arXiv Papers of Industrial Anomaly Detection
Authors:Dayou Huang, Feng Xue, Xurui Li, Yu Zhou
Abstract:
Zero-shot industrial anomaly detection (ZSAD) methods typically yield coarse anomaly maps as vision transformers (ViTs) extract patch-level features only. To solve this, recent solutions attempt to predict finer anomalies using features from ZSAD, but they still struggle to recover fine-grained anomalies without missed detections, mainly due to the gap between randomly synthesized training anomalies and real ones. We observe that anomaly score maps exactly provide complementary spatial cues that are largely absent from ZSAD's image features, a fact overlooked before. Inspired by this, we propose an anomaly-aware refiner (AnoRefiner) that can be plugged into most ZSAD models and improve patch-level anomaly maps to the pixel level. First, we design an anomaly refinement decoder (ARD) that progressively enhances image features using anomaly score maps, reducing the reliance on synthetic anomaly data. Second, motivated by the mass production paradigm, we propose a progressive group-wise test-time training (PGT) strategy that trains ARD in each product group for the refinement process in the next group, while staying compatible with any ZSAD method. Experiments on the MVTec AD and VisA datasets show that AnoRefiner boosts various ZSAD models by up to a 5.2\% gain in pixel-AP metrics, which can also be directly observed in many visualizations. The code will be available at https://github.com/HUST-SLOW/AnoRefiner.
Authors:Yuxuan Lin, Hanjing Yan, Xuan Tong, Yang Chang, Huanzhen Wang, Ziheng Zhou, Shuyong Gao, Yan Wang, Wenqiang Zhang
Abstract:
Few-shot multimodal industrial anomaly detection is a critical yet underexplored task, offering the ability to quickly adapt to complex industrial scenarios. In few-shot settings, insufficient training samples often fail to cover the diverse patterns present in test samples. This challenge can be mitigated by extracting structural commonality from a small number of training samples. In this paper, we propose a novel few-shot unsupervised multimodal industrial anomaly detection method based on structural commonality, CIF (Commonality In Few). To extract intra-class structural information, we employ hypergraphs, which are capable of modeling higher-order correlations, to capture the structural commonality within training samples, and use a memory bank to store this intra-class structural prior. Firstly, we design a semantic-aware hypergraph construction module tailored for single-semantic industrial images, from which we extract common structures to guide the construction of the memory bank. Secondly, we use a training-free hypergraph message passing module to update the visual features of test samples, reducing the distribution gap between test features and features in the memory bank. We further propose a hyperedge-guided memory search module, which utilizes structural information to assist the memory search process and reduce the false positive rate. Experimental results on the MVTec 3D-AD dataset and the Eyecandies dataset show that our method outperforms the state-of-the-art (SOTA) methods in few-shot settings. Code is available at https://github.com/Sunny5250/CIF.
Authors:Xincheng Yao, Yan Luo, Zefeng Qian, Chongyang Zhang
Abstract:
The current mainstream and state-of-the-art anomaly detection (AD) methods are substantially established on pretrained feature networks yielded by ImageNet pretraining. However, regardless of supervised or self-supervised pretraining, the pretraining process on ImageNet does not match the goal of anomaly detection (i.e., pretraining in natural images doesn't aim to distinguish between normal and abnormal). Moreover, natural images and industrial image data in AD scenarios typically have the distribution shift. The two issues can cause ImageNet-pretrained features to be suboptimal for AD tasks. To further promote the development of the AD field, pretrained representations specially for AD tasks are eager and very valuable. To this end, we propose a novel AD representation learning framework specially designed for learning robust and discriminative pretrained representations for industrial anomaly detection. Specifically, closely surrounding the goal of anomaly detection (i.e., focus on discrepancies between normals and anomalies), we propose angle- and norm-oriented contrastive losses to maximize the angle size and norm difference between normal and abnormal features simultaneously. To avoid the distribution shift from natural images to AD images, our pretraining is performed on a large-scale AD dataset, RealIAD. To further alleviate the potential shift between pretraining data and downstream AD datasets, we learn the pretrained AD representations based on the class-generalizable representation, residual features. For evaluation, based on five embedding-based AD methods, we simply replace their original features with our pretrained representations. Extensive experiments on five AD datasets and five backbones consistently show the superiority of our pretrained features. The code is available at https://github.com/xcyao00/ADPretrain.
Authors:Usman Ali, Ali Zia, Abdul Rehman, Umer Ramzan, Zohaib Hassan, Talha Sattar, Jing Wang, Wei Xiang
Abstract:
Industrial anomaly detection (IAD) increasingly benefits from integrating 2D and 3D data, but robust cross-modal fusion remains challenging. We propose a novel unsupervised framework, Multi-Modal Attention-Driven Fusion Restoration (MAFR), which synthesises a unified latent space from RGB images and point clouds using a shared fusion encoder, followed by attention-guided, modality-specific decoders. Anomalies are localised by measuring reconstruction errors between input features and their restored counterparts. Evaluations on the MVTec 3D-AD and Eyecandies benchmarks demonstrate that MAFR achieves state-of-the-art results, with a mean I-AUROC of 0.972 and 0.901, respectively. The framework also exhibits strong performance in few-shot learning settings, and ablation studies confirm the critical roles of the fusion architecture and composite loss. MAFR offers a principled approach for fusing visual and geometric information, advancing the robustness and accuracy of industrial anomaly detection. Code is available at https://github.com/adabrh/MAFR
Authors:Zewen Li, Zitong Yu, Qilang Ye, Weicheng Xie, Wei Zhuo, Linlin Shen
Abstract:
The robust causal capability of Multimodal Large Language Models (MLLMs) hold the potential of detecting defective objects in Industrial Anomaly Detection (IAD). However, most traditional IAD methods lack the ability to provide multi-turn human-machine dialogues and detailed descriptions, such as the color of objects, the shape of an anomaly, or specific types of anomalies. At the same time, methods based on large pre-trained models have not fully stimulated the ability of large models in anomaly detection tasks. In this paper, we explore the combination of rich text semantics with both image-level and pixel-level information from images and propose IAD-GPT, a novel paradigm based on MLLMs for IAD. We employ Abnormal Prompt Generator (APG) to generate detailed anomaly prompts for specific objects. These specific prompts from the large language model (LLM) are used to activate the detection and segmentation functions of the pre-trained visual-language model (i.e., CLIP). To enhance the visual grounding ability of MLLMs, we propose Text-Guided Enhancer, wherein image features interact with normal and abnormal text prompts to dynamically select enhancement pathways, which enables language models to focus on specific aspects of visual data, enhancing their ability to accurately interpret and respond to anomalies within images. Moreover, we design a Multi-Mask Fusion module to incorporate mask as expert knowledge, which enhances the LLM's perception of pixel-level anomalies. Extensive experiments on MVTec-AD and VisA datasets demonstrate our state-of-the-art performance on self-supervised and few-shot anomaly detection and segmentation tasks, such as MVTec-AD and VisA datasets. The codes are available at \href{https://github.com/LiZeWen1225/IAD-GPT}{https://github.com/LiZeWen1225/IAD-GPT}.
Authors:Yuxi Liu, Yunfeng Ma, Yi Tang, Min Liu, Shuai Jiang, Yaonan Wang
Abstract:
Industrial surface defect detection (SDD) is critical for ensuring product quality and manufacturing reliability. Due to the diverse shapes and sizes of surface defects, SDD faces two main challenges: intraclass difference and interclass similarity. Existing methods primarily utilize manually designed models, which require extensive trial and error and often struggle to address both challenges effectively. To overcome this, we propose AutoNAD, an automated neural architecture design framework for SDD that jointly searches over convolutions, transformers, and multi-layer perceptrons. This hybrid design enables the model to capture both fine-grained local variations and long-range semantic context, addressing the two key challenges while reducing the cost of manual network design. To support efficient training of such a diverse search space, AutoNAD introduces a cross weight sharing strategy, which accelerates supernet convergence and improves subnet performance. Additionally, a searchable multi-level feature aggregation module (MFAM) is integrated to enhance multi-scale feature learning. Beyond detection accuracy, runtime efficiency is essential for industrial deployment. To this end, AutoNAD incorporates a latency-aware prior to guide the selection of efficient architectures. The effectiveness of AutoNAD is validated on three industrial defect datasets and further applied within a defect imaging and detection platform. Code will be available at https://github.com/Yuxi104/AutoNAD.
Authors:Mariette Schönfeld, Wannes Meert, Hendrik Blockeel
Abstract:
Industrial Anomaly Detection (IAD) is a subproblem within Computer Vision Anomaly Detection that has been receiving increasing amounts of attention due to its applicability to real-life scenarios. Recent research has focused on how to extract the most informative features, contrasting older kNN-based methods that use only pretrained features. These recent methods are much more expensive to train however and could complicate real-life application. Careful study of related work with regards to transformation invariance leads to the idea that popular benchmarks require robustness to only minor translations. With this idea we then formulate LWinNN, a local window based approach that creates a middle ground between kNN based methods that have either complete or no translation invariance. Our experiments demonstrate that this small change increases accuracy considerably, while simultaneously decreasing both train and test time. This teaches us two things: first, the gap between kNN-based approaches and more complex state-of-the-art methodology can still be narrowed by effective usage of the limited data available. Second, our assumption of requiring only limited translation invariance highlights potential areas of interest for future work and the need for more spatially diverse benchmarks, for which our method can hopefully serve as a new baseline. Our code can be found at https://github.com/marietteschonfeld/LWinNN .
Authors:Yanhui Li, Yunkang Cao, Chengliang Liu, Yuan Xiong, Xinghui Dong, Chao Huang
Abstract:
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.
Authors:An Xiang, Zixuan Huang, Xitong Gao, Kejiang Ye, Cheng-zhong Xu
Abstract:
Industrial anomaly detection for 2D objects has gained significant attention and achieved progress in anomaly detection (AD) methods. However, identifying 3D depth anomalies using only 2D information is insufficient. Despite explicitly fusing depth information into RGB images or using point cloud backbone networks to extract depth features, both approaches struggle to adequately represent 3D information in multimodal scenarios due to the disparities among different modal information. Additionally, due to the scarcity of abnormal samples in industrial data, especially in multimodal scenarios, it is necessary to perform anomaly generation to simulate real-world abnormal samples. Therefore, we propose a novel unified multimodal anomaly detection framework to address these issues. Our contributions consist of 3 key aspects. (1) We extract visible depth information from 3D point cloud data simply and use 2D RGB images to represent appearance, which disentangles depth and appearance to support unified anomaly generation. (2) Benefiting from the flexible input representation, the proposed Multi-Scale Gaussian Anomaly Generator and Unified Texture Anomaly Generator can generate richer anomalies in RGB and depth. (3) All modules share parameters for both RGB and depth data, effectively bridging 2D and 3D anomaly detection. Subsequent modules can directly leverage features from both modalities without complex fusion. Experiments show our method outperforms state-of-the-art (SOTA) on MVTec-3D AD and Eyecandies datasets. Code available at: https://github.com/Xantastic/BridgeNet
Authors:Guoxin Zang, Xue Li, Donglin Di, Lanshun Nie, Dechen Zhan, Yang Song, Lei Fan
Abstract:
While Vision-Language Models (VLMs) have shown promising progress in general multimodal tasks, they often struggle in industrial anomaly detection and reasoning, particularly in delivering interpretable explanations and generalizing to unseen categories. This limitation stems from the inherently domain-specific nature of anomaly detection, which hinders the applicability of existing VLMs in industrial scenarios that require precise, structured, and context-aware analysis. To address these challenges, we propose SAGE, a VLM-based framework that enhances anomaly reasoning through Self-Guided Fact Enhancement (SFE) and Entropy-aware Direct Preference Optimization (E-DPO). SFE integrates domain-specific knowledge into visual reasoning via fact extraction and fusion, while E-DPO aligns model outputs with expert preferences using entropy-aware optimization. Additionally, we introduce AD-PL, a preference-optimized dataset tailored for industrial anomaly reasoning, consisting of 28,415 question-answering instances with expert-ranked responses. To evaluate anomaly reasoning models, we develop Multiscale Logical Evaluation (MLE), a quantitative framework analyzing model logic and consistency. SAGE demonstrates superior performance on industrial anomaly datasets under zero-shot and one-shot settings. The code, model and dataset are available at https://github.com/amoreZgx1n/SAGE.
Authors:Jiawen Yu, Jieji Ren, Yang Chang, Qiaojun Yu, Xuan Tong, Boyang Wang, Yan Song, You Li, Xinji Mai, Wenqiang Zhang
Abstract:
Anomaly detection and localization in automated industrial manufacturing can significantly enhance production efficiency and product quality. Existing methods are capable of detecting surface defects in pre-defined or controlled imaging environments. However, accurately detecting workpiece defects in complex and unstructured industrial environments with varying views, poses and illumination remains challenging. We propose a novel anomaly detection and localization method specifically designed to handle inputs with perturbative patterns. Our approach introduces a new framework based on a collaborative distillation heterogeneous teacher network (HetNet), an adaptive local-global feature fusion module, and a local multivariate Gaussian noise generation module. HetNet can learn to model the complex feature distribution of normal patterns using limited information about local disruptive changes. We conducted extensive experiments on mainstream benchmarks. HetNet demonstrates superior performance with approximately 10% improvement across all evaluation metrics on MSC-AD under industrial conditions, while achieving state-of-the-art results on other datasets, validating its resilience to environmental fluctuations and its capability to enhance the reliability of industrial anomaly detection systems across diverse scenarios. Tests in real-world environments further confirm that HetNet can be effectively integrated into production lines to achieve robust and real-time anomaly detection. Codes, images and videos are published on the project website at: https://zihuatanejoyu.github.io/HetNet/
Authors:Dumindu Tissera, Omar Awadallah, Muhammad Umair Danish, Ayan Sadhu, Katarina Grolinger
Abstract:
Multi-label Classification (MLC) assigns an instance to one or more non-exclusive classes. A challenge arises when the dataset contains a large proportion of instances with no assigned class, referred to as negative data, which can overwhelm the learning process and hinder the accurate identification and classification of positive instances. Nevertheless, it is common in MLC applications such as industrial defect detection, agricultural disease identification, and healthcare diagnosis to encounter large amounts of negative data. Assigning a separate negative class to these instances further complicates the learning objective and introduces unnecessary redundancies. To address this challenge, we redesign standard MLC loss functions by deriving a likelihood of any class being present, formulated by a normalized weighted geometric mean of the predicted class probabilities. We introduce a regularization parameter that controls the relative contribution of the absent class probabilities to the any-class presence likelihood in positive instances. The any-class presence likelihood complements the multi-label learning by encouraging the network to become more aware of implicit positive instances and improve the label classification within those positive instances. Experiments on large-scale datasets with negative data: SewerML, modified COCO, and ChestX-ray14, across various networks and base loss functions show that our loss functions consistently improve MLC performance of their standard loss counterparts, achieving gains of up to 6.01 percentage points in F1, 8.06 in F2, and 3.11 in mean average precision, all without additional parameters or computational complexity. Code available at: https://github.com/ML-for-Sensor-Data-Western/gmean-mlc
Authors:Uzair Khan, Franco Fummi, Luigi Capogrosso
Abstract:
In the era of intelligent manufacturing, anomaly detection has become essential for maintaining quality control on modern production lines. However, while many existing models show promising performance, they are often too large, computationally demanding, and impractical to deploy on resource-constrained embedded devices that can be easily installed on the production lines of Small and Medium Enterprises (SMEs). To bridge this gap, we present KairosAD, a novel supervised approach that uses the power of the Mobile Segment Anything Model (MobileSAM) for image-based anomaly detection. KairosAD has been evaluated on the two well-known industrial anomaly detection datasets, i.e., MVTec-AD and ViSA. The results show that KairosAD requires 78% fewer parameters and boasts a 4x faster inference time compared to the leading state-of-the-art model, while maintaining comparable AUROC performance. We deployed KairosAD on two embedded devices, the NVIDIA Jetson NX, and the NVIDIA Jetson AGX. Finally, KairosAD was successfully installed and tested on the real production line of the Industrial Computer Engineering Laboratory (ICE Lab) at the University of Verona. The code is available at https://github.com/intelligolabs/KairosAD.
