Abstract:
Markerless motion capture enables the tracking of human motion without requiring physical markers or suits, offering increased flexibility and reduced costs compared to traditional systems. However, these advantages often come at the expense of higher computational demands and slower inference, limiting their applicability in real-time scenarios. In this technical report, we present a fast and reliable neural inverse kinematics framework designed for real-time capture of human body motions from 3D keypoints. We describe the network architecture, training methodology, and inference procedure in detail. Our framework is evaluated both qualitatively and quantitatively, and we support key design decisions through ablation studies.
Authors: Jesse St. Amand, Leonardo Gizzi, Martin A. Giese
Abstract:
We present the Gaussian process dynamical mixture model (GPDMM) and show its utility in single-example learning of human motion data. The Gaussian process dynamical model (GPDM) is a form of the Gaussian process latent variable model (GPLVM), but optimized with a hidden Markov model dynamical prior. The GPDMM combines multiple GPDMs in a probabilistic mixture-of-experts framework, utilizing embedded geometric features to allow for diverse sequences to be encoded in a single latent space, enabling the categorization and generation of each sequence class. GPDMs and our mixture model are particularly advantageous in addressing the challenges of modeling human movement in scenarios where data is limited and model interpretability is vital, such as in patient-specific medical applications like prosthesis control. We score the GPDMM on classification accuracy and generative ability in single-example learning, showcase model variations, and benchmark it against LSTMs, VAEs, and transformers.
Authors: Ruihao Xi, Xuekuan Wang, Yongcheng Li, Shuhua Li, Zichen Wang, Yiwei Wang, Feng Wei, Cairong Zhao
Abstract:
Generating realistic and controllable human motions, particularly those involving rich multi-character interactions, remains a significant challenge due to data scarcity and the complexities of modeling inter-personal dynamics. To address these limitations, we first introduce a new large-scale rich video human motion 2D dataset (Motion2D-Video-150K) comprising 150,000 video sequences. Motion2D-Video-150K features a balanced distribution of diverse single-character and, crucially, double-character interactive actions, each paired with detailed textual descriptions. Building upon this dataset, we propose a novel diffusion-based rich video human motion2D generation (RVHM2D) model. RVHM2D incorporates an enhanced textual conditioning mechanism utilizing either dual text encoders (CLIP-L/B) or T5-XXL with both global and local features. We devise a two-stage training strategy: the model is first trained with a standard diffusion objective, and then fine-tuned using reinforcement learning with an FID-based reward to further enhance motion realism and text alignment. Extensive experiments demonstrate that RVHM2D achieves leading performance on the Motion2D-Video-150K benchmark in generating both single and interactive double-character scenarios.
Authors: Junli Deng, Ping Shi, Qipei Li, Jinyang Guo
Abstract:
Reconstructing intricate, ever-changing environments remains a central ambition in computer vision, yet existing solutions often crumble before the complexity of real-world dynamics. We present DynaSplat, an approach that extends Gaussian Splatting to dynamic scenes by integrating dynamic-static separation and hierarchical motion modeling. First, we classify scene elements as static or dynamic through a novel fusion of deformation offset statistics and 2D motion flow consistency, refining our spatial representation to focus precisely where motion matters. We then introduce a hierarchical motion modeling strategy that captures both coarse global transformations and fine-grained local movements, enabling accurate handling of intricate, non-rigid motions. Finally, we integrate physically-based opacity estimation to ensure visually coherent reconstructions, even under challenging occlusions and perspective shifts. Extensive experiments on challenging datasets reveal that DynaSplat not only surpasses state-of-the-art alternatives in accuracy and realism but also provides a more intuitive, compact, and efficient route to dynamic scene reconstruction.
Authors: Ping-Kong Huang, Chien-Wu Lan, Chin-Tien Wu
Abstract:
Exoskeletons are widely used in rehabilitation and industrial applications to assist human motion. However, direct human testing poses risks due to possible exoskeleton malfunctions and inconsistent movement replication. To provide a safer and more repeatable testing environment, this study employs a bipedal robot platform to reproduce human gait, allowing for controlled exoskeleton evaluations. A control strategy based on the State-Dependent Riccati Equation (SDRE) is formulated to achieve optimal torque control for accurate gait replication. The bipedal robot dynamics are represented using double pendulum model, where SDRE-optimized control inputs minimize deviations from human motion trajectories. To align with motor behavior constraints, a parameterized control method is introduced to simplify the control process while effectively replicating human gait. The proposed approach initially adopts a ramping trapezoidal velocity model, which is then adapted into a piecewise linear velocity-time representation through motor command overwriting. This modification enables finer control over gait phase transitions while ensuring compatibility with motor dynamics. The corresponding cost function optimizes the control parameters to minimize errors in joint angles, velocities, and torques relative to SDRE control result. By structuring velocity transitions in accordance with motor limitations, the method reduce the computational load associated with real-time control. Experimental results verify the feasibility of the proposed parameterized control method in reproducing human gait. The bipedal robot platform provides a reliable and repeatable testing mechanism for knee-type exoskeletons, offering insights into exoskeleton performance under controlled conditions.
Authors: Zizhao Wu, Yingying Sun, Yiming Chen, Xiaoling Gu, Ruyu Liu, Jiazhou Chen
Abstract:
Human-human interaction generation has garnered significant attention in motion synthesis due to its vital role in understanding humans as social beings. However, existing methods typically rely on transformer-based architectures, which often face challenges related to scalability and efficiency. To address these issues, we propose a novel, efficient human-human interaction generation method based on the Mamba framework, designed to meet the demands of effectively capturing long-sequence dependencies while providing real-time feedback. Specifically, we introduce an adaptive spatio-temporal Mamba framework that utilizes two parallel SSM branches with an adaptive mechanism to integrate the spatial and temporal features of motion sequences. To further enhance the model's ability to capture dependencies within individual motion sequences and the interactions between different individual sequences, we develop two key modules: the self-adaptive spatio-temporal Mamba module and the cross-adaptive spatio-temporal Mamba module, enabling efficient feature learning. Extensive experiments demonstrate that our method achieves state-of-the-art results on two interaction datasets with remarkable quality and efficiency. Compared to the baseline method InterGen, our approach not only improves accuracy but also requires a minimal parameter size of just 66M ,only 36% of InterGen's, while achieving an average inference speed of 0.57 seconds, which is 46% of InterGen's execution time.
Authors: Martine Dyring Hansen, Elena Celledoni, Benjamin Kwanen Tapley
Abstract:
We introduce a data-driven method for learning the equations of motion of mechanical systems directly from position measurements, without requiring access to velocity data. This is particularly relevant in system identification tasks where only positional information is available, such as motion capture, pixel data or low-resolution tracking. Our approach takes advantage of the discrete Lagrange-d'Alembert principle and the forced discrete Euler-Lagrange equations to construct a physically grounded model of the system's dynamics. We decompose the dynamics into conservative and non-conservative components, which are learned separately using feed-forward neural networks. In the absence of external forces, our method reduces to a variational discretization of the action principle naturally preserving the symplectic structure of the underlying Hamiltonian system. We validate our approach on a variety of synthetic and real-world datasets, demonstrating its effectiveness compared to baseline methods. In particular, we apply our model to (1) measured human motion data and (2) latent embeddings obtained via an autoencoder trained on image sequences. We demonstrate that we can faithfully reconstruct and separate both the conservative and forced dynamics, yielding interpretable and physically consistent predictions.
Authors: Fernando Coutinho, Nicolas Lizarralde, Fernando Lizarralde
Abstract:
This work investigates the manufacturing of complex shapes parts with wire arc additive manufacturing (WAAM). In order to guarantee the integrity and quality of each deposited layer that composes the final piece, the deposition process is usually carried out in a flat position. However, for complex geometry parts with non-flat surfaces, this strategy causes unsupported overhangs and staircase effect, which contribute to a poor surface finishing. Generally, the build direction is not constant for every deposited section or layer in complex geometry parts. As a result, there is an additional concern to ensure the build direction is aligned with gravity, thus improving the quality of the final part. This paper proposes an algorithm to control the torch motion with respect to a deposition substrate as well as the torch orientation with respect to an inertial frame. The control scheme is based on task augmentation applied to an extended kinematic chain composed by two robots, which constitutes a coordinated control problem, and allows the deposition trajectory to be planned with respect to the deposition substrate coordinate frame while aligning each layer buildup direction with gravity (or any other direction defined for an inertial frame). Parts with complex geometry aspects have been produced in a WAAM cell composed by two robots (a manipulator with a welding torch and a positioning table holding the workpiece) in order to validate the proposed approach.
Authors: Albert Zhao, Stefano Soatto
Abstract:
We describe a robust planning method for autonomous driving that mixes normal and adversarial agent predictions output by a diffusion model trained for motion prediction. We first train a diffusion model to learn an unbiased distribution of normal agent behaviors. We then generate a distribution of adversarial predictions by biasing the diffusion model at test time to generate predictions that are likely to collide with a candidate plan. We score plans using expected cost with respect to a mixture distribution of normal and adversarial predictions, leading to a planner that is robust against adversarial behaviors but not overly conservative when agents behave normally. Unlike current approaches, we do not use risk measures that over-weight adversarial behaviors while placing little to no weight on low-cost normal behaviors or use hard safety constraints that may not be appropriate for all driving scenarios. We show the effectiveness of our method on single-agent and multi-agent jaywalking scenarios as well as a red light violation scenario.
