arXiv Papers of Out-of-Distribution Detection

Paperid: 1, https://arxiv.org/pdf/2601.17284.pdf   GitHub
Authors:Yaokun Liu, Yifan Liu, Phoebe Mbuvi, Zelin Li, Ruichen Yao, Gawon Lim, Dong Wang
Title: Mind the Ambiguity: Aleatoric Uncertainty Quantification in LLMs for Safe Medical Question Answering
Abstract:
The deployment of Large Language Models in Medical Question Answering is severely hampered by ambiguous user queries, a significant safety risk that demonstrably reduces answer accuracy in high-stakes healthcare settings. In this paper, we formalize this challenge by linking input ambiguity to aleatoric uncertainty (AU), which is the irreducible uncertainty arising from underspecified input. To facilitate research in this direction, we construct CV-MedBench, the first benchmark designed for studying input ambiguity in Medical QA. Using this benchmark, we analyze AU from a representation engineering perspective, revealing that AU is linearly encoded in LLM's internal activation patterns. Leveraging this insight, we introduce a novel AU-guided "Clarify-Before-Answer" framework, which incorporates AU-Probe - a lightweight module that detects input ambiguity directly from hidden states. Unlike existing uncertainty estimation methods, AU-Probe requires neither LLM fine-tuning nor multiple forward passes, enabling an efficient mechanism to proactively request user clarification and significantly enhance safety. Extensive experiments across four open LLMs demonstrate the effectiveness of our QA framework, with an average accuracy improvement of 9.48% over baselines. Our framework provides an efficient and robust solution for safe Medical QA, strengthening the reliability of health-related applications. The code is available at https://github.com/yaokunliu/AU-Med.git, and the CV-MedBench dataset is released on Hugging Face at https://huggingface.co/datasets/yaokunl/CV-MedBench.
Authors:Tianyu Li, Songyue Cai, Zongqian Wu, Ping Hu, Xiaofeng Zhu
Title: Enhancing Few-Shot Out-of-Distribution Detection via the Refinement of Foreground and Background
Abstract:
CLIP-based foreground-background (FG-BG) decomposition methods have demonstrated remarkable effectiveness in improving few-shot out-of-distribution (OOD) detection performance. However, existing approaches still suffer from several limitations. For background regions obtained from decomposition, existing methods adopt a uniform suppression strategy for all patches, overlooking the varying contributions of different patches to the prediction. For foreground regions, existing methods fail to adequately consider that some local patches may exhibit appearance or semantic similarity to other classes, which may mislead the training process. To address these issues, we propose a new plug-and-play framework. This framework consists of three core components: (1) a Foreground-Background Decomposition module, which follows previous FG-BG methods to separate an image into foreground and background regions; (2) an Adaptive Background Suppression module, which adaptively weights patch classification entropy; and (3) a Confusable Foreground Rectification module, which identifies and rectifies confusable foreground patches. Extensive experimental results demonstrate that the proposed plug-and-play framework significantly improves the performance of existing FG-BG decomposition methods. Code is available at: https://github.com/lounwb/FoBoR.
Authors:Yinsong Wang, Xinzhe Luo, Siyi Du, Chen Qin
Title: Adaptive Conditional Contrast-Agnostic Deformable Image Registration with Uncertainty Estimation
Abstract:
Deformable multi-contrast image registration is a challenging yet crucial task due to the complex, non-linear intensity relationships across different imaging contrasts. Conventional registration methods typically rely on iterative optimization of the deformation field, which is time-consuming. Although recent learning-based approaches enable fast and accurate registration during inference, their generalizability remains limited to the specific contrasts observed during training. In this work, we propose an adaptive conditional contrast-agnostic deformable image registration framework (AC-CAR) based on a random convolution-based contrast augmentation scheme. AC-CAR can generalize to arbitrary imaging contrasts without observing them during training. To encourage contrast-invariant feature learning, we propose an adaptive conditional feature modulator (ACFM) that adaptively modulates the features and the contrast-invariant latent regularization to enforce the consistency of the learned feature across different imaging contrasts. Additionally, we enable our framework to provide contrast-agnostic registration uncertainty by integrating a variance network that leverages the contrast-agnostic registration encoder to improve the trustworthiness and reliability of AC-CAR. Experimental results demonstrate that AC-CAR outperforms baseline methods in registration accuracy and exhibits superior generalization to unseen imaging contrasts. Code is available at https://github.com/Yinsong0510/AC-CAR.
Authors:Xiaoze Liu, Weichen Yu, Matt Fredrikson, Xiaoqian Wang, Jing Gao
Title: The Trojan in the Vocabulary: Stealthy Sabotage of LLM Composition
Abstract:
The open-weight language model ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single breaker token that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and evades outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition. Code is available at https://github.com/xz-liu/tokenforge
Authors:Jesse Brouwers, Xiaoyan Xing, Alexander Timans
Title: Towards Integrating Uncertainty for Domain-Agnostic Segmentation
Abstract:
Foundation models for segmentation such as the Segment Anything Model (SAM) family exhibit strong zero-shot performance, but remain vulnerable in shifted or limited-knowledge domains. This work investigates whether uncertainty quantification can mitigate such challenges and enhance model generalisability in a domain-agnostic manner. To this end, we (1) curate UncertSAM, a benchmark comprising eight datasets designed to stress-test SAM under challenging segmentation conditions including shadows, transparency, and camouflage; (2) evaluate a suite of lightweight, post-hoc uncertainty estimation methods; and (3) assess a preliminary uncertainty-guided prediction refinement step. Among evaluated approaches, a last-layer Laplace approximation yields uncertainty estimates that correlate well with segmentation errors, indicating a meaningful signal. While refinement benefits are preliminary, our findings underscore the potential of incorporating uncertainty into segmentation models to support robust, domain-agnostic performance. Our benchmark and code are made publicly available.
Authors:Baiyang Chen, Zhong Yuan, Zheng Liu, Dezhong Peng, Yongxiang Li, Chang Liu, Guiduo Duan
Title: Outlier detection in mixed-attribute data: a semi-supervised approach with fuzzy approximations and relative entropy
Abstract:
Outlier detection is a critical task in data mining, aimed at identifying objects that significantly deviate from the norm. Semi-supervised methods improve detection performance by leveraging partially labeled data but typically overlook the uncertainty and heterogeneity of real-world mixed-attribute data. This paper introduces a semi-supervised outlier detection method, namely fuzzy rough sets-based outlier detection (FROD), to effectively handle these challenges. Specifically, we first utilize a small subset of labeled data to construct fuzzy decision systems, through which we introduce the attribute classification accuracy based on fuzzy approximations to evaluate the contribution of attribute sets in outlier detection. Unlabeled data is then used to compute fuzzy relative entropy, which provides a characterization of outliers from the perspective of uncertainty. Finally, we develop the detection algorithm by combining attribute classification accuracy with fuzzy relative entropy. Experimental results on 16 public datasets show that FROD is comparable with or better than leading detection algorithms. All datasets and source codes are accessible at https://github.com/ChenBaiyang/FROD. This manuscript is the accepted author version of a paper published by Elsevier. The final published version is available at https://doi.org/10.1016/j.ijar.2025.109373
Authors:Mohamed Elrefaie, Dule Shu, Matt Klenk, Faez Ahmed
Title: CarBench: A Comprehensive Benchmark for Neural Surrogates on High-Fidelity 3D Car Aerodynamics
Abstract:
Benchmarking has been the cornerstone of progress in computer vision, natural language processing, and the broader deep learning domain, driving algorithmic innovation through standardized datasets and reproducible evaluation protocols. The growing availability of large-scale Computational Fluid Dynamics (CFD) datasets has opened new opportunities for applying machine learning to aerodynamic and engineering design. Yet, despite this progress, there exists no standardized benchmark for large-scale numerical simulations in engineering design. In this work, we introduce CarBench, the first comprehensive benchmark dedicated to large-scale 3D car aerodynamics, performing a large-scale evaluation of state-of-the-art models on DrivAerNet++, the largest public dataset for automotive aerodynamics, containing over 8,000 high-fidelity car simulations. We assess eleven architectures spanning neural operator methods (e.g., Fourier Neural Operator), geometric deep learning (PointNet, RegDGCNN, PointMAE, PointTransformer), transformer-based neural solvers (Transolver, Transolver++, AB-UPT), and implicit field networks (TripNet). Beyond standard interpolation tasks, we perform cross-category experiments in which transformer-based solvers trained on a single car archetype are evaluated on unseen categories. Our analysis covers predictive accuracy, physical consistency, computational efficiency, and statistical uncertainty. To accelerate progress in data-driven engineering, we open-source the benchmark framework, including training pipelines, uncertainty estimation routines based on bootstrap resampling, and pretrained model weights, establishing the first reproducible foundation for large-scale learning from high-fidelity CFD simulations, available at https://github.com/Mohamedelrefaie/CarBench.
Authors:Zebin Xing, Yupeng Zheng, Qichao Zhang, Zhixing Ding, Pengxuan Yang, Songen Gu, Zhongpu Xia, Dongbin Zhao
Title: Mimir: Hierarchical Goal-Driven Diffusion with Uncertainty Propagation for End-to-End Autonomous Driving
Abstract:
End-to-end autonomous driving has emerged as a pivotal direction in the field of autonomous systems. Recent works have demonstrated impressive performance by incorporating high-level guidance signals to steer low-level trajectory planners. However, their potential is often constrained by inaccurate high-level guidance and the computational overhead of complex guidance modules. To address these limitations, we propose Mimir, a novel hierarchical dual-system framework capable of generating robust trajectories relying on goal points with uncertainty estimation: (1) Unlike previous approaches that deterministically model, we estimate goal point uncertainty with a Laplace distribution to enhance robustness; (2) To overcome the slow inference speed of the guidance system, we introduce a multi-rate guidance mechanism that predicts extended goal points in advance. Validated on challenging Navhard and Navtest benchmarks, Mimir surpasses previous state-of-the-art methods with a 20% improvement in the driving score EPDMS, while achieving 1.6 times improvement in high-level module inference speed without compromising accuracy. The code and models will be released soon to promote reproducibility and further development. The code is available at https://github.com/ZebinX/Mimir-Uncertainty-Driving
Authors:Mai Tsujimoto
Title: Concept-based Explainable Data Mining with VLM for 3D Detection
Abstract:
Rare-object detection remains a challenging task in autonomous driving systems, particularly when relying solely on point cloud data. Although Vision-Language Models (VLMs) exhibit strong capabilities in image understanding, their potential to enhance 3D object detection through intelligent data mining has not been fully explored. This paper proposes a novel cross-modal framework that leverages 2D VLMs to identify and mine rare objects from driving scenes, thereby improving 3D object detection performance. Our approach synthesizes complementary techniques such as object detection, semantic feature extraction, dimensionality reduction, and multi-faceted outlier detection into a cohesive, explainable pipeline that systematically identifies rare but critical objects in driving scenes. By combining Isolation Forest and t-SNE-based outlier detection methods with concept-based filtering, the framework effectively identifies semantically meaningful rare objects. A key strength of this approach lies in its ability to extract and annotate targeted rare object concepts such as construction vehicles, motorcycles, and barriers. This substantially reduces the annotation burden and focuses only on the most valuable training samples. Experiments on the nuScenes dataset demonstrate that this concept-guided data mining strategy enhances the performance of 3D object detection models while utilizing only a fraction of the training data, with particularly notable improvements for challenging object categories such as trailers and bicycles compared with the same amount of random data. This finding has substantial implications for the efficient curation of datasets in safety-critical autonomous systems.
Authors:Tianling Xu, Shengzhe Gan, Leslie Gu, Yuelei Li, Fangneng Zhan, Hanspeter Pfister
Title: AREA3D: Active Reconstruction Agent with Unified Feed-Forward 3D Perception and Vision-Language Guidance
Abstract:
Active 3D reconstruction enables an agent to autonomously select viewpoints to efficiently obtain accurate and complete scene geometry, rather than passively reconstructing scenes from pre-collected images. However, existing active reconstruction methods often rely on hand-crafted geometric heuristics, which can lead to redundant observations without substantially improving reconstruction quality. To address this limitation, we propose AREA3D, an active reconstruction agent that leverages feed-forward 3D reconstruction models and vision-language guidance. Our framework decouples view-uncertainty modeling from the underlying feed-forward reconstructor, enabling precise uncertainty estimation without expensive online optimization. In addition, an integrated vision-language model provides high-level semantic guidance, encouraging informative and diverse viewpoints beyond purely geometric cues. Extensive experiments on both scene-level and object-level benchmarks demonstrate that AREA3D achieves state-of-the-art reconstruction accuracy, particularly in the sparse-view regime. Code will be made available at: https://github.com/TianlingXu/AREA3D .
Authors:Haojian Huang, Kaijing Ma, Jin Chen, Haodong Chen, Zhou Wu, Xianghao Zang, Han Fang, Chao Ban, Hao Sun, Mulin Chen, Zhongjiang He
Title: Adaptive Evidential Learning for Temporal-Semantic Robustness in Moment Retrieval
Abstract:
In the domain of moment retrieval, accurately identifying temporal segments within videos based on natural language queries remains challenging. Traditional methods often employ pre-trained models that struggle with fine-grained information and deterministic reasoning, leading to difficulties in aligning with complex or ambiguous moments. To overcome these limitations, we explore Deep Evidential Regression (DER) to construct a vanilla Evidential baseline. However, this approach encounters two major issues: the inability to effectively handle modality imbalance and the structural differences in DER's heuristic uncertainty regularizer, which adversely affect uncertainty estimation. This misalignment results in high uncertainty being incorrectly associated with accurate samples rather than challenging ones. Our observations indicate that existing methods lack the adaptability required for complex video scenarios. In response, we propose Debiased Evidential Learning for Moment Retrieval (DEMR), a novel framework that incorporates a Reflective Flipped Fusion (RFF) block for cross-modal alignment and a query reconstruction task to enhance text sensitivity, thereby reducing bias in uncertainty estimation. Additionally, we introduce a Geom-regularizer to refine uncertainty predictions, enabling adaptive alignment with difficult moments and improving retrieval accuracy. Extensive testing on standard datasets and debiased datasets ActivityNet-CD and Charades-CD demonstrates significant enhancements in effectiveness, robustness, and interpretability, positioning our approach as a promising solution for temporal-semantic robustness in moment retrieval. The code is publicly available at https://github.com/KaijingOfficial/DEMR.
Authors:Zhenxiang Lin, Maryam Haghighat, Will Browne, Dimity Miller
Title: Intra-Class Probabilistic Embeddings for Uncertainty Estimation in Vision-Language Models
Abstract:
Vision-language models (VLMs), such as CLIP, have gained popularity for their strong open vocabulary classification performance, but they are prone to assigning high confidence scores to misclassifications, limiting their reliability in safety-critical applications. We introduce a training-free, post-hoc uncertainty estimation method for contrastive VLMs that can be used to detect erroneous predictions. The key to our approach is to measure visual feature consistency within a class, using feature projection combined with multivariate Gaussians to create class-specific probabilistic embeddings. Our method is VLM-agnostic, requires no fine-tuning, demonstrates robustness to distribution shift, and works effectively with as few as 10 training images per class. Extensive experiments on ImageNet, Flowers102, Food101, EuroSAT and DTD show state-of-the-art error detection performance, significantly outperforming both deterministic and probabilistic VLM baselines. Code is available at https://github.com/zhenxianglin/ICPE.
Authors:Lorenzo Shaikewitz, Charis Georgiou, Luca Carlone
Title: Uncertainty Quantification for Visual Object Pose Estimation
Abstract:
Quantifying the uncertainty of an object's pose estimate is essential for robust control and planning. Although pose estimation is a well-studied robotics problem, attaching statistically rigorous uncertainty is not well understood without strict distributional assumptions. We develop distribution-free pose uncertainty bounds about a given pose estimate in the monocular setting. Our pose uncertainty only requires high probability noise bounds on pixel detections of 2D semantic keypoints on a known object. This noise model induces an implicit, non-convex set of pose uncertainty constraints. Our key contribution is SLUE (S-Lemma Uncertainty Estimation), a convex program to reduce this set to a single ellipsoidal uncertainty bound that is guaranteed to contain the true object pose with high probability. SLUE solves a relaxation of the minimum volume bounding ellipsoid problem inspired by the celebrated S-lemma. It requires no initial guess of the bound's shape or size and is guaranteed to contain the true object pose with high probability. For tighter uncertainty bounds at the same confidence, we extend SLUE to a sum-of-squares relaxation hierarchy which is guaranteed to converge to the minimum volume ellipsoidal uncertainty bound for a given set of keypoint constraints. We show this pose uncertainty bound can easily be projected to independent translation and axis-angle orientation bounds. We evaluate SLUE on two pose estimation datasets and a real-world drone tracking scenario. Compared to prior work, SLUE generates substantially smaller translation bounds and competitive orientation bounds. We release code at https://github.com/MIT-SPARK/PoseUncertaintySets.
Authors:Kay Liu, Yuwei Han, Haoyan Xu, Henry Peng Zou, Yue Zhao, Philip S. Yu
Title: TAGFN: A Text-Attributed Graph Dataset for Fake News Detection in the Age of LLMs
Abstract:
Large Language Models (LLMs) have recently revolutionized machine learning on text-attributed graphs, but the application of LLMs to graph outlier detection, particularly in the context of fake news detection, remains significantly underexplored. One of the key challenges is the scarcity of large-scale, realistic, and well-annotated datasets that can serve as reliable benchmarks for outlier detection. To bridge this gap, we introduce TAGFN, a large-scale, real-world text-attributed graph dataset for outlier detection, specifically fake news detection. TAGFN enables rigorous evaluation of both traditional and LLM-based graph outlier detection methods. Furthermore, it facilitates the development of misinformation detection capabilities in LLMs through fine-tuning. We anticipate that TAGFN will be a valuable resource for the community, fostering progress in robust graph-based outlier detection and trustworthy AI. The dataset is publicly available at https://huggingface.co/datasets/kayzliu/TAGFN and our code is available at https://github.com/kayzliu/tagfn.
Authors:Afra Kilic, Kim Batselier
Title: A Fully Probabilistic Tensor Network for Regularized Volterra System Identification
Abstract:
Modeling nonlinear systems with Volterra series is challenging because the number of kernel coefficients grows exponentially with the model order. This work introduces Bayesian Tensor Network Volterra kernel machines (BTN-V), extending the Bayesian Tensor Network framework to Volterra system identification. BTN-V represents Volterra kernels using canonical polyadic decomposition, reducing model complexity from O(I^D) to O(DIR). By treating all tensor components and hyperparameters as random variables, BTN-V provides predictive uncertainty estimation at no additional computational cost. Sparsity-inducing hierarchical priors enable automatic rank determination and the learning of fading-memory behavior directly from data, improving interpretability and preventing overfitting. Empirical results demonstrate competitive accuracy, enhanced uncertainty quantification, and reduced computational cost.
Authors:Nimeshika Udayangani, Sarah Erfani, Christopher Leckie
Title: SupLID: Geometrical Guidance for Out-of-Distribution Detection in Semantic Segmentation
Abstract:
Out-of-Distribution (OOD) detection in semantic segmentation aims to localize anomalous regions at the pixel level, advancing beyond traditional image-level OOD techniques to better suit real-world applications such as autonomous driving. Recent literature has successfully explored the adaptation of commonly used image-level OOD methods--primarily based on classifier-derived confidence scores (e.g., energy or entropy)--for this pixel-precise task. However, these methods inherit a set of limitations, including vulnerability to overconfidence. In this work, we introduce SupLID, a novel framework that effectively guides classifier-derived OOD scores by exploiting the geometrical structure of the underlying semantic space, particularly using Linear Intrinsic Dimensionality (LID). While LID effectively characterizes the local structure of high-dimensional data by analyzing distance distributions, its direct application at the pixel level remains challenging. To overcome this, SupLID constructs a geometrical coreset that captures the intrinsic structure of the in-distribution (ID) subspace. It then computes OOD scores at the superpixel level, enabling both efficient real-time inference and improved spatial smoothness. We demonstrate that geometrical cues derived from SupLID serve as a complementary signal to traditional classifier confidence, enhancing the model's ability to detect diverse OOD scenarios. Designed as a post-hoc scoring method, SupLID can be seamlessly integrated with any semantic segmentation classifier at deployment time. Our results demonstrate that SupLID significantly enhances existing classifier-based OOD scores, achieving state-of-the-art performance across key evaluation metrics, including AUR, FPR, and AUP. Code is available at https://github.com/hdnugit/SupLID.
Authors:Xiangde Luo, Jinxi Xiang, Yuanfeng Ji, Ruijiang Li
Title: nnMIL: A generalizable multiple instance learning framework for computational pathology
Abstract:
Computational pathology holds substantial promise for improving diagnosis and guiding treatment decisions. Recent pathology foundation models enable the extraction of rich patch-level representations from large-scale whole-slide images (WSIs), but current approaches for aggregating these features into slide-level predictions remain constrained by design limitations that hinder generalizability and reliability. Here, we developed nnMIL, a simple yet broadly applicable multiple-instance learning framework that connects patch-level foundation models to robust slide-level clinical inference. nnMIL introduces random sampling at both the patch and feature levels, enabling large-batch optimization, task-aware sampling strategies, and efficient and scalable training across datasets and model architectures. A lightweight aggregator performs sliding-window inference to generate ensemble slide-level predictions and supports principled uncertainty estimation. Across 40,000 WSIs encompassing 35 clinical tasks and four pathology foundation models, nnMIL consistently outperformed existing MIL methods for disease diagnosis, histologic subtyping, molecular biomarker detection, and pan- cancer prognosis prediction. It further demonstrated strong cross-model generalization, reliable uncertainty quantification, and robust survival stratification in multiple external cohorts. In conclusion, nnMIL offers a practical and generalizable solution for translating pathology foundation models into clinically meaningful predictions, advancing the development and deployment of reliable AI systems in real-world settings.
Authors:Frederik Hoppe, Lars Kleinemeier, Astrid Franz, Udo Göbel
Title: Comparing Task-Agnostic Embedding Models for Tabular Data
Abstract:
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations from tabular foundation models (TabPFN and TabICL) alongside with classical feature engineering (TableVectorizer) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple TableVectorizer features achieve comparable or superior performance while being up to three orders of magnitude faster than tabular foundation models. The code is available at https://github.com/ContactSoftwareAI/TabEmbedBench.
Authors:Benjamin Yu, Vincenzo Lordi, Daniel Schwalbe-Koda
Title: Maximizing Efficiency of Dataset Compression for Machine Learning Potentials With Information Theory
Abstract:
Machine learning interatomic potentials (MLIPs) balance high accuracy and lower costs compared to density functional theory calculations, but their performance often depends on the size and diversity of training datasets. Large datasets improve model accuracy and generalization but are computationally expensive to produce and train on, while smaller datasets risk discarding rare but important atomic environments and compromising MLIP accuracy/reliability. Here, we develop an information-theoretical framework to quantify the efficiency of dataset compression methods and propose an algorithm that maximizes this efficiency. By framing atomistic dataset compression as an instance of the minimum set cover (MSC) problem over atom-centered environments, our method identifies the smallest subset of structures that contains as much information as possible from the original dataset while pruning redundant information. The approach is extensively demonstrated on the GAP-20 and TM23 datasets, and validated on 64 varied datasets from the ColabFit repository. Across all cases, MSC consistently retains outliers, preserves dataset diversity, and reproduces the long-tail distributions of forces even at high compression rates, outperforming other subsampling methods. Furthermore, MLIPs trained on MSC-compressed datasets exhibit reduced error for out-of-distribution data even in low-data regimes. We explain these results using an outlier analysis and show that such quantitative conclusions could not be achieved with conventional dimensionality reduction methods. The algorithm is implemented in the open-source QUESTS package and can be used for several tasks in atomistic modeling, from data subsampling, outlier detection, and training improved MLIPs at a lower cost.
Authors:Michael Bowman, Xiaoli Zhang
Title: Human Motion Intent Inferencing in Teleoperation Through a SINDy Paradigm
Abstract:
Intent inferencing in teleoperation has been instrumental in aligning operator goals and coordinating actions with robotic partners. However, current intent inference methods often ignore subtle motion that can be strong indicators for a sudden change in intent. Specifically, we aim to tackle 1) if we can detect sudden jumps in operator trajectories, 2) how we appropriately use these sudden jump motions to infer an operator's goal state, and 3) how to incorporate these discontinuous and continuous dynamics to infer operator motion. Our framework, called Psychic, models these small indicative motions through a jump-drift-diffusion stochastic differential equation to cover discontinuous and continuous dynamics. Kramers-Moyal (KM) coefficients allow us to detect jumps with a trajectory which we pair with a statistical outlier detection algorithm to nominate goal transitions. Through identifying jumps, we can perform early detection of existing goals and discover undefined goals in unstructured scenarios. Our framework then applies a Sparse Identification of Nonlinear Dynamics (SINDy) model using KM coefficients with the goal transitions as a control input to infer an operator's motion behavior in unstructured scenarios. We demonstrate Psychic can produce probabilistic reachability sets and compare our strategy to a negative log-likelihood model fit. We perform a retrospective study on 600 operator trajectories in a hands-free teleoperation task to evaluate the efficacy of our opensource package, Psychic, in both offline and online learning.
Authors:Nikolas Adaloglou, Diana Petrusheva, Mohamed Asker, Felix Michels, Markus Kollmann
Title: ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora
Abstract:
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.
Authors:Dennis Pierantozzi, Luca Carlini, Mauro Orazio Drago, Chiara Lena, Cesare Hassan, Elena De Momi, Danail Stoyanov, Sophia Bano, Mobarak I. Hoque
Title: When to Trust the Answer: Question-Aligned Semantic Nearest Neighbor Entropy for Safer Surgical VQA
Abstract:
Safety and reliability are essential for deploying Visual Question Answering (VQA) in surgery, where incorrect or ambiguous responses can harm the patient. Most surgical VQA research focuses on accuracy or linguistic quality while overlooking safety behaviors such as ambiguity awareness, referral to human experts, or triggering a second opinion. Inspired by Automatic Failure Detection (AFD), we study uncertainty estimation as a key enabler of safer decision making. We introduce Question Aligned Semantic Nearest Neighbor Entropy (QA-SNNE), a black box uncertainty estimator that incorporates question semantics into prediction confidence. It measures semantic entropy by comparing generated answers with nearest neighbors in a medical text embedding space, conditioned on the question. We evaluate five models, including domain specific Parameter-Efficient Fine-Tuned (PEFT) models and zero-shot Large Vision-Language Models (LVLMs), on EndoVis18-VQA and PitVQA. PEFT models degrade under mild paraphrasing, while LVLMs are more resilient. Across three LVLMs and two PEFT baselines, QA-SNNE improves AUROC in most in-template settings and enhances hallucination detection. The Area Under the ROC Curve (AUROC) increases by 15-38% for zero-shot models, with gains maintained under out-of-template stress. QA-SNNE offers a practical and interpretable step toward AFD in surgical VQA by linking semantic uncertainty to question context. Combining LVLM backbones with question aligned uncertainty estimation can improve safety and clinician trust. The code and model are available at https://github.com/DennisPierantozzi/QASNNE
Authors:Ziyang Zhang, Yifan Gao, Xuenan Xu, Baoxiangli, Wen Wu, Chao Zhang
Title: Bayesian Speech synthesizers Can Learn from Multiple Teachers
Abstract:
Codec-based text-to-speech (TTS) models have recently gained traction for their efficiency and strong performance in voice cloning. However, codec-based TTS faces limitations due to the challenges of pretraining robust speech codecs and the quality degradation introduced by quantization errors. Emerging evidence suggests that continuous-valued generative models can alleviate these issues and serve as a promising alternative. Yet, effectively modelling diverse speech patterns and developing reliable sampling strategies for continuous-valued autoregressive (AR) TTS remains underexplored. In this work, we propose BELLE, Bayesian evidential learning with language modelling for TTS, a novel continuous-valued AR framework that directly predicts mel-spectrograms from textual input. BELLE treats each mel-spectrogram frame as a Gaussian distribution sampled from a learned hyper distribution, enabling principled uncertainty estimation, particularly in scenarios with parallel data (i.e., one text-audio prompt paired with multiple speech samples). To obtain such data, diverse speech samples are synthesized using multiple pre-trained TTS models given the same text-audio prompts, which are distilled into BELLE via Bayesian evidential learning. Experimental results indicate that BELLE demonstrates highly competitive performance compared with the current best open-source TTS models, even though BELLE is trained on a large amount of synthetic data and uses only approximately one-tenth of their training data. Audio samples generated by BELLE are available at https://belletts.github.io/Belle/. The code, checkpoints, and synthetic data will be released after the paper is accepted.
Authors:Edward Berman, Jacob Ginesin, Marco Pacini, Robin Walters
Title: On Uncertainty Calibration for Equivariant Functions
Abstract:
Data-sparse settings such as robotic manipulation, molecular physics, and galaxy morphology classification are some of the hardest domains for deep learning. For these problems, equivariant networks can help improve modeling across undersampled parts of the input space, and uncertainty estimation can guard against overconfidence. However, until now, the relationships between equivariance and model confidence, and more generally equivariance and model calibration, has yet to be studied. Since traditional classification and regression error terms show up in the definitions of calibration error, it is natural to suspect that previous work can be used to help understand the relationship between equivariance and calibration error. In this work, we present a theory relating equivariance to uncertainty estimation. By proving lower and upper bounds on uncertainty calibration errors (ECE and ENCE) under various equivariance conditions, we elucidate the generalization limits of equivariant models and illustrate how symmetry mismatch can result in miscalibration in both classification and regression. We complement our theoretical framework with numerical experiments that clarify the relationship between equivariance and uncertainty using a variety of real and simulated datasets, and we comment on trends with symmetry mismatch, group size, and aleatoric and epistemic uncertainties.
Authors:Jiachen Liang, Ruibing Hou, Minyang Hu, Hong Chang, Shiguang Shan, Xilin Chen
Title: Revisiting Logit Distributions for Reliable Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning models in open-world applications. While post-hoc methods are favored for their efficiency and ease of deployment, existing approaches often underexploit the rich information embedded in the model's logits space. In this paper, we propose LogitGap, a novel post-hoc OOD detection method that explicitly exploits the relationship between the maximum logit and the remaining logits to enhance the separability between in-distribution (ID) and OOD samples. To further improve its effectiveness, we refine LogitGap by focusing on a more compact and informative subset of the logit space. Specifically, we introduce a training-free strategy that automatically identifies the most informative logits for scoring. We provide both theoretical analysis and empirical evidence to validate the effectiveness of our approach. Extensive experiments on both vision-language and vision-only models demonstrate that LogitGap consistently achieves state-of-the-art performance across diverse OOD detection scenarios and benchmarks. Code is available at https://github.com/GIT-LJc/LogitGap.
Authors:Yingzi Han, Jiakai He, Chuanlong Xie, Jianping Li
Title: Benchmarking Out-of-Distribution Detection for Plankton Recognition: A Systematic Evaluation of Advanced Methods in Marine Ecological Monitoring
Abstract:
Automated plankton recognition models face significant challenges during real-world deployment due to distribution shifts (Out-of-Distribution, OoD) between training and test data. This stems from plankton's complex morphologies, vast species diversity, and the continuous discovery of novel species, which leads to unpredictable errors during inference. Despite rapid advancements in OoD detection methods in recent years, the field of plankton recognition still lacks a systematic integration of the latest computer vision developments and a unified benchmark for large-scale evaluation. To address this, this paper meticulously designed a series of OoD benchmarks simulating various distribution shift scenarios based on the DYB-PlanktonNet dataset \cite{875n-f104-21}, and systematically evaluated twenty-two OoD detection methods. Extensive experimental results demonstrate that the ViM \cite{wang2022vim} method significantly outperforms other approaches in our constructed benchmarks, particularly excelling in Far-OoD scenarios with substantial improvements in key metrics. This comprehensive evaluation not only provides a reliable reference for algorithm selection in automated plankton recognition but also lays a solid foundation for future research in plankton OoD detection. To our knowledge, this study marks the first large-scale, systematic evaluation and analysis of Out-of-Distribution data detection methods in plankton recognition. Code is available at https://github.com/BlackJack0083/PlanktonOoD.
Authors:Oliver J. Hines, Caleb H. Miles
Title: Learning density ratios in causal inference using Bregman-Riesz regression
Abstract:
The ratio of two probability density functions is a fundamental quantity that appears in many areas of statistics and machine learning, including causal inference, reinforcement learning, covariate shift, outlier detection, independence testing, importance sampling, and diffusion modeling. Naively estimating the numerator and denominator densities separately using, e.g., kernel density estimators, can lead to unstable performance and suffers from the curse of dimensionality as the number of covariates increases. For this reason, several methods have been developed for estimating the density ratio directly based on (a) Bregman divergences or (b) recasting the density ratio as the odds in a probabilistic classification model that predicts whether an observation is sampled from the numerator or denominator distribution. Additionally, the density ratio can be viewed as the Riesz representer of a continuous linear map, making it amenable to estimation via (c) minimization of the so-called Riesz loss, which was developed to learn the Riesz representer in the Riesz regression procedure in causal inference. In this paper we show that all three of these methods can be unified in a common framework, which we call Bregman-Riesz regression. We further show how data augmentation techniques can be used to apply density ratio learning methods to causal problems, where the numerator distribution typically represents an unobserved intervention. We show through simulations how the choice of Bregman divergence and data augmentation strategy can affect the performance of the resulting density ratio learner. A Python package is provided for researchers to apply Bregman-Riesz regression in practice using gradient boosting, neural networks, and kernel methods.
Authors:Saumya B
Title: An Empirical Study on MC Dropout--Based Uncertainty--Error Correlation in 2D Brain Tumor Segmentation
Abstract:
Accurate brain tumor segmentation from MRI is vital for diagnosis and treatment planning. Although Monte Carlo (MC) Dropout is widely used to estimate model uncertainty, its effectiveness in identifying segmentation errors -- especially near tumor boundaries -- remains unclear. This study empirically examines the relationship between MC Dropout--based uncertainty and segmentation error in 2D brain tumor MRI segmentation using a U-Net trained under four augmentation settings: none, horizontal flip, rotation, and scaling. Uncertainty was computed from 50 stochastic forward passes and correlated with pixel-wise errors using Pearson and Spearman coefficients. Results show weak global correlations ($r \approx 0.30$--$0.38$) and negligible boundary correlations ($|r| < 0.05$). Although differences across augmentations were statistically significant ($p < 0.001$), they lacked practical relevance. These findings suggest that MC Dropout uncertainty provides limited cues for boundary error localization, underscoring the need for alternative or hybrid uncertainty estimation methods in medical image segmentation.
Authors:Chao Tu, Kun Huang, Jie Zhang, Qianjin Feng, Yu Zhang, Zhenyuan Ning
Title: DCMIL: A Progressive Representation Learning Model of Whole Slide Images for Cancer Prognosis Analysis
Abstract:
The burgeoning discipline of computational pathology shows promise in harnessing whole slide images (WSIs) to quantify morphological heterogeneity and develop objective prognostic modes for human cancers. However, progress is impeded by the computational bottleneck of gigapixel-size inputs and the scarcity of dense manual annotations. Current methods often overlook fine-grained information across multi-magnification WSIs and variations in tumor microenvironments. Here, we propose an easy-to-hard progressive representation learning model, termed dual-curriculum contrastive multi-instance learning (DCMIL), to efficiently process WSIs for cancer prognosis. The model does not rely on dense annotations and enables the direct transformation of gigapixel-size WSIs into outcome predictions. Extensive experiments on twelve cancer types (5,954 patients, 12.54 million tiles) demonstrate that DCMIL outperforms standard WSI-based prognostic models. Additionally, DCMIL identifies fine-grained prognosis-salient regions, provides robust instance uncertainty estimation, and captures morphological differences between normal and tumor tissues, with the potential to generate new biological insights. All codes have been made publicly accessible at https://github.com/tuuuc/DCMIL.
Authors:Namhoon Kim, Sara Fridovich-Keil
Title: Towards Distribution-Shift Uncertainty Estimation for Inverse Problems with Generative Priors
Abstract:
Generative models have shown strong potential as data-driven priors for solving inverse problems such as reconstructing medical images from undersampled measurements. While these priors improve reconstruction quality with fewer measurements, they risk hallucinating features when test images lie outside the training distribution. Existing uncertainty quantification methods in this setting (i) require an in-distribution calibration dataset, which may not be available, (ii) provide heuristic rather than statistical estimates, or (iii) quantify uncertainty from model capacity or limited measurements rather than distribution shift. We propose an instance-level, calibration-free uncertainty indicator that is sensitive to distribution shift, requires no knowledge of the training distribution, and incurs no retraining cost. Our key hypothesis is that reconstructions of in-distribution images remain stable under random measurement variations, while reconstructions of out-of-distribution (OOD) images exhibit greater instability. We use this stability as a proxy for detecting distribution shift. Our proposed OOD indicator is efficiently computable for any computational imaging inverse problem; we demonstrate it on tomographic reconstruction of MNIST digits, where a learned proximal network trained only on digit "0" is evaluated on all ten digits. Reconstructions of OOD digits show higher variability and correspondingly higher reconstruction error, validating this indicator. These results suggest a deployment strategy that pairs generative priors with lightweight guardrails, enabling aggressive measurement reduction for in-distribution cases while automatically warning when priors are applied out of distribution.
Authors:Abhinav Kumar, Fan Yang, Sergio Aguilera Marinovic, Soshi Iba, Rana Soltani Zarrin, Dmitry Berenson
Title: Diffusing Trajectory Optimization Problems for Recovery During Multi-Finger Manipulation
Abstract:
Multi-fingered hands are emerging as powerful platforms for performing fine manipulation tasks, including tool use. However, environmental perturbations or execution errors can impede task performance, motivating the use of recovery behaviors that enable normal task execution to resume. In this work, we take advantage of recent advances in diffusion models to construct a framework that autonomously identifies when recovery is necessary and optimizes contact-rich trajectories to recover. We use a diffusion model trained on the task to estimate when states are not conducive to task execution, framed as an out-of-distribution detection problem. We then use diffusion sampling to project these states in-distribution and use trajectory optimization to plan contact-rich recovery trajectories. We also propose a novel diffusion-based approach that distills this process to efficiently diffuse the full parameterization, including constraints, goal state, and initialization, of the recovery trajectory optimization problem, saving time during online execution. We compare our method to a reinforcement learning baseline and other methods that do not explicitly plan contact interactions, including on a hardware screwdriver-turning task where we show that recovering using our method improves task performance by 96% and that ours is the only method evaluated that can attempt recovery without causing catastrophic task failure. Videos can be found at https://dtourrecovery.github.io/.