Authors:Qiyu Chen, Huiyuan Luo, Haiming Yao, Wei Luo, Zhen Qu, Chengkan Lv, Zhengtao Zhang
Abstract:
Anomaly detection plays a vital role in the inspection of industrial images. Most existing methods require separate models for each category, resulting in multiplied deployment costs. This highlights the challenge of developing a unified model for multi-class anomaly detection. However, the significant increase in inter-class interference leads to severe missed detections. Furthermore, the intra-class overlap between normal and abnormal samples, particularly in synthesis-based methods, cannot be ignored and may lead to over-detection. To tackle these issues, we propose a novel Center-aware Residual Anomaly Synthesis (CRAS) method for multi-class anomaly detection. CRAS leverages center-aware residual learning to couple samples from different categories into a unified center, mitigating the effects of inter-class interference. To further reduce intra-class overlap, CRAS introduces distance-guided anomaly synthesis that adaptively adjusts noise variance based on normal data distribution. Experimental results on diverse datasets and real-world industrial applications demonstrate the superior detection accuracy and competitive inference speed of CRAS. The source code and the newly constructed dataset are publicly available at https://github.com/cqylunlun/CRAS.
Authors:Guan Gui, Bin-Bin Gao, Jun Liu, Chengjie Wang, Yunsheng Wu
Abstract:
Anomaly detection is a practical and challenging task due to the scarcity of anomaly samples in industrial inspection. Some existing anomaly detection methods address this issue by synthesizing anomalies with noise or external data. However, there is always a large semantic gap between synthetic and real-world anomalies, resulting in weak performance in anomaly detection. To solve the problem, we propose a few-shot Anomaly-driven Generation (AnoGen) method, which guides the diffusion model to generate realistic and diverse anomalies with only a few real anomalies, thereby benefiting training anomaly detection models. Specifically, our work is divided into three stages. In the first stage, we learn the anomaly distribution based on a few given real anomalies and inject the learned knowledge into an embedding. In the second stage, we use the embedding and given bounding boxes to guide the diffusion model to generate realistic and diverse anomalies on specific objects (or textures). In the final stage, we propose a weakly-supervised anomaly detection method to train a more powerful model with generated anomalies. Our method builds upon DRAEM and DesTSeg as the foundation model and conducts experiments on the commonly used industrial anomaly detection dataset, MVTec. The experiments demonstrate that our generated anomalies effectively improve the model performance of both anomaly classification and segmentation tasks simultaneously, \eg, DRAEM and DseTSeg achieved a 5.8\% and 1.5\% improvement in AU-PR metric on segmentation task, respectively. The code and generated anomalous data are available at https://github.com/gaobb/AnoGen.
Authors:Peijian Zeng, Feiyan Pang, Zhanbo Wang, Aimin Yang
Abstract:
Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects. Traditional methods such as feature embedding and reconstruction-based approaches require large datasets and struggle with scalability. Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations, leading to high implementation costs and false positives. Additionally, industrial datasets like MVTec-AD and VisA suffer from severe class imbalance, with defect samples constituting only 23.8% and 11.1% of total data respectively. To address these challenges, we propose a reward function that dynamically prioritizes rare defect patterns during training to handle class imbalance. We also introduce a mask-free reasoning framework using Chain of Thought (CoT) and Group Relative Policy Optimization (GRPO) mechanisms, enabling anomaly detection directly from raw images without annotated masks. This approach generates interpretable step-by-step explanations for defect localization. Our method achieves state-of-the-art performance, outperforming prior approaches by 36% in accuracy on MVTec-AD and 16% on VisA. By eliminating mask dependency and reducing costs while providing explainable outputs, this work advances industrial anomaly detection and supports scalable quality control in manufacturing. Code to reproduce the experiment is available at https://github.com/LilaKen/LR-IAD.
Authors:Wenbing Zhu, Lidong Wang, Ziqing Zhou, Chengjie Wang, Yurui Pan, Ruoyi Zhang, Zhuhao Chen, Linjie Cheng, Bin-Bin Gao, Jiangning Zhang, Zhenye Gan, Yuxie Wang, Yulong Chen, Shuguang Qian, Mingmin Chi, Bo Peng, Lizhuang Ma
Abstract:
The increasing complexity of industrial anomaly detection (IAD) has positioned multimodal detection methods as a focal area of machine vision research. However, dedicated multimodal datasets specifically tailored for IAD remain limited. Pioneering datasets like MVTec 3D have laid essential groundwork in multimodal IAD by incorporating RGB+3D data, but still face challenges in bridging the gap with real industrial environments due to limitations in scale and resolution. To address these challenges, we introduce Real-IAD D3, a high-precision multimodal dataset that uniquely incorporates an additional pseudo3D modality generated through photometric stereo, alongside high-resolution RGB images and micrometer-level 3D point clouds. Real-IAD D3 features finer defects, diverse anomalies, and greater scale across 20 categories, providing a challenging benchmark for multimodal IAD Additionally, we introduce an effective approach that integrates RGB, point cloud, and pseudo-3D depth information to leverage the complementary strengths of each modality, enhancing detection performance. Our experiments highlight the importance of these modalities in boosting detection robustness and overall IAD performance. The dataset and code are publicly accessible for research purposes at https://realiad4ad.github.io/Real-IAD D3
Authors:Qishan Wang, Shuyong Gao, Junjie Hu, Jiawen Yu, Xuan Tong, You Li, Wenqiang Zhang
Abstract:
Multi-class Unsupervised Anomaly Detection algorithms (MUAD) are receiving increasing attention due to their relatively low deployment costs and improved training efficiency. However, the real-world effectiveness of MUAD methods is questioned due to limitations in current Industrial Anomaly Detection (IAD) datasets. These datasets contain numerous classes that are unlikely to be produced by the same factory and fail to cover multiple structures or appearances. Additionally, the defects do not reflect real-world characteristics. Therefore, we introduce the Heterogeneous Same-Sort Industrial Anomaly Detection (HSS-IAD) dataset, which contains 8,580 images of metallic-like industrial parts and precise anomaly annotations. These parts exhibit variations in structure and appearance, with subtle defects that closely resemble the base materials. We also provide foreground images for synthetic anomaly generation. Finally, we evaluate popular IAD methods on this dataset under multi-class and class-separated settings, demonstrating its potential to bridge the gap between existing datasets and real factory conditions. The dataset is available at https://github.com/Qiqigeww/HSS-IAD-Dataset.
Authors:Alireza Salehi, Mohammadreza Salehi, Reshad Hosseini, Cees G. M. Snoek, Makoto Yamada, Mohammad Sabokrou
Abstract:
Anomaly Detection involves identifying deviations from normal data distributions and is critical in fields such as medical diagnostics and industrial defect detection. Traditional AD methods typically require the availability of normal training samples; however, this assumption is not always feasible. Recently, the rich pretraining knowledge of CLIP has shown promising zero-shot generalization in detecting anomalies without the need for training samples from target domains. However, CLIP's coarse-grained image-text alignment limits localization and detection performance for fine-grained anomalies due to: (1) spatial misalignment, and (2) the limited sensitivity of global features to local anomalous patterns. In this paper, we propose Crane which tackles both problems. First, we introduce a correlation-based attention module to retain spatial alignment more accurately. Second, to boost the model's awareness of fine-grained anomalies, we condition the learnable prompts of the text encoder on image context extracted from the vision encoder and perform a local-to-global representation fusion. Moreover, our method can incorporate vision foundation models such as DINOv2 to further enhance spatial understanding and localization. The key insight of Crane is to balance learnable adaptations for modeling anomalous concepts with non-learnable adaptations that preserve and exploit generalized pretrained knowledge, thereby minimizing in-domain overfitting and maximizing performance on unseen domains. Extensive evaluation across 14 diverse industrial and medical datasets demonstrates that Crane consistently improves the state-of-the-art ZSAD from 2% to 28%, at both image and pixel levels, while remaining competitive in inference speed. The code is available at https://github.com/AlirezaSalehy/Crane.
Authors:Aimira Baitieva, Yacine Bouaouni, Alexandre Briot, Dick Ameln, Souhaiel Khalfaoui, Samet Akcay
Abstract:
Anomaly detection (AD) is essential for automating visual inspection in manufacturing. This field of computer vision is rapidly evolving, with increasing attention towards real-world applications. Meanwhile, popular datasets are typically produced in controlled lab environments with artificially created defects, unable to capture the diversity of real production conditions. New methods often fail in production settings, showing significant performance degradation or requiring impractical computational resources. This disconnect between academic results and industrial viability threatens to misdirect visual anomaly detection research. This paper makes three key contributions: (1) we demonstrate the importance of real-world datasets and establish benchmarks using actual production data, (2) we provide a fair comparison of existing SOTA methods across diverse tasks by utilizing metrics that are valuable for practical applications, and (3) we present a comprehensive analysis of recent advancements in this field by discussing important challenges and new perspectives for bridging the academia-industry gap. The code is publicly available at https://github.com/abc-125/viad-benchmark
Authors:Yuanze Li, Shihao Yuan, Haolin Wang, Qizhang Li, Ming Liu, Chen Xu, Guangming Shi, Wangmeng Zuo
Abstract:
Although recent methods have tried to introduce large multimodal models (LMMs) into industrial anomaly detection (IAD), their generalization in the IAD field is far inferior to that for general purposes. We summarize the main reasons for this gap into two aspects. On one hand, general-purpose LMMs lack cognition of defects in the visual modality, thereby failing to sufficiently focus on defect areas. Therefore, we propose to modify the AnyRes structure of the LLaVA model, providing the potential anomalous areas identified by existing IAD models to the LMMs. On the other hand, existing methods mainly focus on identifying defects by learning defect patterns or comparing with normal samples, yet they fall short of understanding the causes of these defects. Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm. An instruction-tuning dataset for IAD (InstructIAD) and a data organization approach for Chain-of-Thought with manufacturing (CoT-M) are designed to leverage the manufacturing process for IAD. Based on the above two modifications, we present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process for industrial anomaly detection. Extensive experiments show that our Triad not only demonstrates competitive performance against current LMMs but also achieves further improved accuracy when equipped with manufacturing processes. Source code, training data, and pre-trained models will be publicly available at https://github.com/tzjtatata/Triad.
Authors:Wenqiao Li, Yao Gu, Xintao Chen, Xiaohao Xu, Ming Hu, Xiaonan Huang, Yingna Wu
Abstract:
Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned physical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously replicate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using a real robot arm and motor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset includes more than 6400 videos across 22 real-world object categories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD requires visual reasoning, combining both physical knowledge and video content to determine object abnormality. We benchmark state-of-the-art anomaly detection methods under three settings: unsupervised AD, weakly-supervised AD, and video-understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our project is available at https://guyao2023.github.io/Phys-AD/.
Authors:Sangwoong Yoon, Himchan Hwang, Hyeokju Jeong, Dong Kyu Shin, Che-Sang Park, Sehee Kweon, Frank Chongwoo Park
Abstract:
We propose the Value Gradient Sampler (VGS), a trainable sampler based on the interpretation of sampling as discrete-time sequential decision-making. VGS generates samples from a given unnormalized density (i.e., energy) by drifting and diffusing randomly initialized particles. In VGS, finding the optimal drift is equivalent to solving an optimal control problem where the cost is the upper bound of the KL divergence between the target density and the samples. We employ value-based dynamic programming to solve this optimal control problem, which gives the gradient of the value function as the optimal drift vector. The connection to sequential decision making allows VGS to leverage extensively studied techniques in reinforcement learning, making VGS a fast, adaptive, and accurate sampler that achieves competitive results in various sampling benchmarks. Furthermore, VGS can replace MCMC in contrastive divergence training of energy-based models. We demonstrate the effectiveness of VGS in training accurate energy-based models in industrial anomaly detection applications.