Authors: Ali Rida Sahili, Najett Neji, Hedi Tabia
Abstract:
Text-driven motion generation offers a powerful and intuitive way to create human movements directly from natural language. By removing the need for predefined motion inputs, it provides a flexible and accessible approach to controlling animated characters. This makes it especially useful in areas like virtual reality, gaming, human-computer interaction, and robotics. In this review, we first revisit the traditional perspective on motion synthesis, where models focused on predicting future poses from observed initial sequences, often conditioned on action labels. We then provide a comprehensive and structured survey of modern text-to-motion generation approaches, categorizing them from two complementary perspectives: (i) architectural, dividing methods into VAE-based, diffusion-based, and hybrid models; and (ii) motion representation, distinguishing between discrete and continuous motion generation strategies. In addition, we explore the most widely used datasets, evaluation methods, and recent benchmarks that have shaped progress in this area. With this survey, we aim to capture where the field currently stands, bring attention to its key challenges and limitations, and highlight promising directions for future exploration. We hope this work offers a valuable starting point for researchers and practitioners working to push the boundaries of language-driven human motion synthesis.
Authors: Sana Alamgeer, Yasine Souissi, Anne H. H. Ngu
Abstract:
Training fall detection systems is challenging due to the scarcity of real-world fall data, particularly from elderly individuals. To address this, we explore the potential of Large Language Models (LLMs) for generating synthetic fall data. This study evaluates text-to-motion (T2M, SATO, ParCo) and text-to-text models (GPT4o, GPT4, Gemini) in simulating realistic fall scenarios. We generate synthetic datasets and integrate them with four real-world baseline datasets to assess their impact on fall detection performance using a Long Short-Term Memory (LSTM) model. Additionally, we compare LLM-generated synthetic data with a diffusion-based method to evaluate their alignment with real accelerometer distributions. Results indicate that dataset characteristics significantly influence the effectiveness of synthetic data, with LLM-generated data performing best in low-frequency settings (e.g., 20Hz) while showing instability in high-frequency datasets (e.g., 200Hz). While text-to-motion models produce more realistic biomechanical data than text-to-text models, their impact on fall detection varies. Diffusion-based synthetic data demonstrates the closest alignment to real data but does not consistently enhance model performance. An ablation study further confirms that the effectiveness of synthetic data depends on sensor placement and fall representation. These findings provide insights into optimizing synthetic data generation for fall detection models.
Authors: Xiong Li, Shulei Liu, Xingning Chen, Yisong Wu, Dong Zhu
Abstract:
LiDAR loop closure detection (LCD) is crucial for consistent Simultaneous Localization and Mapping (SLAM) but faces challenges in robustness and accuracy. Existing methods, including semantic graph approaches, often suffer from coarse geometric representations and lack temporal robustness against noise, dynamics, and viewpoint changes. We introduce PNE-SGAN, a Probabilistic NDT-Enhanced Semantic Graph Attention Network, to overcome these limitations. PNE-SGAN enhances semantic graphs by using Normal Distributions Transform (NDT) covariance matrices as rich, discriminative geometric node features, processed via a Graph Attention Network (GAT). Crucially, it integrates graph similarity scores into a probabilistic temporal filtering framework (modeled as an HMM/Bayes filter), incorporating uncertain odometry for motion modeling and utilizing forward-backward smoothing to effectively handle ambiguities. Evaluations on challenging KITTI sequences (00 and 08) demonstrate state-of-the-art performance, achieving Average Precision of 96.2\% and 95.1\%, respectively. PNE-SGAN significantly outperforms existing methods, particularly in difficult bidirectional loop scenarios where others falter. By synergizing detailed NDT geometry with principled probabilistic temporal reasoning, PNE-SGAN offers a highly accurate and robust solution for LiDAR LCD, enhancing SLAM reliability in complex, large-scale environments.
Authors: Manolo Canales Cuba, VinÃcius do Carmo MelÃcio, João Paulo Gois
Abstract:
Achieving high-fidelity and temporally smooth 3D human motion generation remains a challenge, particularly within resource-constrained environments. We introduce FlowMotion, a novel method leveraging Conditional Flow Matching (CFM). FlowMotion incorporates a training objective within CFM that focuses on more accurately predicting target motion in 3D human motion generation, resulting in enhanced generation fidelity and temporal smoothness while maintaining the fast synthesis times characteristic of flow-matching-based methods. FlowMotion achieves state-of-the-art jitter performance, achieving the best jitter in the KIT dataset and the second-best jitter in the HumanML3D dataset, and a competitive FID value in both datasets. This combination provides robust and natural motion sequences, offering a promising equilibrium between generation quality and temporal naturalness.
Authors: Yufei He, Xucong Zhang, Arno H. A. Stienen
Abstract:
Human intention detection with hand motion prediction is critical to drive the upper-extremity assistive robots in neurorehabilitation applications. However, the traditional methods relying on physiological signal measurement are restrictive and often lack environmental context. We propose a novel approach that predicts future sequences of both hand poses and joint positions. This method integrates gaze information, historical hand motion sequences, and environmental object data, adapting dynamically to the assistive needs of the patient without prior knowledge of the intended object for grasping. Specifically, we use a vector-quantized variational autoencoder for robust hand pose encoding with an autoregressive generative transformer for effective hand motion sequence prediction. We demonstrate the usability of these novel techniques in a pilot study with healthy subjects. To train and evaluate the proposed method, we collect a dataset consisting of various types of grasp actions on different objects from multiple subjects. Through extensive experiments, we demonstrate that the proposed method can successfully predict sequential hand movement. Especially, the gaze information shows significant enhancements in prediction capabilities, particularly with fewer input frames, highlighting the potential of the proposed method for real-world applications.
Authors: Vineela Reddy Pippera Badguna, Aliasghar Arab, Durga Avinash Kodavalla
Abstract:
Collaborative robots (cobots) increasingly operate alongside humans, demanding robust real-time safeguarding. Current safety standards (e.g., ISO 10218, ANSI/RIA 15.06, ISO/TS 15066) require risk assessments but offer limited guidance for real-time responses. We propose a virtual fencing approach that detects and predicts human motion, ensuring safe cobot operation. Safety and performance tradeoffs are modeled as an optimization problem and solved via sequential quadratic programming. Experimental validation shows that our method minimizes operational pauses while maintaining safety, providing a modular solution for human-robot collaboration.
Authors: Sicong Feng, Jielong Yang, Li Peng
Abstract:
Recent advances in diffusion models bring new vitality to visual content creation. However, current text-to-video generation models still face significant challenges such as high training costs, substantial data requirements, and difficulties in maintaining consistency between given text and motion of the foreground object. To address these challenges, we propose mask-guided video generation, which can control video generation through mask motion sequences, while requiring limited training data. Our model enhances existing architectures by incorporating foreground masks for precise text-position matching and motion trajectory control. Through mask motion sequences, we guide the video generation process to maintain consistent foreground objects throughout the sequence. Additionally, through a first-frame sharing strategy and autoregressive extension approach, we achieve more stable and longer video generation. Extensive qualitative and quantitative experiments demonstrate that this approach excels in various video generation tasks, such as video editing and generating artistic videos, outperforming previous methods in terms of consistency and quality. Our generated results can be viewed in the supplementary materials.
Authors: Shinichi Tanaka, Zhao Wang, Yoichi Kato, Jun Ohya
Abstract:
In this paper, we propose a unified framework that leverages a single pretrained LLM for Motion-related Multimodal Generation, referred to as MoMug. MoMug integrates diffusion-based continuous motion generation with the model's inherent autoregressive discrete text prediction capabilities by fine-tuning a pretrained LLM. This enables seamless switching between continuous motion output and discrete text token prediction within a single model architecture, effectively combining the strengths of both diffusion- and LLM-based approaches. Experimental results show that, compared to the most recent LLM-based baseline, MoMug improves FID by 38% and mean accuracy across seven metrics by 16.61% on the text-to-motion task. Additionally, it improves mean accuracy across eight metrics by 8.44% on the text-to-motion task. To the best of our knowledge, this is the first approach to integrate diffusion- and LLM-based generation within a single model for motion-related multimodal tasks while maintaining low training costs. This establishes a foundation for future advancements in motion-related generation, paving the way for high-quality yet cost-efficient motion synthesis.
Authors: M. van der Hulst, R. A. González, K. Classens, P. Tacx, N. Dirkx, J. van de Wijdeven, T. Oomen
Abstract:
Multivariable parametric models are essential for optimizing the performance of high-tech systems. The main objective of this paper is to develop an identification strategy that provides accurate parametric models for complex multivariable systems. To achieve this, an additive model structure is adopted, offering advantages over traditional black-box model structures when considering physical systems. The introduced method minimizes a weighted least-squares criterion and uses an iterative linear regression algorithm to solve the estimation problem, achieving local optimality upon convergence. Experimental validation is conducted on a prototype wafer-stage system, featuring a large number of spatially distributed actuators and sensors and exhibiting complex flexible dynamic behavior, to evaluate performance and demonstrate the effectiveness of the proposed method.