Authors:Jong Bum Won, Wesley De Neve, Joris Vankerschaver, Utku Ozbulak
Title: SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification
Abstract:
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.
Authors:Lionel Blondé, Joao A. Candido Ramos, Alexandros Kalousis
Title: Noise-Guided Transport for Imitation Learning
Abstract:
We consider imitation learning in the low-data regime, where only a limited number of expert demonstrations are available. In this setting, methods that rely on large-scale pretraining or high-capacity architectures can be difficult to apply, and efficiency with respect to demonstration data becomes critical. We introduce Noise-Guided Transport (NGT), a lightweight off-policy method that casts imitation as an optimal transport problem solved via adversarial training. NGT requires no pretraining or specialized architectures, incorporates uncertainty estimation by design, and is easy to implement and tune. Despite its simplicity, NGT achieves strong performance on challenging continuous control tasks, including high-dimensional Humanoid tasks, under ultra-low data regimes with as few as 20 transitions. Code is publicly available at: https://github.com/lionelblonde/ngt-pytorch.
Authors:Zhibo Hou, Zhiyu An, Wan Du
Title: Beyond Noisy-TVs: Noise-Robust Exploration Via Learning Progress Monitoring
Abstract:
When there exists an unlearnable source of randomness (noisy-TV) in the environment, a naively intrinsic reward driven exploring agent gets stuck at that source of randomness and fails at exploration. Intrinsic reward based on uncertainty estimation or distribution similarity, while eventually escapes noisy-TVs as time unfolds, suffers from poor sample efficiency and high computational cost. Inspired by recent findings from neuroscience that humans monitor their improvements during exploration, we propose a novel method for intrinsically-motivated exploration, named Learning Progress Monitoring (LPM). During exploration, LPM rewards model improvements instead of prediction error or novelty, effectively rewards the agent for observing learnable transitions rather than the unlearnable transitions. We introduce a dual-network design that uses an error model to predict the expected prediction error of the dynamics model in its previous iteration, and use the difference between the model errors of the current iteration and previous iteration to guide exploration. We theoretically show that the intrinsic reward of LPM is zero-equivariant and a monotone indicator of Information Gain (IG), and that the error model is necessary to achieve monotonicity correspondence with IG. We empirically compared LPM against state-of-the-art baselines in noisy environments based on MNIST, 3D maze with 160x120 RGB inputs, and Atari. Results show that LPM's intrinsic reward converges faster, explores more states in the maze experiment, and achieves higher extrinsic reward in Atari. This conceptually simple approach marks a shift-of-paradigm of noise-robust exploration. For code to reproduce our experiments, see https://github.com/Akuna23Matata/LPM_exploration
Authors:Nikita Kotelevskii, Maiya Goloburda, Vladimir Kondratyev, Alexander Fishkov, Mohsen Guizani, Eric Moulines, Maxim Panov
Title: Multidimensional Uncertainty Quantification via Optimal Transport
Abstract:
Most uncertainty quantification (UQ) approaches provide a single scalar value as a measure of model reliability. However, different uncertainty measures could provide complementary information on the prediction confidence. Even measures targeting the same type of uncertainty (e.g., ensemble-based and density-based measures of epistemic uncertainty) may capture different failure modes. We take a multidimensional view on UQ by stacking complementary UQ measures into a vector. Such vectors are assigned with Monge-Kantorovich ranks produced by an optimal-transport-based ordering method. The prediction is then deemed more uncertain than the other if it has a higher rank. The resulting VecUQ-OT algorithm uses entropy-regularized optimal transport. The transport map is learned on vectors of scores from in-distribution data and, by design, applies to unseen inputs, including out-of-distribution cases, without retraining. Our framework supports flexible non-additive uncertainty fusion (including aleatoric and epistemic components). It yields a robust ordering for downstream tasks such as selective prediction, misclassification detection, out-of-distribution detection, and selective generation. Across synthetic, image, and text data, VecUQ-OT shows high efficiency even when individual measures fail. The code for the method is available at: https://github.com/stat-ml/multidimensional_uncertainty.
Authors:Songyue Cai, Zongqian Wu, Yujie Mo, Liang Peng, Ping Hu, Xiaoshuang Shi, Xiaofeng Zhu
Title: Background Prompt for Few-Shot Out-of-Distribution Detection
Abstract:
Existing foreground-background (FG-BG) decomposition methods for the few-shot out-of-distribution (FS-OOD) detection often suffer from low robustness due to over-reliance on the local class similarity and a fixed background patch extraction strategy. To address these challenges, we propose a new FG-BG decomposition framework, namely Mambo, for FS-OOD detection. Specifically, we propose to first learn a background prompt to obtain the local background similarity containing both the background and image semantic information, and then refine the local background similarity using the local class similarity. As a result, we use both the refined local background similarity and the local class similarity to conduct background extraction, reducing the dependence of the local class similarity in previous methods. Furthermore, we propose the patch self-calibrated tuning to consider the sample diversity to flexibly select numbers of background patches for different samples, and thus exploring the issue of fixed background extraction strategies in previous methods. Extensive experiments on real-world datasets demonstrate that our proposed Mambo achieves the best performance, compared to SOTA methods in terms of OOD detection and near OOD detection setting. The source code will be released at https://github.com/YuzunoKawori/Mambo.
Authors:Yuzhu Li, An Sui, Fuping Wu, Xiahai Zhuang
Title: Uncertainty-Supervised Interpretable and Robust Evidential Segmentation
Abstract:
Uncertainty estimation has been widely studied in medical image segmentation as a tool to provide reliability, particularly in deep learning approaches. However, previous methods generally lack effective supervision in uncertainty estimation, leading to low interpretability and robustness of the predictions. In this work, we propose a self-supervised approach to guide the learning of uncertainty. Specifically, we introduce three principles about the relationships between the uncertainty and the image gradients around boundaries and noise. Based on these principles, two uncertainty supervision losses are designed. These losses enhance the alignment between model predictions and human interpretation. Accordingly, we introduce novel quantitative metrics for evaluating the interpretability and robustness of uncertainty. Experimental results demonstrate that compared to state-of-the-art approaches, the proposed method can achieve competitive segmentation performance and superior results in out-of-distribution (OOD) scenarios while significantly improving the interpretability and robustness of uncertainty estimation. Code is available via https://github.com/suiannaius/SURE.
Authors:Ragib Amin Nihal, Benjamin Yen, Takeshi Ashizawa, Kazuhiro Nakadai
Title: Cross-Attention with Confidence Weighting for Multi-Channel Audio Alignment
Abstract:
Multi-channel audio alignment is a key requirement in bioacoustic monitoring, spatial audio systems, and acoustic localization. However, existing methods often struggle to address nonlinear clock drift and lack mechanisms for quantifying uncertainty. Traditional methods like Cross-correlation and Dynamic Time Warping assume simple drift patterns and provide no reliability measures. Meanwhile, recent deep learning models typically treat alignment as a binary classification task, overlooking inter-channel dependencies and uncertainty estimation. We introduce a method that combines cross-attention mechanisms with confidence-weighted scoring to improve multi-channel audio synchronization. We extend BEATs encoders with cross-attention layers to model temporal relationships between channels. We also develop a confidence-weighted scoring function that uses the full prediction distribution instead of binary thresholding. Our method achieved first place in the BioDCASE 2025 Task 1 challenge with 0.30 MSE average across test datasets, compared to 0.58 for the deep learning baseline. On individual datasets, we achieved 0.14 MSE on ARU data (77% reduction) and 0.45 MSE on zebra finch data (18% reduction). The framework supports probabilistic temporal alignment, moving beyond point estimates. While validated in a bioacoustic context, the approach is applicable to a broader range of multi-channel audio tasks where alignment confidence is critical. Code available on: https://github.com/Ragib-Amin-Nihal/BEATsCA
Authors:Lauri Seppäläinen, Jakub Kubečka, Jonas Elm, Kai Puolamäki
Title: Fast and Interpretable Machine Learning Modelling of Atmospheric Molecular Clusters
Abstract:
Understanding how atmospheric molecular clusters form and grow is key to resolving one of the biggest uncertainties in climate modelling: the formation of new aerosol particles. While quantum chemistry offers accurate insights into these early-stage clusters, its steep computational costs limit large-scale exploration. In this work, we present a fast, interpretable, and surprisingly powerful alternative: $k$-nearest neighbour ($k$-NN) regression model. By leveraging chemically informed distance metrics, including a kernel-induced metric and one learned via metric learning for kernel regression (MLKR), we show that simple $k$-NN models can rival more complex kernel ridge regression (KRR) models in accuracy, while reducing computational time by orders of magnitude. We perform this comparison with the well-established Faber-Christensen-Huang-Lilienfeld (FCHL19) molecular descriptor, but other descriptors (e.g., FCHL18, MBDF, and CM) can be shown to have similar performance. Applied to both simple organic molecules in the QM9 benchmark set and large datasets of atmospheric molecular clusters (sulphuric acid-water and sulphuric-multibase -base systems), our $k$-NN models achieve near-chemical accuracy, scale seamlessly to datasets with over 250,000 entries, and even appears to extrapolate to larger unseen clusters with minimal error (often nearing 1 kcal/mol). With built-in interpretability and straightforward uncertainty estimation, this work positions $k$-NN as a potent tool for accelerating discovery in atmospheric chemistry and beyond.
Authors:Tuo Wang, Adithya Kulkarni, Tyler Cody, Peter A. Beling, Yujun Yan, Dawei Zhou
Title: GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models
Abstract:
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.
Authors:Yingsheng Wang, Shuo Lu, Jian Liang, Aihua Zheng, Ran He
Title: Frustratingly Easy Feature Reconstruction for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection helps models identify data outside the training categories, crucial for security applications. While feature-based post-hoc methods address this by evaluating data differences in the feature space without changing network parameters, they often require access to training data, which may not be suitable for some data privacy scenarios. This may not be suitable in scenarios where data privacy protection is a concern. In this paper, we propose a simple yet effective post-hoc method, termed Classifier-based Feature Reconstruction (ClaFR), from the perspective of subspace projection. It first performs an orthogonal decomposition of the classifier's weights to extract the class-known subspace, then maps the original data features into this subspace to obtain new data representations. Subsequently, the OOD score is determined by calculating the feature reconstruction error of the data within the subspace. Compared to existing OOD detection algorithms, our method does not require access to training data while achieving leading performance on multiple OOD benchmarks. Our code is released at https://github.com/Aie0923/ClaFR.
Authors:Tianjun Wei, Huizhong Guo, Yingpeng Du, Zhu Sun, Chen Huang, Dongxia Wang, Jie Zhang
Title: Mirroring Users: Towards Building Preference-aligned User Simulator with User Feedback in Recommendation
Abstract:
User simulation is increasingly vital to develop and evaluate recommender systems (RSs). While Large Language Models (LLMs) offer promising avenues to simulate user behavior, they often struggle with the absence of specific domain alignment required for RSs and the efficiency demands of large-scale simulation. A vast yet underutilized resource for enhancing this alignment is the extensive user feedback inherent in RSs. However, directly leveraging such feedback presents two significant challenges. First, user feedback in RSs is often ambiguous and noisy, which negatively impacts effective preference alignment. Second, the massive volume of feedback largely hinders the efficiency of preference alignment, necessitating an efficient filtering mechanism to identify more informative samples. To overcome these hurdles, we introduce a novel data construction framework that leverages user feedback in RSs with advanced LLM capabilities to generate high-quality simulation data. Our framework unfolds in two key phases: (1) employing LLMs to generate cognitive decision-making processes on constructed simulation samples, reducing ambiguity in raw user feedback; (2) data distillation based on uncertainty estimation and behavior sampling to filter challenging yet denoised simulation samples. Accordingly, we fine-tune lightweight LLMs, as user simulators, using such high-quality dataset with corresponding decision-making processes. Extensive experiments verify that our framework significantly boosts the alignment with human preferences and in-domain reasoning capabilities of fine-tuned LLMs, and provides more insightful and interpretable signals when interacting with RSs. We believe our work will advance the RS community and offer valuable insights for broader human-centric AI research.
Authors:Hao Duan, Yitong Song, Bin Yao, Anqi Liang
Title: PGTuner: An Efficient Framework for Automatic and Transferable Configuration Tuning of Proximity Graphs
Abstract:
Approximate Nearest Neighbor Search (ANNS) plays a crucial role in many key areas. Proximity graphs (PGs) are the leading method for ANNS, offering the best balance between query efficiency and accuracy. However, their performance heavily depends on various construction and query parameters, which are difficult to optimize due to their complex inter-dependencies. Given that users often prioritize specific accuracy levels, efficiently identifying the optimal PG configurations to meet these targets is essential. Although some studies have explored automatic configuration tuning for PGs, they are limited by inefficiencies and suboptimal results. These issues stem from the need to construct numerous PGs for searching and re-tuning from scratch whenever the dataset changes, as well as the failure to capture the complex dependencies between configurations, query performance, and tuning objectives. To address these challenges, we propose PGTuner, an efficient framework for automatic PG configuration tuning leveraging pre-training knowledge and model transfer techniques. PGTuner improves efficiency through a pre-trained query performance prediction (QPP) model, eliminating the need to build multiple PGs. It also features a deep reinforcement learning-based parameter configuration recommendation (PCR) model to recommend optimal configurations for specific datasets and accuracy targets. Additionally, PGTuner incorporates out-of-distribution detection and deep active learning for efficient tuning in dynamic scenarios and transferring to new datasets. Extensive experiments demonstrate that PGTuner can stably achieve the top-level tuning effect across different datasets while significantly improving tuning efficiency by up to 14.69X, with a 14.64X boost in dynamic scenarios. The code and data for PGTuner are available online at https://github.com/hao-duan/PGTuner.
Authors:Toufiq Musah, Chinasa Kalaiwo, Maimoona Akram, Ubaida Napari Abdulai, Maruf Adewole, Farouk Dako, Adaobi Chiazor Emegoakor, Udunna C. Anazodo, Prince Ebenezer Adjei, Confidence Raymond
Title: Towards Trustworthy Breast Tumor Segmentation in Ultrasound using Monte Carlo Dropout and Deep Ensembles for Epistemic Uncertainty Estimation
Abstract:
Automated segmentation of BUS images is important for precise lesion delineation and tumor characterization, but is challenged by inherent artifacts and dataset inconsistencies. In this work, we evaluate the use of a modified Residual Encoder U-Net for breast ultrasound segmentation, with a focus on uncertainty quantification. We identify and correct for data duplication in the BUSI dataset, and use a deduplicated subset for more reliable estimates of generalization performance. Epistemic uncertainty is quantified using Monte Carlo dropout, deep ensembles, and their combination. Models are benchmarked on both in-distribution and out-of-distribution datasets to demonstrate how they generalize to unseen cross-domain data. Our approach achieves state-of-the-art segmentation accuracy on the Breast-Lesion-USG dataset with in-distribution validation, and provides calibrated uncertainty estimates that effectively signal regions of low model confidence. Performance declines and increased uncertainty observed in out-of-distribution evaluation highlight the persistent challenge of domain shift in medical imaging, and the importance of integrated uncertainty modeling for trustworthy clinical deployment. \footnote{Code available at: https://github.com/toufiqmusah/nn-uncertainty.git}
Authors:Bin Huang, Zhong Liu, Huiying Wen, Bingsheng Huang, Xin Chen, Shuo Li
Title: E-BayesSAM: Efficient Bayesian Adaptation of SAM with Self-Optimizing KAN-Based Interpretation for Uncertainty-Aware Ultrasonic Segmentation
Abstract:
Although the Segment Anything Model (SAM) has advanced medical image segmentation, its Bayesian adaptation for uncertainty-aware segmentation remains hindered by three key issues: (1) instability in Bayesian fine-tuning of large pre-trained SAMs; (2) high computation cost due to SAM's massive parameters; (3) SAM's black-box design limits interpretability. To overcome these, we propose E-BayesSAM, an efficient framework combining Token-wise Variational Bayesian Inference (T-VBI) for efficienty Bayesian adaptation and Self-Optimizing Kolmogorov-Arnold Network (SO-KAN) for improving interpretability. T-VBI innovatively reinterprets SAM's output tokens as dynamic probabilistic weights and reparameterizes them as latent variables without auxiliary training, enabling training-free VBI for uncertainty estimation. SO-KAN improves token prediction with learnable spline activations via self-supervised learning, providing insight to prune redundant tokens to boost efficiency and accuracy. Experiments on five ultrasound datasets demonstrated that E-BayesSAM achieves: (i) real-time inference (0.03s/image), (ii) superior segmentation accuracy (average DSC: Pruned E-BayesSAM's 89.0\% vs. E-BayesSAM's 88.0% vs. MedSAM's 88.3%), and (iii) identification of four critical tokens governing SAM's decisions. By unifying efficiency, reliability, and interpretability, E-BayesSAM bridges SAM's versatility with clinical needs, advancing deployment in safety-critical medical applications. The source code is available at https://github.com/mp31192/E-BayesSAM.
Authors:Asim Ukaye, Numan Saeed, Karthik Nandakumar
Title: FIVA: Federated Inverse Variance Averaging for Universal CT Segmentation with Uncertainty Estimation
Abstract:
Different CT segmentation datasets are typically obtained from different scanners under different capture settings and often provide segmentation labels for a limited and often disjoint set of organs. Using these heterogeneous data effectively while preserving patient privacy can be challenging. This work presents a novel federated learning approach to achieve universal segmentation across diverse abdominal CT datasets by utilizing model uncertainty for aggregation and predictive uncertainty for inference. Our approach leverages the inherent noise in stochastic mini-batch gradient descent to estimate a distribution over the model weights to provide an on-the-go uncertainty over the model parameters at the client level. The parameters are then aggregated at the server using the additional uncertainty information using a Bayesian-inspired inverse-variance aggregation scheme. Furthermore, the proposed method quantifies prediction uncertainty by propagating the uncertainty from the model weights, providing confidence measures essential for clinical decision-making. In line with recent work shown, predictive uncertainty is utilized in the inference stage to improve predictive performance. Experimental evaluations demonstrate the effectiveness of this approach in improving both the quality of federated aggregation and uncertainty-weighted inference compared to previously established baselines. The code for this work is made available at: https://github.com/asimukaye/fiva
Authors:Pavankumar Koratikere, Leifur Leifsson
Title: Scalable Neural Network-based Blackbox Optimization
Abstract:
Bayesian Optimization (BO) is a widely used approach for blackbox optimization that leverages a Gaussian process (GP) model and an acquisition function to guide future sampling. While effective in low-dimensional settings, BO faces scalability challenges in high-dimensional spaces and with large number of function evaluations due to the computational complexity of GP models. In contrast, neural networks (NNs) offer better scalability and can model complex functions, which led to the development of NN-based BO approaches. However, these methods typically rely on estimating model uncertainty in NN prediction -- a process that is often computationally intensive and complex, particularly in high dimensions. To address these limitations, a novel method, called scalable neural network-based blackbox optimization (SNBO), is proposed that does not rely on model uncertainty estimation. Specifically, SNBO adds new samples using separate criteria for exploration and exploitation, while adaptively controlling the sampling region to ensure efficient optimization. SNBO is evaluated on a range of optimization problems spanning from 10 to 102 dimensions and compared against four state-of-the-art baseline algorithms. Across the majority of test problems, SNBO attains function values better than the best-performing baseline algorithm, while requiring 40-60% fewer function evaluations and reducing the runtime by at least an order of magnitude.
Authors:Marc Hölle, Walter Kellermann, Vasileios Belagiannis
Title: Uncertainty-Aware Likelihood Ratio Estimation for Pixel-Wise Out-of-Distribution Detection
Abstract:
Semantic segmentation models trained on known object classes often fail in real-world autonomous driving scenarios by confidently misclassifying unknown objects. While pixel-wise out-of-distribution detection can identify unknown objects, existing methods struggle in complex scenes where rare object classes are often confused with truly unknown objects. We introduce an uncertainty-aware likelihood ratio estimation method that addresses these limitations. Our approach uses an evidential classifier within a likelihood ratio test to distinguish between known and unknown pixel features from a semantic segmentation model, while explicitly accounting for uncertainty. Instead of producing point estimates, our method outputs probability distributions that capture uncertainty from both rare training examples and imperfect synthetic outliers. We show that by incorporating uncertainty in this way, outlier exposure can be leveraged more effectively. Evaluated on five standard benchmark datasets, our method achieves the lowest average false positive rate (2.5%) among state-of-the-art while maintaining high average precision (90.91%) and incurring only negligible computational overhead. Code is available at https://github.com/glasbruch/ULRE.
Authors:Jingchao Xie, Oussema Dhaouadi, Weirong Chen, Johannes Meier, Jacques Kaiser, Daniel Cremers
Title: CoProU-VO: Combining Projected Uncertainty for End-to-End Unsupervised Monocular Visual Odometry
Abstract:
Visual Odometry (VO) is fundamental to autonomous navigation, robotics, and augmented reality, with unsupervised approaches eliminating the need for expensive ground-truth labels. However, these methods struggle when dynamic objects violate the static scene assumption, leading to erroneous pose estimations. We tackle this problem by uncertainty modeling, which is a commonly used technique that creates robust masks to filter out dynamic objects and occlusions without requiring explicit motion segmentation. Traditional uncertainty modeling considers only single-frame information, overlooking the uncertainties across consecutive frames. Our key insight is that uncertainty must be propagated and combined across temporal frames to effectively identify unreliable regions, particularly in dynamic scenes. To address this challenge, we introduce Combined Projected Uncertainty VO (CoProU-VO), a novel end-to-end approach that combines target frame uncertainty with projected reference frame uncertainty using a principled probabilistic formulation. Built upon vision transformer backbones, our model simultaneously learns depth, uncertainty estimation, and camera poses. Consequently, experiments on the KITTI and nuScenes datasets demonstrate significant improvements over previous unsupervised monocular end-to-end two-frame-based methods and exhibit strong performance in challenging highway scenes where other approaches often fail. Additionally, comprehensive ablation studies validate the effectiveness of cross-frame uncertainty propagation.
Authors:Padmavathi Moorthy
Title: Robust Taxi Fare Prediction Under Noisy Conditions: A Comparative Study of GAT, TimesNet, and XGBoost
Abstract:
Precise fare prediction is crucial in ride-hailing platforms and urban mobility systems. This study examines three machine learning models-Graph Attention Networks (GAT), XGBoost, and TimesNet to evaluate their predictive capabilities for taxi fares using a real-world dataset comprising over 55 million records. Both raw (noisy) and denoised versions of the dataset are analyzed to assess the impact of data quality on model performance. The study evaluated the models along multiple axes, including predictive accuracy, calibration, uncertainty estimation, out-of-distribution (OOD) robustness, and feature sensitivity. We also explore pre-processing strategies, including KNN imputation, Gaussian noise injection, and autoencoder-based denoising. The study reveals critical differences between classical and deep learning models under realistic conditions, offering practical guidelines for building robust and scalable models in urban fare prediction systems.
Authors:Mizanur Rahman, Md Tahmid Rahman Laskar, Shafiq Joty, Enamul Hoque
Title: Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Abstract:
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.
Authors:Wenjie Zhu, Yabin Zhang, Xin Jin, Wenjun Zeng, Lei Zhang
Title: Knowledge Regularized Negative Feature Tuning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for building reliable machine learning models. Although negative prompt tuning has enhanced the OOD detection capabilities of vision-language models, these tuned models often suffer from reduced generalization performance on unseen classes and styles. To address this challenge, we propose a novel method called Knowledge Regularized Negative Feature Tuning (KR-NFT), which integrates an innovative adaptation architecture termed Negative Feature Tuning (NFT) and a corresponding knowledge-regularization (KR) optimization strategy. Specifically, NFT applies distribution-aware transformations to pre-trained text features, effectively separating positive and negative features into distinct spaces. This separation maximizes the distinction between in-distribution (ID) and OOD images. Additionally, we introduce image-conditional learnable factors through a lightweight meta-network, enabling dynamic adaptation to individual images and mitigating sensitivity to class and style shifts. Compared to traditional negative prompt tuning, NFT demonstrates superior efficiency and scalability. To optimize this adaptation architecture, the KR optimization strategy is designed to enhance the discrimination between ID and OOD sets while mitigating pre-trained knowledge forgetting. This enhances OOD detection performance on trained ID classes while simultaneously improving OOD detection on unseen ID datasets. Notably, when trained with few-shot samples from ImageNet dataset, KR-NFT not only improves ID classification accuracy and OOD detection but also significantly reduces the FPR95 by 5.44\% under an unexplored generalization setting with unseen ID categories. Codes can be found at \href{https://github.com/ZhuWenjie98/KRNFT}.
Authors:Lyes Saad Saoud, Irfan Hussain
Title: EBA-AI: Ethics-Guided Bias-Aware AI for Efficient Underwater Image Enhancement and Coral Reef Monitoring
Abstract:
Underwater image enhancement is vital for marine conservation, particularly coral reef monitoring. However, AI-based enhancement models often face dataset bias, high computational costs, and lack of transparency, leading to potential misinterpretations. This paper introduces EBA-AI, an ethics-guided bias-aware AI framework to address these challenges. EBA-AI leverages CLIP embeddings to detect and mitigate dataset bias, ensuring balanced representation across varied underwater environments. It also integrates adaptive processing to optimize energy efficiency, significantly reducing GPU usage while maintaining competitive enhancement quality. Experiments on LSUI400, Oceanex, and UIEB100 show that while PSNR drops by a controlled 1.0 dB, computational savings enable real-time feasibility for large-scale marine monitoring. Additionally, uncertainty estimation and explainability techniques enhance trust in AI-driven environmental decisions. Comparisons with CycleGAN, FunIEGAN, RAUNENet, WaterNet, UGAN, PUGAN, and UTUIE validate EBA-AI's effectiveness in balancing efficiency, fairness, and interpretability in underwater image processing. By addressing key limitations of AI-driven enhancement, this work contributes to sustainable, bias-aware, and computationally efficient marine conservation efforts. For interactive visualizations, animations, source code, and access to the preprint, visit: https://lyessaadsaoud.github.io/EBA-AI/
Authors:Jinglun Li, Kaixun Jiang, Zhaoyu Chen, Bo Lin, Yao Tang, Weifeng Ge, Wenqiang Zhang
Title: Synthesizing Near-Boundary OOD Samples for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models have exhibited remarkable abilities in detecting out-of-distribution (OOD) samples. However, some challenging OOD samples, which lie close to in-distribution (InD) data in image feature space, can still lead to misclassification. The emergence of foundation models like diffusion models and multimodal large language models (MLLMs) offers a potential solution to this issue. In this work, we propose SynOOD, a novel approach that harnesses foundation models to generate synthetic, challenging OOD data for fine-tuning CLIP models, thereby enhancing boundary-level discrimination between InD and OOD samples. Our method uses an iterative in-painting process guided by contextual prompts from MLLMs to produce nuanced, boundary-aligned OOD samples. These samples are refined through noise adjustments based on gradients from OOD scores like the energy score, effectively sampling from the InD/OOD boundary. With these carefully synthesized images, we fine-tune the CLIP image encoder and negative label features derived from the text encoder to strengthen connections between near-boundary OOD samples and a set of negative labels. Finally, SynOOD achieves state-of-the-art performance on the large-scale ImageNet benchmark, with minimal increases in parameters and runtime. Our approach significantly surpasses existing methods, and the code is available at https://github.com/Jarvisgivemeasuit/SynOOD.
Authors:Xinhua Lu, Runhe Lai, Yanqi Wu, Kanghao Chen, Wei-Shi Zheng, Ruixuan Wang
Title: FA: Forced Prompt Learning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models (VLMs) have advanced out-of-distribution (OOD) detection recently. However, existing CLIP-based methods often focus on learning OOD-related knowledge to improve OOD detection, showing limited generalization or reliance on external large-scale auxiliary datasets. In this study, instead of delving into the intricate OOD-related knowledge, we propose an innovative CLIP-based framework based on Forced prompt leArning (FA), designed to make full use of the In-Distribution (ID) knowledge and ultimately boost the effectiveness of OOD detection. Our key insight is to learn a prompt (i.e., forced prompt) that contains more diversified and richer descriptions of the ID classes beyond the textual semantics of class labels. Specifically, it promotes better discernment for ID images, by forcing more notable semantic similarity between ID images and the learnable forced prompt. Moreover, we introduce a forced coefficient, encouraging the forced prompt to learn more comprehensive and nuanced descriptions of the ID classes. In this way, FA is capable of achieving notable improvements in OOD detection, even when trained without any external auxiliary datasets, while maintaining an identical number of trainable parameters as CoOp. Extensive empirical evaluations confirm our method consistently outperforms current state-of-the-art methods. Code is available at https://github.com/0xFAFA/FA.
Authors:Ha-Hieu Pham, Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Ulas Bagci, Min Xu, Trung-Nghia Le, Huy-Hieu Pham
Title: Learning Disentangled Stain and Structural Representations for Semi-Supervised Histopathology Segmentation
Abstract:
Accurate gland segmentation in histopathology images is essential for cancer diagnosis and prognosis. However, significant variability in Hematoxylin and Eosin (H&E) staining and tissue morphology, combined with limited annotated data, poses major challenges for automated segmentation. To address this, we propose Color-Structure Dual-Student (CSDS), a novel semi-supervised segmentation framework designed to learn disentangled representations of stain appearance and tissue structure. CSDS comprises two specialized student networks: one trained on stain-augmented inputs to model chromatic variation, and the other on structure-augmented inputs to capture morphological cues. A shared teacher network, updated via Exponential Moving Average (EMA), supervises both students through pseudo-labels. To further improve label reliability, we introduce stain-aware and structure-aware uncertainty estimation modules that adaptively modulate the contribution of each student during training. Experiments on the GlaS and CRAG datasets show that CSDS achieves state-of-the-art performance in low-label settings, with Dice score improvements of up to 1.2% on GlaS and 0.7% on CRAG at 5% labeled data, and 0.7% and 1.4% at 10%. Our code and pre-trained models are available at https://github.com/hieuphamha19/CSDS.
Authors:Lijun Sheng, Jian Liang, Ran He, Zilei Wang, Tieniu Tan
Title: The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Abstract:
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
Authors:Tao Huang, Zhekun Liu, Rui Wang, Yang Zhang, Liping Jing
Title: Visual hallucination detection in large vision-language models via evidential conflict
Abstract:
Despite the remarkable multimodal capabilities of Large Vision-Language Models (LVLMs), discrepancies often occur between visual inputs and textual outputs--a phenomenon we term visual hallucination. This critical reliability gap poses substantial risks in safety-critical Artificial Intelligence (AI) applications, necessitating a comprehensive evaluation benchmark and effective detection methods. Firstly, we observe that existing visual-centric hallucination benchmarks mainly assess LVLMs from a perception perspective, overlooking hallucinations arising from advanced reasoning capabilities. We develop the Perception-Reasoning Evaluation Hallucination (PRE-HAL) dataset, which enables the systematic evaluation of both perception and reasoning capabilities of LVLMs across multiple visual semantics, such as instances, scenes, and relations. Comprehensive evaluation with this new benchmark exposed more visual vulnerabilities, particularly in the more challenging task of relation reasoning. To address this issue, we propose, to the best of our knowledge, the first Dempster-Shafer theory (DST)-based visual hallucination detection method for LVLMs through uncertainty estimation. This method aims to efficiently capture the degree of conflict in high-level features at the model inference phase. Specifically, our approach employs simple mass functions to mitigate the computational complexity of evidence combination on power sets. We conduct an extensive evaluation of state-of-the-art LVLMs, LLaVA-v1.5, mPLUG-Owl2 and mPLUG-Owl3, with the new PRE-HAL benchmark. Experimental results indicate that our method outperforms five baseline uncertainty metrics, achieving average AUROC improvements of 4%, 10%, and 7% across three LVLMs. Our code is available at https://github.com/HT86159/Evidential-Conflict.
Authors:Taku Okawara, Kenji Koide, Aoki Takanose, Shuji Oishi, Masashi Yokozuka, Kentaro Uno, Kazuya Yoshida
Title: Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
Abstract:
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
Authors:Amirreza Khoshbakht, Erchan Aptoula
Title: Evidential Deep Learning with Spectral-Spatial Uncertainty Disentanglement for Open-Set Hyperspectral Domain Generalization
Abstract:
Open-set domain generalization(OSDG) for hyperspectral image classification presents significant challenges due to the presence of unknown classes in target domains and the need for models to generalize across multiple unseen domains without target-specific adaptation. Existing domain adaptation methods assume access to target domain data during training and fail to address the fundamental issue of domain shift when unknown classes are present, leading to negative transfer and reduced classification performance. To address these limitations, we propose a novel open-set domain generalization framework that combines four key components: Spectrum-Invariant Frequency Disentanglement (SIFD) for domain-agnostic feature extraction, Dual-Channel Residual Network (DCRN) for robust spectral-spatial feature learning, Evidential Deep Learning (EDL) for uncertainty quantification, and Spectral-Spatial Uncertainty Disentanglement (SSUD) for reliable open-set classification. The SIFD module extracts domain-invariant spectral features in the frequency domain through attention-weighted frequency analysis and domain-agnostic regularization, while DCRN captures complementary spectral and spatial information via parallel pathways with adaptive fusion. EDL provides principled uncertainty estimation using Dirichlet distributions, enabling the SSUD module to make reliable open-set decisions through uncertainty-aware pathway weighting and adaptive rejection thresholding. Experimental results on three cross-scene hyperspectral classification tasks show that our approach achieves performance comparable to state-of-the-art domain adaptation methods while requiring no access to the target domain during training. The implementation will be made available at https://github.com/amir-khb/SSUDOSDG upon acceptance.
Authors:Kaiyu Guo, Zijian Wang, Tan Pan, Brian C. Lovell, Mahsa Baktashmotlagh
Title: Improving Out-of-Distribution Detection via Dynamic Covariance Calibration
Abstract:
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.
Authors:Qi Yan, Brian Zhang, Yutong Zhang, Daniel Yang, Joshua White, Di Chen, Jiachao Liu, Langechuan Liu, Binnan Zhuang, Shaoshuai Shi, Renjie Liao
Title: TrajFlow: Multi-modal Motion Prediction via Flow Matching
Abstract:
Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
Authors:Weijie Guan, Haohui Wang, Jian Kang, Lihui Liu, Dawei Zhou
Title: EVINET: Towards Open-World Graph Learning via Evidential Reasoning Network
Abstract:
Graph learning has been crucial to many real-world tasks, but they are often studied with a closed-world assumption, with all possible labels of data known a priori. To enable effective graph learning in an open and noisy environment, it is critical to inform the model users when the model makes a wrong prediction to in-distribution data of a known class, i.e., misclassification detection or when the model encounters out-of-distribution from novel classes, i.e., out-of-distribution detection. This paper introduces Evidential Reasoning Network (EVINET), a framework that addresses these two challenges by integrating Beta embedding within a subjective logic framework. EVINET includes two key modules: Dissonance Reasoning for misclassification detection and Vacuity Reasoning for out-of-distribution detection. Extensive experiments demonstrate that EVINET outperforms state-of-the-art methods across multiple metrics in the tasks of in-distribution classification, misclassification detection, and out-of-distribution detection. EVINET demonstrates the necessity of uncertainty estimation and logical reasoning for misclassification detection and out-of-distribution detection and paves the way for open-world graph learning. Our code and data are available at https://github.com/SSSKJ/EviNET.
Authors:Mufhumudzi Muthivhi, Jiahao Huo, Fredrik Gustafsson, Terence L. van Zyl
Title: Improving Wildlife Out-of-Distribution Detection: Africas Big Five
Abstract:
Mitigating human-wildlife conflict seeks to resolve unwanted encounters between these parties. Computer Vision provides a solution to identifying individuals that might escalate into conflict, such as members of the Big Five African animals. However, environments often contain several varied species. The current state-of-the-art animal classification models are trained under a closed-world assumption. They almost always remain overconfident in their predictions even when presented with unknown classes. This study investigates out-of-distribution (OOD) detection of wildlife, specifically the Big Five. To this end, we select a parametric Nearest Class Mean (NCM) and a non-parametric contrastive learning approach as baselines to take advantage of pretrained and projected features from popular classification encoders. Moreover, we compare our baselines to various common OOD methods in the literature. The results show feature-based methods reflect stronger generalisation capability across varying classification thresholds. Specifically, NCM with ImageNet pre-trained features achieves a 2%, 4% and 22% improvement on AUPR-IN, AUPR-OUT and AUTC over the best OOD methods, respectively. The code can be found here https://github.com/pxpana/BIG5OOD
Authors:Antonia Karamolegkou, Oliver Eberle, Phillip Rust, Carina Kauf, Anders Søgaard
Title: Trick or Neat: Adversarial Ambiguity and Language Model Evaluation
Abstract:
Detecting ambiguity is important for language understanding, including uncertainty estimation, humour detection, and processing garden path sentences. We assess language models' sensitivity to ambiguity by introducing an adversarial ambiguity dataset that includes syntactic, lexical, and phonological ambiguities along with adversarial variations (e.g., word-order changes, synonym replacements, and random-based alterations). Our findings show that direct prompting fails to robustly identify ambiguity, while linear probes trained on model representations can decode ambiguity with high accuracy, sometimes exceeding 90\%. Our results offer insights into the prompting paradigm and how language models encode ambiguity at different layers. We release both our code and data: https://github.com/coastalcph/lm_ambiguity.
Authors:Yavuz Bakman, Duygu Nur Yaldiz, Sungmin Kang, Tuo Zhang, Baturalp Buyukates, Salman Avestimehr, Sai Praneeth Karimireddy
Title: Reconsidering LLM Uncertainty Estimation Methods in the Wild
Abstract:
Large Language Model (LLM) Uncertainty Estimation (UE) methods have become a crucial tool for detecting hallucinations in recent years. While numerous UE methods have been proposed, most existing studies evaluate them in isolated short-form QA settings using threshold-independent metrics such as AUROC or PRR. However, real-world deployment of UE methods introduces several challenges. In this work, we systematically examine four key aspects of deploying UE methods in practical settings. Specifically, we assess (1) the sensitivity of UE methods to decision threshold selection, (2) their robustness to query transformations such as typos, adversarial prompts, and prior chat history, (3) their applicability to long-form generation, and (4) strategies for handling multiple UE scores for a single query. Our evaluations on 19 UE methods reveal that most of them are highly sensitive to threshold selection when there is a distribution shift in the calibration dataset. While these methods generally exhibit robustness against previous chat history and typos, they are significantly vulnerable to adversarial prompts. Additionally, while existing UE methods can be adapted for long-form generation through various strategies, there remains considerable room for improvement. Lastly, ensembling multiple UE scores at test time provides a notable performance boost, which highlights its potential as a practical improvement strategy. Code is available at: https://github.com/duygunuryldz/uncertainty_in_the_wild.