Authors:Enquan Yang, Peng Xing, Hanyang Sun, Wenbo Guo, Yuanwei Ma, Zechao Li, Dan Zeng
Abstract:
Industrial anomaly detection achieves progress thanks to datasets such as MVTec-AD and VisA. However, they suffer from limitations in terms of the number of defect samples, types of defects, and availability of real-world scenes. These constraints inhibit researchers from further exploring the performance of industrial detection with higher accuracy. To this end, we propose a new large-scale anomaly detection dataset called 3CAD, which is derived from real 3C production lines. Specifically, the proposed 3CAD includes eight different types of manufactured parts, totaling 27,039 high-resolution images labeled with pixel-level anomalies. The key features of 3CAD are that it covers anomalous regions of different sizes, multiple anomaly types, and the possibility of multiple anomalous regions and multiple anomaly types per anomaly image. This is the largest and first anomaly detection dataset dedicated to 3C product quality control for community exploration and development. Meanwhile, we introduce a simple yet effective framework for unsupervised anomaly detection: a Coarse-to-Fine detection paradigm with Recovery Guidance (CFRG). To detect small defect anomalies, the proposed CFRG utilizes a coarse-to-fine detection paradigm. Specifically, we utilize a heterogeneous distillation model for coarse localization and then fine localization through a segmentation model. In addition, to better capture normal patterns, we introduce recovery features as guidance. Finally, we report the results of our CFRG framework and popular anomaly detection methods on the 3CAD dataset, demonstrating strong competitiveness and providing a highly challenging benchmark to promote the development of the anomaly detection field. Data and code are available: https://github.com/EnquanYang2022/3CAD.
Authors:Hossein Mirzaei, Mojtaba Nafez, Jafar Habibi, Mohammad Sabokrou, Mohammad Hossein Rohban
Abstract:
Despite significant progress in Anomaly Detection (AD), the robustness of existing detection methods against adversarial attacks remains a challenge, compromising their reliability in critical real-world applications such as autonomous driving. This issue primarily arises from the AD setup, which assumes that training data is limited to a group of unlabeled normal samples, making the detectors vulnerable to adversarial anomaly samples during testing. Additionally, implementing adversarial training as a safeguard encounters difficulties, such as formulating an effective objective function without access to labels. An ideal objective function for adversarial training in AD should promote strong perturbations both within and between the normal and anomaly groups to maximize margin between normal and anomaly distribution. To address these issues, we first propose crafting a pseudo-anomaly group derived from normal group samples. Then, we demonstrate that adversarial training with contrastive loss could serve as an ideal objective function, as it creates both inter- and intra-group perturbations. However, we notice that spurious negative pairs compromise the conventional contrastive loss to achieve robust AD. Spurious negative pairs are those that should be closely mapped but are erroneously separated. These pairs introduce noise and misguide the direction of inter-group adversarial perturbations. To overcome the effect of spurious negative pairs, we define opposite pairs and adversarially pull them apart to strengthen inter-group perturbations. Experimental results demonstrate our superior performance in both clean and adversarial scenarios, with a 26.1% improvement in robust detection across various challenging benchmark datasets. The implementation of our work is available at: https://github.com/rohban-lab/COBRA.
Authors:Chengjie Wang, Xi Jiang, Bin-Bin Gao, Zhenye Gan, Yong Liu, Feng Zheng, Lizhuang Ma
Abstract:
Although mainstream unsupervised anomaly detection (AD) (including image-level classification and pixel-level segmentation)algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper is the first to consider fully unsupervised industrial anomaly detection (i.e., unsupervised AD with noisy data). To solve this problem, we proposed memory-based unsupervised AD methods, SoftPatch and SoftPatch+, which efficiently denoise the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset, and SoftPatch+ has more robust performance which is articularly useful in real-world industrial inspection scenarios with high levels of noise (from 10% to 40%). Comprehensive experiments conducted in diverse noise scenarios demonstrate that both SoftPatch and SoftPatch+ outperform the state-of-the-art AD methods on the MVTecAD, ViSA, and BTAD benchmarks. Furthermore, the performance of SoftPatch and SoftPatch+ is comparable to that of the noise-free methods in conventional unsupervised AD setting. The code of the proposed methods can be found at https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch.
Authors:Qiyu Chen, Huiyuan Luo, Han Gao, Chengkan Lv, Zhengtao Zhang
Abstract:
Unsupervised anomaly detection methods can identify surface defects in industrial images by leveraging only normal samples for training. Due to the risk of overfitting when learning from a single class, anomaly synthesis strategies are introduced to enhance detection capability by generating artificial anomalies. However, existing strategies heavily rely on anomalous textures from auxiliary datasets. Moreover, their limitations in the coverage and directionality of anomaly synthesis may result in a failure to capture useful information and lead to significant redundancy. To address these issues, we propose a novel Progressive Boundary-guided Anomaly Synthesis (PBAS) strategy, which can directionally synthesize crucial feature-level anomalies without auxiliary textures. It consists of three core components: Approximate Boundary Learning (ABL), Anomaly Feature Synthesis (AFS), and Refined Boundary Optimization (RBO). To make the distribution of normal samples more compact, ABL first learns an approximate decision boundary by center constraint, which improves the center initialization through feature alignment. AFS then directionally synthesizes anomalies with more flexible scales guided by the hypersphere distribution of normal features. Since the boundary is so loose that it may contain real anomalies, RBO refines the decision boundary through the binary classification of artificial anomalies and normal features. Experimental results show that our method achieves state-of-the-art performance and the fastest detection speed on three widely used industrial datasets, including MVTec AD, VisA, and MPDD. The code will be available at: https://github.com/cqylunlun/PBAS.
Authors:Wei Luo, Haiming Yao, Wenyong Yu, Zhengyong Li
Abstract:
Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel \uline{A}daptive \uline{M}ask \uline{I}npainting \uline{Net}work (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Code is available at: https://github.com/luow23/AMI-Net
Authors:Xinyue Liu, Jianyuan Wang, Biao Leng, Shuo Zhang
Abstract:
Knowledge distillation (KD) has been widely studied in unsupervised image Anomaly Detection (AD), but its application to unsupervised multimodal AD remains underexplored. Existing KD-based methods for multimodal AD that use fused multimodal features to obtain teacher representations face challenges. Anomalies that only exist in one modality may not be effectively captured in the fused teacher features, leading to detection failures. Besides, these methods do not fully leverage the rich intra- and inter-modality information that are critical for effective anomaly detection. In this paper, we propose Tuned Reverse Distillation (TRD) based on Multi-branch design to realize Multimodal Industrial AD. By assigning independent branches to each modality, our method enables finer detection of anomalies within each modality. Furthermore, we enhance the interaction between modalities during the distillation process by designing two Crossmodal Tuners including Crossmodal Filter and Amplifier. With the idea of crossmodal mapping, the student network is allowed to better learn normal features while anomalies in all modalities are ensured to be effectively detected. Experimental verifications on multimodal AD datasets demonstrate that our method achieves state-of-the-art performance in multimodal anomaly detection and localization. Code is available at https://github.com/hito2448/TRD.
Authors:Zuo Zuo, Jiahao Dong, Yue Gao, Zongze Wu
Abstract:
In the manufacturing industry, defect detection is an essential but challenging task aiming to detect defects generated in the process of production. Though traditional YOLO models presents a good performance in defect detection, they still have limitations in capturing high-order feature interrelationships, which hurdles defect detection in the complex scenarios and across the scales. To this end, we introduce hypergraph computation into YOLO framework, dubbed HyperDefect-YOLO (HD-YOLO), to improve representative ability and semantic exploitation. HD-YOLO consists of Defect Aware Module (DAM) and Mixed Graph Network (MGNet) in the backbone, which specialize for perception and extraction of defect features. To effectively aggregate multi-scale features, we propose HyperGraph Aggregation Network (HGANet) which combines hypergraph and attention mechanism to aggregate multi-scale features. Cross-Scale Fusion (CSF) is proposed to adaptively fuse and handle features instead of simple concatenation and convolution. Finally, we propose Semantic Aware Module (SAM) in the neck to enhance semantic exploitation for accurately localizing defects with different sizes in the disturbed background. HD-YOLO undergoes rigorous evaluation on public HRIPCB and NEU-DET datasets with significant improvements compared to state-of-the-art methods. We also evaluate HD-YOLO on self-built MINILED dataset collected in real industrial scenarios to demonstrate the effectiveness of the proposed method. The source codes are at https://github.com/Jay-zzcoder/HD-YOLO.
Authors:Sukanya Patra, Souhaib Ben Taieb
Abstract:
Industrial anomaly detection is crucial for quality control and predictive maintenance, but it presents challenges due to limited training data, diverse anomaly types, and external factors that alter object appearances. Existing methods commonly detect structural anomalies, such as dents and scratches, by leveraging multi-scale features from image patches extracted through deep pre-trained networks. However, significant memory and computational demands often limit their practical application. Additionally, detecting logical anomalies-such as images with missing or excess elements-requires an understanding of spatial relationships that traditional patch-based methods fail to capture. In this work, we address these limitations by focusing on Deep Feature Reconstruction (DFR), a memory- and compute-efficient approach for detecting structural anomalies. We further enhance DFR into a unified framework, called ULSAD, which is capable of detecting both structural and logical anomalies. Specifically, we refine the DFR training objective to improve performance in structural anomaly detection, while introducing an attention-based loss mechanism using a global autoencoder-like network to handle logical anomaly detection. Our empirical evaluation across five benchmark datasets demonstrates the performance of ULSAD in detecting and localizing both structural and logical anomalies, outperforming eight state-of-the-art methods. An extensive ablation study further highlights the contribution of each component to the overall performance improvement. Our code is available at https://github.com/sukanyapatra1997/ULSAD-2024.git
Authors:Kecen Li, Bingquan Dai, Jingjing Fu, Xinwen Hou
Abstract:
Synthesizing anomaly samples has proven to be an effective strategy for self-supervised 2D industrial anomaly detection. However, this approach has been rarely explored in multi-modality anomaly detection, particularly involving 3D and RGB images. In this paper, we propose a novel dual-modality augmentation method for 3D anomaly synthesis, which is simple and capable of mimicking the characteristics of 3D defects. Incorporating with our anomaly synthesis method, we introduce a reconstruction-based discriminative anomaly detection network, in which a dual-modal discriminator is employed to fuse the original and reconstructed embedding of two modalities for anomaly detection. Additionally, we design an augmentation dropout mechanism to enhance the generalizability of the discriminator. Extensive experiments show that our method outperforms the state-of-the-art methods on detection precision and achieves competitive segmentation performance on both MVTec 3D-AD and Eyescandies datasets.
Authors:Xi Jiang, Jian Li, Hanqiu Deng, Yong Liu, Bin-Bin Gao, Yifeng Zhou, Jialin Li, Chengjie Wang, Feng Zheng
Abstract:
In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research.
Authors:Kaichen Zhou, Yang Cao, Taewhan Kim, Hao Zhao, Hao Dong, Kai Ming Ting, Ye Zhu
Abstract:
Recent advancements in industrial anomaly detection have been hindered by the lack of realistic datasets that accurately represent real-world conditions. Existing algorithms are often developed and evaluated using idealized datasets, which deviate significantly from real-life scenarios characterized by environmental noise and data corruption such as fluctuating lighting conditions, variable object poses, and unstable camera positions. To address this gap, we introduce the Realistic Anomaly Detection (RAD) dataset, the first multi-view RGB-based anomaly detection dataset specifically collected using a real robot arm, providing unique and realistic data scenarios. RAD comprises 4765 images across 13 categories and 4 defect types, collected from more than 50 viewpoints, providing a comprehensive and realistic benchmark. This multi-viewpoint setup mirrors real-world conditions where anomalies may not be detectable from every perspective. Moreover, by sampling varying numbers of views, the algorithm's performance can be comprehensively evaluated across different viewpoints. This approach enhances the thoroughness of performance assessment and helps improve the algorithm's robustness. Besides, to support 3D multi-view reconstruction algorithms, we propose a data augmentation method to improve the accuracy of pose estimation and facilitate the reconstruction of 3D point clouds. We systematically evaluate state-of-the-art RGB-based and point cloud-based models using RAD, identifying limitations and future research directions. The code and dataset could found at https://github.com/kaichen-z/RAD
Authors:Yuanwei Li, Elizaveta Ivanova, Martins Bruveris
Abstract:
Automatic image anomaly detection is important for quality inspection in the manufacturing industry. The usual unsupervised anomaly detection approach is to train a model for each object class using a dataset of normal samples. However, a more realistic problem is zero-/few-shot anomaly detection where zero or only a few normal samples are available. This makes the training of object-specific models challenging. Recently, large foundation vision-language models have shown strong zero-shot performance in various downstream tasks. While these models have learned complex relationships between vision and language, they are not specifically designed for the tasks of anomaly detection. In this paper, we propose the Few-shot/zero-shot Anomaly Detection Engine (FADE) which leverages the vision-language CLIP model and adjusts it for the purpose of industrial anomaly detection. Specifically, we improve language-guided anomaly segmentation 1) by adapting CLIP to extract multi-scale image patch embeddings that are better aligned with language and 2) by automatically generating an ensemble of text prompts related to industrial anomaly detection. 3) We use additional vision-based guidance from the query and reference images to further improve both zero-shot and few-shot anomaly detection. On the MVTec-AD (and VisA) dataset, FADE outperforms other state-of-the-art methods in anomaly segmentation with pixel-AUROC of 89.6% (91.5%) in zero-shot and 95.4% (97.5%) in 1-normal-shot. Code is available at https://github.com/BMVC-FADE/BMVC-FADE.
Authors:Wenbing Zhu, Chengjie Wang, Bin-Bin Gao, Jiangning Zhang, Guannan Jiang, Jie Hu, Zhenye Gan, Lidong Wang, Ziqing Zhou, Linjie Cheng, Yurui Pan, Bo Peng, Mingmin Chi, Lizhuang Ma
Abstract:
Industrial Anomaly Detection (IAD) is critical for enhancing operational safety, ensuring product quality, and optimizing manufacturing efficiency across global industries. However, the IAD algorithms are severely constrained by the limitations of existing public benchmarks. Current datasets exhibit restricted category diversity and insufficient scale, frequently resulting in metric saturation and limited model transferability to real-world scenarios. To address this gap, we introduce Real-IAD Variety, the largest and most diverse IAD benchmark, comprising 198,960 high-resolution images across 160 distinct object categories. Its diversity is ensured through comprehensive coverage of 28 industries, 24 material types, and 22 color variations. Our comprehensive experimental analysis validates the benchmark's substantial challenge: state-of-the-art multi-class unsupervised anomaly detection methods experience significant performance degradation when scaled from 30 to 160 categories. Crucially, we demonstrate that vision-language models exhibit remarkable robustness to category scale-up, with minimal performance variation across different category counts, significantly enhancing generalization capabilities in diverse industrial contexts. The unprecedented scale and complexity of Real-IAD Variety position it as an essential resource for training and evaluating next-generation foundation models for anomaly detection. By providing this comprehensive benchmark with rigorous evaluation protocols across multi-class unsupervised, multi-view, and zero-/few-shot settings, we aim to accelerate research beyond domain-specific constraints, enabling the development of scalable, general-purpose anomaly detection systems. Real-IAD Variety will be made publicly available to facilitate innovation in this critical field.