Authors: Yu Zhang, Xiaoyu Shi, Tongyang Xu
Abstract:
In this paper, we present an experimental setup to evaluate the performance of a radio frequency identification (RFID)-based integrated sensing and communication (ISAC) system. We focus on both the communication and sensing capabilities of the system. Our experiments evaluate the system's performance in various channel fading scenarios and with different substrate materials, including wood, plastic, wall, and glass. Additionally, we utilize radio tomographic imaging (RTI) to detect human motion by analyzing received signal strength indicator (RSSI) data. Our results demonstrate the impact of different materials and environments on RSSI and highlight the potential of RFID-based systems for effective sensing and communication in diverse applications.
Authors: Théo Cheynel, Thomas Rossi, Baptiste Bellot-Gurlet, Damien Rohmer, Marie-Paule Cani
Abstract:
Preserving semantics, in particular in terms of contacts, is a key challenge when retargeting motion between characters of different morphologies. Our solution relies on a low-dimensional embedding of the character's mesh, based on rigged key vertices that are automatically transferred from the source to the target. Motion descriptors are extracted from the trajectories of these key vertices, providing an embedding that contains combined semantic information about both shape and pose. A novel, adaptive algorithm is then used to automatically select and weight the most relevant features over time, enabling us to efficiently optimize the target motion until it conforms to these constraints, so as to preserve the semantics of the source motion. Our solution allows extensions to several novel use-cases where morphology and mesh contacts were previously overlooked, such as multi-character retargeting and motion transfer on uneven terrains. As our results show, our method is able to achieve real-time retargeting onto a wide variety of characters. Extensive experiments and comparison with state-of-the-art methods using several relevant metrics demonstrate improved results, both in terms of motion smoothness and contact accuracy.
Authors: Fadeel Sher Khan, Joshua Ebenezer, Hamid Sheikh, Seok-Jun Lee
Abstract:
Smartphone cameras have become ubiquitous imaging tools, yet their small sensors and compact optics often limit spatial resolution and introduce distortions. Combining information from multiple low-resolution (LR) frames to produce a high-resolution (HR) image has been explored to overcome the inherent limitations of smartphone cameras. Despite the promise of multi-frame super-resolution (MFSR), current approaches are hindered by datasets that fail to capture the characteristic noise and motion patterns found in real-world handheld burst images. In this work, we address this gap by introducing a novel synthetic data engine that uses multi-exposure static images to synthesize LR-HR training pairs while preserving sensor-specific noise characteristics and image motion found during handheld burst photography. We also propose MFSR-GAN: a multi-scale RAW-to-RGB network for MFSR. Compared to prior approaches, MFSR-GAN emphasizes a "base frame" throughout its architecture to mitigate artifacts. Experimental results on both synthetic and real data demonstrates that MFSR-GAN trained with our synthetic engine yields sharper, more realistic reconstructions than existing methods for real-world MFSR.
Authors: Huaiqu Feng, Guoyang Zhao, Cheng Liu, Yongwei Wang, Jun Wang
Abstract:
This paper presents a motion-coupled mapping algorithm for contour mapping of hybrid rice canopies, specifically designed for Agricultural Unmanned Ground Vehicles (Agri-UGV) navigating complex and unknown rice fields. Precise canopy mapping is essential for Agri-UGVs to plan efficient routes and avoid protected zones. The motion control of Agri-UGVs, tasked with impurity removal and other operations, depends heavily on accurate estimation of rice canopy height and structure. To achieve this, the proposed algorithm integrates real-time RGB-D sensor data with kinematic and inertial measurements, enabling efficient mapping and proprioceptive localization. The algorithm produces grid-based elevation maps that reflect the probabilistic distribution of canopy contours, accounting for motion-induced uncertainties. It is implemented on a high-clearance Agri-UGV platform and tested in various environments, including both controlled and dynamic rice field settings. This approach significantly enhances the mapping accuracy and operational reliability of Agri-UGVs, contributing to more efficient autonomous agricultural operations.
Authors: Canxuan Gang, Yiran Wang
Abstract:
This report reviews recent advancements in human motion prediction, reconstruction, and generation. Human motion prediction focuses on forecasting future poses and movements from historical data, addressing challenges like nonlinear dynamics, occlusions, and motion style variations. Reconstruction aims to recover accurate 3D human body movements from visual inputs, often leveraging transformer-based architectures, diffusion models, and physical consistency losses to handle noise and complex poses. Motion generation synthesizes realistic and diverse motions from action labels, textual descriptions, or environmental constraints, with applications in robotics, gaming, and virtual avatars. Additionally, text-to-motion generation and human-object interaction modeling have gained attention, enabling fine-grained and context-aware motion synthesis for augmented reality and robotics. This review highlights key methodologies, datasets, challenges, and future research directions driving progress in these fields.
Authors: Seungho Eum, Ihjoon Cho, Junghyeon Kim
Abstract:
With the recent advancements in generative AI such as GAN, Diffusion, and VAE, the use of generative AI for dance generation has seen significant progress and received considerable interest. In this study, We propose R-Lodge, an enhanced version of Lodge. R-Lodge incorporates Recurrent Sequential Representation Learning named Dance Recalibration to original coarse-to-fine long dance generation model. R-Lodge utilizes Dance Recalibration method using $N$ Dance Recalibration Block to address the lack of consistency in the coarse dance representation of the Lodge model. By utilizing this method, each generated dance motion incorporates a bit of information from the previous dance motions. We evaluate R-Lodge on FineDance dataset and the results show that R-Lodge enhances the consistency of the whole generated dance motions.
Authors: Fuxi Ling, Hongye Liu, Guoqiang Huang, Jing Li, Hong Wu, Zhihao Tang
Abstract:
Navigating the complexities of person re-identification (ReID) in varied surveillance scenarios, particularly when occlusions occur, poses significant challenges. We introduce an innovative Motion-Aware Fusion (MOTAR-FUSE) network that utilizes motion cues derived from static imagery to significantly enhance ReID capabilities. This network incorporates a dual-input visual adapter capable of processing both images and videos, thereby facilitating more effective feature extraction. A unique aspect of our approach is the integration of a motion consistency task, which empowers the motion-aware transformer to adeptly capture the dynamics of human motion. This technique substantially improves the recognition of features in scenarios where occlusions are prevalent, thereby advancing the ReID process. Our comprehensive evaluations across multiple ReID benchmarks, including holistic, occluded, and video-based scenarios, demonstrate that our MOTAR-FUSE network achieves superior performance compared to existing approaches.
Authors: Fabio Spada, Purnanand Elango, Behçet AçıkmeÅe
Abstract:
Recent investments in cislunar applications open new frontiers for space missions within highly nonlinear dynamical regimes. In this paper, we propose a method based on Sequential Convex Programming (SCP) to loiter around a given target with impulsive actuation while satisfying path constraints continuously over the finite time-horizon, i.e., independently of the number of nodes in which domain is discretized. Location, timing, magnitude, and direction of a fixed number of impulses are optimized in a model predictive framework, exploiting the exact nonlinear dynamics of non-stationary orbital regimes. The proposed approach is first validated on a relative orbiting problem with respect to a selenocentric near rectilinear halo orbit. The approach is then compared to a formulation with path constraints imposed only at nodes and with mesh refined to ensure complete satisfaction of path constraints over the continuous-time horizon. CPU time per iteration of 400 ms for the refined-mesh approach reduce to 5.5 ms for the proposed approach.
Authors: Anthony Richardson, Felix Putze
Abstract:
Attribute manipulation deals with the problem of changing individual attributes of a data point or a time series, while leaving all other aspects unaffected. This work focuses on the domain of human motion, more precisely karate movement patterns. To the best of our knowledge, it presents the first success at manipulating attributes of human motion data. One of the key requirements for achieving attribute manipulation on human motion is a suitable pose representation. Therefore, we design a novel continuous, rotation-based pose representation that enables the disentanglement of the human skeleton and the motion trajectory, while still allowing an accurate reconstruction of the original anatomy. The core idea of the manipulation approach is to use a transformer encoder for discovering high-level semantics, and a diffusion probabilistic model for modeling the remaining stochastic variations. We show that the embedding space obtained from the transformer encoder is semantically meaningful and linear. This enables the manipulation of high-level attributes, by discovering their linear direction of change in the semantic embedding space and moving the embedding along said direction. All code and data is made publicly available.
Authors: Yu Jiang, Yixing Chen, Xingyang Li
Abstract:
Motion synthesis plays a vital role in various fields of artificial intelligence. Among the various conditions of motion generation, text can describe motion details elaborately and is easy to acquire, making text-to-motion(T2M) generation important. State-of-the-art T2M techniques mainly leverage diffusion models to generate motions with text prompts as guidance, tackling the many-to-many nature of T2M tasks. However, existing T2M approaches face challenges, given the gap between the natural language domain and the physical domain, making it difficult to generate motions fully consistent with the texts.