Authors:Lennart Bramlage, Cristóbal Curio
Title: Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks
Abstract:
Uncertainty quantification is critical in safety-sensitive applications but is often omitted from off-the-shelf neural networks due to adverse effects on predictive performance. Retrofitting uncertainty estimates post-hoc typically requires access to model parameters or gradients, limiting feasibility in practice. We propose a theoretically grounded framework for post-hoc uncertainty estimation in regression tasks by fitting an auxiliary model to both original inputs and frozen model outputs. Drawing from principles of maximum likelihood estimation and sequential parameter fitting, we formalize an exact post-hoc optimization objective that recovers the canonical MLE of Gaussian parameters, without requiring sampling or approximation at inference. While prior work has used model outputs to estimate uncertainty, we explicitly characterize the conditions under which this is valid and demonstrate the extent to which structured outputs can support quasi-epistemic inference. We find that using diverse auxiliary data, such as augmented subsets of the original training data, significantly enhances OOD detection and metric performance. Our hypothesis that frozen model outputs contain generalizable latent information about model error and predictive uncertainty is tested and confirmed. Finally, we ensure that our method maintains proper estimation of input-dependent uncertainty without relying exclusively on base model forecasts. These findings are demonstrated in toy problems and adapted to both UCI and depth regression benchmarks. Code: https://github.com/biggzlar/IO-CUE.
Authors:Heejo Kong, Sung-Jin Kim, Gunho Jung, Seong-Whan Lee
Title: Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers
Abstract:
Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.
Authors:Moru Liu, Hao Dong, Jessica Kelly, Olga Fink, Mario Trapp
Title: Extremely Simple Multimodal Outlier Synthesis for Out-of-Distribution Detection and Segmentation
Abstract:
Out-of-distribution (OOD) detection and segmentation are crucial for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. While prior research has primarily focused on unimodal image data, real-world applications are inherently multimodal, requiring the integration of multiple modalities for improved OOD detection. A key challenge is the lack of supervision signals from unknown data, leading to overconfident predictions on OOD samples. To address this challenge, we propose Feature Mixing, an extremely simple and fast method for multimodal outlier synthesis with theoretical support, which can be further optimized to help the model better distinguish between in-distribution (ID) and OOD data. Feature Mixing is modality-agnostic and applicable to various modality combinations. Additionally, we introduce CARLA-OOD, a novel multimodal dataset for OOD segmentation, featuring synthetic OOD objects across diverse scenes and weather conditions. Extensive experiments on SemanticKITTI, nuScenes, CARLA-OOD datasets, and the MultiOOD benchmark demonstrate that Feature Mixing achieves state-of-the-art performance with a $10 \times$ to $370 \times$ speedup. Our source code and dataset will be available at https://github.com/mona4399/FeatureMixing.
Authors:Zheng Wu, Pengzhou Cheng, Zongru Wu, Lingzhong Dong, Zhuosheng Zhang
Title: GEM: Gaussian Embedding Modeling for Out-of-Distribution Detection in GUI Agents
Abstract:
Graphical user interface (GUI) agents have recently emerged as an intriguing paradigm for human-computer interaction, capable of automatically executing user instructions to operate intelligent terminal devices. However, when encountering out-of-distribution (OOD) instructions that violate environmental constraints or exceed the current capabilities of agents, GUI agents may suffer task breakdowns or even pose security threats. Therefore, effective OOD detection for GUI agents is essential. Traditional OOD detection methods perform suboptimally in this domain due to the complex embedding space and evolving GUI environments. In this work, we observe that the in-distribution input semantic space of GUI agents exhibits a clustering pattern with respect to the distance from the centroid. Based on the finding, we propose GEM, a novel method based on fitting a Gaussian mixture model over input embedding distances extracted from the GUI agent that reflect its capability boundary. Evaluated on eight datasets spanning smartphones, computers, and web browsers, our method achieves an average accuracy improvement of 23.70\% over the best-performing baseline while only increasing training time by 4.9\% and testing time by 6.5\%. We also experimentally demonstrate that GEM can improve the step-wise success rate by 9.40\% by requesting assistance from the cloud model when encountering OOD samples. Analysis verifies the generalization ability of our method through experiments on nine different backbones. The codes are available at https://github.com/Wuzheng02/GEM-OODforGUIagents.
Authors:Zihan Guan, Mengxuan Hu, Ronghang Zhu, Sheng Li, Anil Vullikanti
Title: Benign Samples Matter! Fine-tuning On Outlier Benign Samples Severely Breaks Safety
Abstract:
Recent studies have uncovered a troubling vulnerability in the fine-tuning stage of large language models (LLMs): even fine-tuning on entirely benign datasets can lead to a significant increase in the harmfulness of LLM outputs. Building on this finding, our red teaming study takes this threat one step further by developing a more effective attack. Specifically, we analyze and identify samples within benign datasets that contribute most to safety degradation, then fine-tune LLMs exclusively on these samples. We approach this problem from an outlier detection perspective and propose Self-Inf-N, to detect and extract outliers for fine-tuning. Our findings reveal that fine-tuning LLMs on 100 outlier samples selected by Self-Inf-N in the benign datasets severely compromises LLM safety alignment. Extensive experiments across seven mainstream LLMs demonstrate that our attack exhibits high transferability across different architectures and remains effective in practical scenarios. Alarmingly, our results indicate that most existing mitigation strategies fail to defend against this attack, underscoring the urgent need for more robust alignment safeguards. Codes are available at https://github.com/GuanZihan/Benign-Samples-Matter.
Authors:Xuyang Wang, Siyuan Duan, Qizhi Li, Guiduo Duan, Yuan Sun, Dezhong Peng
Title: Reliable Disentanglement Multi-view Learning Against View Adversarial Attacks
Abstract:
Trustworthy multi-view learning has attracted extensive attention because evidence learning can provide reliable uncertainty estimation to enhance the credibility of multi-view predictions. Existing trusted multi-view learning methods implicitly assume that multi-view data is secure. However, in safety-sensitive applications such as autonomous driving and security monitoring, multi-view data often faces threats from adversarial perturbations, thereby deceiving or disrupting multi-view models. This inevitably leads to the adversarial unreliability problem (AUP) in trusted multi-view learning. To overcome this tricky problem, we propose a novel multi-view learning framework, namely Reliable Disentanglement Multi-view Learning (RDML). Specifically, we first propose evidential disentanglement learning to decompose each view into clean and adversarial parts under the guidance of corresponding evidences, which is extracted by a pretrained evidence extractor. Then, we employ the feature recalibration module to mitigate the negative impact of adversarial perturbations and extract potential informative features from them. Finally, to further ignore the irreparable adversarial interferences, a view-level evidential attention mechanism is designed. Extensive experiments on multi-view classification tasks with adversarial attacks show that RDML outperforms the state-of-the-art methods by a relatively large margin. Our code is available at https://github.com/Willy1005/2025-IJCAI-RDML.
Authors:Zhanyuan Jia, Ni Yao, Danyang Sun, Chuang Han, Yanting Li, Jiaofen Nan, Fubao Zhu, Chen Zhao, Weihua Zhou
Title: UPMAD-Net: A Brain Tumor Segmentation Network with Uncertainty Guidance and Adaptive Multimodal Feature Fusion
Abstract:
Background: Brain tumor segmentation has a significant impact on the diagnosis and treatment of brain tumors. Accurate brain tumor segmentation remains challenging due to their irregular shapes, vague boundaries, and high variability. Objective: We propose a brain tumor segmentation method that combines deep learning with prior knowledge derived from a region-growing algorithm. Methods: The proposed method utilizes a multi-scale feature fusion (MSFF) module and adaptive attention mechanisms (AAM) to extract multi-scale features and capture global contextual information. To enhance the model's robustness in low-confidence regions, the Monte Carlo Dropout (MC Dropout) strategy is employed for uncertainty estimation. Results: Extensive experiments demonstrate that the proposed method achieves superior performance on Brain Tumor Segmentation (BraTS) datasets, significantly outperforming various state-of-the-art methods. On the BraTS2021 dataset, the test Dice scores are 89.18% for Enhancing Tumor (ET) segmentation, 93.67% for Whole Tumor (WT) segmentation, and 91.23% for Tumor Core (TC) segmentation. On the BraTS2019 validation set, the validation Dice scores are 87.43%, 90.92%, and 90.40% for ET, WT, and TC segmentation, respectively. Ablation studies further confirmed the contribution of each module to segmentation accuracy, indicating that each component played a vital role in overall performance improvement. Conclusion: This study proposed a novel 3D brain tumor segmentation network based on the U-Net architecture. By incorporating the prior knowledge and employing the uncertainty estimation method, the robustness and performance were improved. The code for the proposed method is available at https://github.com/chenzhao2023/UPMAD_Net_BrainSeg.
Authors:Yifan Ding, Arturas Aleksandraus, Amirhossein Ahmadian, Jonas Unger, Fredrik Lindsten, Gabriel Eilertsen
Title: Revisiting Likelihood-Based Out-of-Distribution Detection by Modeling Representations
Abstract:
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning systems, particularly in safety-critical applications. Likelihood-based deep generative models have historically faced criticism for their unsatisfactory performance in OOD detection, often assigning higher likelihood to OOD data than in-distribution samples when applied to image data. In this work, we demonstrate that likelihood is not inherently flawed. Rather, several properties in the images space prohibit likelihood as a valid detection score. Given a sufficiently good likelihood estimator, specifically using the probability flow formulation of a diffusion model, we show that likelihood-based methods can still perform on par with state-of-the-art methods when applied in the representation space of pre-trained encoders. The code of our work can be found at $\href{https://github.com/limchaos/Likelihood-OOD.git}{\texttt{https://github.com/limchaos/Likelihood-OOD.git}}$.
Authors:Rufei Ma, Chao Chen
Title: RF-BayesPhysNet: A Bayesian rPPG Uncertainty Estimation Method for Complex Scenarios
Abstract:
Remote photoplethysmography (rPPG) technology infers heart rate by capturing subtle color changes in facial skin using a camera, demonstrating great potential in non-contact heart rate measurement. However, measurement accuracy significantly decreases in complex scenarios such as lighting changes and head movements compared to ideal laboratory conditions. Existing deep learning models often neglect the quantification of measurement uncertainty, limiting their credibility in dynamic scenes. To address the issue of insufficient rPPG measurement reliability in complex scenarios, this paper introduces Bayesian neural networks to the rPPG field for the first time, proposing the Robust Fusion Bayesian Physiological Network (RF-BayesPhysNet), which can model both aleatoric and epistemic uncertainty. It leverages variational inference to balance accuracy and computational efficiency. Due to the current lack of uncertainty estimation metrics in the rPPG field, this paper also proposes a new set of methods, using Spearman correlation coefficient, prediction interval coverage, and confidence interval width, to measure the effectiveness of uncertainty estimation methods under different noise conditions. Experiments show that the model, with only double the parameters compared to traditional network models, achieves a MAE of 2.56 on the UBFC-RPPG dataset, surpassing most models. It demonstrates good uncertainty estimation capability in no-noise and low-noise conditions, providing prediction confidence and significantly enhancing robustness in real-world applications. We have open-sourced the code at https://github.com/AIDC-rPPG/RF-Net
Authors:Shu-Wei Lu, Yi-Hsuan Tsai, Yi-Ting Chen
Title: Toward Real-world BEV Perception: Depth Uncertainty Estimation via Gaussian Splatting
Abstract:
Bird's-eye view (BEV) perception has gained significant attention because it provides a unified representation to fuse multiple view images and enables a wide range of down-stream autonomous driving tasks, such as forecasting and planning. Recent state-of-the-art models utilize projection-based methods which formulate BEV perception as query learning to bypass explicit depth estimation. While we observe promising advancements in this paradigm, they still fall short of real-world applications because of the lack of uncertainty modeling and expensive computational requirement. In this work, we introduce GaussianLSS, a novel uncertainty-aware BEV perception framework that revisits unprojection-based methods, specifically the Lift-Splat-Shoot (LSS) paradigm, and enhances them with depth un-certainty modeling. GaussianLSS represents spatial dispersion by learning a soft depth mean and computing the variance of the depth distribution, which implicitly captures object extents. We then transform the depth distribution into 3D Gaussians and rasterize them to construct uncertainty-aware BEV features. We evaluate GaussianLSS on the nuScenes dataset, achieving state-of-the-art performance compared to unprojection-based methods. In particular, it provides significant advantages in speed, running 2.5x faster, and in memory efficiency, using 0.3x less memory compared to projection-based methods, while achieving competitive performance with only a 0.4% IoU difference.
Authors:Sarah Martinson, Lingkai Kong, Cheol Woo Kim, Aparna Taneja, Milind Tambe
Title: LLM-based Agent Simulation for Maternal Health Interventions: Uncertainty Estimation and Decision-focused Evaluation
Abstract:
Agent-based simulation is crucial for modeling complex human behavior, yet traditional approaches require extensive domain knowledge and large datasets. In data-scarce healthcare settings where historic and counterfactual data are limited, large language models (LLMs) offer a promising alternative by leveraging broad world knowledge. This study examines an LLM-driven simulation of a maternal mobile health program, predicting beneficiaries' listening behavior when they receive health information via automated messages (control) or live representatives (intervention). Since uncertainty quantification is critical for decision-making in health interventions, we propose an LLM epistemic uncertainty estimation method based on binary entropy across multiple samples. We enhance model robustness through ensemble approaches, improving F1 score and model calibration compared to individual models. Beyond direct evaluation, we take a decision-focused approach, demonstrating how LLM predictions inform intervention feasibility and trial implementation in data-limited settings. The proposed method extends to public health, disaster response, and other domains requiring rapid intervention assessment under severe data constraints. All code and prompts used for this work can be found at https://github.com/sarahmart/LLM-ABS-ARMMAN-prediction.
Authors:Yehui Shen, Lei Zhang, Qingqiu Li, Xiongwei Zhao, Yue Wang, Huimin Lu, Xieyuanli Chen
Title: UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Abstract:
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.
Authors:Wenyuan Zhang, Yixiao Yang, Han Huang, Liang Han, Kanle Shi, Yu-Shen Liu, Zhizhong Han
Title: MonoInstance: Enhancing Monocular Priors via Multi-view Instance Alignment for Neural Rendering and Reconstruction
Abstract:
Monocular depth priors have been widely adopted by neural rendering in multi-view based tasks such as 3D reconstruction and novel view synthesis. However, due to the inconsistent prediction on each view, how to more effectively leverage monocular cues in a multi-view context remains a challenge. Current methods treat the entire estimated depth map indiscriminately, and use it as ground truth supervision, while ignoring the inherent inaccuracy and cross-view inconsistency in monocular priors. To resolve these issues, we propose MonoInstance, a general approach that explores the uncertainty of monocular depths to provide enhanced geometric priors for neural rendering and reconstruction. Our key insight lies in aligning each segmented instance depths from multiple views within a common 3D space, thereby casting the uncertainty estimation of monocular depths into a density measure within noisy point clouds. For high-uncertainty areas where depth priors are unreliable, we further introduce a constraint term that encourages the projected instances to align with corresponding instance masks on nearby views. MonoInstance is a versatile strategy which can be seamlessly integrated into various multi-view neural rendering frameworks. Our experimental results demonstrate that MonoInstance significantly improves the performance in both reconstruction and novel view synthesis under various benchmarks.
Authors:Chan Kim, Seung-Woo Seo, Seong-Woo Kim
Title: LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Abstract:
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
Authors:Jinlong Li, Cristiano Saltori, Fabio Poiesi, Nicu Sebe
Title: Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding
Abstract:
The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). However, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at: https://github.com/TyroneLi/CUA_O3D.
Authors:Max Gutbrod, David Rauber, Danilo Weber Nunes, Christoph Palm
Title: OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
Abstract:
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
Authors:Zhiyu An, Zhibo Hou, Wan Du
Title: Disentangling Uncertainties by Learning Compressed Data Representation
Abstract:
We study aleatoric and epistemic uncertainty estimation in a learned regressive system dynamics model. Disentangling aleatoric uncertainty (the inherent randomness of the system) from epistemic uncertainty (the lack of data) is crucial for downstream tasks such as risk-aware control and reinforcement learning, efficient exploration, and robust policy transfer. While existing approaches like Gaussian Processes, Bayesian networks, and model ensembles are widely adopted, they suffer from either high computational complexity or inaccurate uncertainty estimation. To address these limitations, we propose the Compressed Data Representation Model (CDRM), a framework that learns a neural network encoding of the data distribution and enables direct sampling from the output distribution. Our approach incorporates a novel inference procedure based on Langevin dynamics sampling, allowing CDRM to predict arbitrary output distributions rather than being constrained to a Gaussian prior. Theoretical analysis provides the conditions where CDRM achieves better memory and computational complexity compared to bin-based compression methods. Empirical evaluations show that CDRM demonstrates a superior capability to identify aleatoric and epistemic uncertainties separately, achieving AUROCs of 0.8876 and 0.9981 on a single test set containing a mixture of both uncertainties. Qualitative results further show that CDRM's capability extends to datasets with multimodal output distributions, a challenging scenario where existing methods consistently fail. Code and supplementary materials are available at https://github.com/ryeii/CDRM.
Authors:Yuhang Liu, Wenjie Zhao, Yunhui Guo
Title: H2ST: Hierarchical Two-Sample Tests for Continual Out-of-Distribution Detection
Abstract:
Task Incremental Learning (TIL) is a specialized form of Continual Learning (CL) in which a model incrementally learns from non-stationary data streams. Existing TIL methodologies operate under the closed-world assumption, presuming that incoming data remains in-distribution (ID). However, in an open-world setting, incoming samples may originate from out-of-distribution (OOD) sources, with their task identities inherently unknown. Continually detecting OOD samples presents several challenges for current OOD detection methods: reliance on model outputs leads to excessive dependence on model performance, selecting suitable thresholds is difficult, hindering real-world deployment, and binary ID/OOD classification fails to provide task-level identification. To address these issues, we propose a novel continual OOD detection method called the Hierarchical Two-sample Tests (H2ST). H2ST eliminates the need for threshold selection through hypothesis testing and utilizes feature maps to better exploit model capabilities without excessive dependence on model performance. The proposed hierarchical architecture enables task-level detection with superior performance and lower overhead compared to non-hierarchical classifier two-sample tests. Extensive experiments and analysis validate the effectiveness of H2ST in open-world TIL scenarios and its superiority to the existing methods. Code is available at \href{https://github.com/YuhangLiuu/H2ST}{https://github.com/YuhangLiuu/H2ST}.
Authors:Severin Heidrich, Till Beemelmanns, Alexey Nekrasov, Bastian Leibe, Lutz Eckstein
Title: OCCUQ: Exploring Efficient Uncertainty Quantification for 3D Occupancy Prediction
Abstract:
Autonomous driving has the potential to significantly enhance productivity and provide numerous societal benefits. Ensuring robustness in these safety-critical systems is essential, particularly when vehicles must navigate adverse weather conditions and sensor corruptions that may not have been encountered during training. Current methods often overlook uncertainties arising from adversarial conditions or distributional shifts, limiting their real-world applicability. We propose an efficient adaptation of an uncertainty estimation technique for 3D occupancy prediction. Our method dynamically calibrates model confidence using epistemic uncertainty estimates. Our evaluation under various camera corruption scenarios, such as fog or missing cameras, demonstrates that our approach effectively quantifies epistemic uncertainty by assigning higher uncertainty values to unseen data. We introduce region-specific corruptions to simulate defects affecting only a single camera and validate our findings through both scene-level and region-level assessments. Our results show superior performance in Out-of-Distribution (OoD) detection and confidence calibration compared to common baselines such as Deep Ensembles and MC-Dropout. Our approach consistently demonstrates reliable uncertainty measures, indicating its potential for enhancing the robustness of autonomous driving systems in real-world scenarios. Code and dataset are available at https://github.com/ika-rwth-aachen/OCCUQ .
Authors:Spyros Kondylatos, Nikolaos Ioannis Bountos, Dimitrios Michail, Xiao Xiang Zhu, Gustau Camps-Valls, Ioannis Papoutsis
Title: On the Generalization of Representation Uncertainty in Earth Observation
Abstract:
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
Authors:Lie Ju, Sijin Zhou, Yukun Zhou, Huimin Lu, Zhuoting Zhu, Pearse A. Keane, Zongyuan Ge
Title: Delving into Out-of-Distribution Detection with Medical Vision-Language Models
Abstract:
Recent advances in medical vision-language models (VLMs) demonstrate impressive performance in image classification tasks, driven by their strong zero-shot generalization capabilities. However, given the high variability and complexity inherent in medical imaging data, the ability of these models to detect out-of-distribution (OOD) data in this domain remains underexplored. In this work, we conduct the first systematic investigation into the OOD detection potential of medical VLMs. We evaluate state-of-the-art VLM-based OOD detection methods across a diverse set of medical VLMs, including both general and domain-specific purposes. To accurately reflect real-world challenges, we introduce a cross-modality evaluation pipeline for benchmarking full-spectrum OOD detection, rigorously assessing model robustness against both semantic shifts and covariate shifts. Furthermore, we propose a novel hierarchical prompt-based method that significantly enhances OOD detection performance. Extensive experiments are conducted to validate the effectiveness of our approach. The codes are available at https://github.com/PyJulie/Medical-VLMs-OOD-Detection.
Authors:Hugo Lyons Keenan, Sarah Erfani, Christopher Leckie
Title: HALO: Robust Out-of-Distribution Detection via Joint Optimisation
Abstract:
Effective out-of-distribution (OOD) detection is crucial for the safe deployment of machine learning models in real-world scenarios. However, recent work has shown that OOD detection methods are vulnerable to adversarial attacks, potentially leading to critical failures in high-stakes applications. This discovery has motivated work on robust OOD detection methods that are capable of maintaining performance under various attack settings. Prior approaches have made progress on this problem but face a number of limitations: often only exhibiting robustness to attacks on OOD data or failing to maintain strong clean performance. In this work, we adapt an existing robust classification framework, TRADES, extending it to the problem of robust OOD detection and discovering a novel objective function. Recognising the critical importance of a strong clean/robust trade-off for OOD detection, we introduce an additional loss term which boosts classification and detection performance. Our approach, called HALO (Helper-based AdversariaL OOD detection), surpasses existing methods and achieves state-of-the-art performance across a number of datasets and attack settings. Extensive experiments demonstrate an average AUROC improvement of 3.15 in clean settings and 7.07 under adversarial attacks when compared to the next best method. Furthermore, HALO exhibits resistance to transferred attacks, offers tuneable performance through hyperparameter selection, and is compatible with existing OOD detection frameworks out-of-the-box, leaving open the possibility of future performance gains. Code is available at: https://github.com/hugo0076/HALO
Authors:Yuhan Chen, Yihong Luo, Yifan Song, Pengwen Dai, Jing Tang, Xiaochun Cao
Title: Decoupled Graph Energy-based Model for Node Out-of-Distribution Detection on Heterophilic Graphs
Abstract:
Despite extensive research efforts focused on OOD detection on images, OOD detection on nodes in graph learning remains underexplored. The dependence among graph nodes hinders the trivial adaptation of existing approaches on images that assume inputs to be i.i.d. sampled, since many unique features and challenges specific to graphs are not considered, such as the heterophily issue. Recently, GNNSafe, which considers node dependence, adapted energy-based detection to the graph domain with state-of-the-art performance, however, it has two serious issues: 1) it derives node energy from classification logits without specifically tailored training for modeling data distribution, making it less effective at recognizing OOD data; 2) it highly relies on energy propagation, which is based on homophily assumption and will cause significant performance degradation on heterophilic graphs, where the node tends to have dissimilar distribution with its neighbors. To address the above issues, we suggest training EBMs by MLE to enhance data distribution modeling and remove energy propagation to overcome the heterophily issues. However, training EBMs via MLE requires performing MCMC sampling on both node feature and node neighbors, which is challenging due to the node interdependence and discrete graph topology. To tackle the sampling challenge, we introduce DeGEM, which decomposes the learning process into two parts: a graph encoder that leverages topology information for node representations and an energy head that operates in latent space. Extensive experiments validate that DeGEM, without OOD exposure during training, surpasses previous state-of-the-art methods, achieving an average AUROC improvement of 6.71% on homophilic graphs and 20.29% on heterophilic graphs, and even outperform methods trained with OOD exposure. Our code is available at: https://github.com/draym28/DeGEM.
Authors:Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, Jinkyoo Park
Title: Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization
Abstract:
Optimizing high-dimensional and complex black-box functions is crucial in numerous scientific applications. While Bayesian optimization (BO) is a powerful method for sample-efficient optimization, it struggles with the curse of dimensionality and scaling to thousands of evaluations. Recently, leveraging generative models to solve black-box optimization problems has emerged as a promising framework. However, those methods often underperform compared to BO methods due to limited expressivity and difficulty of uncertainty estimation in high-dimensional spaces. To overcome these issues, we introduce \textbf{DiBO}, a novel framework for solving high-dimensional black-box optimization problems. Our method iterates two stages. First, we train a diffusion model to capture the data distribution and deep ensembles to predict function values with uncertainty quantification. Second, we cast the candidate selection as a posterior inference problem to balance exploration and exploitation in high-dimensional spaces. Concretely, we fine-tune diffusion models to amortize posterior inference. Extensive experiments demonstrate that our method outperforms state-of-the-art baselines across synthetic and real-world tasks. Our code is publicly available \href{https://github.com/umkiyoung/DiBO}{here}.
Authors:Gianluca Guglielmo, Marc Masana
Title: Leveraging Intermediate Representations for Better Out-of-Distribution Detection
Abstract:
In real-world applications, machine learning models must reliably detect Out-of-Distribution (OoD) samples to prevent unsafe decisions. Current OoD detection methods often rely on analyzing the logits or the embeddings of the penultimate layer of a neural network. However, little work has been conducted on the exploitation of the rich information encoded in intermediate layers. To address this, we analyze the discriminative power of intermediate layers and show that they can positively be used for OoD detection. Therefore, we propose to regularize intermediate layers with an energy-based contrastive loss, and by grouping multiple layers in a single aggregated response. We demonstrate that intermediate layer activations improves OoD detection performance by running a comprehensive evaluation across multiple datasets.
Authors:Thierry Judge, Olivier Bernard, Woo-Jin Cho Kim, Alberto Gomez, Arian Beqiri, Agisilaos Chartsias, Pierre-Marc Jodoin
Title: Uncertainty Propagation for Echocardiography Clinical Metric Estimation via Contour Sampling
Abstract:
Echocardiography plays a fundamental role in the extraction of important clinical parameters (e.g. left ventricular volume and ejection fraction) required to determine the presence and severity of heart-related conditions. When deploying automated techniques for computing these parameters, uncertainty estimation is crucial for assessing their utility. Since clinical parameters are usually derived from segmentation maps, there is no clear path for converting pixel-wise uncertainty values into uncertainty estimates in the downstream clinical metric calculation. In this work, we propose a novel uncertainty estimation method based on contouring rather than segmentation. Our method explicitly predicts contour location uncertainty from which contour samples can be drawn. Finally, the sampled contours can be used to propagate uncertainty to clinical metrics. Our proposed method not only provides accurate uncertainty estimations for the task of contouring but also for the downstream clinical metrics on two cardiac ultrasound datasets. Code is available at: https://github.com/ThierryJudge/contouring-uncertainty.
Authors:Dariush Lotfi, Mohammad-Ali Nikouei Mahani, Mohamad Koohi-Moghadam, Kyongtae Ty Bae
Title: Safeguarding AI in Medical Imaging: Post-Hoc Out-of-Distribution Detection with Normalizing Flows
Abstract:
In AI-driven medical imaging, the failure to detect out-of-distribution (OOD) data poses a severe risk to clinical reliability, potentially leading to critical diagnostic errors. Current OOD detection methods often demand impractical retraining or modifications to pre-trained models, hindering their adoption in regulated clinical environments. To address this challenge, we propose a post-hoc normalizing flow-based approach that seamlessly integrates with existing pre-trained models without altering their weights. Our evaluation used a novel in-house built dataset, MedOOD, meticulously curated to simulate clinically relevant distributional shifts, alongside the MedMNIST benchmark dataset. On our in-house MedOOD dataset, our method achieved an AUROC of 84.61%, outperforming state-of-the-art methods like ViM (80.65%) and MDS (80.87%). Similarly, on MedMNIST, it reached an exceptional AUROC of 93.8%, surpassing leading approaches such as ViM (88.08%) and ReAct (87.05%). This superior performance, coupled with its post-hoc integration capability, positions our method as a vital safeguard for enhancing safety in medical imaging workflows. The model and code to build OOD datasets are publicly accessible at https://github.com/dlotfi/MedOODFlow.
Authors:Md Yousuf Harun, Jhair Gallardo, Christopher Kanan
Title: Controlling Neural Collapse Enhances Out-of-Distribution Detection and Transfer Learning
Abstract:
Out-of-distribution (OOD) detection and OOD generalization are widely studied in Deep Neural Networks (DNNs), yet their relationship remains poorly understood. We empirically show that the degree of Neural Collapse (NC) in a network layer is inversely related with these objectives: stronger NC improves OOD detection but degrades generalization, while weaker NC enhances generalization at the cost of detection. This trade-off suggests that a single feature space cannot simultaneously achieve both tasks. To address this, we develop a theoretical framework linking NC to OOD detection and generalization. We show that entropy regularization mitigates NC to improve generalization, while a fixed Simplex Equiangular Tight Frame (ETF) projector enforces NC for better detection. Based on these insights, we propose a method to control NC at different DNN layers. In experiments, our method excels at both tasks across OOD datasets and DNN architectures. Code for our experiments is available at: https://yousuf907.github.io/ncoodg
Authors:Onur Bagoren, Marc Micatka, Katherine A. Skinner, Aaron Marburg
Title: PUGS: Perceptual Uncertainty for Grasp Selection in Underwater Environments
Abstract:
When navigating and interacting in challenging environments where sensory information is imperfect and incomplete, robots must make decisions that account for these shortcomings. We propose a novel method for quantifying and representing such perceptual uncertainty in 3D reconstruction through occupancy uncertainty estimation. We develop a framework to incorporate it into grasp selection for autonomous manipulation in underwater environments. Instead of treating each measurement equally when deciding which location to grasp from, we present a framework that propagates uncertainty inherent in the multi-view reconstruction process into the grasp selection. We evaluate our method with both simulated and the real world data, showing that by accounting for uncertainty, the grasp selection becomes robust against partial and noisy measurements. Code will be made available at https://onurbagoren.github.io/PUGS/
Authors:Randolph W. Linderman, Yiran Chen, Scott W. Linderman
Title: A Bayesian Nonparametric Perspective on Mahalanobis Distance for Out of Distribution Detection
Abstract:
Bayesian nonparametric methods are naturally suited to the problem of out-of-distribution (OOD) detection. However, these techniques have largely been eschewed in favor of simpler methods based on distances between pre-trained or learned embeddings of data points. Here we show a formal relationship between Bayesian nonparametric models and the relative Mahalanobis distance score (RMDS), a commonly used method for OOD detection. Building on this connection, we propose Bayesian nonparametric mixture models with hierarchical priors that generalize the RMDS. We evaluate these models on the OpenOOD detection benchmark and show that Bayesian nonparametric methods can improve upon existing OOD methods, especially in regimes where training classes differ in their covariance structure and where there are relatively few data points per class.
Authors:Tingyi Cai, Yunliang Jiang, Yixin Liu, Ming Li, Changqin Huang, Shirui Pan
Title: Out-of-Distribution Detection on Graphs: A Survey
Abstract:
Graph machine learning has witnessed rapid growth, driving advancements across diverse domains. However, the in-distribution assumption, where training and testing data share the same distribution, often breaks in real-world scenarios, leading to degraded model performance under distribution shifts. This challenge has catalyzed interest in graph out-of-distribution (GOOD) detection, which focuses on identifying graph data that deviates from the distribution seen during training, thereby enhancing model robustness. In this paper, we provide a rigorous definition of GOOD detection and systematically categorize existing methods into four types: enhancement-based, reconstruction-based, information propagation-based, and classification-based approaches. We analyze the principles and mechanisms of each approach and clarify the distinctions between GOOD detection and related fields, such as graph anomaly detection, outlier detection, and GOOD generalization. Beyond methodology, we discuss practical applications and theoretical foundations, highlighting the unique challenges posed by graph data. Finally, we discuss the primary challenges and propose future directions to advance this emerging field. The repository of this survey is available at https://github.com/ca1man-2022/Awesome-GOOD-Detection.
Authors:Yawei Li, David Rügamer, Bernd Bischl, Mina Rezaei
Title: Calibrating LLMs with Information-Theoretic Evidential Deep Learning
Abstract:
Fine-tuned large language models (LLMs) often exhibit overconfidence, particularly when trained on small datasets, resulting in poor calibration and inaccurate uncertainty estimates. Evidential Deep Learning (EDL), an uncertainty-aware approach, enables uncertainty estimation in a single forward pass, making it a promising method for calibrating fine-tuned LLMs. However, despite its computational efficiency, EDL is prone to overfitting, as its training objective can result in overly concentrated probability distributions. To mitigate this, we propose regularizing EDL by incorporating an information bottleneck (IB). Our approach IB-EDL suppresses spurious information in the evidence generated by the model and encourages truly predictive information to influence both the predictions and uncertainty estimates. Extensive experiments across various fine-tuned LLMs and tasks demonstrate that IB-EDL outperforms both existing EDL and non-EDL approaches. By improving the trustworthiness of LLMs, IB-EDL facilitates their broader adoption in domains requiring high levels of confidence calibration. Code is available at https://github.com/sandylaker/ib-edl.
Authors:Julia Hornauer, Amir El-Ghoussani, Vasileios Belagiannis
Title: Revisiting Gradient-based Uncertainty for Monocular Depth Estimation
Abstract:
Monocular depth estimation, similar to other image-based tasks, is prone to erroneous predictions due to ambiguities in the image, for example, caused by dynamic objects or shadows. For this reason, pixel-wise uncertainty assessment is required for safety-critical applications to highlight the areas where the prediction is unreliable. We address this in a post hoc manner and introduce gradient-based uncertainty estimation for already trained depth estimation models. To extract gradients without depending on the ground truth depth, we introduce an auxiliary loss function based on the consistency of the predicted depth and a reference depth. The reference depth, which acts as pseudo ground truth, is in fact generated using a simple image or feature augmentation, making our approach simple and effective. To obtain the final uncertainty score, the derivatives w.r.t. the feature maps from single or multiple layers are calculated using back-propagation. We demonstrate that our gradient-based approach is effective in determining the uncertainty without re-training using the two standard depth estimation benchmarks KITTI and NYU. In particular, for models trained with monocular sequences and therefore most prone to uncertainty, our method outperforms related approaches. In addition, we publicly provide our code and models: https://github.com/jhornauer/GrUMoDepth
Authors:Yousef Koka, David Selby, Gerrit Großmann, Sebastian Vollmer
Title: CleanSurvival: Automated data preprocessing for time-to-event models using reinforcement learning
Abstract:
Data preprocessing is a critical yet frequently neglected aspect of machine learning, often paid little attention despite its potentially significant impact on model performance. While automated machine learning pipelines are starting to recognize and integrate data preprocessing into their solutions for classification and regression tasks, this integration is lacking for more specialized tasks like survival or time-to-event models. As a result, survival analysis not only faces the general challenges of data preprocessing but also suffers from the lack of tailored, automated solutions in this area. To address this gap, this paper presents 'CleanSurvival', a reinforcement-learning-based solution for optimizing preprocessing pipelines, extended specifically for survival analysis. The framework can handle continuous and categorical variables, using Q-learning to select which combination of data imputation, outlier detection and feature extraction techniques achieves optimal performance for a Cox, random forest, neural network or user-supplied time-to-event model. The package is available on GitHub: https://github.com/datasciapps/CleanSurvival Experimental benchmarks on real-world datasets show that the Q-learning-based data preprocessing results in superior predictive performance to standard approaches, finding such a model up to 10 times faster than undirected random grid search. Furthermore, a simulation study demonstrates the effectiveness in different types and levels of missingness and noise in the data.
Authors:Shiho Noda, Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa
Title: A Benchmark and Evaluation for Real-World Out-of-Distribution Detection Using Vision-Language Models
Abstract:
Out-of-distribution (OOD) detection is a task that detects OOD samples during inference to ensure the safety of deployed models. However, conventional benchmarks have reached performance saturation, making it difficult to compare recent OOD detection methods. To address this challenge, we introduce three novel OOD detection benchmarks that enable a deeper understanding of method characteristics and reflect real-world conditions. First, we present ImageNet-X, designed to evaluate performance under challenging semantic shifts. Second, we propose ImageNet-FS-X for full-spectrum OOD detection, assessing robustness to covariate shifts (feature distribution shifts). Finally, we propose Wilds-FS-X, which extends these evaluations to real-world datasets, offering a more comprehensive testbed. Our experiments reveal that recent CLIP-based OOD detection methods struggle to varying degrees across the three proposed benchmarks, and none of them consistently outperforms the others. We hope the community goes beyond specific benchmarks and includes more challenging conditions reflecting real-world scenarios. The code is https://github.com/hoshi23/OOD-X-Benchmarks.
Authors:Hossein Mirzaei, Mojtaba Nafez, Moein Madadi, Arad Maleki, Mahdi Hajialilue, Zeinab Sadat Taghavi, Sepehr Rezaee, Ali Ansari, Bahar Dibaei Nia, Kian Shamsaie, Mohammadreza Salehi, Mackenzie W. Mathis, Mahdieh Soleymani Baghshah, Mohammad Sabokrou, Mohammad Hossein Rohban
Title: A Contrastive Teacher-Student Framework for Novelty Detection under Style Shifts
Abstract:
There have been several efforts to improve Novelty Detection (ND) performance. However, ND methods often suffer significant performance drops under minor distribution shifts caused by changes in the environment, known as style shifts. This challenge arises from the ND setup, where the absence of out-of-distribution (OOD) samples during training causes the detector to be biased toward the dominant style features in the in-distribution (ID) data. As a result, the model mistakenly learns to correlate style with core features, using this shortcut for detection. Robust ND is crucial for real-world applications like autonomous driving and medical imaging, where test samples may have different styles than the training data. Motivated by this, we propose a robust ND method that crafts an auxiliary OOD set with style features similar to the ID set but with different core features. Then, a task-based knowledge distillation strategy is utilized to distinguish core features from style features and help our model rely on core features for discriminating crafted OOD and ID sets. We verified the effectiveness of our method through extensive experimental evaluations on several datasets, including synthetic and real-world benchmarks, against nine different ND methods.