Authors:Bingchen Miao, Wenqiao Zhang, Juncheng Li, Siliang Tang, Zhaocheng Li, Haochen Shi, Jun Xiao, Yueting Zhuang
Abstract:
Multimodal Industrial Anomaly Detection (MIAD), utilizing 3D point clouds and 2D RGB images to identify the abnormal region of products, plays a crucial role in industrial quality inspection. However, the conventional MIAD setting presupposes that all 2D and 3D modalities are paired, overlooking the fact that multimodal data collected from the real world is often imperfect due to missing modalities. Consequently, MIAD models that demonstrate robustness against modal-incomplete data are highly desirable in practice. To address this practical challenge, we introduce a first-of-its-kind study that comprehensively investigates Modality-Incomplete Industrial Anomaly Detection (MIIAD), to consider the imperfect learning environment in which the multimodal information may be incomplete. Not surprisingly, we discovered that most existing MIAD approaches are inadequate for addressing MIIAD challenges, leading to significant performance degradation on the MIIAD benchmark we developed. In this paper, we propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR. Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer: i) In feature fusion, we first explore learning modality-incomplete instruction, guiding the pre-trained Multimodal Transformer to robustly adapt to various modality-incomplete scenarios, and implement adaptive parameter learning based on a HyperNetwork; ii) In anomaly detection, we construct a real-pseudo hybrid module to highlight the distinctiveness of modality combinations, further enhancing the robustness of the MIIAD model. Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness on our newly created MIIAD dataset, underscoring its practical application value.
Authors:Long Qian, Bingke Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Abstract:
Currently, industrial anomaly detection suffers from two bottlenecks: (i) the rarity of real-world defect images and (ii) the opacity of sample quality when synthetic data are used. Existing synthetic strategies (e.g., cut-and-paste) overlook the underlying physical causes of defects, leading to inconsistent, low-fidelity anomalies that hamper model generalization to real-world complexities. In this paper, we introduce a novel and lightweight pipeline that generates synthetic anomalies through Math-Phys model guidance, refines them via a Coarse-to-Fine approach and employs a bi-level optimization strategy with a Synthesis Quality Estimator (SQE). By combining physical modeling of the three most typical physics-driven defect mechanisms: Fracture Line (FL), Pitting Loss (PL), and Plastic Warpage (PW), our method produces realistic defect masks, which are subsequently enhanced in two phases. The first stage (npcF) enforces a PDE-based consistency to achieve a globally coherent anomaly structure, while the second stage (npcF++) further improves local fidelity. Additionally, we leverage SQE-driven weighting, ensuring that high-quality synthetic samples receive greater emphasis during training. To validate our method, we conduct experiments on three anomaly detection benchmarks: MVTec AD, VisA, and BTAD. Across these datasets, our method achieves state-of-the-art results in both image- and pixel-AUROC, confirming the effectiveness of our MaPhC2F dataset and BiSQAD method. All code will be released.
Authors:Huilin Deng, Hongchen Luo, Wei Zhai, Yang Cao, Yu Kang
Abstract:
Zero-shot anomaly detection (ZSAD) recognizes and localizes anomalies in previously unseen objects by establishing feature mapping between textual prompts and inspection images, demonstrating excellent research value in flexible industrial manufacturing. However, existing ZSAD methods are limited by closed-world settings, struggling to unseen defects with predefined prompts. Recently, adapting Multimodal Large Language Models (MLLMs) for Industrial Anomaly Detection (IAD) presents a viable solution. Unlike fixed-prompt methods, MLLMs exhibit a generative paradigm with open-ended text interpretation, enabling more adaptive anomaly analysis. However, this adaption faces inherent challenges as anomalies often manifest in fine-grained regions and exhibit minimal visual discrepancies from normal samples. To address these challenges, we propose a novel framework VMAD (Visual-enhanced MLLM Anomaly Detection) that enhances MLLM with visual-based IAD knowledge and fine-grained perception, simultaneously providing precise detection and comprehensive analysis of anomalies. Specifically, we design a Defect-Sensitive Structure Learning scheme that transfers patch-similarities cues from visual branch to our MLLM for improved anomaly discrimination. Besides, we introduce a novel visual projector, Locality-enhanced Token Compression, which mines multi-level features in local contexts to enhance fine-grained detection. Furthermore, we introduce the Real Industrial Anomaly Detection (RIAD), a comprehensive IAD dataset with detailed anomaly descriptions and analyses, offering a valuable resource for MLLM-based IAD development. Extensive experiments on zero-shot benchmarks, including MVTec-AD, Visa, WFDD, and RIAD datasets, demonstrate our superior performance over state-of-the-art methods. The code and dataset will be available soon.
Authors:Wei Guan, Jun Lan, Jian Cao, Hao Tan, Huijia Zhu, Weiqiang Wang
Abstract:
Industrial anomaly detection (IAD) plays a crucial role in maintaining the safety and reliability of manufacturing systems. While multimodal large language models (MLLMs) show strong vision-language reasoning abilities, their effectiveness in IAD remains limited without domain-specific adaptation. In this work, we propose EMIT, a unified framework that enhances MLLMs for IAD via difficulty-aware group relative policy optimization (GRPO). EMIT constructs a multi-task IAD dataset and utilizes GPT-generated object text descriptions to compensate for missing defective images. For few-shot anomaly detection, it integrates a soft prompt and heatmap-guided contrastive embeddings derived from patch-level comparisons. To better handle difficult data samples, i.e., cases where the MLLM struggles to generate correct answers, we propose a difficulty-aware GRPO that extends the original GRPO by incorporating a response resampling strategy to ensure the inclusion of correct answers in the sampled responses, as well as an advantage reweighting mechanism to strengthen learning from such difficult data samples. Extensive experiments on the MMAD benchmark demonstrate that EMIT significantly enhances the IAD performance of MLLMs, achieving an average improvement of 7.77\% over the base model (InternVL3-8B) across seven tasks.
Authors:Yuqi Cheng, Yunkang Cao, Haiming Yao, Wei Luo, Cheng Jiang, Hui Zhang, Weiming Shen
Abstract:
Industrial defect detection is vital for upholding product quality across contemporary manufacturing systems. As the expectations for precision, automation, and scalability intensify, conventional inspection approaches are increasingly found wanting in addressing real-world demands. Notable progress in computer vision and deep learning has substantially bolstered defect detection capabilities across both 2D and 3D modalities. A significant development has been the pivot from closed-set to open-set defect detection frameworks, which diminishes the necessity for extensive defect annotations and facilitates the recognition of novel anomalies. Despite such strides, a cohesive and contemporary understanding of industrial defect detection remains elusive. Consequently, this survey delivers an in-depth analysis of both closed-set and open-set defect detection strategies within 2D and 3D modalities, charting their evolution in recent years and underscoring the rising prominence of open-set techniques. We distill critical challenges inherent in practical detection environments and illuminate emerging trends, thereby providing a current and comprehensive vista of this swiftly progressing field.
Authors:Xin Chen, Liujuan Cao, Shengchuan Zhang, Xiewu Zheng, Yan Zhang
Abstract:
Due to the scarcity and unpredictable nature of defect samples, industrial anomaly detection (IAD) predominantly employs unsupervised learning. However, all unsupervised IAD methods face a common challenge: the inherent bias in normal samples, which causes models to focus on variable regions while overlooking potential defects in invariant areas. To effectively overcome this, it is essential to decompose and recalibrate attention, guiding the model to suppress irrelevant variations and concentrate on subtle, defect-susceptible areas. In this paper, we propose Recalibrating Attention of Industrial Anomaly Detection (RAAD), a framework that systematically decomposes and recalibrates attention maps. RAAD employs a two-stage process: first, it reduces attention bias through quantization, and second, it fine-tunes defect-prone regions for improved sensitivity. Central to this framework is Hierarchical Quantization Scoring (HQS), which dynamically allocates bit-widths across layers based on their anomaly detection contributions. HQS dynamically adjusts bit-widths based on the hierarchical nature of attention maps, compressing lower layers that produce coarse and noisy attention while preserving deeper layers with sharper, defect-focused attention. This approach optimizes both computational efficiency and the model' s sensitivity to anomalies. We validate the effectiveness of RAAD on 32 datasets using a single 3090ti. Experiments demonstrate that RAAD, balances the complexity and expressive power of the model, enhancing its anomaly detection capability.
Authors:Zhiling Chen, Hanning Chen, Mohsen Imani, Farhad Imani
Abstract:
In industrial settings, the accurate detection of anomalies is essential for maintaining product quality and ensuring operational safety. Traditional industrial anomaly detection (IAD) models often struggle with flexibility and adaptability, especially in dynamic production environments where new defect types and operational changes frequently arise. Recent advancements in Multimodal Large Language Models (MLLMs) hold promise for overcoming these limitations by combining visual and textual information processing capabilities. MLLMs excel in general visual understanding due to their training on large, diverse datasets, but they lack domain-specific knowledge, such as industry-specific defect tolerance levels, which limits their effectiveness in IAD tasks. To address these challenges, we propose Echo, a novel multi-expert framework designed to enhance MLLM performance for IAD. Echo integrates four expert modules: Reference Extractor which provides a contextual baseline by retrieving similar normal images, Knowledge Guide which supplies domain-specific insights, Reasoning Expert which enables structured, stepwise reasoning for complex queries, and Decision Maker which synthesizes information from all modules to deliver precise, context-aware responses. Evaluated on the MMAD benchmark, Echo demonstrates significant improvements in adaptability, precision, and robustness, moving closer to meeting the demands of real-world industrial anomaly detection.
Authors:Zongyun Zhang, Jiacheng Ruan, Xian Gao, Ting Liu, Yuzhuo Fu
Abstract:
Industrial Anomaly Detection (IAD) is critical to ensure product quality during manufacturing. Although existing zero-shot defect segmentation and detection methods have shown effectiveness, they cannot provide detailed descriptions of the defects. Furthermore, the application of large multi-modal models in IAD remains in its infancy, facing challenges in balancing question-answering (QA) performance and mask-based grounding capabilities, often owing to overfitting during the fine-tuning process. To address these challenges, we propose a novel approach that introduces a dedicated multi-modal defect localization module to decouple the dialog functionality from the core feature extraction. This decoupling is achieved through independent optimization objectives and tailored learning strategies. Additionally, we contribute to the first multi-modal industrial anomaly detection training dataset, named Defect Detection Question Answering (DDQA), encompassing a wide range of defect types and industrial scenarios. Unlike conventional datasets that rely on GPT-generated data, DDQA ensures authenticity and reliability and offers a robust foundation for model training. Experimental results demonstrate that our proposed method, Explainable Industrial Anomaly Detection Assistant (EIAD), achieves outstanding performance in defect detection and localization tasks. It not only significantly enhances accuracy but also improves interpretability. These advancements highlight the potential of EIAD for practical applications in industrial settings.
Authors:Mengyang Zhao, Teng Fu, Haiyang Yu, Ke Niu, Bin Li
Abstract:
Few-Shot Industrial Anomaly Detection (FS-IAD) has important applications in automating industrial quality inspection. Recently, some FS-IAD methods based on Large Vision-Language Models (LVLMs) have been proposed with some achievements through prompt learning or fine-tuning. However, existing LVLMs focus on general tasks but lack basic industrial knowledge and reasoning capabilities related to FS-IAD, making these methods far from specialized human quality inspectors. To address these challenges, we propose a unified framework, IADGPT, designed to perform FS-IAD in a human-like manner, while also handling associated localization and reasoning tasks, even for diverse and novel industrial products. To this end, we introduce a three-stage progressive training strategy inspired by humans. Specifically, the first two stages gradually guide IADGPT in acquiring fundamental industrial knowledge and discrepancy awareness. In the third stage, we design an in-context learning-based training paradigm, enabling IADGPT to leverage a few-shot image as the exemplars for improved generalization to novel products. In addition, we design a strategy that enables IADGPT to output image-level and pixel-level anomaly scores using the logits output and the attention map, respectively, in conjunction with the language output to accomplish anomaly reasoning. To support our training, we present a new dataset comprising 100K images across 400 diverse industrial product categories with extensive attribute-level textual annotations. Experiments indicate IADGPT achieves considerable performance gains in anomaly detection and demonstrates competitiveness in anomaly localization and reasoning. We will release our dataset in camera-ready.
Authors:Yuhao Chao, Jie Liu, Jie Tang, Gangshan Wu
Abstract:
Industrial Anomaly Detection (IAD) poses a formidable challenge due to the scarcity of defective samples, making it imperative to deploy models capable of robust generalization to detect unseen anomalies effectively. Traditional approaches, often constrained by hand-crafted features or domain-specific expert models, struggle to address this limitation, underscoring the need for a paradigm shift. We introduce AnomalyR1, a pioneering framework that leverages VLM-R1, a Multimodal Large Language Model (MLLM) renowned for its exceptional generalization and interpretability, to revolutionize IAD. By integrating MLLM with Group Relative Policy Optimization (GRPO), enhanced by our novel Reasoned Outcome Alignment Metric (ROAM), AnomalyR1 achieves a fully end-to-end solution that autonomously processes inputs of image and domain knowledge, reasons through analysis, and generates precise anomaly localizations and masks. Based on the latest multimodal IAD benchmark, our compact 3-billion-parameter model outperforms existing methods, establishing state-of-the-art results. As MLLM capabilities continue to advance, this study is the first to deliver an end-to-end VLM-based IAD solution that demonstrates the transformative potential of ROAM-enhanced GRPO, positioning our framework as a forward-looking cornerstone for next-generation intelligent anomaly detection systems in industrial applications with limited defective data.