We leverage kinematic phrases(KP), an intermediate representation that bridges these two modalities, to solve this. Our proposed method, KETA, decomposes the given text into several decomposed texts via a language model. It trains an aligner to align decomposed texts with the KP segments extracted from the generated motions. Thus, it's possible to restrict the behaviors for diffusion-based T2M models. During the training stage, we deploy the text-KP alignment loss as an auxiliary goal to supervise the models. During the inference stage, we refine our generated motions for multiple rounds in our decoder structure, where we compute the text-KP distance as the guidance signal in each new round. Experiments demonstrate that KETA achieves up to 1.19x, 2.34x better R precision and FID value on both backbones of the base model, motion diffusion model. Compared to a wide range of T2M generation models. KETA achieves either the best or the second-best performance.
Authors: Caner OdabaÅ, Ãmer Morgül
Abstract:
Dynamic components of the friction may directly impact the stability and performance of the motion control systems. The LuGre model is a prevalent friction model utilized to express this dynamic behavior. Since the LuGre model is very comprehensive, friction compensation based on it might be challenging. Inspired by this, we develop a novel observer to estimate and compensate for LuGre friction. Furthermore, we present a Lyapunov stability analysis to show that observer dynamics are asymptotically stable under certain conditions. Compared to its counterparts, the proposed observer constitutes a simple and standalone scheme that can be utilized with arbitrary control inputs in a straightforward way. As a primary difference, the presented observer estimates velocity and uses the velocity error to estimate friction in addition to control input. The extensive simulations revealed that the introduced observer enhances position and velocity tracking performance in the presence of friction.
Authors: Cheng Wang, Ziyang Feng, Pin Zhang, Manjiang Cao, Yiming Yuan, Tengfei Chang
Abstract:
Electromyography (EMG) signals are widely used in human motion recognition and medical rehabilitation, yet their variability and susceptibility to noise significantly limit the reliability of myoelectric control systems. Existing recognition algorithms often fail to handle unfamiliar actions effectively, leading to system instability and errors. This paper proposes a novel framework based on Generative Adversarial Networks (GANs) to enhance the robustness and usability of myoelectric control systems by enabling open-set recognition. The method incorporates a GAN-based discriminator to identify and reject unknown actions, maintaining system stability by preventing misclassifications. Experimental evaluations on publicly available and self-collected datasets demonstrate a recognition accuracy of 97.6\% for known actions and a 23.6\% improvement in Active Error Rate (AER) after rejecting unknown actions. The proposed approach is computationally efficient and suitable for deployment on edge devices, making it practical for real-world applications.
Authors: Charles Dietzel, Patrick J. Martin
Abstract:
One key area of research in Human-Robot Interaction is solving the human-robot correspondence problem, which asks how a robot can learn to reproduce a human motion demonstration when the human and robot have different dynamics and kinematic structures. Evaluating these correspondence problem solutions often requires the use of qualitative surveys that can be time consuming to design and administer. Additionally, qualitative survey results vary depending on the population of survey participants. In this paper, we propose the use of heterogeneous time-series similarity measures as a quantitative evaluation metric for evaluating motion correspondence to complement these qualitative surveys. To assess the suitability of these measures, we develop a behavioral cloning-based motion correspondence model, and evaluate it with a qualitative survey as well as quantitative measures. By comparing the resulting similarity scores with the human survey results, we identify Gromov Dynamic Time Warping as a promising quantitative measure for evaluating motion correspondence.
Authors: Meenakshi Gupta, Mingyuan Lei, Tat-Jen Cham, Hwee Kuan Lee
Abstract:
This paper introduces a novel framework named D-LORD (Double Latent Optimization for Representation Disentanglement), which is designed for motion stylization (motion style transfer and motion retargeting). The primary objective of this framework is to separate the class and content information from a given motion sequence using a data-driven latent optimization approach. Here, class refers to person-specific style, such as a particular emotion or an individual's identity, while content relates to the style-agnostic aspect of an action, such as walking or jumping, as universally understood concepts. The key advantage of D-LORD is its ability to perform style transfer without needing paired motion data. Instead, it utilizes class and content labels during the latent optimization process. By disentangling the representation, the framework enables the transformation of one motion sequences style to another's style using Adaptive Instance Normalization. The proposed D-LORD framework is designed with a focus on generalization, allowing it to handle different class and content labels for various applications. Additionally, it can generate diverse motion sequences when specific class and content labels are provided. The framework's efficacy is demonstrated through experimentation on three datasets: the CMU XIA dataset for motion style transfer, the MHAD dataset, and the RRIS Ability dataset for motion retargeting. Notably, this paper presents the first generalized framework for motion style transfer and motion retargeting, showcasing its potential contributions in this area.
Authors: Sam A. Scivier, Tarje Nissen-Meyer, Paula Koelemeijer, Atılım GüneŠBaydin
Abstract:
Estimates of seismic wave speeds in the Earth (seismic velocity models) are key input parameters to earthquake simulations for ground motion prediction. Owing to the non-uniqueness of the seismic inverse problem, typically many velocity models exist for any given region. The arbitrary choice of which velocity model to use in earthquake simulations impacts ground motion predictions. However, current hazard analysis methods do not account for this source of uncertainty. We present a proof-of-concept ground motion prediction workflow for incorporating uncertainties arising from inconsistencies between existing seismic velocity models. Our analysis is based on the probabilistic fusion of overlapping seismic velocity models using scalable Gaussian process (GP) regression. Specifically, we fit a GP to two synthetic 1-D velocity profiles simultaneously, and show that the predictive uncertainty accounts for the differences between the models. We subsequently draw velocity model samples from the predictive distribution and estimate peak ground displacement using acoustic wave propagation through the velocity models. The resulting distribution of possible ground motion amplitudes is much wider than would be predicted by simulating shaking using only the two input velocity models. This proof-of-concept illustrates the importance of probabilistic methods for physics-based seismic hazard analysis.
Authors: Zheyan Zhang, Diego Klabjan, Renee CB Manworren
Abstract:
In this work, we address a challenge in video inpainting: reconstructing occluded regions in dynamic, real-world scenarios. Motivated by the need for continuous human motion monitoring in healthcare settings, where facial features are frequently obscured, we propose a diffusion-based video-level inpainting model, DiffMVR. Our approach introduces a dynamic dual-guided image prompting system, leveraging adaptive reference frames to guide the inpainting process. This enables the model to capture both fine-grained details and smooth transitions between video frames, offering precise control over inpainting direction and significantly improving restoration accuracy in challenging, dynamic environments. DiffMVR represents a significant advancement in the field of diffusion-based inpainting, with practical implications for real-time applications in various dynamic settings.
Authors: Jiarui Song, Yingbo Sun, Qing Dong, Xuewu Ji
Abstract:
This paper studies the trajectory tracking and motion control problems for autonomous vehicles (AVs). A parameter adaptive control framework for AVs is proposed to enhance tracking accuracy and yaw stability. While establishing linear quadratic regulator (LQR) and three robust controllers, the control framework addresses trajectory tracking and motion control in a modular fashion, without introducing complexity into each controller. The robust performance has been guaranteed in three robust controllers by considering the parameter uncertainties, mismatch of unmodeled subsystem as well as external disturbance, comprehensively. Also, the dynamic characteristics of uncertain parameters are identified by Recursive Least Squares (RLS) algorithm, while the boundaries of three robust factors are determined through combining Gaussian Process Regression (GPR) and Bayesian optimization machine learning methods, reducing the conservatism of the controller. Sufficient conditions for closed-loop stability under the diverse robust factors are provided by the Lyapunov method analytically. The simulation results on MATLAB/Simulink and Carsim joint platform demonstrate that the proposed methodology considerably improves tracking accuracy, driving stability, and robust performance, guaranteeing the feasibility and capability of driving in extreme scenarios.
Authors: Omar El Assal, Carlos M. Mateo, Sebastien Ciron, David Fofi
Abstract:
One of the difficulties imposed on the manipulation of deformable objects is their characterization and the detection of representative keypoints for the purpose of manipulation. A keen interest was manifested by researchers in the last decade to characterize and manipulate deformable objects of non-fluid nature, such as clothes and ropes. Even though several propositions were made in the regard of object characterization, however researchers were always confronted with the need of pixel-level information of the object through images to extract relevant information. This usually is accomplished by means of segmentation networks trained on manually labeled data for this purpose. In this paper, we address the subject of characterizing weld pool to define stable features that serve as information for further motion control objectives. We achieve this by employing different pipelines. The first one consists of characterizing fluid deformable objects through the use of a generative model that is trained using a teacher-student framework. And in the second one we leverage foundation models by using them as teachers to characterize the object in the image, without the need of any pre-training and any dataset. The performance of knowledge distillation from foundation models into a smaller generative model shows prominent results in the characterization of deformable objects. The student network was capable of learning to retrieve the keypoitns of the object with an error of 13.4 pixels. And the teacher was evaluated based on its capacities to retrieve pixel level information represented by the object mask, with a mean Intersection Over Union (mIoU) of 75.26%.