Authors:Hossein Mirzaei, Mohammad Jafari, Hamid Reza Dehbashi, Ali Ansari, Sepehr Ghobadi, Masoud Hadi, Arshia Soltani Moakhar, Mohammad Azizmalayeri, Mahdieh Soleymani Baghshah, Mohammad Hossein Rohban
Title: RODEO: Robust Outlier Detection via Exposing Adaptive Out-of-Distribution Samples
Abstract:
In recent years, there have been significant improvements in various forms of image outlier detection. However, outlier detection performance under adversarial settings lags far behind that in standard settings. This is due to the lack of effective exposure to adversarial scenarios during training, especially on unseen outliers, leading to detection models failing to learn robust features. To bridge this gap, we introduce RODEO, a data-centric approach that generates effective outliers for robust outlier detection. More specifically, we show that incorporating outlier exposure (OE) and adversarial training can be an effective strategy for this purpose, as long as the exposed training outliers meet certain characteristics, including diversity, and both conceptual differentiability and analogy to the inlier samples. We leverage a text-to-image model to achieve this goal. We demonstrate both quantitatively and qualitatively that our adaptive OE method effectively generates ``diverse'' and ``near-distribution'' outliers, leveraging information from both text and image domains. Moreover, our experimental results show that utilizing our synthesized outliers significantly enhances the performance of the outlier detector, particularly in adversarial settings.
Authors:Hossein Mirzaei, Mohammad Jafari, Hamid Reza Dehbashi, Zeinab Sadat Taghavi, Mohammad Sabokrou, Mohammad Hossein Rohban
Title: Killing it with Zero-Shot: Adversarially Robust Novelty Detection
Abstract:
Novelty Detection (ND) plays a crucial role in machine learning by identifying new or unseen data during model inference. This capability is especially important for the safe and reliable operation of automated systems. Despite advances in this field, existing techniques often fail to maintain their performance when subject to adversarial attacks. Our research addresses this gap by marrying the merits of nearest-neighbor algorithms with robust features obtained from models pretrained on ImageNet. We focus on enhancing the robustness and performance of ND algorithms. Experimental results demonstrate that our approach significantly outperforms current state-of-the-art methods across various benchmarks, particularly under adversarial conditions. By incorporating robust pretrained features into the k-NN algorithm, we establish a new standard for performance and robustness in the field of robust ND. This work opens up new avenues for research aimed at fortifying machine learning systems against adversarial vulnerabilities. Our implementation is publicly available at https://github.com/rohban-lab/ZARND.
Authors:Viktor Moskvoretskii, Maria Lysyuk, Mikhail Salnikov, Nikolay Ivanov, Sergey Pletenev, Daria Galimzianova, Nikita Krayko, Vasily Konovalov, Irina Nikishina, Alexander Panchenko
Title: Adaptive Retrieval Without Self-Knowledge? Bringing Uncertainty Back Home
Abstract:
Retrieval Augmented Generation (RAG) improves correctness of Question Answering (QA) and addresses hallucinations in Large Language Models (LLMs), yet greatly increase computational costs. Besides, RAG is not always needed as may introduce irrelevant information. Recent adaptive retrieval methods integrate LLMs' intrinsic knowledge with external information appealing to LLM self-knowledge, but they often neglect efficiency evaluations and comparisons with uncertainty estimation techniques. We bridge this gap by conducting a comprehensive analysis of 35 adaptive retrieval methods, including 8 recent approaches and 27 uncertainty estimation techniques, across 6 datasets using 10 metrics for QA performance, self-knowledge, and efficiency. Our findings show that uncertainty estimation techniques often outperform complex pipelines in terms of efficiency and self-knowledge, while maintaining comparable QA performance.
Authors:Tal Zeevi, Lawrence H. Staib, John A. Onofrey
Title: Enhancing Uncertainty Estimation in Semantic Segmentation via Monte-Carlo Frequency Dropout
Abstract:
Monte-Carlo (MC) Dropout provides a practical solution for estimating predictive distributions in deterministic neural networks. Traditional dropout, applied within the signal space, may fail to account for frequency-related noise common in medical imaging, leading to biased predictive estimates. A novel approach extends Dropout to the frequency domain, allowing stochastic attenuation of signal frequencies during inference. This creates diverse global textural variations in feature maps while preserving structural integrity -- a factor we hypothesize and empirically show is contributing to accurately estimating uncertainties in semantic segmentation. We evaluated traditional MC-Dropout and the MC-frequency Dropout in three segmentation tasks involving different imaging modalities: (i) prostate zones in biparametric MRI, (ii) liver tumors in contrast-enhanced CT, and (iii) lungs in chest X-ray scans. Our results show that MC-Frequency Dropout improves calibration, convergence, and semantic uncertainty, thereby improving prediction scrutiny, boundary delineation, and has the potential to enhance medical decision-making.
Authors:Henry Li, Ronen Basri, Yuval Kluger
Title: Likelihood Training of Cascaded Diffusion Models via Hierarchical Volume-preserving Maps
Abstract:
Cascaded models are multi-scale generative models with a marked capacity for producing perceptually impressive samples at high resolutions. In this work, we show that they can also be excellent likelihood models, so long as we overcome a fundamental difficulty with probabilistic multi-scale models: the intractability of the likelihood function. Chiefly, in cascaded models each intermediary scale introduces extraneous variables that cannot be tractably marginalized out for likelihood evaluation. This issue vanishes by modeling the diffusion process on latent spaces induced by a class of transformations we call hierarchical volume-preserving maps, which decompose spatially structured data in a hierarchical fashion without introducing local distortions in the latent space. We demonstrate that two such maps are well-known in the literature for multiscale modeling: Laplacian pyramids and wavelet transforms. Not only do such reparameterizations allow the likelihood function to be directly expressed as a joint likelihood over the scales, we show that the Laplacian pyramid and wavelet transform also produces significant improvements to the state-of-the-art on a selection of benchmarks in likelihood modeling, including density estimation, lossless compression, and out-of-distribution detection. Investigating the theoretical basis of our empirical gains we uncover deep connections to score matching under the Earth Mover's Distance (EMD), which is a well-known surrogate for perceptual similarity. Code can be found at \href{https://github.com/lihenryhfl/pcdm}{this https url}.
Authors:Ayush Khot, Xiwei Wang, Avik Roy, Volodymyr Kindratenko, Mark S. Neubauer
Title: Evidential Deep Learning for Uncertainty Quantification and Out-of-Distribution Detection in Jet Identification using Deep Neural Networks
Abstract:
Current methods commonly used for uncertainty quantification (UQ) in deep learning (DL) models utilize Bayesian methods which are computationally expensive and time-consuming. In this paper, we provide a detailed study of UQ based on evidential deep learning (EDL) for deep neural network models designed to identify jets in high energy proton-proton collisions at the Large Hadron Collider and explore its utility in anomaly detection. EDL is a DL approach that treats learning as an evidence acquisition process designed to provide confidence (or epistemic uncertainty) about test data. Using publicly available datasets for jet classification benchmarking, we explore hyperparameter optimizations for EDL applied to the challenge of UQ for jet identification. We also investigate how the uncertainty is distributed for each jet class, how this method can be implemented for the detection of anomalies, how the uncertainty compares with Bayesian ensemble methods, and how the uncertainty maps onto latent spaces for the models. Our studies uncover some pitfalls of EDL applied to anomaly detection and a more effective way to quantify uncertainty from EDL as compared with the foundational EDL setup. These studies illustrate a methodological approach to interpreting EDL in jet classification models, providing new insights on how EDL quantifies uncertainty and detects out-of-distribution data which may lead to improved EDL methods for DL models applied to classification tasks.
Authors:Can Gao, Xiaofeng Tan, Jie Zhou, Weiping Ding, Witold Pedrycz
Title: Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls
Abstract:
Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data and has been extensively studied and used in a variety of practical tasks. However, most unsupervised outlier detection methods are carefully designed to detect specified outliers, while real-world data may be entangled with different types of outliers. In this study, we propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers. Specifically, a novel fuzzy rough sets-based method that integrates relative fuzzy granule density is first introduced to improve the capability of detecting local outliers. Then, a multi-scale view generation method based on granular-ball computing is proposed to collaboratively identify group outliers at different levels of granularity. Moreover, reliable outliers and inliers determined by the three-way decision are used to train a weighted support vector machine to further improve the performance of outlier detection. The proposed method innovatively transforms unsupervised outlier detection into a semi-supervised classification problem and for the first time explores the fuzzy rough sets-based outlier detection from the perspective of multi-scale granular balls, allowing for high adaptability to different types of outliers. Extensive experiments carried out on both artificial and UCI datasets demonstrate that the proposed outlier detection method significantly outperforms the state-of-the-art methods, improving the results by at least 8.48% in terms of the Area Under the ROC Curve (AUROC) index. { The source codes are released at \url{https://github.com/Xiaofeng-Tan/MGBOD}. }
Authors:Hu Ding, Yan Yan, Yang Lu, Jing-Hao Xue, Hanzi Wang
Title: Uncertainty-Aware Label Refinement on Hypergraphs for Personalized Federated Facial Expression Recognition
Abstract:
Most facial expression recognition (FER) models are trained on large-scale expression data with centralized learning. Unfortunately, collecting a large amount of centralized expression data is difficult in practice due to privacy concerns of facial images. In this paper, we investigate FER under the framework of personalized federated learning, which is a valuable and practical decentralized setting for real-world applications. To this end, we develop a novel uncertainty-Aware label refineMent on hYpergraphs (AMY) method. For local training, each local model consists of a backbone, an uncertainty estimation (UE) block, and an expression classification (EC) block. In the UE block, we leverage a hypergraph to model complex high-order relationships between expression samples and incorporate these relationships into uncertainty features. A personalized uncertainty estimator is then introduced to estimate reliable uncertainty weights of samples in the local client. In the EC block, we perform label propagation on the hypergraph, obtaining high-quality refined labels for retraining an expression classifier. Based on the above, we effectively alleviate heterogeneous sample uncertainty across clients and learn a robust personalized FER model in each client. Experimental results on two challenging real-world facial expression databases show that our proposed method consistently outperforms several state-of-the-art methods. This indicates the superiority of hypergraph modeling for uncertainty estimation and label refinement on the personalized federated FER task. The source code will be released at https://github.com/mobei1006/AMY.
Authors:Mingrong Gong, Chaoqi Chen, Qingqiang Sun, Yue Wang, Hui Huang
Title: Out-of-Distribution Detection with Prototypical Outlier Proxy
Abstract:
Out-of-distribution (OOD) detection is a crucial task for deploying deep learning models in the wild. One of the major challenges is that well-trained deep models tend to perform over-confidence on unseen test data. Recent research attempts to leverage real or synthetic outliers to mitigate the issue, which may significantly increase computational costs and be biased toward specific outlier characteristics. In this paper, we propose a simple yet effective framework, Prototypical Outlier Proxy (POP), which introduces virtual OOD prototypes to reshape the decision boundaries between ID and OOD data. Specifically, we transform the learnable classifier into a fixed one and augment it with a set of prototypical weight vectors. Then, we introduce a hierarchical similarity boundary loss to impose adaptive penalties depending on the degree of misclassification. Extensive experiments across various benchmarks demonstrate the effectiveness of POP. Notably, POP achieves average FPR95 reductions of 7.70%, 6.30%, and 5.42% over the second-best methods on CIFAR-10, CIFAR-100, and ImageNet-200, respectively. Moreover, compared to the recent method NPOS, which relies on outlier synthesis, POP trains 7.2X faster and performs inference 19.5X faster. The source code is available at: https://github.com/gmr523/pop.
Authors:Mikko Impiö, Philipp M. Rehsen, Jenni Raitoharju
Title: Efficient Curation of Invertebrate Image Datasets Using Feature Embeddings and Automatic Size Comparison
Abstract:
The amount of image datasets collected for environmental monitoring purposes has increased in the past years as computer vision assisted methods have gained interest. Computer vision applications rely on high-quality datasets, making data curation important. However, data curation is often done ad-hoc and the methods used are rarely published. We present a method for curating large-scale image datasets of invertebrates that contain multiple images of the same taxa and/or specimens and have relatively uniform background in the images. Our approach is based on extracting feature embeddings with pretrained deep neural networks, and using these embeddings to find visually most distinct images by comparing their embeddings to the group prototype embedding. Also, we show that a simple area-based size comparison approach is able to find a lot of common erroneous images, such as images containing detached body parts and misclassified samples. In addition to the method, we propose using novel metrics for evaluating human-in-the-loop outlier detection methods. The implementations of the proposed curation methods, as well as a benchmark dataset containing annotated erroneous images, are publicly available in https://github.com/mikkoim/taxonomist-studio.
Authors:Burak Ekim, Girmaw Abebe Tadesse, Caleb Robinson, Gilles Hacheme, Michael Schmitt, Rahul Dodhia, Juan M. Lavista Ferres
Title: Distribution Shifts at Scale: Out-of-distribution Detection in Earth Observation
Abstract:
Training robust deep learning models is crucial in Earth Observation, where globally deployed models often face distribution shifts that degrade performance, especially in low-data regions. Out-of-distribution (OOD) detection addresses this by identifying inputs that deviate from in-distribution (ID) data. However, existing methods either assume access to OOD data or compromise primary task performance, limiting real-world use. We introduce TARDIS, a post-hoc OOD detection method designed for scalable geospatial deployment. Our core innovation lies in generating surrogate distribution labels by leveraging ID data within the feature space. TARDIS takes a pre-trained model, ID data, and data from an unknown distribution (WILD), separates WILD into surrogate ID and OOD labels based on internal activations, and trains a binary classifier to detect distribution shifts. We validate on EuroSAT and xBD across 17 setups covering covariate and semantic shifts, showing near-upper-bound surrogate labeling performance in 13 cases and matching the performance of top post-hoc activation- and scoring-based methods. Finally, deploying TARDIS on Fields of the World reveals actionable insights into pre-trained model behavior at scale. The code is available at \href{https://github.com/microsoft/geospatial-ood-detection}{https://github.com/microsoft/geospatial-ood-detection}
Authors:Hanlei Zhang, Qianrui Zhou, Hua Xu, Jianhua Su, Roberto Evans, Kai Gao
Title: Multimodal Classification and Out-of-distribution Detection for Multimodal Intent Understanding
Abstract:
Multimodal intent understanding is a significant research area that requires effective leveraging of multiple modalities to analyze human language. Existing methods face two main challenges in this domain. Firstly, they have limitations in capturing the nuanced and high-level semantics underlying complex in-distribution (ID) multimodal intents. Secondly, they exhibit poor generalization when confronted with unseen out-of-distribution (OOD) data in real-world scenarios. To address these issues, we propose a novel method for both ID classification and OOD detection (MIntOOD). We first introduce a weighted feature fusion network that models multimodal representations. This network dynamically learns the importance of each modality, adapting to multimodal contexts. To develop discriminative representations for both tasks, we synthesize pseudo-OOD data from convex combinations of ID data and engage in multimodal representation learning from both coarse-grained and fine-grained perspectives. The coarse-grained perspective focuses on distinguishing between ID and OOD binary classes, while the fine-grained perspective not only enhances the discrimination between different ID classes but also captures instance-level interactions between ID and OOD samples, promoting proximity among similar instances and separation from dissimilar ones. We establish baselines for three multimodal intent datasets and build an OOD benchmark. Extensive experiments on these datasets demonstrate that our method significantly improves OOD detection performance with a 3~10% increase in AUROC scores while achieving new state-of-the-art results in ID classification. Data and codes are available at https://github.com/thuiar/MIntOOD.
Authors:Sihan Chen, Zhuangzhuang Qian, Wingchun Siu, Xingcan Hu, Jiaqi Li, Shawn Li, Yuehan Qin, Tiankai Yang, Zhuo Xiao, Wanghao Ye, Yichi Zhang, Yushun Dong, Yue Zhao
Title: PyOD 2: A Python Library for Outlier Detection with LLM-powered Model Selection
Abstract:
Outlier detection (OD), also known as anomaly detection, is a critical machine learning (ML) task with applications in fraud detection, network intrusion detection, clickstream analysis, recommendation systems, and social network moderation. Among open-source libraries for outlier detection, the Python Outlier Detection (PyOD) library is the most widely adopted, with over 8,500 GitHub stars, 25 million downloads, and diverse industry usage. However, PyOD currently faces three limitations: (1) insufficient coverage of modern deep learning algorithms, (2) fragmented implementations across PyTorch and TensorFlow, and (3) no automated model selection, making it hard for non-experts. To address these issues, we present PyOD Version 2 (PyOD 2), which integrates 12 state-of-the-art deep learning models into a unified PyTorch framework and introduces a large language model (LLM)-based pipeline for automated OD model selection. These improvements simplify OD workflows, provide access to 45 algorithms, and deliver robust performance on various datasets. In this paper, we demonstrate how PyOD 2 streamlines the deployment and automation of OD models and sets a new standard in both research and industry. PyOD 2 is accessible at [https://github.com/yzhao062/pyod](https://github.com/yzhao062/pyod). This study aligns with the Web Mining and Content Analysis track, addressing topics such as the robustness of Web mining methods and the quality of algorithmically-generated Web data.
Authors:Yutian Lei, Luping Ji, Pei Liu
Title: Mining In-distribution Attributes in Outliers for Out-of-distribution Detection
Abstract:
Out-of-distribution (OOD) detection is indispensable for deploying reliable machine learning systems in real-world scenarios. Recent works, using auxiliary outliers in training, have shown good potential. However, they seldom concern the intrinsic correlations between in-distribution (ID) and OOD data. In this work, we discover an obvious correlation that OOD data usually possesses significant ID attributes. These attributes should be factored into the training process, rather than blindly suppressed as in previous approaches. Based on this insight, we propose a structured multi-view-based out-of-distribution detection learning (MVOL) framework, which facilitates rational handling of the intrinsic in-distribution attributes in outliers. We provide theoretical insights on the effectiveness of MVOL for OOD detection. Extensive experiments demonstrate the superiority of our framework to others. MVOL effectively utilizes both auxiliary OOD datasets and even wild datasets with noisy in-distribution data. Code is available at https://github.com/UESTC-nnLab/MVOL.
Authors:Mohammadreza Salehi, Nikolaos Apostolikas, Efstratios Gavves, Cees G. M. Snoek, Yuki M. Asano
Title: Redefining Normal: A Novel Object-Level Approach for Multi-Object Novelty Detection
Abstract:
In the realm of novelty detection, accurately identifying outliers in data without specific class information poses a significant challenge. While current methods excel in single-object scenarios, they struggle with multi-object situations due to their focus on individual objects. Our paper suggests a novel approach: redefining `normal' at the object level in training datasets. Rather than the usual image-level view, we consider the most dominant object in a dataset as the norm, offering a perspective that is more effective for real-world scenarios. Adapting to our object-level definition of `normal', we modify knowledge distillation frameworks, where a student network learns from a pre-trained teacher network. Our first contribution, DeFeND(Dense Feature Fine-tuning on Normal Data), integrates dense feature fine-tuning into the distillation process, allowing the teacher network to focus on object-level features with a self-supervised loss. The second is masked knowledge distillation, where the student network works with partially hidden inputs, honing its ability to deduce and generalize from incomplete data. This approach not only fares well in single-object novelty detection but also considerably surpasses existing methods in multi-object contexts. The implementation is available at: https://github.com/SMSD75/Redefining_Normal_ACCV24/tree/main
Authors:Kristoffer K. Wickstrøm, Thea Brüsch, Michael C. Kampffmeyer, Robert Jenssen
Title: REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability
Abstract:
Incorporating uncertainty is crucial to provide trustworthy explanations of deep learning models. Recent works have demonstrated how uncertainty modeling can be particularly important in the unsupervised field of representation learning explainable artificial intelligence (R-XAI). Current R-XAI methods provide uncertainty by measuring variability in the importance score. However, they fail to provide meaningful estimates of whether a pixel is certainly important or not. In this work, we propose a new R-XAI method called REPEAT that addresses the key question of whether or not a pixel is \textit{certainly} important. REPEAT leverages the stochasticity of current R-XAI methods to produce multiple estimates of importance, thus considering each pixel in an image as a Bernoulli random variable that is either important or unimportant. From these Bernoulli random variables we can directly estimate the importance of a pixel and its associated certainty, thus enabling users to determine certainty in pixel importance. Our extensive evaluation shows that REPEAT gives certainty estimates that are more intuitive, better at detecting out-of-distribution data, and more concise.
Authors:Tal Zeevi, Ravid Shwartz-Ziv, Yann LeCun, Lawrence H. Staib, John A. Onofrey
Title: Rate-In: Information-Driven Adaptive Dropout Rates for Improved Inference-Time Uncertainty Estimation
Abstract:
Accurate uncertainty estimation is crucial for deploying neural networks in risk-sensitive applications such as medical diagnosis. Monte Carlo Dropout is a widely used technique for approximating predictive uncertainty by performing stochastic forward passes with dropout during inference. However, using static dropout rates across all layers and inputs can lead to suboptimal uncertainty estimates, as it fails to adapt to the varying characteristics of individual inputs and network layers. Existing approaches optimize dropout rates during training using labeled data, resulting in fixed inference-time parameters that cannot adjust to new data distributions, compromising uncertainty estimates in Monte Carlo simulations. In this paper, we propose Rate-In, an algorithm that dynamically adjusts dropout rates during inference by quantifying the information loss induced by dropout in each layer's feature maps. By treating dropout as controlled noise injection and leveraging information-theoretic principles, Rate-In adapts dropout rates per layer and per input instance without requiring ground truth labels. By quantifying the functional information loss in feature maps, we adaptively tune dropout rates to maintain perceptual quality across diverse medical imaging tasks and architectural configurations. Our extensive empirical study on synthetic data and real-world medical imaging tasks demonstrates that Rate-In improves calibration and sharpens uncertainty estimates compared to fixed or heuristic dropout rates without compromising predictive performance. Rate-In offers a practical, unsupervised, inference-time approach to optimizing dropout for more reliable predictive uncertainty estimation in critical applications.
Authors:Anton Baumann, Rui Li, Marcus Klasson, Santeri Mentu, Shyamgopal Karthik, Zeynep Akata, Arno Solin, Martin Trapp
Title: Post-hoc Probabilistic Vision-Language Models
Abstract:
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
Authors:Jun Nie, Yonggang Zhang, Tongliang Liu, Yiu-ming Cheung, Bo Han, Xinmei Tian
Title: Epistemic Uncertainty for Generated Image Detection
Abstract:
We introduce a novel framework for AI-generated image detection through epistemic uncertainty, aiming to address critical security concerns in the era of generative models. Our key insight stems from the observation that distributional discrepancies between training and testing data manifest distinctively in the epistemic uncertainty space of machine learning models. In this context, the distribution shift between natural and generated images leads to elevated epistemic uncertainty in models trained on natural images when evaluating generated ones. Hence, we exploit this phenomenon by using epistemic uncertainty as a proxy for detecting generated images. This converts the challenge of generated image detection into the problem of uncertainty estimation, underscoring the generalization performance of the model used for uncertainty estimation. Fortunately, advanced large-scale vision models pre-trained on extensive natural images have shown excellent generalization performance for various scenarios. Thus, we utilize these pre-trained models to estimate the epistemic uncertainty of images and flag those with high uncertainty as generated. Extensive experiments demonstrate the efficacy of our method. Code is available at https://github.com/tmlr-group/WePe.
Authors:Haizhou Shi, Yibin Wang, Ligong Han, Huan Zhang, Hao Wang
Title: Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Abstract:
Estimating the uncertainty of responses from Large Language Models (LLMs) remains a critical challenge. While recent Bayesian methods have demonstrated effectiveness in quantifying uncertainty through low-rank weight updates, they typically require complex fine-tuning or post-training procedures. In this paper, we propose Training-Free Bayesianization (TFB), a simple yet theoretically grounded framework that efficiently transforms trained low-rank adapters into Bayesian ones without additional training. TFB systematically searches for the maximally acceptable level of variance in the weight posterior, constrained within a family of low-rank isotropic Gaussian distributions. Our theoretical analysis shows that under mild conditions, this search process is equivalent to KL-regularized variational optimization, a generalized form of variational inference. Through comprehensive experiments, we show that TFB achieves superior uncertainty estimation and generalization compared to existing methods while eliminating the need for complex Bayesianization training procedures. Code will be available at https://github.com/Wang-ML-Lab/bayesian-peft.
Authors:Jiankang Chen, Tong Zhang, Wei-Shi Zheng, Ruixuan Wang
Title: TagFog: Textual Anchor Guidance and Fake Outlier Generation for Visual Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial in many real-world applications. However, intelligent models are often trained solely on in-distribution (ID) data, leading to overconfidence when misclassifying OOD data as ID classes. In this study, we propose a new learning framework which leverage simple Jigsaw-based fake OOD data and rich semantic embeddings (`anchors') from the ChatGPT description of ID knowledge to help guide the training of the image encoder. The learning framework can be flexibly combined with existing post-hoc approaches to OOD detection, and extensive empirical evaluations on multiple OOD detection benchmarks demonstrate that rich textual representation of ID knowledge and fake OOD knowledge can well help train a visual encoder for OOD detection. With the learning framework, new state-of-the-art performance was achieved on all the benchmarks. The code is available at \url{https://github.com/Cverchen/TagFog}.
Authors:Mohammad Mohaiminul Islam, Coen de Vente, Bart Liefers, Caroline Klaver, Erik J Bekkers, Clara I. Sánchez
Title: Uncertainty-aware retinal layer segmentation in OCT through probabilistic signed distance functions
Abstract:
In this paper, we present a new approach for uncertainty-aware retinal layer segmentation in Optical Coherence Tomography (OCT) scans using probabilistic signed distance functions (SDF). Traditional pixel-wise and regression-based methods primarily encounter difficulties in precise segmentation and lack of geometrical grounding respectively. To address these shortcomings, our methodology refines the segmentation by predicting a signed distance function (SDF) that effectively parameterizes the retinal layer shape via level set. We further enhance the framework by integrating probabilistic modeling, applying Gaussian distributions to encapsulate the uncertainty in the shape parameterization. This ensures a robust representation of the retinal layer morphology even in the presence of ambiguous input, imaging noise, and unreliable segmentations. Both quantitative and qualitative evaluations demonstrate superior performance when compared to other methods. Additionally, we conducted experiments on artificially distorted datasets with various noise types-shadowing, blinking, speckle, and motion-common in OCT scans to showcase the effectiveness of our uncertainty estimation. Our findings demonstrate the possibility to obtain reliable segmentation of retinal layers, as well as an initial step towards the characterization of layer integrity, a key biomarker for disease progression. Our code is available at \url{https://github.com/niazoys/RLS_PSDF}.
Authors:Fardad Dadboud, Hamid Azad, Varun Mehta, Miodrag Bolic, Iraj Mantegh
Title: DrIFT: Autonomous Drone Dataset with Integrated Real and Synthetic Data, Flexible Views, and Transformed Domains
Abstract:
Dependable visual drone detection is crucial for the secure integration of drones into the airspace. However, drone detection accuracy is significantly affected by domain shifts due to environmental changes, varied points of view, and background shifts. To address these challenges, we present the DrIFT dataset, specifically developed for visual drone detection under domain shifts. DrIFT includes fourteen distinct domains, each characterized by shifts in point of view, synthetic-to-real data, season, and adverse weather. DrIFT uniquely emphasizes background shift by providing background segmentation maps to enable background-wise metrics and evaluation. Our new uncertainty estimation metric, MCDO-map, features lower postprocessing complexity, surpassing traditional methods. We use the MCDO-map in our uncertainty-aware unsupervised domain adaptation method, demonstrating superior performance to SOTA unsupervised domain adaptation techniques. The dataset is available at: https://github.com/CARG-uOttawa/DrIFT.git.
Authors:Vibujithan Vigneshwaran, Erik Ohara, Matthias Wilms, Nils Forkert
Title: MACAW: A Causal Generative Model for Medical Imaging
Abstract:
Although deep learning techniques show promising results for many neuroimaging tasks in research settings, they have not yet found widespread use in clinical scenarios. One of the reasons for this problem is that many machine learning models only identify correlations between the input images and the outputs of interest, which can lead to many practical problems, such as encoding of uninformative biases and reduced explainability. Thus, recent research is exploring if integrating a priori causal knowledge into deep learning models is a potential avenue to identify these problems. This work introduces a new causal generative architecture named Masked Causal Flow (MACAW) for neuroimaging applications. Within this context, three main contributions are described. First, a novel approach that integrates complex causal structures into normalizing flows is proposed. Second, counterfactual prediction is performed to identify the changes in effect variables associated with a cause variable. Finally, an explicit Bayesian inference for classification is derived and implemented, providing an inherent uncertainty estimation. The feasibility of the proposed method was first evaluated using synthetic data and then using MRI brain data from more than 23000 participants of the UK biobank study. The evaluation results show that the proposed method can (1) accurately encode causal reasoning and generate counterfactuals highlighting the structural changes in the brain known to be associated with aging, (2) accurately predict a subject's age from a single 2D MRI slice, and (3) generate new samples assuming other values for subject-specific indicators such as age, sex, and body mass index. The code for a toy dataset is available at the following link: https://github.com/vibujithan/macaw-2D.git.
Authors:Sandesh Pokhrel, Sanjay Bhandari, Sharib Ali, Tryphon Lambrou, Anh Nguyen, Yash Raj Shrestha, Angus Watson, Danail Stoyanov, Prashnna Gyawali, Binod Bhattarai
Title: NCDD: Nearest Centroid Distance Deficit for Out-Of-Distribution Detection in Gastrointestinal Vision
Abstract:
The integration of deep learning tools in gastrointestinal vision holds the potential for significant advancements in diagnosis, treatment, and overall patient care. A major challenge, however, is these tools' tendency to make overconfident predictions, even when encountering unseen or newly emerging disease patterns, undermining their reliability. We address this critical issue of reliability by framing it as an out-of-distribution (OOD) detection problem, where previously unseen and emerging diseases are identified as OOD examples. However, gastrointestinal images pose a unique challenge due to the overlapping feature representations between in- Distribution (ID) and OOD examples. Existing approaches often overlook this characteristic, as they are primarily developed for natural image datasets, where feature distinctions are more apparent. Despite the overlap, we hypothesize that the features of an in-distribution example will cluster closer to the centroids of their ground truth class, resulting in a shorter distance to the nearest centroid. In contrast, OOD examples maintain an equal distance from all class centroids. Based on this observation, we propose a novel nearest-centroid distance deficit (NCCD) score in the feature space for gastrointestinal OOD detection. Evaluations across multiple deep learning architectures and two publicly available benchmarks, Kvasir2 and Gastrovision, demonstrate the effectiveness of our approach compared to several state-of-the-art methods. The code and implementation details are publicly available at: https://github.com/bhattarailab/NCDD
Authors:Francesco Taioli, Edoardo Zorzi, Gianni Franchi, Alberto Castellini, Alessandro Farinelli, Marco Cristani, Yiming Wang
Title: Collaborative Instance Object Navigation: Leveraging Uncertainty-Awareness to Minimize Human-Agent Dialogues
Abstract:
Language-driven instance object navigation assumes that human users initiate the task by providing a detailed description of the target instance to the embodied agent. While this description is crucial for distinguishing the target from visually similar instances in a scene, providing it prior to navigation can be demanding for human. To bridge this gap, we introduce Collaborative Instance object Navigation (CoIN), a new task setting where the agent actively resolve uncertainties about the target instance during navigation in natural, template-free, open-ended dialogues with human. We propose a novel training-free method, Agent-user Interaction with UncerTainty Awareness (AIUTA), which operates independently from the navigation policy, and focuses on the human-agent interaction reasoning with Vision-Language Models (VLMs) and Large Language Models (LLMs). First, upon object detection, a Self-Questioner model initiates a self-dialogue within the agent to obtain a complete and accurate observation description with a novel uncertainty estimation technique. Then, an Interaction Trigger module determines whether to ask a question to the human, continue or halt navigation, minimizing user input. For evaluation, we introduce CoIN-Bench, with a curated dataset designed for challenging multi-instance scenarios. CoIN-Bench supports both online evaluation with humans and reproducible experiments with simulated user-agent interactions. On CoIN-Bench, we show that AIUTA serves as a competitive baseline, while existing language-driven instance navigation methods struggle in complex multi-instance scenes. Code and benchmark will be available upon acceptance at https://intelligolabs.github.io/CoIN/
Authors:Kay Liu, Jiahao Ding, MohamadAli Torkamani, Philip S. Yu
Title: TGTOD: A Global Temporal Graph Transformer for Outlier Detection at Scale
Abstract:
While Transformers have revolutionized machine learning on various data, existing Transformers for temporal graphs face limitations in (1) restricted receptive fields, (2) overhead of subgraph extraction, and (3) suboptimal generalization capability beyond link prediction. In this paper, we rethink temporal graph Transformers and propose TGTOD, a novel end-to-end Temporal Graph Transformer for Outlier Detection. TGTOD employs global attention to model both structural and temporal dependencies within temporal graphs. To tackle scalability, our approach divides large temporal graphs into spatiotemporal patches, which are then processed by a hierarchical Transformer architecture comprising Patch Transformer, Cluster Transformer, and Temporal Transformer. We evaluate TGTOD on three public datasets under two settings, comparing with a wide range of baselines. Our experimental results demonstrate the effectiveness of TGTOD, achieving AP improvement of 61% on Elliptic. Furthermore, our efficiency evaluation shows that TGTOD reduces training time by 44x compared to existing Transformers for temporal graphs. To foster reproducibility, we make our implementation publicly available at https://github.com/kayzliu/tgtod.
Authors:Baoshun Tong, Kaiyu Song, Hanjiang Lai
Title: Enhancing Few-Shot Out-of-Distribution Detection with Gradient Aligned Context Optimization
Abstract:
Few-shot out-of-distribution (OOD) detection aims to detect OOD images from unseen classes with only a few labeled in-distribution (ID) images. To detect OOD images and classify ID samples, prior methods have been proposed by regarding the background regions of ID samples as the OOD knowledge and performing OOD regularization and ID classification optimization. However, the gradient conflict still exists between ID classification optimization and OOD regularization caused by biased recognition. To address this issue, we present Gradient Aligned Context Optimization (GaCoOp) to mitigate this gradient conflict. Specifically, we decompose the optimization gradient to identify the scenario when the conflict occurs. Then we alleviate the conflict in inner ID samples and optimize the prompts via leveraging gradient projection. Extensive experiments over the large-scale ImageNet OOD detection benchmark demonstrate that our GaCoOp can effectively mitigate the conflict and achieve great performance. Code will be available at https://github.com/BaoshunWq/ood-GaCoOp.
Authors:Lars Doorenbos, Raphael Sznitman, Pablo Márquez-Neila
Title: Non-Linear Outlier Synthesis for Out-of-Distribution Detection
Abstract:
The reliability of supervised classifiers is severely hampered by their limitations in dealing with unexpected inputs, leading to great interest in out-of-distribution (OOD) detection. Recently, OOD detectors trained on synthetic outliers, especially those generated by large diffusion models, have shown promising results in defining robust OOD decision boundaries. Building on this progress, we present NCIS, which enhances the quality of synthetic outliers by operating directly in the diffusion's model embedding space rather than combining disjoint models as in previous work and by modeling class-conditional manifolds with a conditional volume-preserving network for more expressive characterization of the training distribution. We demonstrate that these improvements yield new state-of-the-art OOD detection results on standard ImageNet100 and CIFAR100 benchmarks and provide insights into the importance of data pre-processing and other key design choices. We make our code available at \url{https://github.com/LarsDoorenbos/NCIS}.
Authors:Hanwei Liu, Huiling Cai, Qingcheng Lin, Xuefeng Li, Hui Xiao
Title: Prior-based Objective Inference Mining Potential Uncertainty for Facial Expression Recognition
Abstract:
Annotation ambiguity caused by the inherent subjectivity of visual judgment has always been a major challenge for Facial Expression Recognition (FER) tasks, particularly for largescale datasets from in-the-wild scenarios. A potential solution is the evaluation of relatively objective emotional distributions to help mitigate the ambiguity of subjective annotations. To this end, this paper proposes a novel Prior-based Objective Inference (POI) network. This network employs prior knowledge to derive a more objective and varied emotional distribution and tackles the issue of subjective annotation ambiguity through dynamic knowledge transfer. POI comprises two key networks: Firstly, the Prior Inference Network (PIN) utilizes the prior knowledge of AUs and emotions to capture intricate motion details. To reduce over-reliance on priors and facilitate objective emotional inference, PIN aggregates inferential knowledge from various key facial subregions, encouraging mutual learning. Secondly, the Target Recognition Network (TRN) integrates subjective emotion annotations and objective inference soft labels provided by the PIN, fostering an understanding of inherent facial expression diversity, thus resolving annotation ambiguity. Moreover, we introduce an uncertainty estimation module to quantify and balance facial expression confidence. This module enables a flexible approach to dealing with the uncertainties of subjective annotations. Extensive experiments show that POI exhibits competitive performance on both synthetic noisy datasets and multiple real-world datasets. All codes and training logs will be publicly available at https://github.com/liuhw01/POI.
Authors:Ying Yang, De Cheng, Chaowei Fang, Yubiao Wang, Changzhe Jiao, Lechao Cheng, Nannan Wang
Title: Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
Abstract:
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at .
Authors:Siyu Chen, Hong Liu, Wenhao Li, Ying Zhu, Guoquan Wang, Jianbing Wu
Title: D$^3$epth: Self-Supervised Depth Estimation with Dynamic Mask in Dynamic Scenes
Abstract:
Depth estimation is a crucial technology in robotics. Recently, self-supervised depth estimation methods have demonstrated great potential as they can efficiently leverage large amounts of unlabelled real-world data. However, most existing methods are designed under the assumption of static scenes, which hinders their adaptability in dynamic environments. To address this issue, we present D$^3$epth, a novel method for self-supervised depth estimation in dynamic scenes. It tackles the challenge of dynamic objects from two key perspectives. First, within the self-supervised framework, we design a reprojection constraint to identify regions likely to contain dynamic objects, allowing the construction of a dynamic mask that mitigates their impact at the loss level. Second, for multi-frame depth estimation, we introduce a cost volume auto-masking strategy that leverages adjacent frames to identify regions associated with dynamic objects and generate corresponding masks. This provides guidance for subsequent processes. Furthermore, we propose a spectral entropy uncertainty module that incorporates spectral entropy to guide uncertainty estimation during depth fusion, effectively addressing issues arising from cost volume computation in dynamic environments. Extensive experiments on KITTI and Cityscapes datasets demonstrate that the proposed method consistently outperforms existing self-supervised monocular depth estimation baselines. Code is available at \url{https://github.com/Csyunling/D3epth}.