Authors:Wenqiao Li, Bozhong Zheng, Xiaohao Xu, Jinye Gan, Fading Lu, Xiang Li, Na Ni, Zheng Tian, Xiaonan Huang, Shenghua Gao, Yingna Wu
Abstract:
Object anomaly detection is essential for industrial quality inspection, yet traditional single-sensor methods face critical limitations. They fail to capture the wide range of anomaly types, as single sensors are often constrained to either external appearance, geometric structure, or internal properties. To overcome these challenges, we introduce MulSen-AD, the first high-resolution, multi-sensor anomaly detection dataset tailored for industrial applications. MulSen-AD unifies data from RGB cameras, laser scanners, and lock-in infrared thermography, effectively capturing external appearance, geometric deformations, and internal defects. The dataset spans 15 industrial products with diverse, real-world anomalies. We also present MulSen-AD Bench, a benchmark designed to evaluate multi-sensor methods, and propose MulSen-TripleAD, a decision-level fusion algorithm that integrates these three modalities for robust, unsupervised object anomaly detection. Our experiments demonstrate that multi-sensor fusion substantially outperforms single-sensor approaches, achieving 96.1% AUROC in object-level detection accuracy. These results highlight the importance of integrating multi-sensor data for comprehensive industrial anomaly detection.
Authors:Qishan Wang, Haofeng Wang, Shuyong Gao, Jia Guo, Li Xiong, Jiaqi Li, Dengxuan Bai, Wenqiang Zhang
Abstract:
Industrial anomaly detection is a challenging open-set task that aims to identify unknown anomalous patterns deviating from normal data distribution. To avoid the significant memory consumption and limited generalizability brought by building separate models per class, we focus on developing a unified framework for multi-class anomaly detection. However, under this challenging setting, conventional reconstruction-based networks often suffer from an identity mapping problem, where they directly replicate input features regardless of whether they are normal or anomalous, resulting in detection failures. To address this issue, this study proposes a novel framework termed Collaborative Reconstruction and Repair (CRR), which transforms the reconstruction to repairation. First, we optimize the decoder to reconstruct normal samples while repairing synthesized anomalies. Consequently, it generates distinct representations for anomalous regions and similar representations for normal areas compared to the encoder's output. Second, we implement feature-level random masking to ensure that the representations from decoder contain sufficient local information. Finally, to minimize detection errors arising from the discrepancies between feature representations from the encoder and decoder, we train a segmentation network supervised by synthetic anomaly masks, thereby enhancing localization performance. Extensive experiments on industrial datasets that CRR effectively mitigates the identity mapping issue and achieves state-of-the-art performance in multi-class industrial anomaly detection.
Authors:Rongcheng Wu, Hao Zhu, Shiying Zhang, Mingzhe Wang, Zhidong Li, Hui Li, Jianlong Zhou, Jiangtao Cui, Fang Chen, Pingyang Sun, Qiyu Liao, Ye Lin
Abstract:
Unsupervised industrial anomaly detection requires accurately identifying defects without labeled data. Traditional autoencoder-based methods often struggle with incomplete anomaly suppression and loss of fine details, as their single-pass decoding fails to effectively handle anomalies with varying severity and scale. We propose a recursive architecture for autoencoder (RcAE), which performs reconstruction iteratively to progressively suppress anomalies while refining normal structures. Unlike traditional single-pass models, this recursive design naturally produces a sequence of reconstructions, progressively exposing suppressed abnormal patterns. To leverage this reconstruction dynamics, we introduce a Cross Recursion Detection (CRD) module that tracks inconsistencies across recursion steps, enhancing detection of both subtle and large-scale anomalies. Additionally, we incorporate a Detail Preservation Network (DPN) to recover high-frequency textures typically lost during reconstruction. Extensive experiments demonstrate that our method significantly outperforms existing non-diffusion methods, and achieves performance on par with recent diffusion models with only 10% of their parameters and offering substantially faster inference. These results highlight the practicality and efficiency of our approach for real-world applications.
Authors:Xuan Tong, Yang Chang, Qing Zhao, Jiawen Yu, Boyang Wang, Junxiong Lin, Yuxuan Lin, Xinji Mai, Haoran Wang, Zeng Tao, Yan Wang, Wenqiang Zhang
Abstract:
Anomaly detection is critical in industrial manufacturing for ensuring product quality and improving efficiency in automated processes. The scarcity of anomalous samples limits traditional detection methods, making anomaly generation essential for expanding the data repository. However, recent generative models often produce unrealistic anomalies increasing false positives, or require real-world anomaly samples for training. In this work, we treat anomaly generation as a compositional problem and propose ComGEN, a component-aware and unsupervised framework that addresses the gap in logical anomaly generation. Our method comprises a multi-component learning strategy to disentangle visual components, followed by subsequent generation editing procedures. Disentangled text-to-component pairs, revealing intrinsic logical constraints, conduct attention-guided residual mapping and model training with iteratively matched references across multiple scales. Experiments on the MVTecLOCO dataset confirm the efficacy of ComGEN, achieving the best AUROC score of 91.2%. Additional experiments on the real-world scenario of Diesel Engine and widely-used MVTecAD dataset demonstrate significant performance improvements when integrating simulated anomalies generated by ComGEN into automated production workflows.
Authors:Po-Han Huang, Jeng-Lin Li, Po-Hsuan Huang, Ming-Ching Chang, Wei-Chao Chen
Abstract:
Industrial anomaly detection is increasingly relying on foundation models, aiming for strong out-of-distribution generalization and rapid adaptation in real-world deployments. Notably, past studies have primarily focused on textual prompt tuning, leaving the intrinsic visual counterpart fragmented into processing steps specific to each foundation model. We aim to address this limitation by proposing a unified patch-focused framework, Patch-Exclusive Anomaly Detection (PatchEAD), enabling training-free anomaly detection that is compatible with diverse foundation models. The framework constructs visual prompting techniques, including an alignment module and foreground masking. Our experiments show superior few-shot and batch zero-shot performance compared to prior work, despite the absence of textual features. Our study further examines how backbone structure and pretrained characteristics affect patch-similarity robustness, providing actionable guidance for selecting and configuring foundation models for real-world visual inspection. These results confirm that a well-unified patch-only framework can enable quick, calibration-light deployment without the need for carefully engineered textual prompts.
Authors:Yanshu Wang, Xichen Xu, Xiaoning Lei, Guoyang Xie
Abstract:
Synthesizing realistic and spatially precise anomalies is essential for enhancing the robustness of industrial anomaly detection systems. While recent diffusion-based methods have demonstrated strong capabilities in modeling complex defect patterns, they often struggle with spatial controllability and fail to maintain fine-grained regional fidelity. To overcome these limitations, we propose SARD (Segmentation-Aware anomaly synthesis via Region-constrained Diffusion with discriminative mask Guidance), a novel diffusion-based framework specifically designed for anomaly generation. Our approach introduces a Region-Constrained Diffusion (RCD) process that preserves the background by freezing it and selectively updating only the foreground anomaly regions during the reverse denoising phase, thereby effectively reducing background artifacts. Additionally, we incorporate a Discriminative Mask Guidance (DMG) module into the discriminator, enabling joint evaluation of both global realism and local anomaly fidelity, guided by pixel-level masks. Extensive experiments on the MVTec-AD and BTAD datasets show that SARD surpasses existing methods in segmentation accuracy and visual quality, setting a new state-of-the-art for pixel-level anomaly synthesis.
Authors:Jingyi Liao, Xun Xu, Yongyi Su, Rong-Cheng Tu, Yifan Liu, Dacheng Tao, Xulei Yang
Abstract:
Anomaly detection plays a crucial role in quality control for industrial applications. However, ensuring robustness under unseen domain shifts such as lighting variations or sensor drift remains a significant challenge. Existing methods attempt to address domain shifts by training generalizable models but often rely on prior knowledge of target distributions and can hardly generalise to backbones designed for other data modalities. To overcome these limitations, we build upon memory-bank-based anomaly detection methods, optimizing a robust Sinkhorn distance on limited target training data to enhance generalization to unseen target domains. We evaluate the effectiveness on both 2D and 3D anomaly detection benchmarks with simulated distribution shifts. Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
Authors:Yifan Liu, Xun Xu, Shijie Li, Jingyi Liao, Xulei Yang
Abstract:
Multi-camera systems provide richer contextual information for industrial anomaly detection. However, traditional methods process each view independently, disregarding the complementary information across viewpoints. Existing multi-view anomaly detection approaches typically employ data-driven cross-view attention for feature fusion but fail to leverage the unique geometric properties of multi-camera setups. In this work, we introduce an epipolar geometry-constrained attention module to guide cross-view fusion, ensuring more effective information aggregation. To further enhance the potential of cross-view attention, we propose a pretraining strategy inspired by memory bank-based anomaly detection. This approach encourages normal feature representations to form multiple local clusters and incorporate multi-view aware negative sample synthesis to regularize pretraining. We demonstrate that our epipolar guided multi-view anomaly detection framework outperforms existing methods on the state-of-the-art multi-view anomaly detection dataset.
Authors:Po-Heng Chou, Chun-Chi Wang, Wei-Lung Mao
Abstract:
In this paper, we propose a YOLO-based deep learning (DL) model for automatic defect detection to solve the time-consuming and labor-intensive tasks in industrial manufacturing. In our experiments, the images of metal sheets are used as the dataset for training the YOLO model to detect the defects on the surfaces and in the holes of metal sheets. However, the lack of metal sheet images significantly degrades the performance of detection accuracy. To address this issue, the ConSinGAN is used to generate a considerable amount of data. Four versions of the YOLO model (i.e., YOLOv3, v4, v7, and v9) are combined with the ConSinGAN for data augmentation. The proposed YOLOv9 model with ConSinGAN outperforms the other YOLO models with an accuracy of 91.3%, and a detection time of 146 ms. The proposed YOLOv9 model is integrated into manufacturing hardware and a supervisory control and data acquisition (SCADA) system to establish a practical automated optical inspection (AOI) system. Additionally, the proposed automated defect detection is easily applied to other components in industrial manufacturing.
Authors:Jingqi Wu, Hanxi Li, Lin Yuanbo Wu, Hao Chen, Deyin Liu, Peng Wang
Abstract:
Industrial product inspection is often performed using Anomaly Detection (AD) frameworks trained solely on non-defective samples. Although defective samples can be collected during production, leveraging them usually requires pixel-level annotations, limiting scalability. To address this, we propose ADClick, an Interactive Image Segmentation (IIS) algorithm for industrial anomaly detection. ADClick generates pixel-wise anomaly annotations from only a few user clicks and a brief textual description, enabling precise and efficient labeling that significantly improves AD model performance (e.g., AP = 96.1\% on MVTec AD). We further introduce ADClick-Seg, a cross-modal framework that aligns visual features and textual prompts via a prototype-based approach for anomaly detection and localization. By combining pixel-level priors with language-guided cues, ADClick-Seg achieves state-of-the-art results on the challenging ``Multi-class'' AD task (AP = 80.0\%, PRO = 97.5\%, Pixel-AUROC = 99.1\% on MVTec AD).
Authors:Hanxi Li, Jingqi Wu, Lin Yuanbo Wu, Mingliang Li, Deyin Liu, Jialie Shen, Chunhua Shen
Abstract:
In this paper, we propose Self-Navigated Residual Mamba (SNARM), a novel framework for universal industrial anomaly detection that leverages ``self-referential learning'' within test images to enhance anomaly discrimination. Unlike conventional methods that depend solely on pre-trained features from normal training data, SNARM dynamically refines anomaly detection by iteratively comparing test patches against adaptively selected in-image references. Specifically, we first compute the ``inter-residuals'' features by contrasting test image patches with the training feature bank. Patches exhibiting small-norm residuals (indicating high normality) are then utilized as self-generated reference patches to compute ``intra-residuals'', amplifying discriminative signals. These inter- and intra-residual features are concatenated and fed into a novel Mamba module with multiple heads, which are dynamically navigated by residual properties to focus on anomalous regions. Finally, AD results are obtained by aggregating the outputs of a self-navigated Mamba in an ensemble learning paradigm. Extensive experiments on MVTec AD, MVTec 3D, and VisA benchmarks demonstrate that SNARM achieves state-of-the-art (SOTA) performance, with notable improvements in all metrics, including Image-AUROC, Pixel-AURC, PRO, and AP.
Authors:Yurui Pan, Lidong Wang, Yuchao Chen, Wenbing Zhu, Bo Peng, Mingmin Chi
Abstract:
In industrial anomaly detection (IAD), accurately identifying defects amidst diverse anomalies and under varying imaging conditions remains a significant challenge. Traditional approaches often struggle with high false-positive rates, frequently misclassifying normal shadows and surface deformations as defects, an issue that becomes particularly pronounced in products with complex and intricate surface features. To address these challenges, we introduce PA-CLIP, a zero-shot anomaly detection method that reduces background noise and enhances defect detection through a pseudo-anomaly-based framework. The proposed method integrates a multiscale feature aggregation strategy for capturing detailed global and local information, two memory banks for distinguishing background information, including normal patterns and pseudo-anomalies, from true anomaly features, and a decision-making module designed to minimize false positives caused by environmental variations while maintaining high defect sensitivity. Demonstrated on the MVTec AD and VisA datasets, PA-CLIP outperforms existing zero-shot methods, providing a robust solution for industrial defect detection.
Authors:Muhammad Aqeel, Federico Leonardi, Francesco Setti
Abstract:
Industrial defect detection systems face critical limitations when confined to one-class anomaly detection paradigms, which assume uniform outlier distributions and struggle with data scarcity in realworld manufacturing environments. We present ExDD (Explicit Dual Distribution), a novel framework that transcends these limitations by explicitly modeling dual feature distributions. Our approach leverages parallel memory banks that capture the distinct statistical properties of both normality and anomalous patterns, addressing the fundamental flaw of uniform outlier assumptions. To overcome data scarcity, we employ latent diffusion models with domain-specific textual conditioning, generating in-distribution synthetic defects that preserve industrial context. Our neighborhood-aware ratio scoring mechanism elegantly fuses complementary distance metrics, amplifying signals in regions exhibiting both deviation from normality and similarity to known defect patterns. Experimental validation on KSDD2 demonstrates superior performance (94.2% I-AUROC, 97.7% P-AUROC), with optimal augmentation at 100 synthetic samples.