Authors: Agamdeep Singh, Sujit PB, Mayank Vatsa
Abstract:
Access to expert coaching is essential for developing technique in sports, yet economic barriers often place it out of reach for many enthusiasts. To bridge this gap, we introduce Poze, an innovative video processing framework that provides feedback on human motion, emulating the insights of a professional coach. Poze combines pose estimation with sequence comparison and is optimized to function effectively with minimal data. Poze surpasses state-of-the-art vision-language models in video question-answering frameworks, achieving 70% and 196% increase in accuracy over GPT4V and LLaVAv1.6 7b, respectively.
Authors: Zexu Huang, Sarah Monazam Erfani, Siying Lu, Mingming Gong
Abstract:
High-fidelity digital human representations are increasingly in demand in the digital world, particularly for interactive telepresence, AR/VR, 3D graphics, and the rapidly evolving metaverse. Even though they work well in small spaces, conventional methods for reconstructing 3D human motion frequently require the use of expensive hardware and have high processing costs. This study presents HumanAvatar, an innovative approach that efficiently reconstructs precise human avatars from monocular video sources. At the core of our methodology, we integrate the pre-trained HuMoR, a model celebrated for its proficiency in human motion estimation. This is adeptly fused with the cutting-edge neural radiance field technology, Instant-NGP, and the state-of-the-art articulated model, Fast-SNARF, to enhance the reconstruction fidelity and speed. By combining these two technologies, a system is created that can render quickly and effectively while also providing estimation of human pose parameters that are unmatched in accuracy. We have enhanced our system with an advanced posture-sensitive space reduction technique, which optimally balances rendering quality with computational efficiency. In our detailed experimental analysis using both artificial and real-world monocular videos, we establish the advanced performance of our approach. HumanAvatar consistently equals or surpasses contemporary leading-edge reconstruction techniques in quality. Furthermore, it achieves these complex reconstructions in minutes, a fraction of the time typically required by existing methods. Our models achieve a training speed that is 110X faster than that of State-of-The-Art (SoTA) NeRF-based models. Our technique performs noticeably better than SoTA dynamic human NeRF methods if given an identical runtime limit. HumanAvatar can provide effective visuals after only 30 seconds of training.
Authors: Sudarshan Harithas, Srinath Sridhar
Abstract:
This paper introduces MotionGlot, a model that can generate motion across multiple embodiments with different action dimensions, such as quadruped robots and human bodies. By leveraging the well-established training procedures commonly used in large language models (LLMs), we introduce an instruction-tuning template specifically designed for motionrelated tasks. Our approach demonstrates that the principles underlying LLM training can be successfully adapted to learn a wide range of motion generation tasks across multiple embodiments with different action dimensions. We demonstrate the various abilities of MotionGlot on a set of 6 tasks and report an average improvement of 35.3% across tasks. Additionally, we contribute two new datasets: (1) a dataset of expert-controlled quadruped locomotion with approximately 48,000 trajectories paired with direction-based text annotations, and (2) a dataset of over 23,000 situational text prompts for human motion generation tasks. Finally, we conduct hardware experiments to validate the capabilities of our system in real-world applications.
Authors: Shiming Fang, Kaiyan Yu
Abstract:
Accurate dynamic modeling is critical for autonomous racing vehicles, especially during high-speed and agile maneuvers where precise motion prediction is essential for safety. Traditional parameter estimation methods face limitations such as reliance on initial guesses, labor-intensive fitting procedures, and complex testing setups. On the other hand, purely data-driven machine learning methods struggle to capture inherent physical constraints and typically require large datasets for optimal performance. To address these challenges, this paper introduces the Fine-Tuning Hybrid Dynamics (FTHD) method, which integrates supervised and unsupervised Physics-Informed Neural Networks (PINNs), combining physics-based modeling with data-driven techniques. FTHD fine-tunes a pre-trained Deep Dynamics Model (DDM) using a smaller training dataset, delivering superior performance compared to state-of-the-art methods such as the Deep Pacejka Model (DPM) and outperforming the original DDM. Furthermore, an Extended Kalman Filter (EKF) is embedded within FTHD (EKF-FTHD) to effectively manage noisy real-world data, ensuring accurate denoising while preserving the vehicle's essential physical characteristics. The proposed FTHD framework is validated through scaled simulations using the BayesRace Physics-based Simulator and full-scale real-world experiments from the Indy Autonomous Challenge. Results demonstrate that the hybrid approach significantly improves parameter estimation accuracy, even with reduced data, and outperforms existing models. EKF-FTHD enhances robustness by denoising real-world data while maintaining physical insights, representing a notable advancement in vehicle dynamics modeling for high-speed autonomous racing.
Authors: Mingdian Liu, Yilin Liu, Gurunandan Krishnan, Karl S Bayer, Bing Zhou
Abstract:
The generation of humanoid animation from text prompts can profoundly impact animation production and AR/VR experiences. However, existing methods only generate body motion data, excluding facial expressions and hand movements. This limitation, primarily due to a lack of a comprehensive whole-body motion dataset, inhibits their readiness for production use. Recent attempts to create such a dataset have resulted in either motion inconsistency among different body parts in the artificially augmented data or lower quality in the data extracted from RGB videos. In this work, we propose T2M-X, a two-stage method that learns expressive text-to-motion generation from partially annotated data. T2M-X trains three separate Vector Quantized Variational AutoEncoders (VQ-VAEs) for body, hand, and face on respective high-quality data sources to ensure high-quality motion outputs, and a Multi-indexing Generative Pretrained Transformer (GPT) model with motion consistency loss for motion generation and coordination among different body parts. Our results show significant improvements over the baselines both quantitatively and qualitatively, demonstrating its robustness against the dataset limitations.
Authors: Xiyana Figuera, Soogeun Park, Hyemin Ahn
Abstract:
We propose MR HuBo(Motion Retargeting leveraging a HUman BOdy prior), a cost-effective and convenient method to collect high-quality upper body paired pose data, which is essential for data-driven motion retargeting methods. Unlike existing approaches which collect pose data by converting human MoCap poses into robot poses, our method goes in reverse. We first sample diverse random robot poses, and then convert them into human poses. However, since random robot poses can result in extreme and infeasible human poses, we propose an additional technique to sort out extreme poses by exploiting a human body prior trained from a large amount of human pose data. Our data collection method can be used for any humanoid robots, if one designs or optimizes the system's hyperparameters which include a size scale factor and the joint angle ranges for sampling. In addition to this data collection method, we also present a two-stage motion retargeting neural network that can be trained via supervised learning on a large amount of paired data. Compared to other learning-based methods trained via unsupervised learning, we found that our deep neural network trained with ample high-quality paired data achieved notable performance. Our experiments also show that our data filtering method yields better retargeting results than training the model with raw and noisy data. Our code and video results are available on https://sites.google.com/view/mr-hubo/
Authors: Deng Junli, Luo Yihao, Yang Xueting, Li Siyou, Wang Wei, Guo Jinyang, Shi Ping
Abstract:
In the domain of photorealistic avatar generation, the fidelity of audio-driven lip motion synthesis is essential for realistic virtual interactions. Existing methods face two key challenges: a lack of vivacity due to limited diversity in generated lip poses and noticeable anamorphose motions caused by poor temporal coherence. To address these issues, we propose LawDNet, a novel deep-learning architecture enhancing lip synthesis through a Local Affine Warping Deformation mechanism. This mechanism models the intricate lip movements in response to the audio input by controllable non-linear warping fields. These fields consist of local affine transformations focused on abstract keypoints within deep feature maps, offering a novel universal paradigm for feature warping in networks. Additionally, LawDNet incorporates a dual-stream discriminator for improved frame-to-frame continuity and employs face normalization techniques to handle pose and scene variations. Extensive evaluations demonstrate LawDNet's superior robustness and lip movement dynamism performance compared to previous methods. The advancements presented in this paper, including the methodologies, training data, source codes, and pre-trained models, will be made accessible to the research community.
Authors: Koji Yamamoto
Abstract:
Wi-Fi sensing has attracted significant attention for human sensing and related applications. However, unsynchronized transmitters and receivers fundamentally preclude phase-coherent radar-like delay--Doppler analysis. By exploiting the line-of-sight (LoS) path, i.e., the earliest-arriving direct path, as an over-the-air (OTA) reference for delay and phase, we propose an OTA LoS-path referencing scheme, termed LoSRef, that enables delay calibration and phase alignment in unsynchronized Wi-Fi systems. Unlike conventional Wi-Fi bistatic radar systems that rely on wired reference signals or dedicated reference antennas, the proposed LoSRef-based framework bridges the long-standing gap between conventional Wi-Fi sensing and Wi-Fi radar, enabling phase-coherent bistatic radar-like operation in a drop-in Wi-Fi sensing configuration. Through human gait and respiration experiments in indoor environments, we demonstrate that phase-coherent channel impulse responses and corresponding delay--Doppler responses are obtained using only commodity Wi-Fi devices. This enables physically interpretable human motion sensing, including gait-induced range variation and respiration-induced sub-wavelength displacement, as well as the extraction of target-induced dynamics up to 20 dB weaker than dominant static multipath components.