Authors:Yitong Dong, Yijin Li, Zhaoyang Huang, Weikang Bian, Jingbo Liu, Hujun Bao, Zhaopeng Cui, Hongsheng Li, Guofeng Zhang
Title: A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding
Abstract:
In this paper, we propose a novel multi-view stereo (MVS) framework that gets rid of the depth range prior. Unlike recent prior-free MVS methods that work in a pair-wise manner, our method simultaneously considers all the source images. Specifically, we introduce a Multi-view Disparity Attention (MDA) module to aggregate long-range context information within and across multi-view images. Considering the asymmetry of the epipolar disparity flow, the key to our method lies in accurately modeling multi-view geometric constraints. We integrate pose embedding to encapsulate information such as multi-view camera poses, providing implicit geometric constraints for multi-view disparity feature fusion dominated by attention. Additionally, we construct corresponding hidden states for each source image due to significant differences in the observation quality of the same pixel in the reference frame across multiple source frames. We explicitly estimate the quality of the current pixel corresponding to sampled points on the epipolar line of the source image and dynamically update hidden states through the uncertainty estimation module. Extensive results on the DTU dataset and Tanks&Temple benchmark demonstrate the effectiveness of our method. The code is available at our project page: https://zju3dv.github.io/GD-PoseMVS/.
Authors:Wenjun Miao, Guansong Pang, Jin Zheng, Xiao Bai
Title: Long-Tailed Out-of-Distribution Detection via Normalized Outlier Distribution Adaptation
Abstract:
One key challenge in Out-of-Distribution (OOD) detection is the absence of ground-truth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in Long-Tailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, \ie, the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class- and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses. Empirical results on three popular benchmarks for OOD detection in LTR show the superior performance of AdaptOD over state-of-the-art methods. Code is available at https://github.com/mala-lab/AdaptOD.
Authors:Tianhao Zhang, Zhixiang Chen, Lyudmila S. Mihaylova
Title: PViT: Prior-augmented Vision Transformer for Out-of-distribution Detection
Abstract:
Vision Transformers (ViTs) have achieved remarkable success over various vision tasks, yet their robustness against data distribution shifts and inherent inductive biases remain underexplored. To enhance the robustness of ViT models for image Out-of-Distribution (OOD) detection, we introduce a novel and generic framework named Prior-augmented Vision Transformer (PViT). Taking as input the prior class logits from a pretrained model, we train PViT to predict the class logits. During inference, PViT identifies OOD samples by quantifying the divergence between the predicted class logits and the prior logits obtained from pre-trained models. Unlike existing state-of-the-art(SOTA) OOD detection methods, PViT shapes the decision boundary between ID and OOD by utilizing the proposed prior guided confidence, without requiring additional data modeling, generation methods, or structural modifications. Extensive experiments on the large-scale ImageNet benchmark, evaluated against over seven OOD datasets, demonstrate that PViT significantly outperforms existing SOTA OOD detection methods in terms of FPR95 and AUROC. The codebase is publicly available at https://github.com/RanchoGoose/PViT.
Authors:Jihyo Kim, Seulbi Lee, Sangheum Hwang
Title: Reflexive Guidance: Improving OoDD in Vision-Language Models via Self-Guided Image-Adaptive Concept Generation
Abstract:
With the recent emergence of foundation models trained on internet-scale data and demonstrating remarkable generalization capabilities, such foundation models have become more widely adopted, leading to an expanding range of application domains. Despite this rapid proliferation, the trustworthiness of foundation models remains underexplored. Specifically, the out-of-distribution detection (OoDD) capabilities of large vision-language models (LVLMs), such as GPT-4o, which are trained on massive multi-modal data, have not been sufficiently addressed. The disparity between their demonstrated potential and practical reliability raises concerns regarding the safe and trustworthy deployment of foundation models. To address this gap, we evaluate and analyze the OoDD capabilities of various proprietary and open-source LVLMs. Our investigation contributes to a better understanding of how these foundation models represent confidence scores through their generated natural language responses. Furthermore, we propose a self-guided prompting approach, termed Reflexive Guidance (ReGuide), aimed at enhancing the OoDD capability of LVLMs by leveraging self-generated image-adaptive concept suggestions. Experimental results demonstrate that our ReGuide enhances the performance of current LVLMs in both image classification and OoDD tasks. The lists of sampled images, along with the prompts and responses for each sample are available at https://github.com/daintlab/ReGuide.
Authors:Hongfan Gao, Wangmeng Shen, Xiangfei Qiu, Ronghui Xu, Jilin Hu, Bin Yang
Title: SSD-TS: Exploring the Potential of Linear State Space Models for Diffusion Models in Time Series Imputation
Abstract:
Probabilistic time series imputation has been widely applied in real-world scenarios due to its ability for uncertainty estimation and denoising diffusion probabilistic models~(DDPMs) have achieved great success in probabilistic time series imputation tasks with its power to model complex distributions. However, current DDPM-based probabilistic time series imputation methodologies are confronted with two types of challenges: 1)\textit{The backbone modules of the denoising parts are not capable of achieving sequence modeling with low time complexity.} 2)~\textit{The architecture of denoising modules can not handle the dependencies in the time series data effectively.} To address the first challenge, we explore the potential of state space model, namely Mamba, as the backbone denoising module for DDPMs. To tackle the second challenge, we carefully devise several SSM-based blocks for time series data modeling. Experimental results demonstrate that our approach can achieve state-of-the-art time series imputation results on multiple real-world datasets. Our datasets and code are available at \href{https://github.com/decisionintelligence/SSD-TS/}{https://github.com/decisionintelligence/SSD-TS/}
Authors:Qingyang Zhang, Qiuxuan Feng, Joey Tianyi Zhou, Yatao Bian, Qinghua Hu, Changqing Zhang
Title: The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection
Abstract:
Out-of-distribution (OOD) detection is essential for model trustworthiness which aims to sensitively identify semantic OOD samples and robustly generalize for covariate-shifted OOD samples. However, we discover that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability. Specifically, the classification accuracy of these models could deteriorate dramatically when they encounter even minor noise. This phenomenon contradicts the goal of model trustworthiness and severely restricts their applicability in real-world scenarios. What is the hidden reason behind such a limitation? In this work, we theoretically demystify the ``\textit{sensitive-robust}'' dilemma that lies in many existing OOD detection methods. Consequently, a theory-inspired algorithm is induced to overcome such a dilemma. By decoupling the uncertainty learning objective from a Bayesian perspective, the conflict between OOD detection and OOD generalization is naturally harmonized and a dual-optimal performance could be expected. Empirical studies show that our method achieves superior performance on standard benchmarks. To our best knowledge, this work is the first principled OOD detection method that achieves state-of-the-art OOD detection performance without compromising OOD generalization ability. Our code is available at \href{https://github.com/QingyangZhang/DUL}{https://github.com/QingyangZhang/DUL}.
Authors:Guiyu Zhang, Huan-ang Gao, Zijian Jiang, Hao Zhao, Zhedong Zheng
Title: Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling
Abstract:
In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Codes are publicly available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
Authors:Hossein Mirzaei, Mackenzie W. Mathis
Title: Adversarially Robust Out-of-Distribution Detection Using Lyapunov-Stabilized Embeddings
Abstract:
Despite significant advancements in out-of-distribution (OOD) detection, existing methods still struggle to maintain robustness against adversarial attacks, compromising their reliability in critical real-world applications. Previous studies have attempted to address this challenge by exposing detectors to auxiliary OOD datasets alongside adversarial training. However, the increased data complexity inherent in adversarial training, and the myriad of ways that OOD samples can arise during testing, often prevent these approaches from establishing robust decision boundaries. To address these limitations, we propose AROS, a novel approach leveraging neural ordinary differential equations (NODEs) with Lyapunov stability theorem in order to obtain robust embeddings for OOD detection. By incorporating a tailored loss function, we apply Lyapunov stability theory to ensure that both in-distribution (ID) and OOD data converge to stable equilibrium points within the dynamical system. This approach encourages any perturbed input to return to its stable equilibrium, thereby enhancing the model's robustness against adversarial perturbations. To not use additional data, we generate fake OOD embeddings by sampling from low-likelihood regions of the ID data feature space, approximating the boundaries where OOD data are likely to reside. To then further enhance robustness, we propose the use of an orthogonal binary layer following the stable feature space, which maximizes the separation between the equilibrium points of ID and OOD samples. We validate our method through extensive experiments across several benchmarks, demonstrating superior performance, particularly under adversarial attacks. Notably, our approach improves robust detection performance from 37.8% to 80.1% on CIFAR-10 vs. CIFAR-100 and from 29.0% to 67.0% on CIFAR-100 vs. CIFAR-10.
Authors:Xiaoling Hu, Karthik Gopinath, Peirong Liu, Malte Hoffmann, Koen Van Leemput, Oula Puonti, Juan Eugenio Iglesias
Title: Hierarchical Uncertainty Estimation for Learning-based Registration in Neuroimaging
Abstract:
Over recent years, deep learning based image registration has achieved impressive accuracy in many domains, including medical imaging and, specifically, human neuroimaging with magnetic resonance imaging (MRI). However, the uncertainty estimation associated with these methods has been largely limited to the application of generic techniques (e.g., Monte Carlo dropout) that do not exploit the peculiarities of the problem domain, particularly spatial modeling. Here, we propose a principled way to propagate uncertainties (epistemic or aleatoric) estimated at the level of spatial location by these methods, to the level of global transformation models, and further to downstream tasks. Specifically, we justify the choice of a Gaussian distribution for the local uncertainty modeling, and then propose a framework where uncertainties spread across hierarchical levels, depending on the choice of transformation model. Experiments on publicly available data sets show that Monte Carlo dropout correlates very poorly with the reference registration error, whereas our uncertainty estimates correlate much better. Crucially, the results also show that uncertainty-aware fitting of transformations improves the registration accuracy of brain MRI scans. Finally, we illustrate how sampling from the posterior distribution of the transformations can be used to propagate uncertainties to downstream neuroimaging tasks. Code is available at: https://github.com/HuXiaoling/Regre4Regis.
Authors:Lakpa D. Tamang, Mohamed Reda Bouadjenek, Richard Dazeley, Sunil Aryal
Title: Margin-bounded Confidence Scores for Out-of-Distribution Detection
Abstract:
In many critical Machine Learning applications, such as autonomous driving and medical image diagnosis, the detection of out-of-distribution (OOD) samples is as crucial as accurately classifying in-distribution (ID) inputs. Recently Outlier Exposure (OE) based methods have shown promising results in detecting OOD inputs via model fine-tuning with auxiliary outlier data. However, most of the previous OE-based approaches emphasize more on synthesizing extra outlier samples or introducing regularization to diversify OOD sample space, which is rather unquantifiable in practice. In this work, we propose a novel and straightforward method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem by enlarging the disparity between ID and OOD scores, which in turn makes the decision boundary more compact facilitating effective segregation with a simple threshold. Specifically, we augment the learning objective of an OE regularized classifier with a supplementary constraint, which penalizes high confidence scores for OOD inputs compared to that of ID and significantly enhances the OOD detection performance while maintaining the ID classification accuracy. Extensive experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method by significantly outperforming state-of-the-art (S.O.T.A) methods on various benchmarking metrics. The code is publicly available at https://github.com/lakpa-tamang9/margin_ood
Authors:Berker Demirel, Marco Fumero, Francesco Locatello
Title: Out-of-Distribution Detection with Relative Angles
Abstract:
Deep learning systems deployed in real-world applications often encounter data that is different from their in-distribution (ID). A reliable model should ideally abstain from making decisions in this out-of-distribution (OOD) setting. Existing state-of-the-art methods primarily focus on feature distances, such as k-th nearest neighbors and distances to decision boundaries, either overlooking or ineffectively using in-distribution statistics. In this work, we propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure. We demonstrate that the angles between feature representations and decision boundaries, viewed from the mean of in-distribution features, serve as an effective discriminative factor between ID and OOD data. We evaluate our method on nine ImageNet-pretrained models. Our approach achieves the lowest FPR in 5 out of 9 ImageNet models, obtains the best average FPR overall, and consistently ranking among the top 3 across all evaluated models. Furthermore, we highlight the benefits of contrastive representations by showing strong performance with ResNet SCL and CLIP architectures. Finally, we demonstrate that the scale-invariant nature of our score enables an ensemble strategy via simple score summation. Code is available at https://github.com/berkerdemirel/ORA-OOD-Detection-with-Relative-Angles.
Authors:Mengyuan Chen, Junyu Gao, Changsheng Xu
Title: Revisiting Essential and Nonessential Settings of Evidential Deep Learning
Abstract:
Evidential Deep Learning (EDL) is an emerging method for uncertainty estimation that provides reliable predictive uncertainty in a single forward pass, attracting significant attention. Grounded in subjective logic, EDL derives Dirichlet concentration parameters from neural networks to construct a Dirichlet probability density function (PDF), modeling the distribution of class probabilities. Despite its success, EDL incorporates several nonessential settings: In model construction, (1) a commonly ignored prior weight parameter is fixed to the number of classes, while its value actually impacts the balance between the proportion of evidence and its magnitude in deriving predictive scores. In model optimization, (2) the empirical risk features a variance-minimizing optimization term that biases the PDF towards a Dirac delta function, potentially exacerbating overconfidence. (3) Additionally, the structural risk typically includes a KL-divergence-minimizing regularization, whose optimization direction extends beyond the intended purpose and contradicts common sense, diminishing the information carried by the evidence magnitude. Therefore, we propose Re-EDL, a simplified yet more effective variant of EDL, by relaxing the nonessential settings and retaining the essential one, namely, the adoption of projected probability from subjective logic. Specifically, Re-EDL treats the prior weight as an adjustable hyperparameter rather than a fixed scalar, and directly optimizes the expectation of the Dirichlet PDF provided by deprecating both the variance-minimizing optimization term and the divergence regularization term. Extensive experiments and state-of-the-art performance validate the effectiveness of our method. The source code is available at https://github.com/MengyuanChen21/Re-EDL.
Authors:Saehyung Lee, Jisoo Mok, Sangha Park, Yongho Shin, Dahuin Jung, Sungroh Yoon
Title: Textual Training for the Hassle-Free Removal of Unwanted Visual Data: Case Studies on OOD and Hateful Image Detection
Abstract:
In our study, we explore methods for detecting unwanted content lurking in visual datasets. We provide a theoretical analysis demonstrating that a model capable of successfully partitioning visual data can be obtained using only textual data. Based on the analysis, we propose Hassle-Free Textual Training (HFTT), a streamlined method capable of acquiring detectors for unwanted visual content, using only synthetic textual data in conjunction with pre-trained vision-language models. HFTT features an innovative objective function that significantly reduces the necessity for human involvement in data annotation. Furthermore, HFTT employs a clever textual data synthesis method, effectively emulating the integration of unknown visual data distribution into the training process at no extra cost. The unique characteristics of HFTT extend its utility beyond traditional out-of-distribution detection, making it applicable to tasks that address more abstract concepts. We complement our analyses with experiments in out-of-distribution detection and hateful image detection. Our codes are available at https://github.com/Saehyung-Lee/HFTT
Authors:Xiaoxiang Han, Xinyu Li, Jiang Shang, Yiman Liu, Keyan Chen, Shugong Xu, Qiaohong Liu, Qi Zhang
Title: MambaEviScrib: Mamba and Evidence-Guided Consistency Enhance CNN Robustness for Scribble-Based Weakly Supervised Ultrasound Image Segmentation
Abstract:
Segmenting anatomical structures and lesions from ultrasound images contributes to disease assessment. Weakly supervised learning (WSL) based on sparse annotation has achieved encouraging performance and demonstrated the potential to reduce annotation costs. This study attempts to introduce scribble-based WSL into ultrasound image segmentation tasks. However, ultrasound images often suffer from poor contrast and unclear edges, coupled with insufficient supervison signals for edges, posing challenges to edge prediction. Uncertainty modeling has been proven to facilitate models in dealing with these issues. Nevertheless, existing uncertainty estimation paradigms are not robust enough and often filter out predictions near decision boundaries, resulting in unstable edge predictions. Therefore, we propose leveraging predictions near decision boundaries effectively. Specifically, we introduce Dempster-Shafer Theory (DST) of evidence to design an Evidence-Guided Consistency strategy. This strategy utilizes high-evidence predictions, which are more likely to occur near high-density regions, to guide the optimization of low-evidence predictions that may appear near decision boundaries. Furthermore, the diverse sizes and locations of lesions in ultrasound images pose a challenge for CNNs with local receptive fields, as they struggle to model global information. Therefore, we introduce Visual Mamba based on structured state space sequence models, which achieves long-range dependency with linear computational complexity, and we construct a novel hybrid CNN-Mamba framework. During training, the collaboration between the CNN branch and the Mamba branch in the proposed framework draws inspiration from each other based on the EGC strategy. Experiments demonstrate the competitiveness of the proposed method. Dataset and code will be available on https://github.com/GtLinyer/MambaEviScrib.
Authors:Yi Gu, Yi Lin, Kwang-Ting Cheng, Hao Chen
Title: Revisiting Deep Ensemble Uncertainty for Enhanced Medical Anomaly Detection
Abstract:
Medical anomaly detection (AD) is crucial in pathological identification and localization. Current methods typically rely on uncertainty estimation in deep ensembles to detect anomalies, assuming that ensemble learners should agree on normal samples while exhibiting disagreement on unseen anomalies in the output space. However, these methods may suffer from inadequate disagreement on anomalies or diminished agreement on normal samples. To tackle these issues, we propose D2UE, a Diversified Dual-space Uncertainty Estimation framework for medical anomaly detection. To effectively balance agreement and disagreement for anomaly detection, we propose Redundancy-Aware Repulsion (RAR), which uses a similarity kernel that remains invariant to both isotropic scaling and orthogonal transformations, explicitly promoting diversity in learners' feature space. Moreover, to accentuate anomalous regions, we develop Dual-Space Uncertainty (DSU), which utilizes the ensemble's uncertainty in input and output spaces. In input space, we first calculate gradients of reconstruction error with respect to input images. The gradients are then integrated with reconstruction outputs to estimate uncertainty for inputs, enabling effective anomaly discrimination even when output space disagreement is minimal. We conduct a comprehensive evaluation of five medical benchmarks with different backbones. Experimental results demonstrate the superiority of our method to state-of-the-art methods and the effectiveness of each component in our framework. Our code is available at https://github.com/Rubiscol/D2UE.
Authors:Shuo Lu, Yingsheng Wang, Lijun Sheng, Lingxiao He, Aihua Zheng, Jian Liang
Title: Out-of-Distribution Detection: A Task-Oriented Survey of Recent Advances
Abstract:
Out-of-distribution (OOD) detection aims to detect test samples outside the training category space, which is an essential component in building reliable machine learning systems. Existing reviews on OOD detection primarily focus on method taxonomy, surveying the field by categorizing various approaches. However, many recent works concentrate on non-traditional OOD detection scenarios, such as test-time adaptation, multi-modal data sources and other novel contexts. In this survey, we uniquely review recent advances in OOD detection from the task-oriented perspective for the first time. According to the user's access to the model, that is, whether the OOD detection method is allowed to modify or retrain the model, we classify the methods as training-driven or training-agnostic. Besides, considering the rapid development of pre-trained models, large pre-trained model-based OOD detection is also regarded as an important category and discussed separately. Furthermore, we provide a discussion of the evaluation scenarios, a variety of applications, and several future research directions. We believe this survey with new taxonomy will benefit the proposal of new methods and the expansion of more practical scenarios. A curated list of related papers is provided in the Github repository: https://github.com/shuolucs/Awesome-Out-Of-Distribution-Detection.
Authors:Edgar Heinert, Stephan Tilgner, Timo Palm, Matthias Rottmann
Title: Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Abstract:
When employing deep neural networks (DNNs) for semantic segmentation in safety-critical applications like automotive perception or medical imaging, it is important to estimate their performance at runtime, e.g. via uncertainty estimates or prediction quality estimates. Previous works mostly performed uncertainty estimation on pixel-level. In a line of research, a connected-component-wise (segment-wise) perspective was taken, approaching uncertainty estimation on an object-level by performing so-called meta classification and regression to estimate uncertainty and prediction quality, respectively. In those works, each predicted segment is considered individually to estimate its uncertainty or prediction quality. However, the neighboring segments may provide additional hints on whether a given predicted segment is of high quality, which we study in the present work. On the basis of uncertainty indicating metrics on segment-level, we use graph neural networks (GNNs) to model the relationship of a given segment's quality as a function of the given segment's metrics as well as those of its neighboring segments. We compare different GNN architectures and achieve a notable performance improvement.
Authors:Pei-Fu Guo, Yun-Da Tsai, Shou-De Lin
Title: Benchmarking Large Language Model Uncertainty for Prompt Optimization
Abstract:
Prompt optimization algorithms for Large Language Models (LLMs) excel in multi-step reasoning but still lack effective uncertainty estimation. This paper introduces a benchmark dataset to evaluate uncertainty metrics, focusing on Answer, Correctness, Aleatoric, and Epistemic Uncertainty. Through analysis of models like GPT-3.5-Turbo and Meta-Llama-3.1-8B-Instruct, we show that current metrics align more with Answer Uncertainty, which reflects output confidence and diversity, rather than Correctness Uncertainty, highlighting the need for improved metrics that are optimization-objective-aware to better guide prompt optimization. Our code and dataset are available at https://github.com/0Frett/PO-Uncertainty-Benchmarking.
Authors:Pengyun Wang, Yadi Cao, Chris Russell, Yanxin Shen, Junyu Luo, Ming Zhang, Siyu Heng, Xiao Luo
Title: DELTA: Dual Consistency Delving with Topological Uncertainty for Active Graph Domain Adaptation
Abstract:
Graph domain adaptation has recently enabled knowledge transfer across different graphs. However, without the semantic information on target graphs, the performance on target graphs is still far from satisfactory. To address the issue, we study the problem of active graph domain adaptation, which selects a small quantitative of informative nodes on the target graph for extra annotation. This problem is highly challenging due to the complicated topological relationships and the distribution discrepancy across graphs. In this paper, we propose a novel approach named Dual Consistency Delving with Topological Uncertainty (DELTA) for active graph domain adaptation. Our DELTA consists of an edge-oriented graph subnetwork and a path-oriented graph subnetwork, which can explore topological semantics from complementary perspectives. In particular, our edge-oriented graph subnetwork utilizes the message passing mechanism to learn neighborhood information, while our path-oriented graph subnetwork explores high-order relationships from sub-structures. To jointly learn from two subnetworks, we roughly select informative candidate nodes with the consideration of consistency across two subnetworks. Then, we aggregate local semantics from its K-hop subgraph based on node degrees for topological uncertainty estimation. To overcome potential distribution shifts, we compare target nodes and their corresponding source nodes for discrepancy scores as an additional component for fine selection. Extensive experiments on benchmark datasets demonstrate that DELTA outperforms various state-of-the-art approaches. The code implementation of DELTA is available at https://github.com/goose315/DELTA.
Authors:Marcus Klasson, Riccardo Mereu, Juho Kannala, Arno Solin
Title: Sources of Uncertainty in 3D Scene Reconstruction
Abstract:
The process of 3D scene reconstruction can be affected by numerous uncertainty sources in real-world scenes. While Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (GS) achieve high-fidelity rendering, they lack built-in mechanisms to directly address or quantify uncertainties arising from the presence of noise, occlusions, confounding outliers, and imprecise camera pose inputs. In this paper, we introduce a taxonomy that categorizes different sources of uncertainty inherent in these methods. Moreover, we extend NeRF- and GS-based methods with uncertainty estimation techniques, including learning uncertainty outputs and ensembles, and perform an empirical study to assess their ability to capture the sensitivity of the reconstruction. Our study highlights the need for addressing various uncertainty aspects when designing NeRF/GS-based methods for uncertainty-aware 3D reconstruction.
Authors:Yuchen Shen, Haomin Wen, Leman Akoglu
Title: FoMo-0D: A Foundation Model for Zero-shot Tabular Outlier Detection
Abstract:
Outlier detection (OD) has a vast literature as it finds numerous real-world applications. Being an unsupervised task, model selection is a key bottleneck for OD without label supervision. Despite a long list of available OD algorithms with tunable hyperparameters, the lack of systematic approaches for unsupervised algorithm and hyperparameter selection limits their effective use in practice. In this paper, we present FoMo-0D, a pre-trained Foundation Model for zero/0-shot OD on tabular data, which bypasses the hurdle of model selection altogether. Having been pre-trained on synthetic data, FoMo-0D can directly predict the (outlier/inlier) label of test samples without parameter fine-tuning -- requiring no labeled data, and no additional training or hyperparameter tuning when given a new task. Extensive experiments on 57 real-world datasets against 26 baselines show that FoMo-0D is highly competitive; outperforming the majority of the baselines with no statistically significant difference from the 2nd best method. Further, FoMo-0D is efficient in inference time requiring only 7.7 ms per sample on average, with at least 7x speed-up compared to previous methods. To facilitate future research, our implementations for data synthesis and pre-training as well as model checkpoints are openly available at https://github.com/A-Chicharito-S/FoMo-0D.
Authors:Fanhu Zeng, Zhen Cheng, Fei Zhu, Hongxin Wei, Xu-Yao Zhang
Title: Local-Prompt: Extensible Local Prompts for Few-Shot Out-of-Distribution Detection
Abstract:
Out-of-Distribution (OOD) detection, aiming to distinguish outliers from known categories, has gained prominence in practical scenarios. Recently, the advent of vision-language models (VLM) has heightened interest in enhancing OOD detection for VLM through few-shot tuning. However, existing methods mainly focus on optimizing global prompts, ignoring refined utilization of local information with regard to outliers. Motivated by this, we freeze global prompts and introduce Local-Prompt, a novel coarse-to-fine tuning paradigm to emphasize regional enhancement with local prompts. Our method comprises two integral components: global prompt guided negative augmentation and local prompt enhanced regional regularization. The former utilizes frozen, coarse global prompts as guiding cues to incorporate negative augmentation, thereby leveraging local outlier knowledge. The latter employs trainable local prompts and a regional regularization to capture local information effectively, aiding in outlier identification. We also propose regional-related metric to empower the enrichment of OOD detection. Moreover, since our approach explores enhancing local prompts only, it can be seamlessly integrated with trained global prompts during inference to boost the performance. Comprehensive experiments demonstrate the effectiveness and potential of our method. Notably, our method reduces average FPR95 by 5.17% against state-of-the-art method in 4-shot tuning on challenging ImageNet-1k dataset, even outperforming 16-shot results of previous methods. Code is released at https://github.com/AuroraZengfh/Local-Prompt.
Authors:Jiaxin Guo, Jiangliu Wang, Ruofeng Wei, Di Kang, Qi Dou, Yun-hui Liu
Title: UC-NeRF: Uncertainty-aware Conditional Neural Radiance Fields from Endoscopic Sparse Views
Abstract:
Visualizing surgical scenes is crucial for revealing internal anatomical structures during minimally invasive procedures. Novel View Synthesis is a vital technique that offers geometry and appearance reconstruction, enhancing understanding, planning, and decision-making in surgical scenes. Despite the impressive achievements of Neural Radiance Field (NeRF), its direct application to surgical scenes produces unsatisfying results due to two challenges: endoscopic sparse views and significant photometric inconsistencies. In this paper, we propose uncertainty-aware conditional NeRF for novel view synthesis to tackle the severe shape-radiance ambiguity from sparse surgical views. The core of UC-NeRF is to incorporate the multi-view uncertainty estimation to condition the neural radiance field for modeling the severe photometric inconsistencies adaptively. Specifically, our UC-NeRF first builds a consistency learner in the form of multi-view stereo network, to establish the geometric correspondence from sparse views and generate uncertainty estimation and feature priors. In neural rendering, we design a base-adaptive NeRF network to exploit the uncertainty estimation for explicitly handling the photometric inconsistencies. Furthermore, an uncertainty-guided geometry distillation is employed to enhance geometry learning. Experiments on the SCARED and Hamlyn datasets demonstrate our superior performance in rendering appearance and geometry, consistently outperforming the current state-of-the-art approaches. Our code will be released at https://github.com/wrld/UC-NeRF.
Authors:Pengfei Cao, Yuheng Chen, Zhuoran Jin, Yubo Chen, Kang Liu, Jun Zhao
Title: One Mind, Many Tongues: A Deep Dive into Language-Agnostic Knowledge Neurons in Large Language Models
Abstract:
Large language models (LLMs) have learned vast amounts of factual knowledge through self-supervised pre-training on large-scale corpora. Meanwhile, LLMs have also demonstrated excellent multilingual capabilities, which can express the learned knowledge in multiple languages. However, the knowledge storage mechanism in LLMs still remains mysterious. Some researchers attempt to demystify the factual knowledge in LLMs from the perspective of knowledge neurons, and subsequently discover language-agnostic knowledge neurons that store factual knowledge in a form that transcends language barriers. However, the preliminary finding suffers from two limitations: 1) High Uncertainty in Localization Results. Existing study only uses a prompt-based probe to localize knowledge neurons for each fact, while LLMs cannot provide consistent answers for semantically equivalent queries. Thus, it leads to inaccurate localization results with high uncertainty. 2) Lack of Analysis in More Languages. The study only analyzes language-agnostic knowledge neurons on English and Chinese data, without exploring more language families and languages. Naturally, it limits the generalizability of the findings. To address aforementioned problems, we first construct a new benchmark called Rephrased Multilingual LAMA (RML-LAMA), which contains high-quality cloze-style multilingual parallel queries for each fact. Then, we propose a novel method named Multilingual Integrated Gradients with Uncertainty Estimation (MATRICE), which quantifies the uncertainty across queries and languages during knowledge localization. Extensive experiments show that our method can accurately localize language-agnostic knowledge neurons. We also further investigate the role of language-agnostic knowledge neurons in cross-lingual knowledge editing, knowledge enhancement and new knowledge injection.
Authors:Shiyuan Yin, Chenjia Bai, Zihao Zhang, Junwei Jin, Xinxin Zhang, Chi Zhang, Xuelong Li
Title: Towards Reliable LLM-based Robot Planning via Combined Uncertainty Estimation
Abstract:
Large language models (LLMs) demonstrate advanced reasoning abilities, enabling robots to understand natural language instructions and generate high-level plans with appropriate grounding. However, LLM hallucinations present a significant challenge, often leading to overconfident yet potentially misaligned or unsafe plans. While researchers have explored uncertainty estimation to improve the reliability of LLM-based planning, existing studies have not sufficiently differentiated between epistemic and intrinsic uncertainty, limiting the effectiveness of uncertainty estimation. In this paper, we present Combined Uncertainty estimation for Reliable Embodied planning (CURE), which decomposes the uncertainty into epistemic and intrinsic uncertainty, each estimated separately. Furthermore, epistemic uncertainty is subdivided into task clarity and task familiarity for more accurate evaluation. The overall uncertainty assessments are obtained using random network distillation and multi-layer perceptron regression heads driven by LLM features. We validated our approach in two distinct experimental settings: kitchen manipulation and tabletop rearrangement experiments. The results show that, compared to existing methods, our approach yields uncertainty estimates that are more closely aligned with the actual execution outcomes.
Authors:Yang Zhao, Kai Xiong, Xiao Ding, Li Du, YangouOuyang, Zhouhao Sun, Jiannan Guan, Wenbin Zhang, Bin Liu, Dong Hu, Bing Qin, Ting Liu
Title: UFO-RL: Uncertainty-Focused Optimization for Efficient Reinforcement Learning Data Selection
Abstract:
Scaling RL for LLMs is computationally expensive, largely due to multi-sampling for policy optimization and evaluation, making efficient data selection crucial. Inspired by the Zone of Proximal Development (ZPD) theory, we hypothesize LLMs learn best from data within their potential comprehension zone. Addressing the limitation of conventional, computationally intensive multi-sampling methods for data assessment, we introduce UFO-RL. This novel framework uses a computationally efficient single-pass uncertainty estimation to identify informative data instances, achieving up to 185x faster data evaluation. UFO-RL leverages this metric to select data within the estimated ZPD for training. Experiments show that training with just 10% of data selected by UFO-RL yields performance comparable to or surpassing full-data training, reducing overall training time by up to 16x while enhancing stability and generalization. UFO-RL offers a practical and highly efficient strategy for scaling RL fine-tuning of LLMs by focusing learning on valuable data.
Authors:Rongyu Zhang, Jiaming Liu, Xiaoqi Li, Xiaowei Chi, Dan Wang, Li Du, Yuan Du, Shanghang Zhang
Title: BEVUDA++: Geometric-aware Unsupervised Domain Adaptation for Multi-View 3D Object Detection
Abstract:
Vision-centric Bird's Eye View (BEV) perception holds considerable promise for autonomous driving. Recent studies have prioritized efficiency or accuracy enhancements, yet the issue of domain shift has been overlooked, leading to substantial performance degradation upon transfer. We identify major domain gaps in real-world cross-domain scenarios and initiate the first effort to address the Domain Adaptation (DA) challenge in multi-view 3D object detection for BEV perception. Given the complexity of BEV perception approaches with their multiple components, domain shift accumulation across multi-geometric spaces (e.g., 2D, 3D Voxel, BEV) poses a significant challenge for BEV domain adaptation. In this paper, we introduce an innovative geometric-aware teacher-student framework, BEVUDA++, to diminish this issue, comprising a Reliable Depth Teacher (RDT) and a Geometric Consistent Student (GCS) model. Specifically, RDT effectively blends target LiDAR with dependable depth predictions to generate depth-aware information based on uncertainty estimation, enhancing the extraction of Voxel and BEV features that are essential for understanding the target domain. To collaboratively reduce the domain shift, GCS maps features from multiple spaces into a unified geometric embedding space, thereby narrowing the gap in data distribution between the two domains. Additionally, we introduce a novel Uncertainty-guided Exponential Moving Average (UEMA) to further reduce error accumulation due to domain shifts informed by previously obtained uncertainty guidance. To demonstrate the superiority of our proposed method, we execute comprehensive experiments in four cross-domain scenarios, securing state-of-the-art performance in BEV 3D object detection tasks, e.g., 12.9\% NDS and 9.5\% mAP enhancement on Day-Night adaptation.
Authors:Mingwei Liu, Zheng Pei, Yanlin Wang, Zihao Wang, Zikang Li, Enci Lin, Xin Peng, Zibin Zheng
Title: Framework-Aware Code Generation with API Knowledge Graph-Constructed Data: A Study on HarmonyOS
Abstract:
In the context of software frameworks with limited resources (such as HarmonyOS), large language models (LLMs) often exhibit poor code generation performance because they lack sufficient exposure to such environments during pre-training. Although LLMs can usually maintain correct logical structures across programming languages, they frequently struggle when dealing with framework-specific APIs or syntax, resulting in errors. This indicates that while pre-training equips LLMs with general algorithmic capabilities, they remain unfamiliar with the distinctive syntax and API usage of underrepresented frameworks. As a result, even advanced commercial models like GPT-4o cannot reliably generate correct code without prior adaptation. To address this issue, we propose APIKG4SYN, a framework designed to exploit API knowledge graphs for the construction of API-oriented question-code pairs, specifically tailored for low-resource frameworks without requiring executable code. APIKG4SYN integrates both single-API and multi-API knowledge, where the latter is derived through uncertainty estimation (UE)-driven Monte Carlo Tree Search (MCTS), enabling the creation of a diverse and informative dataset for fine-tuning LLMs. Using HarmonyOS as a case study, we build the first benchmark for HarmonyOS code generation. Experimental results show that fine-tuning Qwen with APIKG4SYN raises pass@1 accuracy to 25.00%, compared with 17.59% for the baseline GPT model. These results confirm that API-oriented data significantly enhance LLM performance in low-resource software development scenarios.
Authors:Chiung-Yi Tseng, Junhao Song, Ziqian Bi, Tianyang Wang, Chia Xin Liang, Ming Liu
Title: Active Learning Methods for Efficient Data Utilization and Model Performance Enhancement
Abstract:
In the era of data-driven intelligence, the paradox of data abundance and annotation scarcity has emerged as a critical bottleneck in the advancement of machine learning. This paper gives a detailed overview of Active Learning (AL), which is a strategy in machine learning that helps models achieve better performance using fewer labeled examples. It introduces the basic concepts of AL and discusses how it is used in various fields such as computer vision, natural language processing, transfer learning, and real-world applications. The paper focuses on important research topics such as uncertainty estimation, handling of class imbalance, domain adaptation, fairness, and the creation of strong evaluation metrics and benchmarks. It also shows that learning methods inspired by humans and guided by questions can improve data efficiency and help models learn more effectively. In addition, this paper talks about current challenges in the field, including the need to rebuild trust, ensure reproducibility, and deal with inconsistent methodologies. It points out that AL often gives better results than passive learning, especially when good evaluation measures are used. This work aims to be useful for both researchers and practitioners by providing key insights and proposing directions for future progress in active learning.
Authors:Cong Zeng, Shengkun Tang, Yuanzhou Chen, Zhiqiang Shen, Wenchao Yu, Xujiang Zhao, Haifeng Chen, Wei Cheng, Zhiqiang Xu
Title: Human Texts Are Outliers: Detecting LLM-generated Texts via Out-of-distribution Detection
Abstract:
The rapid advancement of large language models (LLMs) such as ChatGPT, DeepSeek, and Claude has significantly increased the presence of AI-generated text in digital communication. This trend has heightened the need for reliable detection methods to distinguish between human-authored and machine-generated content. Existing approaches both zero-shot methods and supervised classifiers largely conceptualize this task as a binary classification problem, often leading to poor generalization across domains and models. In this paper, we argue that such a binary formulation fundamentally mischaracterizes the detection task by assuming a coherent representation of human-written texts. In reality, human texts do not constitute a unified distribution, and their diversity cannot be effectively captured through limited sampling. This causes previous classifiers to memorize observed OOD characteristics rather than learn the essence of `non-ID' behavior, limiting generalization to unseen human-authored inputs. Based on this observation, we propose reframing the detection task as an out-of-distribution (OOD) detection problem, treating human-written texts as distributional outliers while machine-generated texts are in-distribution (ID) samples. To this end, we develop a detection framework using one-class learning method including DeepSVDD and HRN, and score-based learning techniques such as energy-based method, enabling robust and generalizable performance. Extensive experiments across multiple datasets validate the effectiveness of our OOD-based approach. Specifically, the OOD-based method achieves 98.3% AUROC and AUPR with only 8.9% FPR95 on DeepFake dataset. Moreover, we test our detection framework on multilingual, attacked, and unseen-model and -domain text settings, demonstrating the robustness and generalizability of our framework. Code, pretrained weights, and demo will be released.