Authors:Yanning Hou, Ke Xu, Junfa Li, Yanran Ruan, Jianfeng Qiu
Abstract:
Recently, the powerful generalization ability exhibited by foundation models has brought forth new solutions for zero-shot anomaly segmentation tasks. However, guiding these foundation models correctly to address downstream tasks remains a challenge. This paper proposes a novel two-stage framework, for zero-shot anomaly segmentation tasks in industrial anomaly detection. This framework excellently leverages the powerful anomaly localization capability of CLIP and the boundary perception ability of SAM.(1) To mitigate SAM's inclination towards object segmentation, we propose the Co-Feature Point Prompt Generation (PPG) module. This module collaboratively utilizes CLIP and SAM to generate positive and negative point prompts, guiding SAM to focus on segmenting anomalous regions rather than the entire object. (2) To further optimize SAM's segmentation results and mitigate rough boundaries and isolated noise, we introduce the Cascaded Prompts for SAM (CPS) module. This module employs hybrid prompts cascaded with a lightweight decoder of SAM, achieving precise segmentation of anomalous regions. Across multiple datasets, consistent experimental validation demonstrates that our approach achieves state-of-the-art zero-shot anomaly segmentation results. Particularly noteworthy is our performance on the Visa dataset, where we outperform the state-of-the-art methods by 10.3\% and 7.7\% in terms of {$F_1$-max} and AP metrics, respectively.
Authors:Yanning Hou, Yanran Ruan, Junfa Li, Shanshan Wang, Jianfeng Qiu, Ke Xu
Abstract:
Enhancing the alignment between text and image features in the CLIP model is a critical challenge in zero-shot industrial anomaly detection tasks. Recent studies predominantly utilize specific category prompts during pretraining, which can cause overfitting to the training categories and limit model generalization. To address this, we propose a method that transforms category names through multicategory name stacking to create stacked prompts, forming the basis of our StackCLIP model. Our approach introduces two key components. The Clustering-Driven Stacked Prompts (CSP) module constructs generic prompts by stacking semantically analogous categories, while utilizing multi-object textual feature fusion to amplify discriminative anomalies among similar objects. The Ensemble Feature Alignment (EFA) module trains knowledge-specific linear layers tailored for each stack cluster and adaptively integrates them based on the attributes of test categories. These modules work together to deliver superior training speed, stability, and convergence, significantly boosting anomaly segmentation performance. Additionally, our stacked prompt framework offers robust generalization across classification tasks. To further improve performance, we introduce the Regulating Prompt Learning (RPL) module, which leverages the generalization power of stacked prompts to refine prompt learning, elevating results in anomaly detection classification tasks. Extensive testing on seven industrial anomaly detection datasets demonstrates that our method achieves state-of-the-art performance in both zero-shot anomaly detection and segmentation tasks.
Authors:Botong Zhao, Qijun Shi, Shujing Lyu, Yue Lu
Abstract:
Existing industrial anomaly detection methods mainly determine whether an anomaly is present. However, real-world applications also require discovering and classifying multiple anomaly types. Since industrial anomalies are semantically subtle and current methods do not sufficiently exploit image priors, direct clustering approaches often perform poorly. To address these challenges, we propose ProtoAnomalyNCD, a prototype-learning-based framework for discovering unseen anomaly classes of multiple types that can be integrated with various anomaly detection methods. First, to suppress background clutter, we leverage Grounded SAM with text prompts to localize object regions as priors for the anomaly classification network. Next, because anomalies usually appear as subtle and fine-grained patterns on the product, we introduce an Anomaly-Map-Guided Attention block. Within this block, we design a Region Guidance Factor that helps the attention module distinguish among background, object regions, and anomalous regions. By using both localized product regions and anomaly maps as priors, the module enhances anomalous features while suppressing background noise and preserving normal features for contrastive learning. Finally, under a unified prototype-learning framework, ProtoAnomalyNCD discovers and clusters unseen anomaly classes while simultaneously enabling multi-type anomaly classification. We further extend our method to detect unseen outliers, achieving task-level unification. Our method outperforms state-of-the-art approaches on the MVTec AD, MTD, and Real-IAD datasets.
Authors:Hans-Martin Heyn, Yufei Mao, Roland Weiss, Eric Knauss
Abstract:
Specifying data requirements for machine learning (ML) software systems remains a challenge in requirements engineering (RE). This vision paper explores causal modelling as an RE activity that allows the systematic integration of prior domain knowledge into the design of ML software systems. We propose a workflow to elicit low-level model and data requirements from high-level prior knowledge using causal models. The approach is demonstrated on an industrial fault detection system. This paper outlines future research needed to establish causal modelling as an RE practice.
Authors:Junwen Miao, Penghui Du, Yi Liu, Yu Wang, Yan Wang
Abstract:
Industrial anomaly detection (IAD) is difficult due to the scarcity of normal reference samples and the subtle, localized nature of many defects. Single-pass vision-language models (VLMs) often overlook small abnormalities and lack explicit mechanisms to compare against canonical normal patterns. We propose AgentIAD, a tool-driven agentic framework that enables multi-stage visual inspection. The agent is equipped with a Perceptive Zoomer (PZ) for localized fine-grained analysis and a Comparative Retriever (CR) for querying normal exemplars when evidence is ambiguous. To teach these inspection behaviors, we construct structured perceptive and comparative trajectories from the MMAD dataset and train the model in two stages: supervised fine-tuning followed by reinforcement learning. A two-part reward design drives this process: a perception reward that supervises classification accuracy, spatial alignment, and type correctness, and a behavior reward that encourages efficient tool use. Together, these components enable the model to refine its judgment through step-wise observation, zooming, and verification. AgentIAD achieves a new state-of-the-art 97.62% classification accuracy on MMAD, surpassing prior MLLM-based approaches while producing transparent and interpretable inspection traces.
Authors:Debojyoti Ghosh, Soumya K Ghosh, Adrijit Goswami
Abstract:
Efficient and accurate classification of waste and industrial surface defects is essential for ensuring sustainable waste management and maintaining high standards in quality control. This paper introduces the Neuroplastic Modular Classifier, a novel hybrid architecture designed for robust and adaptive image classification in dynamic environments. The model combines a ResNet-50 backbone for localized feature extraction with a Vision Transformer (ViT) to capture global semantic context. Additionally, FAISS-based similarity retrieval is incorporated to provide a memory-like reference to previously encountered data, enriching the model's feature space. A key innovation of our architecture is the neuroplastic modular design composed of expandable, learnable blocks that dynamically grow during training when performance plateaus. Inspired by biological learning systems, this mechanism allows the model to adapt to data complexity over time, improving generalization. Beyond garbage classification, we validate the model on the Kolektor Surface Defect Dataset 2 (KolektorSDD2), which involves industrial defect detection on metal surfaces. Experimental results across domains show that the proposed architecture outperforms traditional static models in both accuracy and adaptability. The Neuroplastic Modular Classifier offers a scalable, high-performance solution for real-world image classification, with strong applicability in both environmental and industrial domains.
Authors:Bernd Hofmann, Albert Scheck, Joerg Franke, Patrick Bruendl
Abstract:
The detection of anomalies in manufacturing processes is crucial to ensure product quality and identify process deviations. Statistical and data-driven approaches remain the standard in industrial anomaly detection, yet their adaptability and usability are constrained by the dependence on extensive annotated datasets and limited flexibility under dynamic production conditions. Recent advances in the perception capabilities of foundation models provide promising opportunities for their adaptation to this downstream task. This paper presents PB-IAD (Prompt-based Industrial Anomaly Detection), a novel framework that leverages the multimodal and reasoning capabilities of foundation models for industrial anomaly detection. Specifically, PB-IAD addresses three key requirements of dynamic production environments: data sparsity, agile adaptability, and domain user centricity. In addition to the anomaly detection, the framework includes a prompt template that is specifically designed for iteratively implementing domain-specific process knowledge, as well as a pre-processing module that translates domain user inputs into effective system prompts. This user-centric design allows domain experts to customise the system flexibly without requiring data science expertise. The proposed framework is evaluated by utilizing GPT-4.1 across three distinct manufacturing scenarios, two data modalities, and an ablation study to systematically assess the contribution of semantic instructions. Furthermore, PB-IAD is benchmarked to state-of-the-art methods for anomaly detection such as PatchCore. The results demonstrate superior performance, particularly in data-sparse scenarios and low-shot settings, achieved solely through semantic instructions.
Authors:Bernd Hofmann, Patrick Bruendl, Huong Giang Nguyen, Joerg Franke
Abstract:
Ensuring consistent product quality in modern manufacturing is crucial, particularly in safety-critical applications. Conventional quality control approaches, reliant on manually defined thresholds and features, lack adaptability to the complexity and variability inherent in production data and necessitate extensive domain expertise. Conversely, data-driven methods, such as machine learning, demonstrate high detection performance but typically function as black-box models, thereby limiting their acceptance in industrial environments where interpretability is paramount. This paper introduces a methodology for industrial fault detection, which is both data-driven and transparent. The approach integrates a supervised machine learning model for multi-class fault classification, Shapley Additive Explanations for post-hoc interpretability, and a do-main-specific visualisation technique that maps model explanations to operator-interpretable features. Furthermore, the study proposes an evaluation methodology that assesses model explanations through quantitative perturbation analysis and evaluates visualisations by qualitative expert assessment. The approach was applied to the crimping process, a safety-critical joining technique, using a dataset of univariate, discrete time series. The system achieves a fault detection accuracy of 95.9 %, and both quantitative selectivity analysis and qualitative expert evaluations confirmed the relevance and inter-pretability of the generated explanations. This human-centric approach is designed to enhance trust and interpretability in data-driven fault detection, thereby contributing to applied system design in industrial quality control.
Authors:Long Tian, Yufei Li, Yuyang Dai, Wenchao Chen, Xiyang Liu, Bo Chen
Abstract:
Few-shot industrial anomaly detection (FS-IAD) presents a critical challenge for practical automated inspection systems operating in data-scarce environments. While existing approaches predominantly focus on deriving prototypes from limited normal samples, they typically neglect to systematically incorporate query image statistics to enhance prototype representativeness. To address this issue, we propose FastRef, a novel and efficient prototype refinement framework for FS-IAD. Our method operates through an iterative two-stage process: (1) characteristic transfer from query features to prototypes via an optimizable transformation matrix, and (2) anomaly suppression through prototype alignment. The characteristic transfer is achieved through linear reconstruction of query features from prototypes, while the anomaly suppression addresses a key observation in FS-IAD that unlike conventional IAD with abundant normal prototypes, the limited-sample setting makes anomaly reconstruction more probable. Therefore, we employ optimal transport (OT) for non-Gaussian sampled features to measure and minimize the gap between prototypes and their refined counterparts for anomaly suppression. For comprehensive evaluation, we integrate FastRef with three competitive prototype-based FS-IAD methods: PatchCore, FastRecon, WinCLIP, and AnomalyDINO. Extensive experiments across four benchmark datasets of MVTec, ViSA, MPDD and RealIAD demonstrate both the effectiveness and computational efficiency of our approach under 1/2/4-shots.
Authors:Sassan Mokhtar, Arian Mousakhan, Silvio Galesso, Jawad Tayyub, Thomas Brox
Abstract:
Recent advances in visual industrial anomaly detection have demonstrated exceptional performance in identifying and segmenting anomalous regions while maintaining fast inference speeds. However, anomaly classification-distinguishing different types of anomalies-remains largely unexplored despite its critical importance in real-world inspection tasks. To address this gap, we propose VELM, a novel LLM-based pipeline for anomaly classification. Given the critical importance of inference speed, we first apply an unsupervised anomaly detection method as a vision expert to assess the normality of an observation. If an anomaly is detected, the LLM then classifies its type. A key challenge in developing and evaluating anomaly classification models is the lack of precise annotations of anomaly classes in existing datasets. To address this limitation, we introduce MVTec-AC and VisA-AC, refined versions of the widely used MVTec-AD and VisA datasets, which include accurate anomaly class labels for rigorous evaluation. Our approach achieves a state-of-the-art anomaly classification accuracy of 80.4% on MVTec-AD, exceeding the prior baselines by 5%, and 84% on MVTec-AC, demonstrating the effectiveness of VELM in understanding and categorizing anomalies. We hope our methodology and benchmark inspire further research in anomaly classification, helping bridge the gap between detection and comprehensive anomaly characterization.
Authors:Weijia Li, Guanglei Chu, Jiong Chen, Guo-Sen Xie, Caifeng Shan, Fang Zhao
Abstract:
Recent advances in industrial anomaly detection have highlighted the need for deeper logical anomaly analysis, where unexpected relationships among objects, counts, and spatial configurations must be identified and explained. Existing approaches often rely on large-scale external reasoning modules or elaborate pipeline designs, hindering practical deployment and interpretability. To address these limitations, we introduce a new task, Reasoning Logical Anomaly Detection (RLAD), which extends traditional anomaly detection by incorporating logical reasoning. We propose a new framework, LAD-Reasoner, a customized tiny multimodal language model built on Qwen2.5-VL 3B. Our approach leverages a two-stage training paradigm that first employs Supervised Fine-Tuning (SFT) for fine-grained visual understanding, followed by Group Relative Policy Optimization (GRPO) to refine logical anomaly detection and enforce coherent, human-readable reasoning. Crucially, reward signals are derived from both the detection accuracy and the structural quality of the outputs, obviating the need for building chain of thought (CoT) reasoning data. Experiments on the MVTec LOCO AD dataset show that LAD-Reasoner, though significantly smaller, matches the performance of Qwen2.5-VL-72B in accuracy and F1 score, and further excels in producing concise and interpretable rationales. This unified design reduces reliance on large models and complex pipelines, while offering transparent and interpretable insights into logical anomaly detection. Code and data will be released.
Authors:Zuo Zuo, Jiahao Dong, Yanyun Qu, Zongze Wu
Abstract:
Industrial anomaly detection (AD) plays a significant role in manufacturing where a long-standing challenge is data scarcity. A growing body of works have emerged to address insufficient anomaly data via anomaly generation. However, these anomaly generation methods suffer from lack of fidelity or need to be trained with extra data. To this end, we propose a training-free anomaly generation framework dubbed AAG, which is based on Stable Diffusion (SD)'s strong generation ability for effective anomaly image generation. Given a normal image, mask and a simple text prompt, AAG can generate realistic and natural anomalies in the specific regions and simultaneously keep contents in other regions unchanged. In particular, we propose Cross-Attention Enhancement (CAE) to re-engineer the cross-attention mechanism within Stable Diffusion based on the given mask. CAE increases the similarity between visual tokens in specific regions and text embeddings, which guides these generated visual tokens in accordance with the text description. Besides, generated anomalies need to be more natural and plausible with object in given image. We propose Self-Attention Enhancement (SAE) which improves similarity between each normal visual token and anomaly visual tokens. SAE ensures that generated anomalies are coherent with original pattern. Extensive experiments on MVTec AD and VisA datasets demonstrate effectiveness of AAG in anomaly generation and its utility. Furthermore, anomaly images generated by AAG can bolster performance of various downstream anomaly inspection tasks.