Authors: Sarim Chaudhry
Abstract:
Human motion prediction has traditionally been framed as a sequence regression problem where models extrapolate future joint coordinates from observed pose histories. While effective over short horizons this approach does not separate observation reconstruction with dynamics modeling and offers no explicit representation of the latent causes governing motion. As a result, existing methods exhibit compounding drift, mean-pose collapse, and poorly calibrated uncertainty when rolled forward beyond the training regime. Here we propose a Semantic Belief-State World Model (SBWM) that reframes human motion prediction as latent dynamical simulation on the human body manifold. Rather than predicting poses directly, SBWM maintains a recurrent probabilistic belief state whose evolution is learned independently of pose reconstruction and explicitly aligned with the SMPL-X anatomical parameterization. This alignment imposes a structural information bottleneck that prevents the latent state from encoding static geometry or sensor noise, forcing it to capture motion dynamics, intent, and control-relevant structure. Inspired by belief-state world models developed for model-based reinforcement learning, SBWM adapts stochastic latent transitions and rollout-centric training to the domain of human motion. In contrast to RSSM-based, transformer, and diffusion approaches optimized for reconstruction fidelity, SBWM prioritizes stable forward simulation. We demonstrate coherent long-horizon rollouts, and competitive accuracy at substantially lower computational cost. These results suggest that treating the human body as part of the world models state space rather than its output fundamentally changes how motion is simulated, and predicted.
Authors: Emre Sariyildiz
Abstract:
This paper presents a new HPDOb that significantly improves disturbance estimation accuracy and robustness in motion control systems, surpassing the capabilities of conventional DObs. The proposed observer is analysed and synthesised in the discrete-time domain, providing a realistic representation of their dynamic behaviour and enabling enhanced controller design for practical applications. The core contribution of the HPDOb is a novel synthesis method that incorporates higher-order truncation error dynamics into disturbance estimation. Unlike conventional DObs, which are limited to zero-order truncation error, the HPDOb achieves first-order truncation error, yielding markedly improved estimation accuracy and robustness against disturbances in motion control systems. Simulation and experiments verify the stability and performance of HPDOb.
Authors: Emre Sariyildiz
Abstract:
This paper presents robust position control strategies for the novel VSSEA. By employing a constructed state-space model, two control schemes are developed in a unified framework: a state-feedback controller and a sliding mode controller, both integrated with a second-order DOb. The proposed framework achieves high-performance motion control by precisely estimating and compensating for internal and external disturbances, while preserving the nominal dynamic response. Simulation results demonstrate that pole-placement-based controllers are highly sensitive to disturbances, whereas LQR-based controllers offer improved robustness at the expense of slower dynamics. By incorporating DOb, robustness is significantly enhanced without degrading time response, and the LQR controller can be tuned solely for performance optimization. Experimental results confirm that the proposed robust position controllers can be implemented in real world applications. These results highlight the effectiveness of the proposed approach and lay the foundation for future investigations on robust stability and performance under different stiffness settings.
Authors: Gang Zhang
Abstract:
We present an innovative end-to-end framework for synthesizing semantically meaningful co-speech gestures and deploying them in real-time on a humanoid robot. This system addresses the challenge of creating natural, expressive non-verbal communication for robots by integrating advanced gesture generation techniques with robust physical control. Our core innovation lies in the meticulous integration of a semantics-aware gesture synthesis module, which derives expressive reference motions from speech input by leveraging a generative retrieval mechanism based on large language models (LLMs) and an autoregressive Motion-GPT model. This is coupled with a high-fidelity imitation learning control policy, the MotionTracker, which enables the Unitree G1 humanoid robot to execute these complex motions dynamically and maintain balance. To ensure feasibility, we employ a robust General Motion Retargeting (GMR) method to bridge the embodiment gap between human motion data and the robot platform. Through comprehensive evaluation, we demonstrate that our combined system produces semantically appropriate and rhythmically coherent gestures that are accurately tracked and executed by the physical robot. To our knowledge, this work represents a significant step toward general real-world use by providing a complete pipeline for automatic, semantic-aware, co-speech gesture generation and synchronized real-time physical deployment on a humanoid robot.
Authors: Haroon Hublikar
Abstract:
This thesis presents a unified modeling and simulation framework for analyzing sidewinding and tumbling locomotion of the COBRA snake robot across rigid, compliant, and granular terrains. A contact-implicit formulation is used to model distributed frictional interactions during sidewinding, and validated through MATLAB Simscape simulations and physical experiments on rigid ground and loose sand. To capture terrain deformation effects, Project Chrono's Soil Contact Model (SCM) is integrated with the articulated multibody dynamics, enabling prediction of slip, sinkage, and load redistribution that reduce stride efficiency on deformable substrates. For high-energy rolling locomotion on steep slopes, the Chrono DEM Engine is used to simulate particle-resolved granular interactions, revealing soil failure, intermittent lift-off, and energy dissipation mechanisms not captured by rigid models. Together, these methods span real-time control-oriented simulation and high-fidelity granular physics. Results demonstrate that rigid-ground models provide accurate short-horizon motion prediction, while continuum and particle-based terrain modeling becomes necessary for reliable mobility analysis in soft and highly dynamic environments. This work establishes a hierarchical simulation pipeline that advances robust, terrain-aware locomotion for robots operating in challenging unstructured settings.
Authors: Michael Ruderman
Abstract:
Practical design and tuning of feedback controllers has to do often without any model of the given dynamic process. Only some general assumptions about the process, in this work type-one stable behavior, can be available for engineers, in particular in motion control systems. This paper proposes a practical and simple in realization procedure for designing a robust PI-Lead control without modeling. The developed method derives from the ultimate sensitivity principles, known in the empirical Ziegler-Nichols tuning of PID control, and makes use of some general characteristics of loop shaping. A three-steps procedure is proposed to determine the integration time constant, control gain, and Lead-element in a way to guarantee a sufficient phase margin, while all steps are served by only experimental observations of the output value. The proposed method is also evaluated with experiments on a noise-perturbed electro-mechanical actuator system with translational motion.
Authors: Jiantang Huang
Abstract:
Basketball broadcast footage is traditionally captured at 30-60 fps, limiting viewers' ability to appreciate rapid plays such as dunks and crossovers. We present a real-time slow-motion synthesis system that produces high-quality basketball-specific interpolated frames by fine-tuning the recent Real-Time Intermediate Flow Estimation (RIFE) network on the SportsSloMo dataset. Our pipeline isolates the basketball subset of SportsSloMo, extracts training triplets, and fine-tunes RIFE with human-aware random cropping. We compare the resulting model against Super SloMo and the baseline RIFE model using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) on held-out clips. The fine-tuned RIFE attains a mean PSNR of 34.3 dB and SSIM of 0.949, outperforming Super SloMo by 2.1 dB and the baseline RIFE by 1.3 dB. A lightweight Gradio interface demonstrates end-to-end 4x slow-motion generation on a single RTX 4070 Ti Super at approximately 30 fps. These results indicate that task-specific adaptation is crucial for sports slow-motion, and that RIFE provides an attractive accuracy-speed trade-off for consumer applications.
Authors: Minmin Zeng
Abstract:
Action Quality Assessment (AQA) requires fine-grained understanding of human motion and precise evaluation of pose similarity. This paper proposes a topology-aware Graph Convolutional Network (GCN) framework, termed GCN-PSN, which models the human skeleton as a graph to learn discriminative, topology-sensitive pose embeddings. Using a Siamese architecture trained with a contrastive regression objective, our method outperforms coordinate-based baselines and achieves competitive performance on AQA-7 and FineDiving benchmarks. Experimental results and ablation studies validate the effectiveness of leveraging skeletal topology for pose similarity and action quality assessment.
Authors: Mohamed Adjel
Abstract:
Monocular 3D human pose estimation remains a challenging and ill-posed problem, particularly in real-time settings and unconstrained environments. While direct imageto-3D approaches require large annotated datasets and heavy models, 2D-to-3D lifting offers a more lightweight and flexible alternative-especially when enhanced with prior knowledge. In this work, we propose a framework that combines real-time 2D keypoint detection with geometry-aware 2D-to-3D lifting, explicitly leveraging known camera intrinsics and subject-specific anatomical priors. Our approach builds on recent advances in self-calibration and biomechanically-constrained inverse kinematics to generate large-scale, plausible 2D-3D training pairs from MoCap and synthetic datasets. We discuss how these ingredients can enable fast, personalized, and accurate 3D pose estimation from monocular images without requiring specialized hardware. This proposal aims to foster discussion on bridging data-driven learning and model-based priors to improve accuracy, interpretability, and deployability of 3D human motion capture on edge devices in the wild.