Authors:Qiwei Zhao, Xujiang Zhao, Yanchi Liu, Wei Cheng, Yiyou Sun, Mika Oishi, Takao Osaki, Katsushi Matsuda, Huaxiu Yao, Haifeng Chen
Title: SAUP: Situation Awareness Uncertainty Propagation on LLM Agent
Abstract:
Large language models (LLMs) integrated into multistep agent systems enable complex decision-making processes across various applications. However, their outputs often lack reliability, making uncertainty estimation crucial. Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multistep decision-making process and the dynamic interactions between agents and their environments. To address these limitations, we propose SAUP (Situation Awareness Uncertainty Propagation), a novel framework that propagates uncertainty through each step of an LLM-based agent's reasoning process. SAUP incorporates situational awareness by assigning situational weights to each step's uncertainty during the propagation. Our method, compatible with various one-step uncertainty estimation techniques, provides a comprehensive and accurate uncertainty measure. Extensive experiments on benchmark datasets demonstrate that SAUP significantly outperforms existing state-of-the-art methods, achieving up to 20% improvement in AUROC.
Authors:Tianyang Wang, Xi Xiao, Gaofei Chen, Xiaoying Liao, Guo Cheng, Yingrui Ji
Title: Boosting Active Learning with Knowledge Transfer
Abstract:
Uncertainty estimation is at the core of Active Learning (AL). Most existing methods resort to complex auxiliary models and advanced training fashions to estimate uncertainty for unlabeled data. These models need special design and hence are difficult to train especially for domain tasks, such as Cryo-Electron Tomography (cryo-ET) classification in computational biology. To address this challenge, we propose a novel method using knowledge transfer to boost uncertainty estimation in AL. Specifically, we exploit the teacher-student mode where the teacher is the task model in AL and the student is an auxiliary model that learns from the teacher. We train the two models simultaneously in each AL cycle and adopt a certain distance between the model outputs to measure uncertainty for unlabeled data. The student model is task-agnostic and does not rely on special training fashions (e.g. adversarial), making our method suitable for various tasks. More importantly, we demonstrate that data uncertainty is not tied to concrete value of task loss but closely related to the upper-bound of task loss. We conduct extensive experiments to validate the proposed method on classical computer vision tasks and cryo-ET challenges. The results demonstrate its efficacy and efficiency.
Authors:Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami
Title: Out-of-Distribution Detection with Overlap Index
Abstract:
Out-of-distribution (OOD) detection is crucial for the deployment of machine learning models in the open world. While existing OOD detectors are effective in identifying OOD samples that deviate significantly from in-distribution (ID) data, they often come with trade-offs. For instance, deep OOD detectors usually suffer from high computational costs, require tuning hyperparameters, and have limited interpretability, whereas traditional OOD detectors may have a low accuracy on large high-dimensional datasets. To address these limitations, we propose a novel effective OOD detection approach that employs an overlap index (OI)-based confidence score function to evaluate the likelihood of a given input belonging to the same distribution as the available ID samples. The proposed OI-based confidence score function is non-parametric, lightweight, and easy to interpret, hence providing strong flexibility and generality. Extensive empirical evaluations indicate that our OI-based OOD detector is competitive with state-of-the-art OOD detectors in terms of detection accuracy on a wide range of datasets while requiring less computation and memory costs. Lastly, we show that the proposed OI-based confidence score function inherits nice properties from OI (e.g., insensitivity to small distributional variations and robustness against Huber $ε$-contamination) and is a versatile tool for estimating OI and model accuracy in specific contexts.
Authors:Luis F. Gomez, Gonzalo Garrido-Lopez, Julian Fierrez, Aythami Morales, Ruben Tolosana, Javier Rueda, Enrique Navarro
Title: Comparison of Visual Trackers for Biomechanical Analysis of Running
Abstract:
Human pose estimation has witnessed significant advancements in recent years, mainly due to the integration of deep learning models, the availability of a vast amount of data, and large computational resources. These developments have led to highly accurate body tracking systems, which have direct applications in sports analysis and performance evaluation. This work analyzes the performance of six trackers: two point trackers and four joint trackers for biomechanical analysis in sprints. The proposed framework compares the results obtained from these pose trackers with the manual annotations of biomechanical experts for more than 5870 frames. The experimental framework employs forty sprints from five professional runners, focusing on three key angles in sprint biomechanics: trunk inclination, hip flex extension, and knee flex extension. We propose a post-processing module for outlier detection and fusion prediction in the joint angles. The experimental results demonstrate that using joint-based models yields root mean squared errors ranging from 11.41° to 4.37°. When integrated with the post-processing modules, these errors can be reduced to 6.99° and 3.88°, respectively. The experimental findings suggest that human pose tracking approaches can be valuable resources for the biomechanical analysis of running. However, there is still room for improvement in applications where high accuracy is required.
Authors:Bin Zhang, Jinggang Chen, Xiaoyang Qu, Guokuan Li, Kai Lu, Jiguang Wan, Jing Xiao, Jianzong Wang
Title: RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations
Abstract:
Enabling object detectors to recognize out-of-distribution (OOD) objects is vital for building reliable systems. A primary obstacle stems from the fact that models frequently do not receive supervisory signals from unfamiliar data, leading to overly confident predictions regarding OOD objects. Despite previous progress that estimates OOD uncertainty based on the detection model and in-distribution (ID) samples, we explore using pre-trained vision-language representations for object-level OOD detection. We first discuss the limitations of applying image-level CLIP-based OOD detection methods to object-level scenarios. Building upon these insights, we propose RUNA, a novel framework that leverages a dual encoder architecture to capture rich contextual information and employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively. We introduce a few-shot fine-tuning approach that aligns region-level semantic representations to further improve the model's capability to discriminate between similar objects. Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection, particularly in challenging scenarios with diverse and complex object instances.
Authors:Hang Zheng, Hongshen Xu, Yuncong Liu, Lu Chen, Pascale Fung, Kai Yu
Title: Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling
Abstract:
Large language models (LLMs) are prone to hallucination stemming from misaligned self-awareness, particularly when processing queries exceeding their knowledge boundaries. While existing mitigation strategies employ uncertainty estimation or query rejection mechanisms, they suffer from computational efficiency and sacrificed helpfulness. To address these issues, we propose the Explicit Knowledge Boundary Modeling (EKBM) framework, integrating fast and slow reasoning systems to harmonize reliability and usability. The framework first employs a fast-thinking model to generate confidence-labeled responses, enabling immediate utilization of high-confidence outputs, whereas uncertain predictions trigger a slow refinement model for accuracy improvement. To align model behavior with our proposed object, we propose a hybrid training pipeline, enhancing self-awareness without degrading task performance. Evaluations on dialogue state tracking tasks demonstrate that EKBM achieves superior model reliability over uncertainty-based baselines. Further analysis reveals that refinement substantially boosts accuracy while maintaining low computational overhead. The framework establishes a scalable paradigm for deploying reliable LLMs in error-sensitive applications, effectively balancing accuracy and practical utility.
Authors:Huan Ma, Jiadong Pan, Jing Liu, Yan Chen, Joey Tianyi Zhou, Guangyu Wang, Qinghua Hu, Hua Wu, Changqing Zhang, Haifeng Wang
Title: Semantic Energy: Detecting LLM Hallucination Beyond Entropy
Abstract:
Large Language Models (LLMs) are being increasingly deployed in real-world applications, but they remain susceptible to hallucinations, which produce fluent yet incorrect responses and lead to erroneous decision-making. Uncertainty estimation is a feasible approach to detect such hallucinations. For example, semantic entropy estimates uncertainty by considering the semantic diversity across multiple sampled responses, thus identifying hallucinations. However, semantic entropy relies on post-softmax probabilities and fails to capture the model's inherent uncertainty, causing it to be ineffective in certain scenarios. To address this issue, we introduce Semantic Energy, a novel uncertainty estimation framework that leverages the inherent confidence of LLMs by operating directly on logits of penultimate layer. By combining semantic clustering with a Boltzmann-inspired energy distribution, our method better captures uncertainty in cases where semantic entropy fails. Experiments across multiple benchmarks show that Semantic Energy significantly improves hallucination detection and uncertainty estimation, offering more reliable signals for downstream applications such as hallucination detection.
Authors:Srikanth Muralidharan, Heitor R. Medeiros, Masih Aminbeidokhti, Eric Granger, Marco Pedersoli
Title: Infrared Object Detection with Ultra Small ConvNets: Is ImageNet Pretraining Still Useful?
Abstract:
Many real-world applications require recognition models that are robust to different operational conditions and modalities, but at the same time run on small embedded devices, with limited hardware. While for normal size models, pre-training is known to be very beneficial in accuracy and robustness, for small models, that can be employed for embedded and edge devices, its effect is not clear. In this work, we investigate the effect of ImageNet pretraining on increasingly small backbone architectures (ultra-small models, with $<$1M parameters) with respect to robustness in downstream object detection tasks in the infrared visual modality. Using scaling laws derived from standard object recognition architectures, we construct two ultra-small backbone families and systematically study their performance. Our experiments on three different datasets reveal that while ImageNet pre-training is still useful, beyond a certain capacity threshold, it offers diminishing returns in terms of out-of-distribution detection robustness. Therefore, we advise practitioners to still use pre-training and, when possible avoid too small models as while they might work well for in-domain problems, they are brittle when working conditions are different.
Authors:Xingming Long, Jie Zhang, Shiguang Shan, Xilin Chen
Title: Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection
Abstract:
The primary goal of out-of-distribution (OOD) detection tasks is to identify inputs with semantic shifts, i.e., if samples from novel classes are absent in the in-distribution (ID) dataset used for training, we should reject these OOD samples rather than misclassifying them into existing ID classes. However, we find the current definition of "semantic shift" is ambiguous, which renders certain OOD testing protocols intractable for the post-hoc OOD detection methods based on a classifier trained on the ID dataset. In this paper, we offer a more precise definition of the Semantic Space and the Covariate Space for the ID distribution, allowing us to theoretically analyze which types of OOD distributions make the detection task intractable. To avoid the flaw in the existing OOD settings, we further define the "Tractable OOD" setting which ensures the distinguishability of OOD and ID distributions for the post-hoc OOD detection methods. Finally, we conduct several experiments to demonstrate the necessity of our definitions and validate the correctness of our theorems.
Authors:Wataru Hashimoto, Hidetaka Kamigaito, Taro Watanabe
Title: Decoding Uncertainty: The Impact of Decoding Strategies for Uncertainty Estimation in Large Language Models
Abstract:
Decoding strategies manipulate the probability distribution underlying the output of a language model and can therefore affect both generation quality and its uncertainty. In this study, we investigate the impact of decoding strategies on uncertainty estimation in Large Language Models (LLMs). Our experiments show that Contrastive Search, which mitigates repetition, yields better uncertainty estimates on average across a range of preference-aligned LLMs. In contrast, the benefits of these strategies sometimes diverge when the model is only post-trained with supervised fine-tuning, i.e. without explicit alignment.
Authors:Ruoqi Wen, Rongpeng Li, Xing Xu, Zhifeng Zhao
Title: Multi-agent Uncertainty-Aware Pessimistic Model-Based Reinforcement Learning for Connected Autonomous Vehicles
Abstract:
Deep Reinforcement Learning (DRL) holds significant promise for achieving human-like Autonomous Vehicle (AV) capabilities, but suffers from low sample efficiency and challenges in reward design. Model-Based Reinforcement Learning (MBRL) offers improved sample efficiency and generalizability compared to Model-Free Reinforcement Learning (MFRL) in various multi-agent decision-making scenarios. Nevertheless, MBRL faces critical difficulties in estimating uncertainty during the model learning phase, thereby limiting its scalability and applicability in real-world scenarios. Additionally, most Connected Autonomous Vehicle (CAV) studies focus on single-agent decision-making, while existing multi-agent MBRL solutions lack computationally tractable algorithms with Probably Approximately Correct (PAC) guarantees, an essential factor for ensuring policy reliability with limited training data. To address these challenges, we propose MA-PMBRL, a novel Multi-Agent Pessimistic Model-Based Reinforcement Learning framework for CAVs, incorporating a max-min optimization approach to enhance robustness and decision-making. To mitigate the inherent subjectivity of uncertainty estimation in MBRL and avoid incurring catastrophic failures in AV, MA-PMBRL employs a pessimistic optimization framework combined with Projected Gradient Descent (PGD) for both model and policy learning. MA-PMBRL also employs general function approximations under partial dataset coverage to enhance learning efficiency and system-level performance. By bounding the suboptimality of the resulting policy under mild theoretical assumptions, we successfully establish PAC guarantees for MA-PMBRL, demonstrating that the proposed framework represents a significant step toward scalable, efficient, and reliable multi-agent decision-making for CAVs.
Authors:Srishti Gupta, Riccardo Balia, Daniele Angioni, Fabio Brau, Maura Pintor, Ambra Demontis, Alessandro Sebastian, Salvatore Mario Carta, Fabio Roli, Battista Biggio
Title: Out-of-Distribution Detection for Continual Learning: Design Principles and Benchmarking
Abstract:
Recent years have witnessed significant progress in the development of machine learning models across a wide range of fields, fueled by increased computational resources, large-scale datasets, and the rise of deep learning architectures. From malware detection to enabling autonomous navigation, modern machine learning systems have demonstrated remarkable capabilities. However, as these models are deployed in ever-changing real-world scenarios, their ability to remain reliable and adaptive over time becomes increasingly important. For example, in the real world, new malware families are continuously developed, whereas autonomous driving cars are employed in many different cities and weather conditions. Models trained in fixed settings can not respond effectively to novel conditions encountered post-deployment. In fact, most machine learning models are still developed under the assumption that training and test data are independent and identically distributed (i.i.d.), i.e., sampled from the same underlying (unknown) distribution. While this assumption simplifies model development and evaluation, it does not hold in many real-world applications, where data changes over time and unexpected inputs frequently occur. Retraining models from scratch whenever new data appears is computationally expensive, time-consuming, and impractical in resource-constrained environments. These limitations underscore the need for Continual Learning (CL), which enables models to incrementally learn from evolving data streams without forgetting past knowledge, and Out-of-Distribution (OOD) detection, which allows systems to identify and respond to novel or anomalous inputs. Jointly addressing both challenges is critical to developing robust, efficient, and adaptive AI systems.
Authors:Srishti Gupta, Daniele Angioni, Maura Pintor, Ambra Demontis, Lea Schönherr, Battista Biggio, Fabio Roli
Title: Buffer-free Class-Incremental Learning with Out-of-Distribution Detection
Abstract:
Class-incremental learning (CIL) poses significant challenges in open-world scenarios, where models must not only learn new classes over time without forgetting previous ones but also handle inputs from unknown classes that a closed-set model would misclassify. Recent works address both issues by (i)~training multi-head models using the task-incremental learning framework, and (ii) predicting the task identity employing out-of-distribution (OOD) detectors. While effective, the latter mainly relies on joint training with a memory buffer of past data, raising concerns around privacy, scalability, and increased training time. In this paper, we present an in-depth analysis of post-hoc OOD detection methods and investigate their potential to eliminate the need for a memory buffer. We uncover that these methods, when applied appropriately at inference time, can serve as a strong substitute for buffer-based OOD detection. We show that this buffer-free approach achieves comparable or superior performance to buffer-based methods both in terms of class-incremental learning and the rejection of unknown samples. Experimental results on CIFAR-10, CIFAR-100 and Tiny ImageNet datasets support our findings, offering new insights into the design of efficient and privacy-preserving CIL systems for open-world settings.
Authors:Erblin Isaku, Hassan Sartaj, Shaukat Ali, Beatriz Sanguino, Tongtong Wang, Guoyuan Li, Houxiang Zhang, Thomas Peyrucain
Title: Out of Distribution Detection in Self-adaptive Robots with AI-powered Digital Twins
Abstract:
Self-adaptive robots (SARs) in complex, uncertain environments must proactively detect and address abnormal behaviors, including out-of-distribution (OOD) cases. To this end, digital twins offer a valuable solution for OOD detection. Thus, we present a digital twin-based approach for OOD detection (ODiSAR) in SARs. ODiSAR uses a Transformer-based digital twin to forecast SAR states and employs reconstruction error and Monte Carlo dropout for uncertainty quantification. By combining reconstruction error with predictive variance, the digital twin effectively detects OOD behaviors, even in previously unseen conditions. The digital twin also includes an explainability layer that links potential OOD to specific SAR states, offering insights for self-adaptation. We evaluated ODiSAR by creating digital twins of two industrial robots: one navigating an office environment, and another performing maritime ship navigation. In both cases, ODiSAR forecasts SAR behaviors (i.e., robot trajectories and vessel motion) and proactively detects OOD events. Our results showed that ODiSAR achieved high detection performance -- up to 98\% AUROC, 96\% TNR@TPR95, and 95\% F1-score -- while providing interpretable insights to support self-adaptation.
Authors:Erblin Isaku, Hassan Sartaj, Shaukat Ali
Title: Digital Twin-based Out-of-Distribution Detection in Autonomous Vessels
Abstract:
An autonomous vessel (AV) is a complex cyber-physical system (CPS) with software enabling many key functionalities, e.g., navigation software enables an AV to autonomously or semi-autonomously follow a path to its destination. Digital twins of such AVs enable advanced functionalities such as running what-if scenarios, performing predictive maintenance, and enabling fault diagnosis. Due to technological improvements, real-time analyses using continuous data from vessels' real-time operations have become increasingly possible. However, the literature has little explored developing advanced analyses in real-time data in AVs with digital twins built with machine learning techniques. To this end, we present a novel digital twin-based approach (ODDIT) to detect future out-of-distribution (OOD) states of an AV before reaching them, enabling proactive intervention. Such states may indicate anomalies requiring attention (e.g., manual correction by the ship master) and assist testers in scenario-centered testing. The digital twin consists of two machine-learning models predicting future vessel states and whether the predicted state will be OOD. We evaluated ODDIT with five vessels across waypoint and zigzag maneuvering under simulated conditions, including sensor and actuator noise and environmental disturbances i.e., ocean current. ODDIT achieved high accuracy in detecting OOD states, with AUROC and TNR@TPR95 scores reaching 99\% across multiple vessels.
Authors:Felix Divo, Eric Endress, Kevin Endler, Kristian Kersting, Devendra Singh Dhami
Title: Forecasting Company Fundamentals
Abstract:
Company fundamentals are key to assessing companies' financial and overall success and stability. Forecasting them is important in multiple fields, including investing and econometrics. While statistical and contemporary machine learning methods have been applied to many time series tasks, there is a lack of comparison of these approaches on this particularly challenging data regime. To this end, we try to bridge this gap and thoroughly evaluate the theoretical properties and practical performance of 24 deterministic and probabilistic company fundamentals forecasting models on real company data. We observe that deep learning models provide superior forecasting performance to classical models, in particular when considering uncertainty estimation. To validate the findings, we compare them to human analyst expectations and find that their accuracy is comparable to the automatic forecasts. We further show how these high-quality forecasts can benefit automated stock allocation. We close by presenting possible ways of integrating domain experts to further improve performance and increase reliability.
Authors:Kangan Qian, Ziang Luo, Sicong Jiang, Zilin Huang, Jinyu Miao, Zhikun Ma, Tianze Zhu, Jiayin Li, Yangfan He, Zheng Fu, Yining Shi, Boyue Wang, Hezhe Lin, Ziyu Chen, Jiangbo Yu, Xinyu Jiao, Mengmeng Yang, Kun Jiang, Diange Yang
Title: FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback
Abstract:
Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose $\textbf{FASIONAD}$ -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a $6.7\%$ reduction in average $L2$ trajectory error and $28.1\%$ lower collision rate.
Authors:Yihua Shao, Yan Gu, Siyu Chen, Haiyang Liu, Zixian Zhu, Zijian Ling, Minxi Yan, Ziyang Yan, Chenyu Zhang, Michele Magno, Haotong Qin, Yan Wang, Jingcai Guo, Ling Shao, Hao Tang
Title: GWQ: Gradient-Aware Weight Quantization for Large Language Models
Abstract:
Large language models (LLMs) show impressive performance in solving complex language tasks. However, its large number of parameters presents significant challenges for the deployment. So, compressing LLMs to low bits can enable to deploy on resource-constrained devices. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the top 1\% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit. We widely evaluate GWQ on different task include language modeling, grounding detection, massive multitask language understanding and vision-language question and answering. Results show that models quantified by GWQ performs better than other quantization method. During quantization process, GWQ only need one calibration set to realize effective quant. Also, GWQ achieves 1.2x inference speedup in comparison to the original model and effectively reduces the inference memory.
Authors:Reihaneh Zohrabi, Hosein Hasani, Mahdieh Soleymani Baghshah, Anna Rohrbach, Marcus Rohrbach, Mohammad Hossein Rohban
Title: Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications, where they frequently face data distributions unseen during training. Despite progress, existing methods are often vulnerable to spurious correlations that mislead models and compromise robustness. To address this, we propose SPROD, a novel prototype-based OOD detection approach that explicitly addresses the challenge posed by unknown spurious correlations. Our post-hoc method refines class prototypes to mitigate bias from spurious features without additional data or hyperparameter tuning, and is broadly applicable across diverse backbones and OOD detection settings. We conduct a comprehensive spurious correlation OOD detection benchmarking, comparing our method against existing approaches and demonstrating its superior performance across challenging OOD datasets, such as CelebA, Waterbirds, UrbanCars, Spurious Imagenet, and the newly introduced Animals MetaCoCo. On average, SPROD improves AUROC by 4.7% and FPR@95 by 9.3% over the second best.
Authors:Xinyi Liu, Lipeng Ma, Yixuan Li, Weidong Yang, Qingyuan Zhou, Jiayi Song, Shuhao Li, Ben Fei
Title: ChemAU: Harness the Reasoning of LLMs in Chemical Research with Adaptive Uncertainty Estimation
Abstract:
Large Language Models (LLMs) are widely used across various scenarios due to their exceptional reasoning capabilities and natural language understanding. While LLMs demonstrate strong performance in tasks involving mathematics and coding, their effectiveness diminishes significantly when applied to chemistry-related problems. Chemistry problems typically involve long and complex reasoning steps, which contain specific terminology, including specialized symbol systems and complex nomenclature conventions. These characteristics often cause general LLMs to experience hallucinations during the reasoning process due to their lack of specific knowledge. However, existing methods are struggling to effectively leverage chemical expertise and formulas. Moreover, current uncertainty estimation methods, designed to mitigate potential reasoning errors, are unable to precisely identify specific steps or key knowledge. In this work, we propose a novel framework called ChemAU, which incorporates our adaptive uncertainty estimation method that applies different uncertainty values based on the position of reasoning steps within the whole reasoning chain. Leveraging this method, ChemAU identifies gaps in chemistry knowledge and precisely supplements chemical expertise with the specialized domain model, thereby correcting and updating the previously flawed reasoning chain. Our experiments with three popular LLMs across three chemistry datasets demonstrate that ChemAU significantly enhances both reasoning accuracy and uncertainty estimation.
Authors:Lipeng Ma, Weidong Yang, Yixuan Li, Ben Fei, Mingjie Zhou, Shuhao Li, Sihang Jiang, Bo Xu, Yanghua Xiao
Title: AdaptiveLog: An Adaptive Log Analysis Framework with the Collaboration of Large and Small Language Model
Abstract:
Automated log analysis is crucial to ensure high availability and reliability of complex systems. The advent of LLMs in NLP has ushered in a new era of language model-driven automated log analysis, garnering significant interest. Within this field, two primary paradigms based on language models for log analysis have become prominent. Small Language Models (SLMs) follow the pre-train and fine-tune paradigm, focusing on the specific log analysis task through fine-tuning on supervised datasets. On the other hand, LLMs following the in-context learning paradigm, analyze logs by providing a few examples in prompt contexts without updating parameters. Despite their respective strengths, we notice that SLMs are more cost-effective but less powerful, whereas LLMs with large parameters are highly powerful but expensive and inefficient. To trade-off between the performance and inference costs of both models in automated log analysis, this paper introduces an adaptive log analysis framework known as AdaptiveLog, which effectively reduces the costs associated with LLM while ensuring superior results. This framework collaborates an LLM and a small language model, strategically allocating the LLM to tackle complex logs while delegating simpler logs to the SLM. Specifically, to efficiently query the LLM, we propose an adaptive selection strategy based on the uncertainty estimation of the SLM, where the LLM is invoked only when the SLM is uncertain. In addition, to enhance the reasoning ability of the LLM in log analysis tasks, we propose a novel prompt strategy by retrieving similar error-prone cases as the reference, enabling the model to leverage past error experiences and learn solutions from these cases. Extensive experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks, elevating the overall accuracy of log analysis while maintaining cost efficiency.
Authors:Zeguan Xiao, Diyang Dou, Boya Xiong, Yun Chen, Guanhua Chen
Title: Enhancing Uncertainty Estimation in LLMs with Expectation of Aggregated Internal Belief
Abstract:
Large Language Models (LLMs) have achieved remarkable success across a wide range of natural language tasks, but often exhibit overconfidence and generate plausible yet incorrect answers. This overconfidence, especially in models undergone Reinforcement Learning from Human Feedback (RLHF), poses significant challenges for reliable uncertainty estimation and safe deployment. In this paper, we propose EAGLE (Expectation of AGgregated internaL bEief), a novel self-evaluation-based calibration method that leverages the internal hidden states of LLMs to derive more accurate confidence scores. Instead of relying on the model's final output, our approach extracts internal beliefs from multiple intermediate layers during self-evaluation. By aggregating these layer-wise beliefs and calculating the expectation over the resulting confidence score distribution, EAGLE produces a refined confidence score that more faithfully reflects the model's internal certainty. Extensive experiments on diverse datasets and LLMs demonstrate that EAGLE significantly improves calibration performance over existing baselines. We also provide an in-depth analysis of EAGLE, including a layer-wise examination of uncertainty patterns, a study of the impact of self-evaluation prompts, and an analysis of the effect of self-evaluation score range.
Authors:Haishun Chen, Cai Xu, Jinlong Yu, Yilin Zhang, Ziyu Guan, Wei Zhao
Title: Fairness-Aware Multi-view Evidential Learning with Adaptive Prior
Abstract:
Multi-view evidential learning aims to integrate information from multiple views to improve prediction performance and provide trustworthy uncertainty esitimation. Most previous methods assume that view-specific evidence learning is naturally reliable. However, in practice, the evidence learning process tends to be biased. Through empirical analysis on real-world data, we reveal that samples tend to be assigned more evidence to support data-rich classes, thereby leading to unreliable uncertainty estimation in predictions. This motivates us to delve into a new Biased Evidential Multi-view Learning (BEML) problem. To this end, we propose Fairness-Aware Multi-view Evidential Learning (FAML). FAML first introduces an adaptive prior based on training trajectory, which acts as a regularization strategy to flexibly calibrate the biased evidence learning process. Furthermore, we explicitly incorporate a fairness constraint based on class-wise evidence variance to promote balanced evidence allocation. In the multi-view fusion stage, we propose an opinion alignment mechanism to mitigate view-specific bias across views, thereby encouraging the integration of consistent and mutually supportive evidence. Extensive experiments on five real-world multi-view datasets demonstrate that FAML achieves more balanced evidence allocation and improves both prediction performance and the reliability of uncertainty estimation compared to state-of-the-art methods.
Authors:Zhiqi Huang, Vivek Datla, Chenyang Zhu, Alfy Samuel, Daben Liu, Anoop Kumar, Ritesh Soni
Title: Confidence-Based Response Abstinence: Improving LLM Trustworthiness via Activation-Based Uncertainty Estimation
Abstract:
We propose a method for confidence estimation in retrieval-augmented generation (RAG) systems that aligns closely with the correctness of large language model (LLM) outputs. Confidence estimation is especially critical in high-stakes domains such as finance and healthcare, where the cost of an incorrect answer outweighs that of not answering the question. Our approach extends prior uncertainty quantification methods by leveraging raw feed-forward network (FFN) activations as auto-regressive signals, avoiding the information loss inherent in token logits and probabilities after projection and softmax normalization. We model confidence prediction as a sequence classification task, and regularize training with a Huber loss term to improve robustness against noisy supervision. Applied in a real-world financial industry customer-support setting with complex knowledge bases, our method outperforms strong baselines and maintains high accuracy under strict latency constraints. Experiments on Llama 3.1 8B model show that using activations from only the 16th layer preserves accuracy while reducing response latency. Our results demonstrate that activation-based confidence modeling offers a scalable, architecture-aware path toward trustworthy RAG deployment.
Authors:Hadi Askari, Shivanshu Gupta, Fei Wang, Anshuman Chhabra, Muhao Chen
Title: LayerIF: Estimating Layer Quality for Large Language Models using Influence Functions
Abstract:
Pretrained Large Language Models (LLMs) achieve strong performance across a wide range of tasks, yet exhibit substantial variability in the various layers' training quality with respect to specific downstream applications, limiting their downstream performance. It is therefore critical to estimate layer-wise training quality in a manner that accounts for both model architecture and training data. However, existing approaches predominantly rely on model-centric heuristics (such as spectral statistics, outlier detection, or uniform allocation) while overlooking the influence of data. To address these limitations, we propose LayerIF, a data-driven framework that leverages Influence Functions to quantify the training quality of individual layers in a principled and task-sensitive manner. By isolating each layer's gradients and measuring the sensitivity of the validation loss to training examples by computing layer-wise influences, we derive data-driven estimates of layer importance. Notably, our method produces task-specific layer importance estimates for the same LLM, revealing how layers specialize for different test-time evaluation tasks. We demonstrate the utility of our scores by leveraging them for two downstream applications: (a) expert allocation in LoRA-MoE architectures and (b) layer-wise sparsity distribution for LLM pruning. Experiments across multiple LLM architectures demonstrate that our model-agnostic, influence-guided allocation leads to consistent gains in task performance.
Authors:Chenjun Li, Dian Yang, Shun Yao, Shuyue Wang, Ye Wu, Le Zhang, Qiannuo Li, Kang Ik Kevin Cho, Johanna Seitz-Holland, Lipeng Ning, Jon Haitz Legarreta, Yogesh Rathi, Carl-Fredrik Westin, Lauren J. O'Donnell, Nir A. Sochen, Ofer Pasternak, Fan Zhang
Title: DDEvENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI
Abstract:
In this study, we developed an Evidence-based Ensemble Neural Network, namely EVENet, for anatomical brain parcellation using diffusion MRI. The key innovation of EVENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI. Using EVENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our EVENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions, enhancing the interpretability and reliability of the segmentation results.
Authors:Haochen Lv, Yan Lin, Shengnan Guo, Xiaowei Mao, Hong Nie, Letian Gong, Youfang Lin, Huaiyu Wan
Title: RIPCN: A Road Impedance Principal Component Network for Probabilistic Traffic Flow Forecasting
Abstract:
Accurate traffic flow forecasting is crucial for intelligent transportation services such as navigation and ride-hailing. In such applications, uncertainty estimation in forecasting is important because it helps evaluate traffic risk levels, assess forecast reliability, and provide timely warnings. As a result, probabilistic traffic flow forecasting (PTFF) has gained significant attention, as it produces both point forecasts and uncertainty estimates. However, existing PTFF approaches still face two key challenges: (1) how to uncover and model the causes of traffic flow uncertainty for reliable forecasting, and (2) how to capture the spatiotemporal correlations of uncertainty for accurate prediction. To address these challenges, we propose RIPCN, a Road Impedance Principal Component Network that integrates domain-specific transportation theory with spatiotemporal principal component learning for PTFF. RIPCN introduces a dynamic impedance evolution network that captures directional traffic transfer patterns driven by road congestion level and flow variability, revealing the direct causes of uncertainty and enhancing both reliability and interpretability. In addition, a principal component network is designed to forecast the dominant eigenvectors of future flow covariance, enabling the model to capture spatiotemporal uncertainty correlations. This design allows for accurate and efficient uncertainty estimation while also improving point prediction performance. Experimental results on real-world datasets show that our approach outperforms existing probabilistic forecasting methods.
Authors:Geng Yu, Jianing Zhu, Jiangchao Yao, Bo Han
Title: Self-Calibrated Tuning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for deploying reliable machine learning models in open-world applications. Recent advances in CLIP-based OOD detection have shown promising results via regularizing prompt tuning with OOD features extracted from ID data. However, the irrelevant context mined from ID data can be spurious due to the inaccurate foreground-background decomposition, thus limiting the OOD detection performance. In this work, we propose a novel framework, namely, Self-Calibrated Tuning (SCT), to mitigate this problem for effective OOD detection with only the given few-shot ID data. Specifically, SCT introduces modulating factors respectively on the two components of the original learning objective. It adaptively directs the optimization process between the two tasks during training on data with different prediction uncertainty to calibrate the influence of OOD regularization, which is compatible with many prompt tuning based OOD detection methods. Extensive experiments and analyses have been conducted to characterize and demonstrate the effectiveness of the proposed SCT. The code is publicly available.
Authors:Zhiwei Ling, Yachen Chang, Hailiang Zhao, Xinkui Zhao, Kingsum Chow, Shuiguang Deng
Title: CADRef: Robust Out-of-Distribution Detection via Class-Aware Decoupled Relative Feature Leveraging
Abstract:
Deep neural networks (DNNs) have been widely criticized for their overconfidence when dealing with out-of-distribution (OOD) samples, highlighting the critical need for effective OOD detection to ensure the safe deployment of DNNs in real-world settings. Existing post-hoc OOD detection methods primarily enhance the discriminative power of logit-based approaches by reshaping sample features, yet they often neglect critical information inherent in the features themselves. In this paper, we propose the Class-Aware Relative Feature-based method (CARef), which utilizes the error between a sample's feature and its class-aware average feature as a discriminative criterion. To further refine this approach, we introduce the Class-Aware Decoupled Relative Feature-based method (CADRef), which decouples sample features based on the alignment of signs between the relative feature and corresponding model weights, enhancing the discriminative capabilities of CARef. Extensive experimental results across multiple datasets and models demonstrate that both proposed methods exhibit effectiveness and robustness in OOD detection compared to state-of-the-art methods. Specifically, our two methods outperform the best baseline by 2.82% and 3.27% in AUROC, with improvements of 4.03% and 6.32% in FPR95, respectively.
Authors:Nandish Chattopadhyay, Abdul Basit, Amira Guesmi, Muhammad Abdullah Hanif, Bassem Ouni, Muhammad Shafique
Title: PatchBlock: A Lightweight Defense Against Adversarial Patches for Embedded EdgeAI Devices
Abstract:
Adversarial attacks pose a significant challenge to the reliable deployment of machine learning models in EdgeAI applications, such as autonomous driving and surveillance, which rely on resource-constrained devices for real-time inference. Among these, patch-based adversarial attacks, where small malicious patches (e.g., stickers) are applied to objects, can deceive neural networks into making incorrect predictions with potentially severe consequences. In this paper, we present PatchBlock, a lightweight framework designed to detect and neutralize adversarial patches in images. Leveraging outlier detection and dimensionality reduction, PatchBlock identifies regions affected by adversarial noise and suppresses their impact. It operates as a pre-processing module at the sensor level, efficiently running on CPUs in parallel with GPU inference, thus preserving system throughput while avoiding additional GPU overhead. The framework follows a three-stage pipeline: splitting the input into chunks (Chunking), detecting anomalous regions via a redesigned isolation forest with targeted cuts for faster convergence (Separating), and applying dimensionality reduction on the identified outliers (Mitigating). PatchBlock is both model- and patch-agnostic, can be retrofitted to existing pipelines, and integrates seamlessly between sensor inputs and downstream models. Evaluations across multiple neural architectures, benchmark datasets, attack types, and diverse edge devices demonstrate that PatchBlock consistently improves robustness, recovering up to 77% of model accuracy under strong patch attacks such as the Google Adversarial Patch, while maintaining high portability and minimal clean accuracy loss. Additionally, PatchBlock outperforms the state-of-the-art defenses in efficiency, in terms of computation time and energy consumption per sample, making it suitable for EdgeAI applications.
Authors:Martin V. Vejling, Shashi Raj Pandey, Christophe A. N. Biscio, Petar Popovski
Title: Conformal Data Contamination Tests for Trading or Sharing of Data
Abstract:
The amount of quality data in many machine learning tasks is limited to what is available locally to data owners. The set of quality data can be expanded through trading or sharing with external data agents. However, data buyers need quality guarantees before purchasing, as external data may be contaminated or irrelevant to their specific learning task. Previous works primarily rely on distributional assumptions about data from different agents, relegating quality checks to post-hoc steps involving costly data valuation procedures. We propose a distribution-free, contamination-aware data-sharing framework that identifies external data agents whose data is most valuable for model personalization. To achieve this, we introduce novel two-sample testing procedures, grounded in rigorous theoretical foundations for conformal outlier detection, to determine whether an agent's data exceeds a contamination threshold. The proposed tests, termed conformal data contamination tests, remain valid under arbitrary contamination levels while enabling false discovery rate control via the Benjamini-Hochberg procedure. Empirical evaluations across diverse collaborative learning scenarios demonstrate the robustness and effectiveness of our approach. Overall, the conformal data contamination test distinguishes itself as a generic procedure for aggregating data with statistically rigorous quality guarantees.
Authors:Tao Feng, Yihang Sun, Jiaxuan You
Title: GraphEval: A Lightweight Graph-Based LLM Framework for Idea Evaluation
Abstract:
The powerful capabilities of Large Language Models (LLMs) have led to their growing use in evaluating human-generated content, particularly in evaluating research ideas within academic settings. Existing solutions primarily rely on prompt-based LLM methods or fine-tuned lightweight language models for idea evaluation. However, these methods are often unstable and struggle to comprehend the complex semantic information embedded in the ideas, impeding their ability to perform high-quality evaluations. To address the above challenges, we propose GraphEval, a lightweight graph-based LLM framework for idea evaluation. Our insight is that a complex idea can be broken down into comprehensible viewpoint nodes using prompts from small LLMs. These viewpoint nodes can then be linked together through edges created from LLM-based relation extraction and/or BERT similarity scores. The created viewpoint-graph can be used to conveniently propagate scores across view-nodes to improve the robustness of the idea evaluations. In particular, we propose two lightweight graph-based methods for idea evaluation: (1) GraphEval-LP: a training-free label propagation algorithm that propagates evaluation scores from known view-nodes to unknown nodes; (2) GraphEval-GNN: a Graph Neural Networks (GNN) that is trained to predict the evaluation scores given the observed graph with minimal computation resources. Moreover, to overcome LLM's limitation in objectively assessing the novelty of ideas, we further propose a novelty detection model to GraphEval-GNN to enhance its capability in judging idea novelty. Experiments on two datasets show GraphEval improves F1 scores by at least 14% with low computation and API costs. Additionally, GraphEval can effectively detect plagiarized ideas.