Authors:Mahya Nikouei, Bita Baroutian, Shahabedin Nabavi, Fateme Taraghi, Atefe Aghaei, Ayoob Sajedi, Mohsen Ebrahimi Moghaddam
Abstract:
Small object detection (SOD) is a critical yet challenging task in computer vision, with applications like spanning surveillance, autonomous systems, medical imaging, and remote sensing. Unlike larger objects, small objects contain limited spatial and contextual information, making accurate detection difficult. Challenges such as low resolution, occlusion, background interference, and class imbalance further complicate the problem. This survey provides a comprehensive review of recent advancements in SOD using deep learning, focusing on articles published in Q1 journals during 2024-2025. We analyzed challenges, state-of-the-art techniques, datasets, evaluation metrics, and real-world applications. Recent advancements in deep learning have introduced innovative solutions, including multi-scale feature extraction, Super-Resolution (SR) techniques, attention mechanisms, and transformer-based architectures. Additionally, improvements in data augmentation, synthetic data generation, and transfer learning have addressed data scarcity and domain adaptation issues. Furthermore, emerging trends such as lightweight neural networks, knowledge distillation (KD), and self-supervised learning offer promising directions for improving detection efficiency, particularly in resource-constrained environments like Unmanned Aerial Vehicles (UAV)-based surveillance and edge computing. We also review widely used datasets, along with standard evaluation metrics such as mean Average Precision (mAP) and size-specific AP scores. The survey highlights real-world applications, including traffic monitoring, maritime surveillance, industrial defect detection, and precision agriculture. Finally, we discuss open research challenges and future directions, emphasizing the need for robust domain adaptation techniques, better feature fusion strategies, and real-time performance optimization.
Authors:Jingyi Yuan, Chenqiang Gao, Pengyu Jie, Xuan Xia, Shangri Huang, Wanquan Liu
Abstract:
Recently, zero-shot anomaly detection (ZSAD) has emerged as a pivotal paradigm for industrial inspection and medical diagnostics, detecting defects in novel objects without requiring any target-dataset samples during training. Existing CLIP-based ZSAD methods generate anomaly maps by measuring the cosine similarity between visual and textual features. However, CLIP's alignment with object categories instead of their anomalous states limits its effectiveness for anomaly detection. To address this limitation, we propose AFR-CLIP, a CLIP-based anomaly feature rectification framework. AFR-CLIP first performs image-guided textual rectification, embedding the implicit defect information from the image into a stateless prompt that describes the object category without indicating any anomalous state. The enriched textual embeddings are then compared with two pre-defined stateful (normal or abnormal) embeddings, and their text-on-text similarity yields the anomaly map that highlights defective regions. To further enhance perception to multi-scale features and complex anomalies, we introduce self prompting (SP) and multi-patch feature aggregation (MPFA) modules. Extensive experiments are conducted on eleven anomaly detection benchmarks across industrial and medical domains, demonstrating AFR-CLIP's superiority in ZSAD.
Authors:Jessica Plassmann, Nicolas Schuler, Georg von Freymann, Michael Schuth
Abstract:
Shearography is a non-destructive testing method for detecting subsurface defects, offering high sensitivity and full-field inspection capabilities. However, its industrial adoption remains limited due to the need for expert interpretation. To reduce reliance on labeled data and manual evaluation, this study explores unsupervised learning methods for automated anomaly detection in shearographic images. Three architectures are evaluated: a fully connected autoencoder, a convolutional autoencoder, and a student-teacher feature matching model. All models are trained solely on defect-free data. A controlled dataset was developed using a custom specimen with reproducible defect patterns, enabling systematic acquisition of shearographic measurements under both ideal and realistic deformation conditions. Two training subsets were defined: one containing only undistorted, defect-free samples, and one additionally including globally deformed, yet defect-free, data. The latter simulates practical inspection conditions by incorporating deformation-induced fringe patterns that may obscure localized anomalies. The models are evaluated in terms of binary classification and, for the student-teacher model, spatial defect localization. Results show that the student-teacher approach achieves superior classification robustness and enables precise localization. Compared to the autoencoder-based models, it demonstrates improved separability of feature representations, as visualized through t-SNE embeddings. Additionally, a YOLOv8 model trained on labeled defect data serves as a reference to benchmark localization quality. This study underscores the potential of unsupervised deep learning for scalable, label-efficient shearographic inspection in industrial environments.
Authors:Tai Le-Gia, Ahn Jaehyun
Abstract:
Zero-shot image anomaly classification (AC) and segmentation (AS) are vital for industrial quality control, detecting defects without prior training data. Existing representation-based methods compare patch features with nearest neighbors in unlabeled test images but struggle with consistent anomalies -- similar defects recurring across multiple images -- resulting in poor AC/AS performance. We introduce Consistent-Anomaly Detection Graph (CoDeGraph), a novel algorithm that identifies and filters consistent anomalies from similarity computations. Our key insight is that normal patches in industrial images show stable, gradually increasing similarity to other test images, while consistent-anomaly patches exhibit abrupt similarity spikes after exhausting a limited set of similar matches, a phenomenon we term ``neighbor-burnout.'' CoDeGraph constructs an image-level graph, with images as nodes and edges connecting those with shared consistent-anomaly patterns, using community detection to filter these anomalies. We provide a theoretical foundation using Extreme Value Theory to explain the effectiveness of our approach. Experiments on MVTec AD with the ViT-L-14-336 backbone achieve 98.3% AUROC for AC and AS performance of 66.8% (+4.2%) F1 and 68.1% (+5.4%) AP over state-of-the-art zero-shot methods. Using the DINOv2 backbone further improves segmentation, yielding 69.1% (+6.5%) F1 and 71.9% (+9.2%) AP, demonstrating robustness across architectures.
Authors:Sebastian Höfer, Dorian Henning, Artemij Amiranashvili, Douglas Morrison, Mariliza Tzes, Ingmar Posner, Marc Matvienko, Alessandro Rennola, Anton Milan
Abstract:
We present a novel large-scale dataset for defect detection in a logistics setting. Recent work on industrial anomaly detection has primarily focused on manufacturing scenarios with highly controlled poses and a limited number of object categories. Existing benchmarks like MVTec-AD [6] and VisA [33] have reached saturation, with state-of-the-art methods achieving up to 99.9% AUROC scores. In contrast to manufacturing, anomaly detection in retail logistics faces new challenges, particularly in the diversity and variability of object pose and appearance. Leading anomaly detection methods fall short when applied to this new setting. To bridge this gap, we introduce a new benchmark that overcomes the current limitations of existing datasets. With over 230,000 images (and more than 29,000 defective instances), it is 40 times larger than MVTec-AD and contains more than 48,000 distinct objects. To validate the difficulty of the problem, we conduct an extensive evaluation of multiple state-of-the-art anomaly detection methods, demonstrating that they do not surpass 56.96% AUROC on our dataset. Further qualitative analysis confirms that existing methods struggle to leverage normal samples under heavy pose and appearance variation. With our large-scale dataset, we set a new benchmark and encourage future research towards solving this challenging problem in retail logistics anomaly detection. The dataset is available for download under https://www.kaputt-dataset.com.
Authors:Aymane Abdali, Bartosz Boguslawski, Lucas Drumetz, Vincent Gripon
Abstract:
Several anomaly detection and classification methods rely on large amounts of non-anomalous or "normal" samples under the assump- tion that anomalous data is typically harder to acquire. This hypothesis becomes questionable in Few-Shot settings, where as little as one anno- tated sample can make a significant difference. In this paper, we tackle the question of utilizing anomalous samples in training a model for bi- nary anomaly classification. We propose a methodology that incorporates anomalous samples in a multi-score anomaly detection score leveraging recent Zero-Shot and memory-based techniques. We compare the utility of anomalous samples to that of regular samples and study the benefits and limitations of each. In addition, we propose an augmentation-based validation technique to optimize the aggregation of the different anomaly scores and demonstrate its effectiveness on popular industrial anomaly detection datasets.
Authors:Paul J. Krassnig, Dieter P. Gruber
Abstract:
Automatic visual inspection using machine learning plays a key role in achieving zero-defect policies in industry. Research on anomaly detection is constrained by the availability of datasets that capture complex defect appearances and imperfect imaging conditions, which are typical of production processes. Recent benchmarks indicate that most publicly available datasets are biased towards optimal imaging conditions, leading to an overestimation of their applicability in real-world industrial scenarios. To address this gap, we introduce the Industrial Screen Printing Anomaly Detection Dataset (ISP-AD). It presents challenging small and weakly contrasted surface defects embedded within structured patterns exhibiting high permitted design variability. To the best of our knowledge, it is the largest publicly available industrial dataset to date, including both synthetic and real defects collected directly from the factory floor. Beyond benchmarking recent unsupervised anomaly detection methods, experiments on a mixed supervised training strategy, incorporating both synthesized and real defects, were conducted. Experiments show that even a small amount of injected, weakly labeled real defects improves generalization. Furthermore, starting from training on purely synthetic defects, emerging real defective samples can be efficiently integrated into subsequent scalable training. Overall, our findings indicate that model-free synthetic defects can provide a cold-start baseline, whereas a small number of injected real defects refine the decision boundary for previously unseen defect characteristics. The presented unsupervised and supervised dataset splits are designed to emphasize research on unsupervised, self-supervised, and supervised approaches, enhancing their applicability to industrial settings.
Authors:Kun Qian, Tianyu Sun, Wenhong Wang
Abstract:
Industrial anomaly detection (IAD) plays a crucial role in the maintenance and quality control of manufacturing processes. In this paper, we propose a novel approach, Vision-Language Anomaly Detection via Contrastive Cross-Modal Training (CLAD), which leverages large vision-language models (LVLMs) to improve both anomaly detection and localization in industrial settings. CLAD aligns visual and textual features into a shared embedding space using contrastive learning, ensuring that normal instances are grouped together while anomalies are pushed apart. Through extensive experiments on two benchmark industrial datasets, MVTec-AD and VisA, we demonstrate that CLAD outperforms state-of-the-art methods in both image-level anomaly detection and pixel-level anomaly localization. Additionally, we provide ablation studies and human evaluation to validate the importance of key components in our method. Our approach not only achieves superior performance but also enhances interpretability by accurately localizing anomalies, making it a promising solution for real-world industrial applications.
Authors:Tianwu Lei, Bohan Wang, Silin Chen, Shurong Cao, Ningmu Zou
Abstract:
Anomaly detection is a crucial process in industrial manufacturing and has made significant advancements recently. However, there is a large variance between the data used in the development and the data collected by the production environment. Therefore, we present the Texture-AD benchmark based on representative texture-based anomaly detection to evaluate the effectiveness of unsupervised anomaly detection algorithms in real-world applications. This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates acquired under different optical schemes. In addition, it includes more than 10 different types of defects produced during real manufacturing processes, such as scratches, wrinkles, color variations and point defects, which are often more difficult to detect than existing datasets. All anomalous areas are provided with pixel-level annotations to facilitate comprehensive evaluation using anomaly detection models. Specifically, to adapt to diverse products in automated pipelines, we present a new evaluation method and results of baseline algorithms. The experimental results show that Texture-AD is a difficult challenge for state-of-the-art algorithms. To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world. The dataset is available at https://XXX.
Authors:Runzhi Deng, Yundi Hu, Xinshuang Zhang, Zhao Wang, Xixi Liu, Wang-Zhou Dai, Caifeng Shan, Fang Zhao
Abstract:
Few-shot multi-class industrial anomaly detection remains a challenging task. Vision-language models need to be both category-adaptive and sharply discriminative, yet data scarcity often blurs the boundary between normal and abnormal states. This ambiguity leads to missed subtle defects and the rejection of atypical normal samples. We propose ABounD, an Adversarial Boundary-Driven few-shot learning for multi-class anomaly detection, which is a unified learning framework that integrates semantic concept learning with decision boundary shaping. The Dynamic Concept Fusion (DCF) module produces class-adaptive prompts by fusing generalizable priors with class-specific cues, conditioned on image features. Meanwhile, Adversarial Boundary Forging (ABF) sculpts a more precise decision margin by generating boundary-level fence features via PGD-style perturbations. Training is conducted in a single stage under a Concept-Boundary Loss, where ABF provides the main supervisory signal and semantic-spatial regularizers stabilize the optimization. This synergy yields a decision boundary that closely follows normal data while preserving flexibility and robust semantic alignment. Experiments on MVTec-AD and VisA datasets demonstrate state-of-the-art performance in the task of few-shot multi-class anomaly detection.
Authors:Oliver Krumpek, Oliver Heimann, Jörg Krüger
Abstract:
This paper introduces a novel physical annotation system designed to generate training data for automated optical inspection. The system uses pointer-based in-situ interaction to transfer the valuable expertise of trained inspection personnel directly into a machine learning (ML) training pipeline. Unlike conventional screen-based annotation methods, our system captures physical trajectories and contours directly on the object, providing a more intuitive and efficient way to label data. The core technology uses calibrated, tracked pointers to accurately record user input and transform these spatial interactions into standardised annotation formats that are compatible with open-source annotation software. Additionally, a simple projector-based interface projects visual guidance onto the object to assist users during the annotation process, ensuring greater accuracy and consistency. The proposed concept bridges the gap between human expertise and automated data generation, enabling non-IT experts to contribute to the ML training pipeline and preventing the loss of valuable training samples. Preliminary evaluation results confirm the feasibility of capturing detailed annotation trajectories and demonstrate that integration with CVAT streamlines the workflow for subsequent ML tasks. This paper details the system architecture, calibration procedures and interface design, and discusses its potential contribution to future ML data generation for automated optical inspection.
Authors:Junqing Chen, Haibo Liu
Abstract:
We present a novel implicit neural shape optimization framework for 3D high-contrast Electrical Impedance Tomography (EIT), addressing scenarios where conductivity exhibits sharp discontinuities across material interfaces. These high-contrast cases, prevalent in metallic implant monitoring and industrial defect detection, challenge traditional reconstruction methods due to severe ill-posedness. Our approach synergizes shape optimization with implicit neural representations, introducing key innovations including a shape derivative-based optimization scheme that explicitly incorporates high-contrast interface conditions and an efficient latent space representation that reduces variable dimensionality. Through rigorous theoretical analysis of algorithm convergence and extensive numerical experiments, we demonstrate substantial performance improvements, establishing our framework as promising for practical applications in medical imaging with metallic implants and industrial non-destructive testing.