Authors: Yanwei Wang
Abstract:
Imitation learning has driven the development of generalist policies capable of autonomously solving multiple tasks. However, when a pretrained policy makes errors during deployment, there are limited mechanisms for users to correct its behavior. While collecting additional data for finetuning can address such issues, doing so for each downstream use case is inefficient at deployment. My research proposes an alternative: keeping pretrained policies frozen as a fixed skill repertoire while allowing user interactions to guide behavior generation toward user preferences at inference time. By making pretrained policies steerable, users can help correct policy errors when the model struggles to generalize-without needing to finetune the policy. Specifically, I propose (1) inference-time steering, which leverages user interactions to switch between discrete skills, and (2) task and motion imitation, which enables user interactions to edit continuous motions while satisfying task constraints defined by discrete symbolic plans. These frameworks correct misaligned policy predictions without requiring additional training, maximizing the utility of pretrained models while achieving inference-time user objectives.
Authors: Asrar Alruwayqi
Abstract:
We present a novel framework for dynamic 3D scene reconstruction that integrates three key components: an explicit tri-plane deformation field, a view-conditioned canonical radiance field with spherical harmonics (SH) attention, and a temporally-aware latent diffusion prior. Our method encodes 4D scenes using three orthogonal 2D feature planes that evolve over time, enabling efficient and compact spatiotemporal representation. These features are explicitly warped into a canonical space via a deformation offset field, eliminating the need for MLP-based motion modeling.
In canonical space, we replace traditional MLP decoders with a structured SH-based rendering head that synthesizes view-dependent color via attention over learned frequency bands improving both interpretability and rendering efficiency. To further enhance fidelity and temporal consistency, we introduce a transformer-guided latent diffusion module that refines the tri-plane and deformation features in a compressed latent space. This generative module denoises scene representations under ambiguous or out-of-distribution (OOD) motion, improving generalization.
Our model is trained in two stages: the diffusion module is first pre-trained independently, and then fine-tuned jointly with the full pipeline using a combination of image reconstruction, diffusion denoising, and temporal consistency losses. We demonstrate state-of-the-art results on synthetic benchmarks, surpassing recent methods such as HexPlane and 4D Gaussian Splatting in visual quality, temporal coherence, and robustness to sparse-view dynamic inputs.
Authors: Li Lin
Abstract:
The 3D human pose is vital for modern computer vision and computer graphics, and its prediction has drawn attention in recent years. 3D human pose prediction aims at forecasting a human's future motion from the previous sequence. Ignoring that the arbitrariness of human motion sequences has a firm origin in transition in both temporal and spatial axes limits the performance of state-of-the-art methods, leading them to struggle with making precise predictions on complex cases, e.g., arbitrarily posing or greeting. To alleviate this problem, a network called HaarMoDic is proposed in this paper, which utilizes the 2D Haar transform to project joints to higher resolution coordinates where the network can access spatial and temporal information simultaneously. An ablation study proves that the significant contributing module within the HaarModic Network is the Multi-Resolution Haar (MR-Haar) block. Instead of mining in one of two axes or extracting separately, the MR-Haar block projects whole motion sequences to a mixed-up coordinate in higher resolution with 2D Haar Transform, allowing the network to give scope to information from both axes in different resolutions. With the MR-Haar block, the HaarMoDic network can make predictions referring to a broader range of information. Experimental results demonstrate that HaarMoDic surpasses state-of-the-art methods in every testing interval on the Human3.6M dataset in the Mean Per Joint Position Error (MPJPE) metric.
Authors: Michael Ruderman
Abstract:
An asymptotic observer of the motion state variables with nonlinear friction [1] benefits from a robust to the noise state-space representation of the dynamic friction force, including pre-sliding transitions, and implements the reduced order Luenberger observation law with only measurable output displacement. The uniform asymptotic stability and convergence analysis of the proposed observer are elaborated by using the Lyapunov function-based stability criteria by Ignatyev and imposing the parametric constraints on the time dependent eigenvalues to be always negative real. A design procedure for assigning a dominant (thus slowest) real pole of the observer system matrix is proposed. A thorough experimental evaluation is given for the proposed observer-based friction compensation, which is performed for positioning and tracking tasks and compared with an optimally tuned PID feedback control.
Authors: Ji-Hong Li
Abstract:
This paper presents an active model-based FTC (fault-tolerant control) method for the dynamic positioning of a class of underwater vehicles with thruster redundancy. Compared to the widely used state and parameter estimation methods, this proposed scheme directly utilizes the vehicle's motion control error (MCE) to construct a residual for detecting thruster faults and failures in the steady state of the control system. In the case of thruster fault identification, the most difficult aspect is that the actual control input with thruster faults is unknown. However, through a detailed and precise analyses of MCE variation trends in the case of thruster faults, highly useful information about this unknown control input can be extracted. This characteristic also serves as the foundation for the novel scheme proposed in this paper. As for control reconfiguration, it is straightforward since the thrust losses can be directly estimated as a result of the identification process. Numerical studies with the real world vehicle model are also carried out to demonstrate the effectiveness of the proposed method.
Authors: Sammy Christen
Abstract:
Humans frequently grasp, manipulate, and move objects. Interactive systems assist humans in these tasks, enabling applications in Embodied AI, human-robot interaction, and virtual reality. However, current methods in hand-object synthesis often neglect dynamics and focus on generating static grasps. The first part of this dissertation introduces dynamic grasp synthesis, where a hand grasps and moves an object to a target pose. We approach this task using physical simulation and reinforcement learning. We then extend this to bimanual manipulation and articulated objects, requiring fine-grained coordination between hands. In the second part of this dissertation, we study human-to-robot handovers. We integrate captured human motion into simulation and introduce a student-teacher framework that adapts to human behavior and transfers from sim to real. To overcome data scarcity, we generate synthetic interactions, increasing training diversity by 100x. Our user study finds no difference between policies trained on synthetic vs. real motions.
Authors: Boseong Jeon
Abstract:
This paper presents a test-time guidance method to improve the output quality of the human motion diffusion models without requiring additional training. To have negative guidance, Smooth Perturbation Guidance (SPG) builds a weak model by temporally smoothing the motion in the denoising steps. Compared to model-agnostic methods originating from the image generation field, SPG effectively mitigates out-of-distribution issues when perturbing motion diffusion models. In SPG guidance, the nature of motion structure remains intact. This work conducts a comprehensive analysis across distinct model architectures and tasks. Despite its extremely simple implementation and no need for additional training requirements, SPG consistently enhances motion fidelity. Project page can be found at https://spg-blind.vercel.app/
Authors: Ali Ismail-Fawaz
Abstract:
Time series data, defined by equally spaced points over time, is essential in fields like medicine, telecommunications, and energy. Analyzing it involves tasks such as classification, clustering, prototyping, and regression. Classification identifies normal vs. abnormal movements in skeleton-based motion sequences, clustering detects stock market behavior patterns, prototyping expands physical therapy datasets, and regression predicts patient recovery. Deep learning has recently gained traction in time series analysis due to its success in other domains. This thesis leverages deep learning to enhance classification with feature engineering, introduce foundation models, and develop a compact yet state-of-the-art architecture. We also address limited labeled data with self-supervised learning. Our contributions apply to real-world tasks, including human motion analysis for action recognition and rehabilitation. We introduce a generative model for human motion data, valuable for cinematic production and gaming. For prototyping, we propose a shape-based synthetic sample generation method to support regression models when data is scarce. Lastly, we critically evaluate discriminative and generative models, identifying limitations in current methodologies and advocating for a robust, standardized evaluation framework. Our experiments on public datasets provide novel insights and methodologies, advancing time series analysis with practical applications.
Authors: Emre Sariyildiz
Abstract:
This paper proposes a novel Disturbance Observer, termed the High-Performance Disturbance Observer, which achieves more accurate disturbance estimation compared to the conventional disturbance observer, thereby delivering significant improvements in robustness and performance for motion control systems.
Authors: Emre Sariyildiz
Abstract:
In this paper, new stability analysis methods are proposed for digital robust motion control systems implemented using a disturbance observer.
Authors: Canxuan Gang
Abstract:
Human motion generation is a significant pursuit in generative computer vision with widespread applications in film-making, video games, AR/VR, and human-robot interaction. Current methods mainly utilize either diffusion-based generative models or autoregressive models for text-to-motion generation. However, they face two significant challenges: (1) The generation process is time-consuming, posing a major obstacle for real-time applications such as gaming, robot manipulation, and other online settings. (2) These methods typically learn a relative motion representation guided by text, making it difficult to generate motion sequences with precise joint-level control. These challenges significantly hinder progress and limit the real-world application of human motion generation techniques. To address this gap, we propose a simple yet effective architecture consisting of two key components. Firstly, we aim to improve hardware efficiency and computational complexity in transformer-based diffusion models for human motion generation. By customizing flash linear attention, we can optimize these models specifically for generating human motion efficiently. Furthermore, we will customize the consistency model in the motion latent space to further accelerate motion generation. Secondly, we introduce Motion ControlNet, which enables more precise joint-level control of human motion compared to previous text-to-motion generation methods. These contributions represent a significant advancement for text-to-motion generation, bringing it closer to real-world applications.