Authors:Minoo Dolatabadi, Fardin Ayar, Ehsan Javanmardi, Manabu Tsukada, Mahdi Javanmardi
Title: Towards Robust LiDAR Localization: Deep Learning-based Uncertainty Estimation
Abstract:
LiDAR-based localization and SLAM often rely on iterative matching algorithms, particularly the Iterative Closest Point (ICP) algorithm, to align sensor data with pre-existing maps or previous scans. However, ICP is prone to errors in featureless environments and dynamic scenes, leading to inaccurate pose estimation. Accurately predicting the uncertainty associated with ICP is crucial for robust state estimation but remains challenging, as existing approaches often rely on handcrafted models or simplified assumptions. Moreover, a few deep learning-based methods for localizability estimation either depend on a pre-built map, which may not always be available, or provide a binary classification of localizable versus non-localizable, which fails to properly model uncertainty. In this work, we propose a data-driven framework that leverages deep learning to estimate the registration error covariance of ICP before matching, even in the absence of a reference map. By associating each LiDAR scan with a reliable 6-DoF error covariance estimate, our method enables seamless integration of ICP within Kalman filtering, enhancing localization accuracy and robustness. Extensive experiments on the KITTI dataset demonstrate the effectiveness of our approach, showing that it accurately predicts covariance and, when applied to localization using a pre-built map or SLAM, reduces localization errors and improves robustness.
Authors:Matthias Wüest, Francis Engelmann, Ondrej Miksik, Marc Pollefeys, Daniel Barath
Title: UnLoc: Leveraging Depth Uncertainties for Floorplan Localization
Abstract:
We propose UnLoc, an efficient data-driven solution for sequential camera localization within floorplans. Floorplan data is readily available, long-term persistent, and robust to changes in visual appearance. We address key limitations of recent methods, such as the lack of uncertainty modeling in depth predictions and the necessity for custom depth networks trained for each environment. We introduce a novel probabilistic model that incorporates uncertainty estimation, modeling depth predictions as explicit probability distributions. By leveraging off-the-shelf pre-trained monocular depth models, we eliminate the need to rely on per-environment-trained depth networks, enhancing generalization to unseen spaces. We evaluate UnLoc on large-scale synthetic and real-world datasets, demonstrating significant improvements over existing methods in terms of accuracy and robustness. Notably, we achieve $2.7$ times higher localization recall on long sequences (100 frames) and $16.7$ times higher on short ones (15 frames) than the state of the art on the challenging LaMAR HGE dataset.
Authors:Umberto Albertin, Mauro Martini, Alessandro Navone, Marcello Chiaberge
Title: Adaptive Robot Localization with Ultra-wideband Novelty Detection
Abstract:
Ultra-wideband (UWB) technology has shown remarkable potential as a low-cost general solution for robot localization. However, limitations of the UWB signal for precise positioning arise from the disturbances caused by the environment itself, due to reflectance, multi-path effect, and Non-Line-of-Sight (NLOS) conditions. This problem is emphasized in cluttered indoor spaces where service robotic platforms usually operate. Both model-based and learning-based methods are currently under investigation to precisely predict the UWB error patterns. Despite the great capability in approximating strong non-linearity, learning-based methods often do not consider environmental factors and require data collection and re-training for unseen data distributions, making them not practically feasible on a large scale. The goal of this research is to develop a robust and adaptive UWB localization method for indoor confined spaces. A novelty detection technique is used to recognize outlier conditions from nominal UWB range data with a semi-supervised autoencoder. Then, the obtained novelty scores are combined with an Extended Kalman filter, leveraging a dynamic estimation of covariance and bias error for each range measurement received from the UWB anchors. The resulting solution is a compact, flexible, and robust system which enables the localization system to adapt the trustworthiness of UWB data spatially and temporally in the environment. The extensive experimentation conducted with a real robot in a wide range of testing scenarios demonstrates the advantages and benefits of the proposed solution in indoor cluttered spaces presenting NLoS conditions, reaching an average improvement of almost 60% and greater than 25cm of absolute positioning error.
Authors:Ariel Priarone, Umberto Albertin, Carlo Cena, Mauro Martini, Marcello Chiaberge
Title: Unsupervised Novelty Detection Methods Benchmarking with Wavelet Decomposition
Abstract:
Novelty detection is a critical task in various engineering fields. Numerous approaches to novelty detection rely on supervised or semi-supervised learning, which requires labelled datasets for training. However, acquiring labelled data, when feasible, can be expensive and time-consuming. For these reasons, unsupervised learning is a powerful alternative that allows performing novelty detection without needing labelled samples. In this study, numerous unsupervised machine learning algorithms for novelty detection are compared, highlighting their strengths and weaknesses in the context of vibration sensing. The proposed framework uses a continuous metric, unlike most traditional methods that merely flag anomalous samples without quantifying the degree of anomaly. Moreover, a new dataset is gathered from an actuator vibrating at specific frequencies to benchmark the algorithms and evaluate the framework. Novel conditions are introduced by altering the input wave signal. Our findings offer valuable insights into the adaptability and robustness of unsupervised learning techniques for real-world novelty detection applications.
Authors:Linwei Tao, Yi-Fan Yeh, Bo Kai, Minjing Dong, Tao Huang, Tom A. Lamb, Jialin Yu, Philip H. S. Torr, Chang Xu
Title: Can Large Language Models Express Uncertainty Like Human?
Abstract:
Large language models (LLMs) are increasingly used in high-stakes settings, where overconfident responses can mislead users. Reliable confidence estimation has been shown to enhance trust and task accuracy. Yet existing methods face practical barriers: logits are often hidden, multi-sampling is computationally expensive, and verbalized numerical uncertainty (e.g., giving a 0-100 score) deviates from natural communication. We revisit linguistic confidence (LC), where models express uncertainty through hedging language (e.g., probably, might), offering a lightweight and human-centered alternative. To advance this direction, we (1) release the first diverse, large-scale dataset of hedging expressions with human-annotated confidence scores, and (2) propose a lightweight mapper that converts hedges into confidence scores at near-zero cost. Building on these resources, we (3) conduct the first systematic study of LC across modern LLMs and QA benchmarks, revealing that while most LLMs underperform in expressing reliable LC, carefully designed prompting achieves competitive calibration and discriminability. Finally, we (4) introduce a fine-tuning framework that further improves LC reliability. Taken together, our work positions linguistic confidence as a scalable, efficient, and human-aligned approach to LLM uncertainty estimation, and calls for deeper exploration of this promising yet underexplored direction.
Authors:Linwei Tao, Yi-Fan Yeh, Minjing Dong, Tao Huang, Philip Torr, Chang Xu
Title: Revisiting Uncertainty Estimation and Calibration of Large Language Models
Abstract:
As large language models (LLMs) are increasingly deployed in high-stakes applications, robust uncertainty estimation is essential for ensuring the safe and trustworthy deployment of LLMs. We present the most comprehensive study to date of uncertainty estimation in LLMs, evaluating 80 models spanning open- and closed-source families, dense and Mixture-of-Experts (MoE) architectures, reasoning and non-reasoning modes, quantization variants and parameter scales from 0.6B to 671B. Focusing on three representative black-box single-pass methods, including token probability-based uncertainty (TPU), numerical verbal uncertainty (NVU), and linguistic verbal uncertainty (LVU), we systematically evaluate uncertainty calibration and selective classification using the challenging MMLU-Pro benchmark, which covers both reasoning-intensive and knowledge-based tasks. Our results show that LVU consistently outperforms TPU and NVU, offering stronger calibration and discrimination while being more interpretable. We also find that high accuracy does not imply reliable uncertainty, and that model scale, post-training, reasoning ability and quantization all influence estimation performance. Notably, LLMs exhibit better uncertainty estimates on reasoning tasks than on knowledge-heavy ones, and good calibration does not necessarily translate to effective error ranking. These findings highlight the need for multi-perspective evaluation and position LVU as a practical tool for improving the reliability of LLMs in real-world settings.
Authors:Jinxu Lin, Linwei Tao, Minjing Dong, Chang Xu
Title: Uncertainty Weighted Gradients for Model Calibration
Abstract:
Model calibration is essential for ensuring that the predictions of deep neural networks accurately reflect true probabilities in real-world classification tasks. However, deep networks often produce over-confident or under-confident predictions, leading to miscalibration. Various methods have been proposed to address this issue by designing effective loss functions for calibration, such as focal loss. In this paper, we analyze its effectiveness and provide a unified loss framework of focal loss and its variants, where we mainly attribute their superiority in model calibration to the loss weighting factor that estimates sample-wise uncertainty. Based on our analysis, existing loss functions fail to achieve optimal calibration performance due to two main issues: including misalignment during optimization and insufficient precision in uncertainty estimation. Specifically, focal loss cannot align sample uncertainty with gradient scaling and the single logit cannot indicate the uncertainty. To address these issues, we reformulate the optimization from the perspective of gradients, which focuses on uncertain samples. Meanwhile, we propose using the Brier Score as the loss weight factor, which provides a more accurate uncertainty estimation via all the logits. Extensive experiments on various models and datasets demonstrate that our method achieves state-of-the-art (SOTA) performance.
Authors:Linwei Tao, Haolan Guo, Minjing Dong, Chang Xu
Title: Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors
Abstract:
Calibration is crucial in deep learning applications, especially in fields like healthcare and autonomous driving, where accurate confidence estimates are vital for decision-making. However, deep neural networks often suffer from miscalibration, with reliability diagrams and Expected Calibration Error (ECE) being the only standard perspective for evaluating calibration performance. In this paper, we introduce the concept of consistency as an alternative perspective on model calibration, inspired by uncertainty estimation literature in large language models (LLMs). We highlight its advantages over the traditional reliability-based view. Building on this concept, we propose a post-hoc calibration method called Consistency Calibration (CC), which adjusts confidence based on the model's consistency across perturbed inputs. CC is particularly effective in locally uncertainty estimation, as it requires no additional data samples or label information, instead generating input perturbations directly from the source data. Moreover, we show that performing perturbations at the logit level significantly improves computational efficiency. We validate the effectiveness of CC through extensive comparisons with various post-hoc and training-time calibration methods, demonstrating state-of-the-art performance on standard datasets such as CIFAR-10, CIFAR-100, and ImageNet, as well as on long-tailed datasets like ImageNet-LT.
Authors:Kevin Wilkinghoff, Haici Yang, Janek Ebbers, François G. Germain, Gordon Wichern, Jonathan Le Roux
Title: Local Density-Based Anomaly Score Normalization for Domain Generalization
Abstract:
State-of-the-art anomalous sound detection (ASD) systems in domain-shifted conditions rely on projecting audio signals into an embedding space and using distance-based outlier detection to compute anomaly scores. One of the major difficulties to overcome is the so-called domain mismatch between the anomaly score distributions of a source domain and a target domain that differ acoustically and in terms of the amount of training data provided. A decision threshold that is optimal for one domain may be highly sub-optimal for the other domain and vice versa. This significantly degrades the performance when only using a single decision threshold, as is required when generalizing to multiple data domains that are possibly unseen during training while still using the same trained ASD system as in the source domain. To reduce this mismatch between the domains, we propose a simple local-density-based anomaly score normalization scheme. In experiments conducted on several ASD datasets, we show that the proposed normalization scheme consistently improves performance for various types of embedding-based ASD systems and yields better results than existing anomaly score normalization approaches.
Authors:Rohin Shah, Alex Irpan, Alexander Matt Turner, Anna Wang, Arthur Conmy, David Lindner, Jonah Brown-Cohen, Lewis Ho, Neel Nanda, Raluca Ada Popa, Rishub Jain, Rory Greig, Samuel Albanie, Scott Emmons, Sebastian Farquhar, Sébastien Krier, Senthooran Rajamanoharan, Sophie Bridgers, Tobi Ijitoye, Tom Everitt, Victoria Krakovna, Vikrant Varma, Vladimir Mikulik, Zachary Kenton, Dave Orr, Shane Legg, Noah Goodman, Allan Dafoe, Four Flynn, Anca Dragan
Title: An Approach to Technical AGI Safety and Security
Abstract:
Artificial General Intelligence (AGI) promises transformative benefits but also presents significant risks. We develop an approach to address the risk of harms consequential enough to significantly harm humanity. We identify four areas of risk: misuse, misalignment, mistakes, and structural risks. Of these, we focus on technical approaches to misuse and misalignment. For misuse, our strategy aims to prevent threat actors from accessing dangerous capabilities, by proactively identifying dangerous capabilities, and implementing robust security, access restrictions, monitoring, and model safety mitigations. To address misalignment, we outline two lines of defense. First, model-level mitigations such as amplified oversight and robust training can help to build an aligned model. Second, system-level security measures such as monitoring and access control can mitigate harm even if the model is misaligned. Techniques from interpretability, uncertainty estimation, and safer design patterns can enhance the effectiveness of these mitigations. Finally, we briefly outline how these ingredients could be combined to produce safety cases for AGI systems.
Authors:Johanna P. Müller, Robert Wright, Thomas G. Day, Lorenzo Venturini, Samuel F. Budd, Hadrien Reynaud, Joseph V. Hajnal, Reza Razavi, Bernhard Kainz
Title: L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
Abstract:
Accurate analysis of prenatal ultrasound (US) is essential for early detection of developmental anomalies. However, operator dependency and technical limitations (e.g. intrinsic artefacts and effects, setting errors) can complicate image interpretation and the assessment of diagnostic uncertainty. We present L-FUSION (Laplacian Fetal US Segmentation with Integrated FoundatiON models), a framework that integrates uncertainty quantification through unsupervised, normative learning and large-scale foundation models for robust segmentation of fetal structures in normal and pathological scans. We propose to utilise the aleatoric logit distributions of Stochastic Segmentation Networks and Laplace approximations with fast Hessian estimations to estimate epistemic uncertainty only from the segmentation head. This enables us to achieve reliable abnormality quantification for instant diagnostic feedback. Combined with an integrated Dropout component, L-FUSION enables reliable differentiation of lesions from normal fetal anatomy with enhanced uncertainty maps and segmentation counterfactuals in US imaging. It improves epistemic and aleatoric uncertainty interpretation and removes the need for manual disease-labelling. Evaluations across multiple datasets show that L-FUSION achieves superior segmentation accuracy and consistent uncertainty quantification, supporting on-site decision-making and offering a scalable solution for advancing fetal ultrasound analysis in clinical settings.
Authors:Pirzada Suhail, Rehna Afroz, Amit Sethi
Title: TIE: A Training-Inversion-Exclusion Framework for Visually Interpretable and Uncertainty-Guided Out-of-Distribution Detection
Abstract:
Deep neural networks often struggle to recognize when an input lies outside their training experience, leading to unreliable and overconfident predictions. Building dependable machine learning systems therefore requires methods that can both estimate predictive \textit{uncertainty} and detect \textit{out-of-distribution (OOD)} samples in a unified manner. In this paper, we propose \textbf{TIE: a Training--Inversion--Exclusion} framework for visually interpretable and uncertainty-guided anomaly detection that jointly addresses these challenges through iterative refinement. TIE extends a standard $n$-class classifier to an $(n+1)$-class model by introducing a garbage class initialized with Gaussian noise to represent outlier inputs. Within each epoch, TIE performs a closed-loop process of \textit{training, inversion, and exclusion}, where highly uncertain inverted samples reconstructed from the just-trained classifier are excluded into the garbage class. Over successive iterations, the inverted samples transition from noisy artifacts into visually coherent class prototypes, providing transparent insight into how the model organizes its learned manifolds. During inference, TIE rejects OOD inputs by either directly mapping them to the garbage class or producing low-confidence, uncertain misclassifications within the in-distribution classes that are easily separable, all without relying on external OOD datasets. A comprehensive threshold-based evaluation using multiple OOD metrics and performance measures such as \textit{AUROC}, \textit{AUPR}, and \textit{FPR@95\%TPR} demonstrates that TIE offers a unified and interpretable framework for robust anomaly detection and calibrated uncertainty estimation (UE) achieving near-perfect OOD detection with \textbf{\(\!\approx\!\) 0 FPR@95\%TPR} when trained on MNIST or FashionMNIST and tested against diverse unseen datasets.
Authors:Kaiyuan Tan, Yingying Shen, Haohui Zhu, Zhiwei Zhan, Shan Zhao, Mingfei Tu, Hongcheng Luo, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye
Title: ExtraGS: Geometric-Aware Trajectory Extrapolation with Uncertainty-Guided Generative Priors
Abstract:
Synthesizing extrapolated views from recorded driving logs is critical for simulating driving scenes for autonomous driving vehicles, yet it remains a challenging task. Recent methods leverage generative priors as pseudo ground truth, but often lead to poor geometric consistency and over-smoothed renderings. To address these limitations, we propose ExtraGS, a holistic framework for trajectory extrapolation that integrates both geometric and generative priors. At the core of ExtraGS is a novel Road Surface Gaussian(RSG) representation based on a hybrid Gaussian-Signed Distance Function (SDF) design, and Far Field Gaussians (FFG) that use learnable scaling factors to efficiently handle distant objects. Furthermore, we develop a self-supervised uncertainty estimation framework based on spherical harmonics that enables selective integration of generative priors only where extrapolation artifacts occur. Extensive experiments on multiple datasets, diverse multi-camera setups, and various generative priors demonstrate that ExtraGS significantly enhances the realism and geometric consistency of extrapolated views, while preserving high fidelity along the original trajectory.
Authors:Pirzada Suhail, Rehna Afroz, Amit Sethi
Title: Network Inversion for Uncertainty-Aware Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical components for building safe machine learning systems, especially in real-world scenarios where unexpected inputs are inevitable. In this work, we propose a novel framework that combines network inversion with classifier training to simultaneously address both OOD detection and uncertainty estimation. For a standard n-class classification task, we extend the classifier to an (n+1)-class model by introducing a "garbage" class, initially populated with random gaussian noise to represent outlier inputs. After each training epoch, we use network inversion to reconstruct input images corresponding to all output classes that initially appear as noisy and incoherent and are therefore excluded to the garbage class for retraining the classifier. This cycle of training, inversion, and exclusion continues iteratively till the inverted samples begin to resemble the in-distribution data more closely, suggesting that the classifier has learned to carve out meaningful decision boundaries while sanitising the class manifolds by pushing OOD content into the garbage class. During inference, this training scheme enables the model to effectively detect and reject OOD samples by classifying them into the garbage class. Furthermore, the confidence scores associated with each prediction can be used to estimate uncertainty for both in-distribution and OOD inputs. Our approach is scalable, interpretable, and does not require access to external OOD datasets or post-hoc calibration techniques while providing a unified solution to the dual challenges of OOD detection and uncertainty estimation.
Authors:Pirzada Suhail, Pravesh Khaparde, Amit Sethi
Title: Network Inversion for Generating Confidently Classified Counterfeits
Abstract:
In vision classification, generating inputs that elicit confident predictions is key to understanding model behavior and reliability, especially under adversarial or out-of-distribution (OOD) conditions. While traditional adversarial methods rely on perturbing existing inputs to fool a model, they are inherently input-dependent and often fail to ensure both high confidence and meaningful deviation from the training data. In this work, we extend network inversion techniques to generate Confidently Classified Counterfeits (CCCs), synthetic samples that are confidently classified by the model despite being significantly different from the training distribution and independent of any specific input. We alter inversion technique by replacing soft vector conditioning with one-hot class conditioning and introducing a Kullback-Leibler divergence loss between the one-hot label and the classifier's output distribution. CCCs offer a model-centric perspective on confidence, revealing that models can assign high confidence to entirely synthetic, out-of-distribution inputs. This challenges the core assumption behind many OOD detection techniques based on thresholding prediction confidence, which assume that high-confidence outputs imply in-distribution data, and highlights the need for more robust uncertainty estimation in safety-critical applications.
Authors:Pirzada Suhail, Hao Tang, Amit Sethi
Title: Network Inversion and Its Applications
Abstract:
Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we encode the conditioning label information into vectors and intermediate matrices and further minimize the cosine similarity between features of the generated images. Additionally, we incorporate feature orthogonality as a regularization term to boost image diversity which penalises the deviations of the Gram matrix of the features from the identity matrix, ensuring orthogonality and promoting distinct, non-redundant representations for each label. The paper concludes by exploring immediate applications of the proposed network inversion approach in interpretability, out-of-distribution detection, and training data reconstruction.
Authors:Michael E. Kim, Chenyu Gao, Karthik Ramadass, Praitayini Kanakaraj, Nancy R. Newlin, Gaurav Rudravaram, Kurt G. Schilling, Blake E. Dewey, David A. Bennett, Sid OBryant, Robert C. Barber, Derek Archer, Timothy J. Hohman, Shunxing Bao, Zhiyuan Li, Bennett A. Landman, Nazirah Mohd Khairi, The Alzheimers Disease Neuroimaging Initiative, The HABSHD Study Team
Title: Scalable quality control on processing of large diffusion-weighted and structural magnetic resonance imaging datasets
Abstract:
Proper quality control (QC) is time consuming when working with large-scale medical imaging datasets, yet necessary, as poor-quality data can lead to erroneous conclusions or poorly trained machine learning models. Most efforts to reduce data QC time rely on outlier detection, which cannot capture every instance of algorithm failure. Thus, there is a need to visually inspect every output of data processing pipelines in a scalable manner. We design a QC pipeline that allows for low time cost and effort across a team setting for a large database of diffusion weighted and structural magnetic resonance images. Our proposed method satisfies the following design criteria: 1.) a consistent way to perform and manage quality control across a team of researchers, 2.) quick visualization of preprocessed data that minimizes the effort and time spent on the QC process without compromising the condition or caliber of the QC, and 3.) a way to aggregate QC results across pipelines and datasets that can be easily shared. In addition to meeting these design criteria, we also provide information on what a successful output should be and common occurrences of algorithm failures for various processing pipelines. Our method reduces the time spent on QC by a factor of over 20 when compared to naively opening outputs in an image viewer and demonstrate how it can facilitate aggregation and sharing of QC results within a team. While researchers must spend time on robust visual QC of data, there are mechanisms by which the process can be streamlined and efficient.
Authors:Wei Huang, Zhitong Xiong, Chenying Liu, Xiao Xiang Zhu
Title: Hierarchical Semi-Supervised Active Learning for Remote Sensing
Abstract:
The performance of deep learning models in remote sensing (RS) strongly depends on the availability of high-quality labeled data. However, collecting large-scale annotations is costly and time-consuming, while vast amounts of unlabeled imagery remain underutilized. To address this challenge, we propose a Hierarchical Semi-Supervised Active Learning (HSSAL) framework that integrates semi-supervised learning (SSL) and a novel hierarchical active learning (HAL) in a closed iterative loop. In each iteration, SSL refines the model using both labeled data through supervised learning and unlabeled data via weak-to-strong self-training, improving feature representation and uncertainty estimation. Guided by the refined representations and uncertainty cues of unlabeled samples, HAL then conducts sample querying through a progressive clustering strategy, selecting the most informative instances that jointly satisfy the criteria of scalability, diversity, and uncertainty. This hierarchical process ensures both efficiency and representativeness in sample selection. Extensive experiments on three benchmark RS scene classification datasets, including UCM, AID, and NWPU-RESISC45, demonstrate that HSSAL consistently outperforms SSL- or AL-only baselines. Remarkably, with only 8%, 4%, and 2% labeled training data on UCM, AID, and NWPU-RESISC45, respectively, HSSAL achieves over 95% of fully-supervised accuracy, highlighting its superior label efficiency through informativeness exploitation of unlabeled data. Our code will be publicly available.
Authors:Fahmida Islam, Adnan Mahmood, Noorain Mukhtiar, Kasun Eranda Wijethilake, Quan Z. Sheng
Title: FairEquityFL -- A Fair and Equitable Client Selection in Federated Learning for Heterogeneous IoV Networks
Abstract:
Federated Learning (FL) has been extensively employed for a number of applications in machine learning, i.e., primarily owing to its privacy preserving nature and efficiency in mitigating the communication overhead. Internet of Vehicles (IoV) is one of the promising applications, wherein FL can be utilized to train a model more efficiently. Since only a subset of the clients can participate in each FL training round, challenges arise pertinent to fairness in the client selection process. Over the years, a number of researchers from both academia and industry have proposed numerous FL frameworks. However, to the best of our knowledge, none of them have employed fairness for FL-based client selection in a dynamic and heterogeneous IoV environment. Accordingly, in this paper, we envisage a FairEquityFL framework to ensure an equitable opportunity for all the clients to participate in the FL training process. In particular, we have introduced a sampling equalizer module within the selector component for ensuring fairness in terms of fair collaboration opportunity for all the clients in the client selection process. The selector is additionally responsible for both monitoring and controlling the clients' participation in each FL training round. Moreover, an outlier detection mechanism is enforced for identifying malicious clients based on the model performance in terms of considerable fluctuation in either accuracy or loss minimization. The selector flags suspicious clients and temporarily suspend such clients from participating in the FL training process. We further evaluate the performance of FairEquityFL on a publicly available dataset, FEMNIST. Our simulation results depict that FairEquityFL outperforms baseline models to a considerable extent.
Authors:Rohit Menon, Nils Dengler, Sicong Pan, Gokul Krishna Chenchani, Maren Bennewitz
Title: EvidMTL: Evidential Multi-Task Learning for Uncertainty-Aware Semantic Surface Mapping from Monocular RGB Images
Abstract:
For scene understanding in unstructured environments, an accurate and uncertainty-aware metric-semantic mapping is required to enable informed action selection by autonomous systems. Existing mapping methods often suffer from overconfident semantic predictions, and sparse and noisy depth sensing, leading to inconsistent map representations. In this paper, we therefore introduce EvidMTL, a multi-task learning framework that uses evidential heads for depth estimation and semantic segmentation, enabling uncertainty-aware inference from monocular RGB images. To enable uncertainty-calibrated evidential multi-task learning, we propose a novel evidential depth loss function that jointly optimizes the belief strength of the depth prediction in conjunction with evidential segmentation loss. Building on this, we present EvidKimera, an uncertainty-aware semantic surface mapping framework, which uses evidential depth and semantics prediction for improved 3D metric-semantic consistency. We train and evaluate EvidMTL on the NYUDepthV2 and assess its zero-shot performance on ScanNetV2, demonstrating superior uncertainty estimation compared to conventional approaches while maintaining comparable depth estimation and semantic segmentation. In zero-shot mapping tests on ScanNetV2, EvidKimera outperforms Kimera in semantic surface mapping accuracy and consistency, highlighting the benefits of uncertainty-aware mapping and underscoring its potential for real-world robotic applications.
Authors:Qirui Ji, Bin Qin, Yifan Jin, Yunze Zhao, Chuxiong Sun, Changwen Zheng, Jianwen Cao, Jiangmeng Li
Title: HTG-GCL: Leveraging Hierarchical Topological Granularity from Cellular Complexes for Graph Contrastive Learning
Abstract:
Graph contrastive learning (GCL) aims to learn discriminative semantic invariance by contrasting different views of the same graph that share critical topological patterns. However, existing GCL approaches with structural augmentations often struggle to identify task-relevant topological structures, let alone adapt to the varying coarse-to-fine topological granularities required across different downstream tasks. To remedy this issue, we introduce Hierarchical Topological Granularity Graph Contrastive Learning (HTG-GCL), a novel framework that leverages transformations of the same graph to generate multi-scale ring-based cellular complexes, embodying the concept of topological granularity, thereby generating diverse topological views. Recognizing that a certain granularity may contain misleading semantics, we propose a multi-granularity decoupled contrast and apply a granularity-specific weighting mechanism based on uncertainty estimation. Comprehensive experiments on various benchmarks demonstrate the effectiveness of HTG-GCL, highlighting its superior performance in capturing meaningful graph representations through hierarchical topological information.
Authors:Hongzhe Cheng, Tianyou Zheng, Tianyi Zhang, Matthew Johnson-Roberson, Weiming Zhi
Title: DOSE3 : Diffusion-based Out-of-distribution detection on SE(3) trajectories
Abstract:
Out-of-Distribution(OOD) detection, a fundamental machine learning task aimed at identifying abnormal samples, traditionally requires model retraining for different inlier distributions. While recent research demonstrates the applicability of diffusion models to OOD detection, existing approaches are limited to Euclidean or latent image spaces. Our work extends OOD detection to trajectories in the Special Euclidean Group in 3D ($\mathbb{SE}(3)$), addressing a critical need in computer vision, robotics, and engineering applications that process object pose sequences in $\mathbb{SE}(3)$. We present $\textbf{D}$iffusion-based $\textbf{O}$ut-of-distribution detection on $\mathbb{SE}(3)$ ($\mathbf{DOSE3}$), a novel OOD framework that extends diffusion to a unified sample space of $\mathbb{SE}(3)$ pose sequences. Through extensive validation on multiple benchmark datasets, we demonstrate $\mathbf{DOSE3}$'s superior performance compared to state-of-the-art OOD detection frameworks.
Authors:Anthony Sicilia, Mert Inan, Malihe Alikhani
Title: Accounting for Sycophancy in Language Model Uncertainty Estimation
Abstract:
Effective human-machine collaboration requires machine learning models to externalize uncertainty, so users can reflect and intervene when necessary. For language models, these representations of uncertainty may be impacted by sycophancy bias: proclivity to agree with users, even if they are wrong. For instance, models may be over-confident in (incorrect) problem solutions suggested by a user. We study the relationship between sycophancy and uncertainty estimation for the first time. We propose a generalization of the definition of sycophancy bias to measure downstream impacts on uncertainty estimation, and also propose a new algorithm (SyRoUP) to account for sycophancy in the uncertainty estimation process. Unlike previous works on sycophancy, we study a broad array of user behaviors, varying both correctness and confidence of user suggestions to see how model answers (and their certainty) change. Our experiments across conversation forecasting and question-answering tasks show that user confidence plays a critical role in modulating the effects of sycophancy, and that SyRoUP can better predict these effects. From these results, we argue that externalizing both model and user uncertainty can help to mitigate the impacts of sycophancy bias.
Authors:Yewen Li, Chaojie Wang, Xiaobo Xia, Xu He, Ruyi An, Dong Li, Tongliang Liu, Bo An, Xinrun Wang
Title: Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection
Abstract:
Unsupervised out-of-distribution (U-OOD) detection is to identify OOD data samples with a detector trained solely on unlabeled in-distribution (ID) data. The likelihood function estimated by a deep generative model (DGM) could be a natural detector, but its performance is limited in some popular "hard" benchmarks, such as FashionMNIST (ID) vs. MNIST (OOD). Recent studies have developed various detectors based on DGMs to move beyond likelihood. However, despite their success on "hard" benchmarks, most of them struggle to consistently surpass or match the performance of likelihood on some "non-hard" cases, such as SVHN (ID) vs. CIFAR10 (OOD) where likelihood could be a nearly perfect detector. Therefore, we appeal for more attention to incremental effectiveness on likelihood, i.e., whether a method could always surpass or at least match the performance of likelihood in U-OOD detection. We first investigate the likelihood of variational DGMs and find its detection performance could be improved in two directions: i) alleviating latent distribution mismatch, and ii) calibrating the dataset entropy-mutual integration. Then, we apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration. The final method, named Resultant, combines these two directions for better incremental effectiveness compared to either technique alone. Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector while maintaining incremental effectiveness on likelihood in a wide range of tasks.
Authors:Meritxell Riera-Marin, Sikha O K, Julia Rodriguez-Comas, Matthias Stefan May, Zhaohong Pan, Xiang Zhou, Xiaokun Liang, Franciskus Xaverius Erick, Andrea Prenner, Cedric Hemon, Valentin Boussot, Jean-Louis Dillenseger, Jean-Claude Nunes, Abdul Qayyum, Moona Mazher, Steven A Niederer, Kaisar Kushibar, Carlos Martin-Isla, Petia Radeva, Karim Lekadir, Theodore Barfoot, Luis C. Garcia Peraza Herrera, Ben Glocker, Tom Vercauteren, Lucas Gago, Justin Englemann, Joy-Marie Kleiss, Anton Aubanell, Andreu Antolin, Javier Garcia-Lopez, Miguel A. Gonzalez Ballester, Adrian Galdran
Title: Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results
Abstract:
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.
Authors:Jan-Lucas Uslu, Alexey Nekrasov, Alexander Hermans, Bernd Beschoten, Bastian Leibe, Lutz Waldecker, Christoph Stampfer
Title: MaskTerial: A Foundation Model for Automated 2D Material Flake Detection
Abstract:
The detection and classification of exfoliated two-dimensional (2D) material flakes from optical microscope images can be automated using computer vision algorithms. This has the potential to increase the accuracy and objectivity of classification and the efficiency of sample fabrication, and it allows for large-scale data collection. Existing algorithms often exhibit challenges in identifying low-contrast materials and typically require large amounts of training data. Here, we present a deep learning model, called MaskTerial, that uses an instance segmentation network to reliably identify 2D material flakes. The model is extensively pre-trained using a synthetic data generator, that generates realistic microscopy images from unlabeled data. This results in a model that can to quickly adapt to new materials with as little as 5 to 10 images. Furthermore, an uncertainty estimation model is used to finally classify the predictions based on optical contrast. We evaluate our method on eight different datasets comprising five different 2D materials and demonstrate significant improvements over existing techniques in the detection of low-contrast materials such as hexagonal boron nitride.
Authors:Behrad Tajalli, Stefanos Koffas, Stjepan Picek
Title: CatBack: Universal Backdoor Attacks on Tabular Data via Categorical Encoding
Abstract:
Backdoor attacks in machine learning have drawn significant attention for their potential to compromise models stealthily, yet most research has focused on homogeneous data such as images. In this work, we propose a novel backdoor attack on tabular data, which is particularly challenging due to the presence of both numerical and categorical features. Our key idea is a novel technique to convert categorical values into floating-point representations. This approach preserves enough information to maintain clean-model accuracy compared to traditional methods like one-hot or ordinal encoding. By doing this, we create a gradient-based universal perturbation that applies to all features, including categorical ones. We evaluate our method on five datasets and four popular models. Our results show up to a 100% attack success rate in both white-box and black-box settings (including real-world applications like Vertex AI), revealing a severe vulnerability for tabular data. Our method is shown to surpass the previous works like Tabdoor in terms of performance, while remaining stealthy against state-of-the-art defense mechanisms. We evaluate our attack against Spectral Signatures, Neural Cleanse, Beatrix, and Fine-Pruning, all of which fail to defend successfully against it. We also verify that our attack successfully bypasses popular outlier detection mechanisms.
Authors:Xin Gao, Jiyao Liu, Guanghao Li, Yueming Lyu, Jianxiong Gao, Weichen Yu, Ningsheng Xu, Liang Wang, Caifeng Shan, Ziwei Liu, Chenyang Si
Title: GOOD: Training-Free Guided Diffusion Sampling for Out-of-Distribution Detection
Abstract:
Recent advancements have explored text-to-image diffusion models for synthesizing out-of-distribution (OOD) samples, substantially enhancing the performance of OOD detection. However, existing approaches typically rely on perturbing text-conditioned embeddings, resulting in semantic instability and insufficient shift diversity, which limit generalization to realistic OOD. To address these challenges, we propose GOOD, a novel and flexible framework that directly guides diffusion sampling trajectories towards OOD regions using off-the-shelf in-distribution (ID) classifiers. GOOD incorporates dual-level guidance: (1) Image-level guidance based on the gradient of log partition to reduce input likelihood, drives samples toward low-density regions in pixel space. (2) Feature-level guidance, derived from k-NN distance in the classifier's latent space, promotes sampling in feature-sparse regions. Hence, this dual-guidance design enables more controllable and diverse OOD sample generation. Additionally, we introduce a unified OOD score that adaptively combines image and feature discrepancies, enhancing detection robustness. We perform thorough quantitative and qualitative analyses to evaluate the effectiveness of GOOD, demonstrating that training with samples generated by GOOD can notably enhance OOD detection performance.
Authors:I. Shavindra Jayasekera, Jacob Si, Filippo Valdettaro, Wenlong Chen, A. Aldo Faisal, Yingzhen Li
Title: Variational Uncertainty Decomposition for In-Context Learning
Abstract:
As large language models (LLMs) gain popularity in conducting prediction tasks in-context, understanding the sources of uncertainty in in-context learning becomes essential to ensuring reliability. The recent hypothesis of in-context learning performing predictive Bayesian inference opens the avenue for Bayesian uncertainty estimation, particularly for decomposing uncertainty into epistemic uncertainty due to lack of in-context data and aleatoric uncertainty inherent in the in-context prediction task. However, the decomposition idea remains under-explored due to the intractability of the latent parameter posterior from the underlying Bayesian model. In this work, we introduce a variational uncertainty decomposition framework for in-context learning without explicitly sampling from the latent parameter posterior, by optimising auxiliary queries as probes to obtain an upper bound to the aleatoric uncertainty of an LLM's in-context learning procedure, which also induces a lower bound to the epistemic uncertainty. Through experiments on synthetic and real-world tasks, we show quantitatively and qualitatively that the decomposed uncertainties obtained from our method exhibit desirable properties of epistemic and aleatoric uncertainty.
Authors:Min-Hsuan Yeh, Max Kamachee, Seongheon Park, Yixuan Li
Title: HalluEntity: Benchmarking and Understanding Entity-Level Hallucination Detection
Abstract:
To mitigate the impact of hallucination nature of LLMs, many studies propose detecting hallucinated generation through uncertainty estimation. However, these approaches predominantly operate at the sentence or paragraph level, failing to pinpoint specific spans or entities responsible for hallucinated content. This lack of granularity is especially problematic for long-form outputs that mix accurate and fabricated information. To address this limitation, we explore entity-level hallucination detection. We propose a new data set, HalluEntity, which annotates hallucination at the entity level. Based on the dataset, we comprehensively evaluate uncertainty-based hallucination detection approaches across 17 modern LLMs. Our experimental results show that uncertainty estimation approaches focusing on individual token probabilities tend to over-predict hallucinations, while context-aware methods show better but still suboptimal performance. Through an in-depth qualitative study, we identify relationships between hallucination tendencies and linguistic properties and highlight important directions for future research. HalluEntity: https://huggingface.co/datasets/samuelyeh/HalluEntity
Authors:Davide Ettori, Nastaran Darabi, Sina Tayebati, Ranganath Krishnan, Mahesh Subedar, Omesh Tickoo, Amit Ranjan Trivedi
Title: EigenTrack: Spectral Activation Feature Tracking for Hallucination and Out-of-Distribution Detection in LLMs and VLMs
Abstract:
Large language models (LLMs) offer broad utility but remain prone to hallucination and out-of-distribution (OOD) errors. We propose EigenTrack, an interpretable real-time detector that uses the spectral geometry of hidden activations, a compact global signature of model dynamics. By streaming covariance-spectrum statistics such as entropy, eigenvalue gaps, and KL divergence from random baselines into a lightweight recurrent classifier, EigenTrack tracks temporal shifts in representation structure that signal hallucination and OOD drift before surface errors appear. Unlike black- and grey-box methods, it needs only a single forward pass without resampling. Unlike existing white-box detectors, it preserves temporal context, aggregates global signals, and offers interpretable accuracy-latency trade-offs.