Authors:Haoyu Bai, Jie Wang, Gaomin Li, Xuan Li, Xiaohu Zhang, Xia Yang
Abstract:
Internal defect detection constitutes a critical process in ensuring component quality, for which anomaly detection serves as an effective solution. However, existing anomaly detection datasets predominantly focus on surface defects in visible-light images, lacking publicly available X-ray datasets targeting internal defects in components. To address this gap, we construct the first publicly accessible component X-ray anomaly detection (CXR-AD) dataset, comprising real-world X-ray images. The dataset covers five industrial component categories, including 653 normal samples and 561 defect samples with precise pixel-level mask annotations. We systematically analyze the dataset characteristics and identify three major technical challenges: (1) strong coupling between complex internal structures and defect regions, (2) inherent low contrast and high noise interference in X-ray imaging, and (3) significant variations in defect scales and morphologies. To evaluate dataset complexity, we benchmark three state-of-the-art anomaly detection frameworks (feature-based, reconstruction-based, and zero-shot learning methods). Experimental results demonstrate a 29.78% average performance degradation on CXR-AD compared to MVTec AD, highlighting the limitations of current algorithms in handling internal defect detection tasks. To the best of our knowledge, CXR-AD represents the first publicly available X-ray dataset for component anomaly detection, providing a real-world industrial benchmark to advance algorithm development and enhance precision in internal defect inspection technologies.
Authors:Mathis Kruse, Bodo Rosenhahn
Abstract:
With more well-performing anomaly detection methods proposed, many of the single-view tasks have been solved to a relatively good degree. However, real-world production scenarios often involve complex industrial products, whose properties may not be fully captured by one single image. While normalizing flow based approaches already work well in single-camera scenarios, they currently do not make use of the priors in multi-view data. We aim to bridge this gap by using these flow-based models as a strong foundation and propose Multi-Flow, a novel multi-view anomaly detection method. Multi-Flow makes use of a novel multi-view architecture, whose exact likelihood estimation is enhanced by fusing information across different views. For this, we propose a new cross-view message-passing scheme, letting information flow between neighboring views. We empirically validate it on the real-world multi-view data set Real-IAD and reach a new state-of-the-art, surpassing current baselines in both image-wise and sample-wise anomaly detection tasks.
Authors:Huaiyuan Zhang, Hang Chen, Yu Cheng, Shunyi Wu, Linghao Sun, Linao Han, Zeyu Shi, Lei Qi
Abstract:
In this technical report, we present our solution to the CVPR 2025 Visual Anomaly and Novelty Detection (VAND) 3.0 Workshop Challenge Track 1: Adapt & Detect: Robust Anomaly Detection in Real-World Applications. In real-world industrial anomaly detection, it is crucial to accurately identify anomalies with physical complexity, such as transparent or reflective surfaces, occlusions, and low-contrast contaminations. The recently proposed MVTec AD 2 dataset significantly narrows the gap between publicly available benchmarks and anomalies found in real-world industrial environments. To address the challenges posed by this dataset--such as complex and varying lighting conditions and real anomalies with large scale differences--we propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD. Our method carefully selects a small number of normal reference images and constructs a memory bank by leveraging the strong representational power of DINOv2. Anomalies are then segmented by performing nearest neighbor matching between test image features and the memory bank. Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.
Authors:Yifeng Cheng, Juan Du
Abstract:
Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
Authors:Tianle Yang, Luyao Chang, Jiadong Yan, Juntao Li, Zhi Wang, Ke Zhang
Abstract:
As industrial products become abundant and sophisticated, visual industrial defect detection receives much attention, including two-dimensional and three-dimensional visual feature modeling. Traditional methods use statistical analysis, abnormal data synthesis modeling, and generation-based models to separate product defect features and complete defect detection. Recently, the emergence of foundation models has brought visual and textual semantic prior knowledge. Many methods are based on foundation models (FM) to improve the accuracy of detection, but at the same time, increase model complexity and slow down inference speed. Some FM-based methods have begun to explore lightweight modeling ways, which have gradually attracted attention and deserve to be systematically analyzed. In this paper, we conduct a systematic survey with comparisons and discussions of foundation model methods from different aspects and briefly review non-foundation model (NFM) methods recently published. Furthermore, we discuss the differences between FM and NFM methods from training objectives, model structure and scale, model performance, and potential directions for future exploration. Through comparison, we find FM methods are more suitable for few-shot and zero-shot learning, which are more in line with actual industrial application scenarios and worthy of in-depth research.
Authors:Amirhossein Khadivi Noghredeh, Abdollah Safari, Fatemeh Ziaeetabar, Firoozeh Haghighi
Abstract:
Anomaly detection in industrial visual inspection is challenging due to the scarcity of defective samples. Most existing methods rely on unsupervised reconstruction using only normal data, often resulting in overfitting and poor detection of subtle defects. We propose a semi-supervised deep reinforcement learning framework that integrates a neural batch sampler, an autoencoder, and a predictor. The RL-based sampler adaptively selects informative patches by balancing exploration and exploitation through a composite reward. The autoencoder generates loss profiles highlighting abnormal regions, while the predictor performs segmentation in the loss-profile space. This interaction enables the system to effectively learn both normal and defective patterns with limited labeled data. Experiments on the MVTec AD dataset demonstrate that our method achieves higher accuracy and better localization of subtle anomalies than recent state-of-the-art approaches while maintaining low complexity, yielding an average improvement of 0.15 in F1_max and 0.06 in AUC, with a maximum gain of 0.37 in F1_max in the best case.
Authors:Cory Gardner, Byungseok Min, Tae-Hyuk Ahn
Abstract:
Anomaly detection and localization in industrial images are essential for automated quality inspection. PaDiM, a prominent method, models the distribution of normal image features extracted by pre-trained Convolutional Neural Networks (CNNs) but reduces dimensionality through random channel selection, potentially discarding structured information. We propose Wavelet-Enhanced PaDiM (WE-PaDiM), which integrates Discrete Wavelet Transform (DWT) analysis with multi-layer CNN features in a structured manner. WE-PaDiM applies 2D DWT to feature maps from multiple backbone layers, selects specific frequency subbands (e.g., LL, LH, HL), spatially aligns them, and concatenates them channel-wise before modeling with PaDiM's multivariate Gaussian framework. This DWT-before-concatenation strategy provides a principled method for feature selection based on frequency content relevant to anomalies, leveraging multi-scale wavelet information as an alternative to random selection. We evaluate WE-PaDiM on the challenging MVTec AD dataset with multiple backbones (ResNet-18 and EfficientNet B0-B6). The method achieves strong performance in anomaly detection and localization, yielding average results of 99.32% Image-AUC and 92.10% Pixel-AUC across 15 categories with per-class optimized configurations. Our analysis shows that wavelet choices affect performance trade-offs: simpler wavelets (e.g., Haar) with detail subbands (HL or LH/HL/HH) often enhance localization, while approximation bands (LL) improve image-level detection. WE-PaDiM thus offers a competitive and interpretable alternative to random feature selection in PaDiM, achieving robust results suitable for industrial inspection with comparable efficiency.
Authors:Dongwei Ji, Bingzhang Hu, Yi Zhou
Abstract:
Industrial anomaly detection (IAD) is critical for manufacturing quality control, but conventionally requires significant manual effort for various application scenarios. This paper introduces AutoIAD, a multi-agent collaboration framework, specifically designed for end-to-end automated development of industrial visual anomaly detection. AutoIAD leverages a Manager-Driven central agent to orchestrate specialized sub-agents (including Data Preparation, Data Loader, Model Designer, Trainer) and integrates a domain-specific knowledge base, which intelligently handles the entire pipeline using raw industrial image data to develop a trained anomaly detection model. We construct a comprehensive benchmark using MVTec AD datasets to evaluate AutoIAD across various LLM backends. Extensive experiments demonstrate that AutoIAD significantly outperforms existing general-purpose agentic collaboration frameworks and traditional AutoML frameworks in task completion rate and model performance (AUROC), while effectively mitigating issues like hallucination through iterative refinement. Ablation studies further confirm the crucial roles of the Manager central agent and the domain knowledge base module in producing robust and high-quality IAD solutions.
Authors:Tianwei Mu, Feiyu Duan, Bo Zhou, Dan Xue, Manhong Huang
Abstract:
This paper presents a novel few-shot cross-domain anomaly detection framework, Nexus Vision Transformer for Anomaly Detection (NexViTAD), based on vision foundation models, which effectively addresses domain-shift challenges in industrial anomaly detection through innovative shared subspace projection mechanisms and multi-task learning (MTL) module. The main innovations include: (1) a hierarchical adapter module that adaptively fuses complementary features from Hiera and DINO-v2 pre-trained models, constructing more robust feature representations; (2) a shared subspace projection strategy that enables effective cross-domain knowledge transfer through bottleneck dimension constraints and skip connection mechanisms; (3) a MTL Decoder architecture supports simultaneous processing of multiple source domains, significantly enhancing model generalization capabilities; (4) an anomaly score inference method based on Sinkhorn-K-means clustering, combined with Gaussian filtering and adaptive threshold processing for precise pixel level. Valuated on the MVTec AD dataset, NexViTAD delivers state-of-the-art performance with an AUC of 97.5%, AP of 70.4%, and PRO of 95.2% in the target domains, surpassing other recent models, marking a transformative advance in cross-domain defect detection.
Authors:Korbinian Pfab, Marcel Rothering
Abstract:
Are current artificial intelligence (AI) research methodologies ready to create successful, productive, and profitable AI applications? This work presents a case study on an industrial AI use case called false call reduction for automated optical inspection to demonstrate the shortcomings of current best practices. We identify seven weaknesses prevalent in related peer-reviewed work and experimentally show their consequences. We show that the best-practice methodology would fail for this use case. We argue amongst others for the necessity of requirement-aware metrics to ensure achieving business objectives, clear definitions of success criteria, and a thorough analysis of temporal dynamics in experimental datasets. Our work encourages researchers to critically assess their methodologies for more successful applied AI research.
Authors:Abdelrahman Alzarooni, Ehtesham Iqbal, Samee Ullah Khan, Sajid Javed, Brain Moyo, Yusra Abdulrahman
Abstract:
Anomaly detection from images captured using camera sensors is one of the mainstream applications at the industrial level. Particularly, it maintains the quality and optimizes the efficiency in production processes across diverse industrial tasks, including advanced manufacturing and aerospace engineering. Traditional anomaly detection workflow is based on a manual inspection by human operators, which is a tedious task. Advances in intelligent automated inspection systems have revolutionized the Industrial Anomaly Detection (IAD) process. Recent vision-based approaches can automatically extract, process, and interpret features using computer vision and align with the goals of automation in industrial operations. In light of the shift in inspection methodologies, this survey reviews studies published since 2019, with a specific focus on vision-based anomaly detection. The components of an IAD pipeline that are overlooked in existing surveys are presented, including areas related to data acquisition, preprocessing, learning mechanisms, and evaluation. In addition to the collected publications, several scientific and industry-related challenges and their perspective solutions are highlighted. Popular and relevant industrial datasets are also summarized, providing further insight into inspection applications. Finally, future directions of vision-based IAD are discussed, offering researchers insight into the state-of-the-art of industrial inspection.
Authors:Youngjae Cho, Gwangyeol Kim, Sirojbek Safarov, Seongdeok Bang, Jaewoo Park
Abstract:
Detecting anomalies in industrial settings is challenging due to the scarcity of labeled anomalous data. Generative models can mitigate this issue by synthesizing realistic defect samples, but existing approaches often fail to model the crucial interplay between defects and their background. This oversight leads to unrealistic anomalies, especially in scenarios where contextual consistency is essential (i.e., logical anomaly). To address this, we propose a novel background-aware defect generation framework, where the background influences defect denoising without affecting the background itself by ensuring realistic synthesis while preserving structural integrity. Our method leverages a disentanglement loss to separate the background' s denoising process from the defect, enabling controlled defect synthesis through DDIM Inversion. We theoretically demonstrate that our approach maintains background fidelity while generating contextually accurate defects. Extensive experiments on MVTec AD and MVTec Loco benchmarks validate our mehtod's superiority over existing techniques in both defect generation quality and anomaly detection performance.
Authors:Shunsuke Sakai, Tatushito Hasegawa, Makoto Koshino
Abstract:
Detecting anomalies such as incorrect combinations of objects or deviations in their positions is a challenging problem in industrial anomaly detection. Traditional methods mainly focus on local features of normal images, such as scratches and dirt, making detecting anomalies in the relationships between features difficult. Masked image modeling(MIM) is a self-supervised learning technique that predicts the feature representation of masked regions in an image. To reconstruct the masked regions, it is necessary to understand how the image is composed, allowing the learning of relationships between features within the image. We propose a novel approach that leverages the characteristics of MIM to detect logical anomalies effectively. To address blurriness in the reconstructed image, we replace pixel prediction with predicting the probability distribution of discrete latent variables of the masked regions using a tokenizer. We evaluated the proposed method on the MVTecLOCO dataset, achieving an average AUC of 0.867, surpassing traditional reconstruction-based and distillation-based methods.
Authors:Geonuk Kim
Abstract: Industrial defect detection traditionally relies on supervised learning models trained on fixed datasets of known defect types. While effective within a closed set, these models struggle with new, unseen defects, necessitating frequent re-labeling and re-training. Recent advances in visual prompting offer a solution by allowing models to adaptively infer novel categories based on provided visual cues. However, a prevalent issue in these methods is the over-confdence problem, where models can mis-classify unknown objects as known objects with high certainty. To addresssing the fundamental concerns about the adaptability, we propose a solution to estimate uncertainty of the visual prompting process by cycle-consistency. We designed to check whether it can accurately restore the original prompt from its predictions. To quantify this, we measure the mean Intersection over Union (mIoU) between the restored prompt mask and the originally provided prompt mask. Without using complex designs or ensemble methods with multiple networks, our approach achieved a yield rate of 0.9175 in the VISION24 one-shot industrial challenge.