Authors: Emre Sariyildiz
Abstract:
By employing a unified state-space design framework, this paper proposes a novel systematic analysis and synthesis method that facilitates the implementation of both conventional zero-order (ZO) and high-order (HO) DObs. Furthermore, this design method supports the development of advanced DObs (e.g., the proposed High-Performance (HP) DOb in this paper), enabling more accurate disturbance estimation and, consequently, enhancing the robust stability and performance of motion control systems. Lyapunov direct method is employed in the discrete-time domain to analyse the stability of the proposed digital robust motion controllers. The analysis demonstrates that the proposed DObs are stable in the sense that the estimation error is uniformly ultimately bounded when subjected to bounded disturbances. Additionally, they are proven to be asymptotically stable under specific disturbance conditions, such as constant disturbances for the ZO and HP DObs. Stability constraints on the design parameters of the DObs are analytically derived, providing effective synthesis tools for the implementation of the digital robust motion controllers. The discrete-time analysis facilitates the derivation of more practical design constraints. The proposed analysis and synthesis methods have been rigorously validated through experimental evaluations, confirming their effectiveness.
Authors: Juncheng Zou
Abstract:
Accurate human motion prediction is crucial for safe human-robot collaboration but remains challenging due to the complexity of modeling intricate and variable human movements. This paper presents Parallel Multi-scale Incremental Prediction (PMS), a novel framework that explicitly models incremental motion across multiple spatio-temporal scales to capture subtle joint evolutions and global trajectory shifts. PMS encodes these multi-scale increments using parallel sequence branches, enabling iterative refinement of predictions. A multi-stage training procedure with a full-timeline loss integrates temporal context. Extensive experiments on four datasets demonstrate substantial improvements in continuity, biomechanical consistency, and long-term forecast stability by modeling inter-frame increments. PMS achieves state-of-the-art performance, increasing prediction accuracy by 16.3%-64.2% over previous methods. The proposed multi-scale incremental approach provides a powerful technique for advancing human motion prediction capabilities critical for seamless human-robot interaction.
Authors: Dongjie Fu
Abstract:
In the field of text-to-motion generation, Bert-type Masked Models (MoMask, MMM) currently produce higher-quality outputs compared to GPT-type autoregressive models (T2M-GPT). However, these Bert-type models often lack the streaming output capability required for applications in video game and multimedia environments, a feature inherent to GPT-type models. Additionally, they demonstrate weaker performance in out-of-distribution generation. To surpass the quality of BERT-type models while leveraging a GPT-type structure, without adding extra refinement models that complicate scaling data, we propose a novel architecture, Mogo (Motion Only Generate Once), which generates high-quality lifelike 3D human motions by training a single transformer model. Mogo consists of only two main components: 1) RVQ-VAE, a hierarchical residual vector quantization variational autoencoder, which discretizes continuous motion sequences with high precision; 2) Hierarchical Causal Transformer, responsible for generating the base motion sequences in an autoregressive manner while simultaneously inferring residuals across different layers. Experimental results demonstrate that Mogo can generate continuous and cyclic motion sequences up to 260 frames (13 seconds), surpassing the 196 frames (10 seconds) length limitation of existing datasets like HumanML3D. On the HumanML3D test set, Mogo achieves a FID score of 0.079, outperforming both the GPT-type model T2M-GPT (FID = 0.116), AttT2M (FID = 0.112) and the BERT-type model MMM (FID = 0.080). Furthermore, our model achieves the best quantitative performance in out-of-distribution generation.
Authors: Michael Ruderman
Abstract:
A standard motion control with feedback of the output displacement cannot handle unforeseen contact with environment without penetrating into the soft, i.e. viscoelastic, materials or even damaging the fragile materials. Robotics and mechatronics with tactile and haptic capabilities, and in particular medical robotics for example, place special demands on the advanced motion control systems that should enable the safe and harmless contact transitions. This paper shows how the basic principles of loop shaping can be easily used to handle sufficiently stiff motion control in such a way that it is extended by sensor-free dynamic reconfiguration upon contact with the environment. A thereupon based hybrid control scheme is proposed. A remarkable feature of the developed approach is that no measurement of the contact force is required and the input signal and the measured output displacement are the only quantities used for design and operation. Experiments on 1-DOF actuator are shown, where the moving tool comes into contact with grapes that are soft and simultaneously penetrable.
Authors: SK Hasan
Abstract:
Exoskeleton robots have become a promising tool in neurorehabilitation, offering effective physical therapy and recovery monitoring. The success of these therapies relies on precise motion control systems. Although computed torque control based on inverse dynamics provides a robust theoretical foundation, its practical application in rehabilitation is limited by its sensitivity to model accuracy, making it less effective when dealing with unpredictable payloads. To overcome these limitations, this study introduces a novel model reference computed torque controller that accounts for parametric uncertainties while optimizing computational efficiency. A dynamic model of a seven-degree-of-freedom human lower limb exoskeleton is developed, incorporating a realistic joint friction model to accurately reflect the physical behavior of the robot. To reduce computational demands, the control system is split into two loops: a slower loop that predicts joint torque requirements based on input trajectories and robot dynamics, and a faster PID loop that corrects trajectory tracking errors. Coriolis and centrifugal forces are excluded from the model due to their minimal impact on system dynamics relative to their computational cost. Experimental results show high accuracy in trajectory tracking, and statistical analyses confirm the controller's robustness and effectiveness in handling parametric uncertainties. This approach presents a promising advancement for improving the stability and performance of exoskeleton-based neurorehabilitation.
Authors: Xingyu Chen
Abstract:
Text-driven human motion generation is a multimodal task that synthesizes human motion sequences conditioned on natural language. It requires the model to satisfy textual descriptions under varying conditional inputs, while generating plausible and realistic human actions with high diversity. Existing diffusion model-based approaches have outstanding performance in the diversity and multimodality of generation. However, compared to autoregressive methods that train motion encoders before inference, diffusion methods lack in fitting the distribution of human motion features which leads to an unsatisfactory FID score. One insight is that the diffusion model lack the ability to learn the motion relations among spatio-temporal semantics through contextual reasoning. To solve this issue, in this paper, we proposed Motion Masked Diffusion Model \textbf{(MMDM)}, a novel human motion masked mechanism for diffusion model to explicitly enhance its ability to learn the spatio-temporal relationships from contextual joints among motion sequences. Besides, considering the complexity of human motion data with dynamic temporal characteristics and spatial structure, we designed two mask modeling strategies: \textbf{time frames mask} and \textbf{body parts mask}. During training, MMDM masks certain tokens in the motion embedding space. Then, the diffusion decoder is designed to learn the whole motion sequence from masked embedding in each sampling step, this allows the model to recover a complete sequence from incomplete representations. Experiments on HumanML3D and KIT-ML dataset demonstrate that our mask strategy is effective by balancing motion quality and text-motion consistency.
Authors: Farhad Aghili
Abstract:
This paper presents an adaptive visual servoing framework for robotic on-orbit servicing (OOS), specifically designed for capturing tumbling satellites. The vision-guided robotic system is capable of selecting optimal control actions in the event of partial or complete vision system failure, particularly in the short term. The autonomous system accounts for physical and operational constraints, executing visual servoing tasks to minimize a cost function. A hierarchical control architecture is developed, integrating a variant of the Iterative Closest Point (ICP) algorithm for image registration, a constrained noise-adaptive Kalman filter, fault detection and recovery logic, and a constrained optimal path planner. The dynamic estimator provides real-time estimates of unknown states and uncertain parameters essential for motion prediction, while ensuring consistency through a set of inequality constraints. It also adjusts the Kalman filter parameters adaptively in response to unexpected vision errors. In the event of vision system faults, a recovery strategy is activated, guided by fault detection logic that monitors the visual feedback via the metric fit error of image registration. The estimated/predicted pose and parameters are subsequently fed into an optimal path planner, which directs the robot's end-effector to the target's grasping point. This process is subject to multiple constraints, including acceleration limits, smooth capture, and line-of-sight maintenance with the target. Experimental results demonstrate that the proposed visual servoing system successfully captured a free-floating object, despite complete occlusion of the vision system.
Authors: Toshiaki Tsuji
Abstract: Recent advancements in imitation learning, particularly with the integration of LLM techniques, are set to significantly improve robots' dexterity and adaptability. This paper proposes using Mamba, a state-of-the-art architecture with potential applications in LLMs, for robotic imitation learning, highlighting its ability to function as an encoder that effectively captures contextual information. By reducing the dimensionality of the state space, Mamba operates similarly to an autoencoder. It effectively compresses the sequential information into state variables while preserving the essential temporal dynamics necessary for accurate motion prediction. Experimental results in tasks such as cup placing and case loading demonstrate that despite exhibiting higher estimation errors, Mamba achieves superior success rates compared to Transformers in practical task execution. This performance is attributed to Mamba's structure, which encompasses the state space model. Additionally, the study investigates Mamba's capacity to serve as a real-time motion generator with a limited amount of training data.