Authors:Onat Gungor, Ishaan Kale, Jiasheng Zhou, Tajana Rosing
Title: LIGHT-HIDS: A Lightweight and Effective Machine Learning-Based Framework for Robust Host Intrusion Detection
Abstract:
The expansion of edge computing has increased the attack surface, creating an urgent need for robust, real-time machine learning (ML)-based host intrusion detection systems (HIDS) that balance accuracy and efficiency. In such settings, inference latency poses a critical security risk, as delays may provide exploitable opportunities for attackers. However, many state-of-the-art ML-based HIDS solutions rely on computationally intensive architectures with high inference costs, limiting their practical deployment. This paper proposes LIGHT-HIDS, a lightweight machine learning framework that combines a compressed neural network feature extractor trained via Deep Support Vector Data Description (DeepSVDD) with an efficient novelty detection model. This hybrid approach enables the learning of compact, meaningful representations of normal system call behavior for accurate anomaly detection. Experimental results on multiple datasets demonstrate that LIGHT-HIDS consistently enhances detection accuracy while reducing inference time by up to 75x compared to state-of-the-art methods. These findings highlight its effectiveness and scalability as a machine learning-based solution for real-time host intrusion detection.
Authors:Elvin Li, Onat Gungor, Zhengli Shang, Tajana Rosing
Title: CITADEL: Continual Anomaly Detection for Enhanced Learning in IoT Intrusion Detection
Abstract:
The Internet of Things (IoT), with its high degree of interconnectivity and limited computational resources, is particularly vulnerable to a wide range of cyber threats. Intrusion detection systems (IDS) have been extensively studied to enhance IoT security, and machine learning-based IDS (ML-IDS) show considerable promise for detecting malicious activity. However, their effectiveness is often constrained by poor adaptability to emerging threats and the issue of catastrophic forgetting during continuous learning. To address these challenges, we propose CITADEL, a self-supervised continual learning framework designed to extract robust representations from benign data while preserving long-term knowledge through optimized memory consolidation mechanisms. CITADEL integrates a tabular-to-image transformation module, a memory-aware masked autoencoder for self-supervised representation learning, and a novelty detection component capable of identifying anomalies without dependence on labeled attack data. Our design enables the system to incrementally adapt to emerging behaviors while retaining its ability to detect previously observed threats. Experiments on multiple intrusion datasets demonstrate that CITADEL achieves up to a 72.9% improvement over the VAE-based lifelong anomaly detector (VLAD) in key detection and retention metrics, highlighting its effectiveness in dynamic IoT environments.
Authors:Xingyuan Pan, Chenlu Ye, Joseph Melkonian, Jiaqi W. Ma, Tong Zhang
Title: Daunce: Data Attribution through Uncertainty Estimation
Abstract:
Training data attribution (TDA) methods aim to identify which training examples influence a model's predictions on specific test data most. By quantifying these influences, TDA supports critical applications such as data debugging, curation, and valuation. Gradient-based TDA methods rely on gradients and second-order information, limiting their applicability at scale. While recent random projection-based methods improve scalability, they often suffer from degraded attribution accuracy. Motivated by connections between uncertainty and influence functions, we introduce Daunce - a simple yet effective data attribution approach through uncertainty estimation. Our method operates by fine-tuning a collection of perturbed models and computing the covariance of per-example losses across these models as the attribution score. Daunce is scalable to large language models (LLMs) and achieves more accurate attribution compared to existing TDA methods. We validate Daunce on tasks ranging from vision tasks to LLM fine-tuning, and further demonstrate its compatibility with black-box model access. Applied to OpenAI's GPT models, our method achieves, to our knowledge, the first instance of data attribution on proprietary LLMs.
Authors:Cosmin I. Bercea, Jun Li, Philipp Raffler, Evamaria O. Riedel, Lena Schmitzer, Angela Kurz, Felix Bitzer, Paula Roßmüller, Julian Canisius, Mirjam L. Beyrle, Che Liu, Wenjia Bai, Bernhard Kainz, Julia A. Schnabel, Benedikt Wiestler
Title: NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI
Abstract:
In many real-world applications, deployed models encounter inputs that differ from the data seen during training. Out-of-distribution detection identifies whether an input stems from an unseen distribution, while open-world recognition flags such inputs to ensure the system remains robust as ever-emerging, previously $unknown$ categories appear and must be addressed without retraining. Foundation and vision-language models are pre-trained on large and diverse datasets with the expectation of broad generalization across domains, including medical imaging. However, benchmarking these models on test sets with only a few common outlier types silently collapses the evaluation back to a closed-set problem, masking failures on rare or truly novel conditions encountered in clinical use. We therefore present $NOVA$, a challenging, real-life $evaluation-only$ benchmark of $\sim$900 brain MRI scans that span 281 rare pathologies and heterogeneous acquisition protocols. Each case includes rich clinical narratives and double-blinded expert bounding-box annotations. Together, these enable joint assessment of anomaly localisation, visual captioning, and diagnostic reasoning. Because NOVA is never used for training, it serves as an $extreme$ stress-test of out-of-distribution generalisation: models must bridge a distribution gap both in sample appearance and in semantic space. Baseline results with leading vision-language models (GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B) reveal substantial performance drops across all tasks, establishing NOVA as a rigorous testbed for advancing models that can detect, localize, and reason about truly unknown anomalies.
Authors:Onat Gungor, Amanda Sofie Rios, Nilesh Ahuja, Tajana Rosing
Title: TS-OOD: Evaluating Time-Series Out-of-Distribution Detection and Prospective Directions for Progress
Abstract:
Detecting out-of-distribution (OOD) data is a fundamental challenge in the deployment of machine learning models. From a security standpoint, this is particularly important because OOD test data can result in misleadingly confident yet erroneous predictions, which undermine the reliability of the deployed model. Although numerous models for OOD detection have been developed in computer vision and language, their adaptability to the time-series data domain remains limited and under-explored. Yet, time-series data is ubiquitous across manufacturing and security applications for which OOD is essential. This paper seeks to address this research gap by conducting a comprehensive analysis of modality-agnostic OOD detection algorithms. We evaluate over several multivariate time-series datasets, deep learning architectures, time-series specific data augmentations, and loss functions. Our results demonstrate that: 1) the majority of state-of-the-art OOD methods exhibit limited performance on time-series data, and 2) OOD methods based on deep feature modeling may offer greater advantages for time-series OOD detection, highlighting a promising direction for future time-series OOD detection algorithm development.
Authors:Sean Fuhrman, Onat Gungor, Tajana Rosing
Title: CND-IDS: Continual Novelty Detection for Intrusion Detection Systems
Abstract:
Intrusion detection systems (IDS) play a crucial role in IoT and network security by monitoring system data and alerting to suspicious activities. Machine learning (ML) has emerged as a promising solution for IDS, offering highly accurate intrusion detection. However, ML-IDS solutions often overlook two critical aspects needed to build reliable systems: continually changing data streams and a lack of attack labels. Streaming network traffic and associated cyber attacks are continually changing, which can degrade the performance of deployed ML models. Labeling attack data, such as zero-day attacks, in real-world intrusion scenarios may not be feasible, making the use of ML solutions that do not rely on attack labels necessary. To address both these challenges, we propose CND-IDS, a continual novelty detection IDS framework which consists of (i) a learning-based feature extractor that continuously updates new feature representations of the system data, and (ii) a novelty detector that identifies new cyber attacks by leveraging principal component analysis (PCA) reconstruction. Our results on realistic intrusion datasets show that CND-IDS achieves up to 6.1x F-score improvement, and up to 6.5x improved forward transfer over the SOTA unsupervised continual learning algorithm. Our code will be released upon acceptance.
Authors:Junwen Wang, Zhonghao Wang, Oscar MacCormac, Jonathan Shapey, Tom Vercauteren
Title: OOD-SEG: Exploiting out-of-distribution detection techniques for learning image segmentation from sparse multi-class positive-only annotations
Abstract:
Despite significant advancements, segmentation based on deep neural networks in medical and surgical imaging faces several challenges, two of which we aim to address in this work. First, acquiring complete pixel-level segmentation labels for medical images is time-consuming and requires domain expertise. Second, typical segmentation pipelines cannot detect out-of-distribution (OOD) pixels, leaving them prone to spurious outputs during deployment. In this work, we propose a novel segmentation approach which broadly falls within the positive-unlabelled (PU) learning paradigm and exploits tools from OOD detection techniques. Our framework learns only from sparsely annotated pixels from multiple positive-only classes and does not use any annotation for the background class. These multi-class positive annotations naturally fall within the in-distribution (ID) set. Unlabelled pixels may contain positive classes but also negative ones, including what is typically referred to as \emph{background} in standard segmentation formulations. Here, we forgo the need for background annotation and consider these together with any other unseen classes as part of the OOD set. Our framework can integrate, at a pixel-level, any OOD detection approaches designed for classification tasks. To address the lack of existing OOD datasets and established evaluation metric for medical image segmentation, we propose a cross-validation strategy that treats held-out labelled classes as OOD. Extensive experiments on both multi-class hyperspectral and RGB surgical imaging datasets demonstrate the robustness and generalisation capability of our proposed framework.
Authors:Xiao Liang, Di Wang, Zhicheng Jiao, Ronghan Li, Pengfei Yang, Quan Wang, Tat-Seng Chua
Title: Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models
Abstract:
The rapid advancements in Vision Language Models (VLMs) have prompted the development of multi-modal medical assistant systems. Despite this progress, current models still have inherent probabilistic uncertainties, often producing erroneous or unverified responses-an issue with serious implications in medical applications. Existing methods aim to enhance the performance of Medical Vision Language Model (MedVLM) by adjusting model structure, fine-tuning with high-quality data, or through preference fine-tuning. However, these training-dependent strategies are costly and still lack sufficient alignment with clinical expertise. To address these issues, we propose an expert-in-the-loop framework named Expert-Controlled Classifier-Free Guidance (Expert-CFG) to align MedVLM with clinical expertise without additional training. This framework introduces an uncertainty estimation strategy to identify unreliable outputs. It then retrieves relevant references to assist experts in highlighting key terms and applies classifier-free guidance to refine the token embeddings of MedVLM, ensuring that the adjusted outputs are correct and align with expert highlights. Evaluations across three medical visual question answering benchmarks demonstrate that the proposed Expert-CFG, with 4.2B parameters and limited expert annotations, outperforms state-of-the-art models with 13B parameters. The results demonstrate the feasibility of deploying such a system in resource-limited settings for clinical use.
Authors:Felix Wagner, Pramit Saha, Harry Anthony, J. Alison Noble, Konstantinos Kamnitsas
Title: DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging
Abstract:
Safe deployment of machine learning (ML) models in safety-critical domains such as medical imaging requires detecting inputs with characteristics not seen during training, known as out-of-distribution (OOD) detection, to prevent unreliable predictions. Effective OOD detection after deployment could benefit from access to the training data, enabling direct comparison between test samples and the training data distribution to identify differences. State-of-the-art OOD detection methods, however, either discard training data after deployment or assume that test samples and training data are centrally stored together, an assumption that rarely holds in real-world settings. This is because shipping training data with the deployed model is usually impossible due to the size of training databases, as well as proprietary or privacy constraints. We introduce the Isolation Network, an OOD detection framework that quantifies the difficulty of separating a target test sample from the training data by solving a binary classification task. We then propose Decentralized Isolation Networks (DIsoN), which enables the comparison of training and test data when data-sharing is impossible, by exchanging only model parameters between the remote computational nodes of training and deployment. We further extend DIsoN with class-conditioning, comparing a target sample solely with training data of its predicted class. We evaluate DIsoN on four medical imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology) across 12 OOD detection tasks. DIsoN performs favorably against existing methods while respecting data-privacy. This decentralized OOD detection framework opens the way for a new type of service that ML developers could provide along with their models: providing remote, secure utilization of their training data for OOD detection services. Code will be available upon acceptance at: *****
Authors:Emily Miller, Michael Milford, Muhammad Burhan Hafez, SD Ramchurn, Shoaib Ehsan
Title: Through the Lens of Doubt: Robust and Efficient Uncertainty Estimation for Visual Place Recognition
Abstract:
Visual Place Recognition (VPR) enables robots and autonomous vehicles to identify previously visited locations by matching current observations against a database of known places. However, VPR systems face significant challenges when deployed across varying visual environments, lighting conditions, seasonal changes, and viewpoints changes. Failure-critical VPR applications, such as loop closure detection in simultaneous localization and mapping (SLAM) pipelines, require robust estimation of place matching uncertainty. We propose three training-free uncertainty metrics that estimate prediction confidence by analyzing inherent statistical patterns in similarity scores from any existing VPR method. Similarity Distribution (SD) quantifies match distinctiveness by measuring score separation between candidates; Ratio Spread (RS) evaluates competitive ambiguity among top-scoring locations; and Statistical Uncertainty (SU) is a combination of SD and RS that provides a unified metric that generalizes across datasets and VPR methods without requiring validation data to select the optimal metric. All three metrics operate without additional model training, architectural modifications, or computationally expensive geometric verification. Comprehensive evaluation across nine state-of-the-art VPR methods and six benchmark datasets confirms that our metrics excel at discriminating between correct and incorrect VPR matches, and consistently outperform existing approaches while maintaining negligible computational overhead, making it deployable for real-time robotic applications across varied environmental conditions with improved precision-recall performance.
Authors:Agam Shah, Siddhant Sukhani, Huzaifa Pardawala, Saketh Budideti, Riya Bhadani, Rudra Gopal, Siddhartha Somani, Michael Galarnyk, Soungmin Lee, Arnav Hiray, Akshar Ravichandran, Eric Kim, Pranav Aluru, Joshua Zhang, Sebastian Jaskowski, Veer Guda, Meghaj Tarte, Liqin Ye, Spencer Gosden, Rutwik Routu, Rachel Yuh, Sloka Chava, Sahasra Chava, Dylan Patrick Kelly, Aiden Chiang, Harsit Mittal, Sudheer Chava
Title: Words That Unite The World: A Unified Framework for Deciphering Central Bank Communications Globally
Abstract:
Central banks around the world play a crucial role in maintaining economic stability. Deciphering policy implications in their communications is essential, especially as misinterpretations can disproportionately impact vulnerable populations. To address this, we introduce the World Central Banks (WCB) dataset, the most comprehensive monetary policy corpus to date, comprising over 380k sentences from 25 central banks across diverse geographic regions, spanning 28 years of historical data. After uniformly sampling 1k sentences per bank (25k total) across all available years, we annotate and review each sentence using dual annotators, disagreement resolutions, and secondary expert reviews. We define three tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation, with each sentence annotated for all three. We benchmark seven Pretrained Language Models (PLMs) and nine Large Language Models (LLMs) (Zero-Shot, Few-Shot, and with annotation guide) on these tasks, running 15,075 benchmarking experiments. We find that a model trained on aggregated data across banks significantly surpasses a model trained on an individual bank's data, confirming the principle "the whole is greater than the sum of its parts." Additionally, rigorous human evaluations, error analyses, and predictive tasks validate our framework's economic utility. Our artifacts are accessible through the HuggingFace and GitHub under the CC-BY-NC-SA 4.0 license.
Authors:Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, Yue Zhao
Title: DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is essential for ensuring the robustness of machine learning models by identifying samples that deviate from the training distribution. While traditional OOD detection has primarily focused on single-modality inputs, such as images, recent advances in multimodal models have demonstrated the potential of leveraging multiple modalities (e.g., video, optical flow, audio) to enhance detection performance. However, existing methods often overlook intra-class variability within in-distribution (ID) data, assuming that samples of the same class are perfectly cohesive and consistent. This assumption can lead to performance degradation, especially when prediction discrepancies are uniformly amplified across all samples. To address this issue, we propose Dynamic Prototype Updating (DPU), a novel plug-and-play framework for multimodal OOD detection that accounts for intra-class variations. Our method dynamically updates class center representations for each class by measuring the variance of similar samples within each batch, enabling adaptive adjustments. This approach allows us to amplify prediction discrepancies based on the updated class centers, thereby improving the model's robustness and generalization across different modalities. Extensive experiments on two tasks, five datasets, and nine base OOD algorithms demonstrate that DPU significantly improves OOD detection performance, setting a new state-of-the-art in multimodal OOD detection, with improvements of up to 80 percent in Far-OOD detection. To facilitate accessibility and reproducibility, our code is publicly available on GitHub.
Authors:Bo Ni, Yu Wang, Lu Cheng, Erik Blasch, Tyler Derr
Title: Towards Trustworthy Knowledge Graph Reasoning: An Uncertainty Aware Perspective
Abstract:
Recently, Knowledge Graphs (KGs) have been successfully coupled with Large Language Models (LLMs) to mitigate their hallucinations and enhance their reasoning capability, such as in KG-based retrieval-augmented frameworks. However, current KG-LLM frameworks lack rigorous uncertainty estimation, limiting their reliable deployment in high-stakes applications. Directly incorporating uncertainty quantification into KG-LLM frameworks presents challenges due to their complex architectures and the intricate interactions between the knowledge graph and language model components. To address this gap, we propose a new trustworthy KG-LLM framework, Uncertainty Aware Knowledge-Graph Reasoning (UAG), which incorporates uncertainty quantification into the KG-LLM framework. We design an uncertainty-aware multi-step reasoning framework that leverages conformal prediction to provide a theoretical guarantee on the prediction set. To manage the error rate of the multi-step process, we additionally introduce an error rate control module to adjust the error rate within the individual components. Extensive experiments show that our proposed UAG can achieve any pre-defined coverage rate while reducing the prediction set/interval size by 40% on average over the baselines.
Authors:Haozhou Xu, Dongxia Wu, Matteo Chinazzi, Ruijia Niu, Rose Yu, Yi-An Ma
Title: SimulRAG: Simulator-based RAG for Grounding LLMs in Long-form Scientific QA
Abstract:
Large language models (LLMs) show promise in solving scientific problems. They can help generate long-form answers for scientific questions, which are crucial for comprehensive understanding of complex phenomena that require detailed explanations spanning multiple interconnected concepts and evidence. However, LLMs often suffer from hallucination, especially in the challenging task of long-form scientific question answering. Retrieval-Augmented Generation (RAG) approaches can ground LLMs by incorporating external knowledge sources to improve trustworthiness. In this context, scientific simulators, which play a vital role in validating hypotheses, offer a particularly promising retrieval source to mitigate hallucination and enhance answer factuality. However, existing RAG approaches cannot be directly applied for scientific simulation-based retrieval due to two fundamental challenges: how to retrieve from scientific simulators, and how to efficiently verify and update long-form answers. To overcome these challenges, we propose the simulator-based RAG framework (SimulRAG) and provide a long-form scientific QA benchmark covering climate science and epidemiology with ground truth verified by both simulations and human annotators. In this framework, we propose a generalized simulator retrieval interface to transform between textual and numerical modalities. We further design a claim-level generation method that utilizes uncertainty estimation scores and simulator boundary assessment (UE+SBA) to efficiently verify and update claims. Extensive experiments demonstrate SimulRAG outperforms traditional RAG baselines by 30.4% in informativeness and 16.3% in factuality. UE+SBA further improves efficiency and quality for claim-level generation.
Authors:Weihao Xuan, Qingcheng Zeng, Heli Qi, Junjue Wang, Naoto Yokoya
Title: Seeing is Believing, but How Much? A Comprehensive Analysis of Verbalized Calibration in Vision-Language Models
Abstract:
Uncertainty quantification is essential for assessing the reliability and trustworthiness of modern AI systems. Among existing approaches, verbalized uncertainty, where models express their confidence through natural language, has emerged as a lightweight and interpretable solution in large language models (LLMs). However, its effectiveness in vision-language models (VLMs) remains insufficiently studied. In this work, we conduct a comprehensive evaluation of verbalized confidence in VLMs, spanning three model categories, four task domains, and three evaluation scenarios. Our results show that current VLMs often display notable miscalibration across diverse tasks and settings. Notably, visual reasoning models (i.e., thinking with images) consistently exhibit better calibration, suggesting that modality-specific reasoning is critical for reliable uncertainty estimation. To further address calibration challenges, we introduce Visual Confidence-Aware Prompting, a two-stage prompting strategy that improves confidence alignment in multimodal settings. Overall, our study highlights the inherent miscalibration in VLMs across modalities. More broadly, our findings underscore the fundamental importance of modality alignment and model faithfulness in advancing reliable multimodal systems.
Authors:Yining Jiao, Sreekalyani Bhamidi, Huaizhi Qu, Carlton Zdanski, Julia Kimbell, Andrew Prince, Cameron Worden, Samuel Kirse, Christopher Rutter, Benjamin Shields, William Dunn, Jisan Mahmud, Tianlong Chen, Marc Niethammer
Title: LucidAtlas$: Learning Uncertainty-Aware, Covariate-Disentangled, Individualized Atlas Representations
Abstract:
The goal of this work is to develop principled techniques to extract information from high dimensional data sets with complex dependencies in areas such as medicine that can provide insight into individual as well as population level variation. We develop $\texttt{LucidAtlas}$, an approach that can represent spatially varying information, and can capture the influence of covariates as well as population uncertainty. As a versatile atlas representation, $\texttt{LucidAtlas}$ offers robust capabilities for covariate interpretation, individualized prediction, population trend analysis, and uncertainty estimation, with the flexibility to incorporate prior knowledge. Additionally, we discuss the trustworthiness and potential risks of neural additive models for analyzing dependent covariates and then introduce a marginalization approach to explain the dependence of an individual predictor on the models' response (the atlas). To validate our method, we demonstrate its generalizability on two medical datasets. Our findings underscore the critical role of by-construction interpretable models in advancing scientific discovery. Our code will be publicly available upon acceptance.
Authors:Francisco Caetano, Christiaan Viviers, Luis A. Zavala-Mondragón, Peter H. N. de With, Fons van der Sommen
Title: DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
Authors:Baoshan Song, Penggao Yan, Xiao Xia, Yihan Zhong, Weisong Wen, Li-Ta Hsu
Title: Two stage GNSS outlier detection for factor graph optimization based GNSS-RTK/INS/odometer fusion
Abstract:
Reliable GNSS positioning in complex environments remains a critical challenge due to non-line-of-sight (NLOS) propagation, multipath effects, and frequent signal blockages. These effects can easily introduce large outliers into the raw pseudo-range measurements, which significantly degrade the performance of global navigation satellite system (GNSS) real-time kinematic (RTK) positioning and limit the effectiveness of tightly coupled GNSS-based integrated navigation system. To address this issue, we propose a two-stage outlier detection method and apply the method in a tightly coupled GNSS-RTK, inertial navigation system (INS), and odometer integration based on factor graph optimization (FGO). In the first stage, Doppler measurements are employed to detect pseudo-range outliers in a GNSS-only manner, since Doppler is less sensitive to multipath and NLOS effects compared with pseudo-range, making it a more stable reference for detecting sudden inconsistencies. In the second stage, pre-integrated inertial measurement units (IMU) and odometer constraints are used to generate predicted double-difference pseudo-range measurements, which enable a more refined identification and rejection of remaining outliers. By combining these two complementary stages, the system achieves improved robustness against both gross pseudo-range errors and degraded satellite measuring quality. The experimental results demonstrate that the two-stage detection framework significantly reduces the impact of pseudo-range outliers, and leads to improved positioning accuracy and consistency compared with representative baseline approaches. In the deep urban canyon test, the outlier mitigation method has limits the RMSE of GNSS-RTK/INS/odometer fusion from 0.52 m to 0.30 m, with 42.3% improvement.
Authors:Mingdong Wu, Long Yang, Jin Liu, Weiyao Huang, Lehong Wu, Zelin Chen, Daolin Ma, Hao Dong
Title: UniTac2Pose: A Unified Approach Learned in Simulation for Category-level Visuotactile In-hand Pose Estimation
Abstract:
Accurate estimation of the in-hand pose of an object based on its CAD model is crucial in both industrial applications and everyday tasks, ranging from positioning workpieces and assembling components to seamlessly inserting devices like USB connectors. While existing methods often rely on regression, feature matching, or registration techniques, achieving high precision and generalizability to unseen CAD models remains a significant challenge. In this paper, we propose a novel three-stage framework for in-hand pose estimation. The first stage involves sampling and pre-ranking pose candidates, followed by iterative refinement of these candidates in the second stage. In the final stage, post-ranking is applied to identify the most likely pose candidates. These stages are governed by a unified energy-based diffusion model, which is trained solely on simulated data. This energy model simultaneously generates gradients to refine pose estimates and produces an energy scalar that quantifies the quality of the pose estimates. Additionally, borrowing the idea from the computer vision domain, we incorporate a render-compare architecture within the energy-based score network to significantly enhance sim-to-real performance, as demonstrated by our ablation studies. We conduct comprehensive experiments to show that our method outperforms conventional baselines based on regression, matching, and registration techniques, while also exhibiting strong intra-category generalization to previously unseen CAD models. Moreover, our approach integrates tactile object pose estimation, pose tracking, and uncertainty estimation into a unified framework, enabling robust performance across a variety of real-world conditions.
Authors:Andreas Lolos, Stergios Christodoulidis, Maria Vakalopoulou, Jose Dolz, Aris Moustakas
Title: SGPMIL: Sparse Gaussian Process Multiple Instance Learning
Abstract:
Multiple Instance Learning (MIL) offers a natural solution for settings where only coarse, bag-level labels are available, without having access to instance-level annotations. This is usually the case in digital pathology, which consists of gigapixel sized images. While deterministic attention-based MIL approaches achieve strong bag-level performance, they often overlook the uncertainty inherent in instance relevance. In this paper, we address the lack of uncertainty quantification in instance-level attention scores by introducing \textbf{SGPMIL}, a new probabilistic attention-based MIL framework grounded in Sparse Gaussian Processes (SGP). By learning a posterior distribution over attention scores, SGPMIL enables principled uncertainty estimation, resulting in more reliable and calibrated instance relevance maps. Our approach not only preserves competitive bag-level performance but also significantly improves the quality and interpretability of instance-level predictions under uncertainty. SGPMIL extends prior work by introducing feature scaling in the SGP predictive mean function, leading to faster training, improved efficiency, and enhanced instance-level performance. Extensive experiments on multiple well-established digital pathology datasets highlight the effectiveness of our approach across both bag- and instance-level evaluations. Our code will be made publicly available.
Authors:Pablo Morales-Álvarez, Stergios Christodoulidis, Maria Vakalopoulou, Pablo Piantanida, Jose Dolz
Title: BayesAdapter: enhanced uncertainty estimation in CLIP few-shot adaptation
Abstract:
The emergence of large pre-trained vision-language models (VLMs) represents a paradigm shift in machine learning, with unprecedented results in a broad span of visual recognition tasks. CLIP, one of the most popular VLMs, has exhibited remarkable zero-shot and transfer learning capabilities in classification. To transfer CLIP to downstream tasks, adapters constitute a parameter-efficient approach that avoids backpropagation through the large model (unlike related prompt learning methods). However, CLIP adapters have been developed to target discriminative performance, and the quality of their uncertainty estimates has been overlooked. In this work we show that the discriminative performance of state-of-the-art CLIP adapters does not always correlate with their uncertainty estimation capabilities, which are essential for a safe deployment in real-world scenarios. We also demonstrate that one of such adapters is obtained through MAP inference from a more general probabilistic framework. Based on this observation we introduce BayesAdapter, which leverages Bayesian inference to estimate a full probability distribution instead of a single point, better capturing the variability inherent in the parameter space. In a comprehensive empirical evaluation we show that our approach obtains high quality uncertainty estimates in the predictions, standing out in calibration and selective classification. Our code will be publicly available upon acceptance of the paper.
Authors:Nabeel Seedat, Caterina Tozzi, Andrea Hita Ardiaca, Mihaela van der Schaar, James Weatherall, Adam Taylor
Title: Unlocking Historical Clinical Trial Data with ALIGN: A Compositional Large Language Model System for Medical Coding
Abstract:
The reuse of historical clinical trial data has significant potential to accelerate medical research and drug development. However, interoperability challenges, particularly with missing medical codes, hinders effective data integration across studies. While Large Language Models (LLMs) offer a promising solution for automated coding without labeled data, current approaches face challenges on complex coding tasks. We introduce ALIGN, a novel compositional LLM-based system for automated, zero-shot medical coding. ALIGN follows a three-step process: (1) diverse candidate code generation; (2) self-evaluation of codes and (3) confidence scoring and uncertainty estimation enabling human deferral to ensure reliability. We evaluate ALIGN on harmonizing medication terms into Anatomical Therapeutic Chemical (ATC) and medical history terms into Medical Dictionary for Regulatory Activities (MedDRA) codes extracted from 22 immunology trials. ALIGN outperformed the LLM baselines, while also providing capabilities for trustworthy deployment. For MedDRA coding, ALIGN achieved high accuracy across all levels, matching RAG and excelling at the most specific levels (87-90% for HLGT). For ATC coding, ALIGN demonstrated superior performance, particularly at lower hierarchy levels (ATC Level 4), with 72-73% overall accuracy and 86-89% accuracy for common medications, outperforming baselines by 7-22%. ALIGN's uncertainty-based deferral improved accuracy by 17% to 90% accuracy with 30% deferral, notably enhancing performance on uncommon medications. ALIGN achieves this cost-efficiently at \$0.0007 and \$0.02 per code for GPT-4o-mini and GPT-4o, reducing barriers to clinical adoption. ALIGN advances automated medical coding for clinical trial data, contributing to enhanced data interoperability and reusability, positioning it as a promising tool to improve clinical research and accelerate drug development.
Authors:Fabian Bongratz, Markus Karmann, Adrian Holz, Moritz Bonhoeffer, Viktor Neumaier, Sarah Deli, Benita Schmitz-Koep, Claus Zimmer, Christian Sorg, Melissa Thalhammer, Dennis M Hedderich, Christian Wachinger
Title: MLV$^2$-Net: Rater-Based Majority-Label Voting for Consistent Meningeal Lymphatic Vessel Segmentation
Abstract:
Meningeal lymphatic vessels (MLVs) are responsible for the drainage of waste products from the human brain. An impairment in their functionality has been associated with aging as well as brain disorders like multiple sclerosis and Alzheimer's disease. However, MLVs have only recently been described for the first time in magnetic resonance imaging (MRI), and their ramified structure renders manual segmentation particularly difficult. Further, as there is no consistent notion of their appearance, human-annotated MLV structures contain a high inter-rater variability that most automatic segmentation methods cannot take into account. In this work, we propose a new rater-aware training scheme for the popular nnU-Net model, and we explore rater-based ensembling strategies for accurate and consistent segmentation of MLVs. This enables us to boost nnU-Net's performance while obtaining explicit predictions in different annotation styles and a rater-based uncertainty estimation. Our final model, MLV$^2$-Net, achieves a Dice similarity coefficient of 0.806 with respect to the human reference standard. The model further matches the human inter-rater reliability and replicates age-related associations with MLV volume.
Authors:Mykyta Ielanskyi, Kajetan Schweighofer, Lukas Aichberger, Sepp Hochreiter
Title: Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Abstract:
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
Authors:Junjie Li, Kong Aik Lee, Duc-Tuan Truong, Tianchi Liu, Man-Wai Mak
Title: Xi+: Uncertainty Supervision for Robust Speaker Embedding
Abstract:
There are various factors that can influence the performance of speaker recognition systems, such as emotion, language and other speaker-related or context-related variations. Since individual speech frames do not contribute equally to the utterance-level representation, it is essential to estimate the importance or reliability of each frame. The xi-vector model addresses this by assigning different weights to frames based on uncertainty estimation. However, its uncertainty estimation model is implicitly trained through classification loss alone and does not consider the temporal relationships between frames, which may lead to suboptimal supervision. In this paper, we propose an improved architecture, xi+. Compared to xi-vector, xi+ incorporates a temporal attention module to capture frame-level uncertainty in a context-aware manner. In addition, we introduce a novel loss function, Stochastic Variance Loss, which explicitly supervises the learning of uncertainty. Results demonstrate consistent performance improvements of about 10\% on the VoxCeleb1-O set and 11\% on the NIST SRE 2024 evaluation set.
Authors:Junxiao Xue, Xiaozhen Liu, Jie Wang, Xuecheng Wu, Bin Wu
Title: A Trustworthy Method for Multimodal Emotion Recognition
Abstract:
Existing emotion recognition methods mainly focus on enhancing performance by employing complex deep models, typically resulting in significantly higher model complexity. Although effective, it is also crucial to ensure the reliability of the final decision, especially for noisy, corrupted and out-of-distribution data. To this end, we propose a novel emotion recognition method called trusted emotion recognition (TER), which utilizes uncertainty estimation to calculate the confidence value of predictions. TER combines the results from multiple modalities based on their confidence values to output the trusted predictions. We also provide a new evaluation criterion to assess the reliability of predictions. Specifically, we incorporate trusted precision and trusted recall to determine the trusted threshold and formulate the trusted Acc. and trusted F1 score to evaluate the model's trusted performance. The proposed framework combines the confidence module that accordingly endows the model with reliability and robustness against possible noise or corruption. The extensive experimental results validate the effectiveness of our proposed model. The TER achieves state-of-the-art performance on the Music-video, achieving 82.40% Acc. In terms of trusted performance, TER outperforms other methods on the IEMOCAP and Music-video, achieving trusted F1 scores of 0.7511 and 0.9035, respectively.
Authors:Pinxuan Li, Bing Cao, Changqing Zhang, Qinghua Hu
Title: Generalized Few-Shot Out-of-Distribution Detection
Abstract:
Few-shot Out-of-Distribution (OOD) detection has emerged as a critical research direction in machine learning for practical deployment. Most existing Few-shot OOD detection methods suffer from insufficient generalization capability for the open world. Due to the few-shot learning paradigm, the OOD detection ability is often overfit to the limited training data itself, thus degrading the performance on generalized data and performing inconsistently across different scenarios. To address this challenge, we proposed a Generalized Few-shot OOD Detection (GOOD) framework, which empowers the general knowledge of the OOD detection model with an auxiliary General Knowledge Model (GKM), instead of directly learning from few-shot data. We proceed to reveal the few-shot OOD detection from a generalization perspective and theoretically derive the Generality-Specificity balance (GS-balance) for OOD detection, which provably reduces the upper bound of generalization error with a general knowledge model. Accordingly, we propose a Knowledge Dynamic Embedding (KDE) mechanism to adaptively modulate the guidance of general knowledge. KDE dynamically aligns the output distributions of the OOD detection model to the general knowledge model based on the Generalized Belief (G-Belief) of GKM, thereby boosting the GS-balance. Experiments on real-world OOD benchmarks demonstrate our superiority. Codes will be available.
Authors:Lemar Abdi, Francisco Caetano, Amaan Valiuddin, Christiaan Viviers, Hamdi Joudeh, Fons van der Sommen
Title: Out-of-Distribution Detection in Medical Imaging via Diffusion Trajectories
Abstract:
In medical imaging, unsupervised out-of-distribution (OOD) detection offers an attractive approach for identifying pathological cases with extremely low incidence rates. In contrast to supervised methods, OOD-based approaches function without labels and are inherently robust to data imbalances. Current generative approaches often rely on likelihood estimation or reconstruction error, but these methods can be computationally expensive, unreliable, and require retraining if the inlier data changes. These limitations hinder their ability to distinguish nominal from anomalous inputs efficiently, consistently, and robustly. We propose a reconstruction-free OOD detection method that leverages the forward diffusion trajectories of a Stein score-based denoising diffusion model (SBDDM). By capturing trajectory curvature via the estimated Stein score, our approach enables accurate anomaly scoring with only five diffusion steps. A single SBDDM pre-trained on a large, semantically aligned medical dataset generalizes effectively across multiple Near-OOD and Far-OOD benchmarks, achieving state-of-the-art performance while drastically reducing computational cost during inference. Compared to existing methods, SBDDM achieves a relative improvement of up to 10.43% and 18.10% for Near-OOD and Far-OOD detection, making it a practical building block for real-time, reliable computer-aided diagnosis.
Authors:Zeyun Deng, Jasorsi Ghosh, Fiona Xie, Yuzhe Lu, Katia Sycara, Joseph Campbell
Title: Energy-Based Transfer for Reinforcement Learning
Abstract:
Reinforcement learning algorithms often suffer from poor sample efficiency, making them challenging to apply in multi-task or continual learning settings. Efficiency can be improved by transferring knowledge from a previously trained teacher policy to guide exploration in new but related tasks. However, if the new task sufficiently differs from the teacher's training task, the transferred guidance may be sub-optimal and bias exploration toward low-reward behaviors. We propose an energy-based transfer learning method that uses out-of-distribution detection to selectively issue guidance, enabling the teacher to intervene only in states within its training distribution. We theoretically show that energy scores reflect the teacher's state-visitation density and empirically demonstrate improved sample efficiency and performance across both single-task and multi-task settings.
Authors:David Bani-Harouni, Chantal Pellegrini, Ege Özsoy, Matthias Keicher, Nassir Navab
Title: Language Agents for Hypothesis-driven Clinical Decision Making with Reinforcement Learning
Abstract:
Clinical decision-making is a dynamic, interactive, and cyclic process where doctors have to repeatedly decide on which clinical action to perform and consider newly uncovered information for diagnosis and treatment. Large Language Models (LLMs) have the potential to support clinicians in this process, however, most applications of LLMs in clinical decision support suffer from one of two limitations: Either they assume the unrealistic scenario of immediate availability of all patient information and do not model the interactive and iterative investigation process, or they restrict themselves to the limited "out-of-the-box" capabilities of large pre-trained models without performing task-specific training. In contrast to this, we propose to model clinical decision-making for diagnosis with a hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges towards a diagnosis via repeatedly requesting and interpreting relevant tests. Using a hybrid training paradigm combining supervised and reinforcement learning, we train LA-CDM with three objectives targeting critical aspects of clinical decision-making: accurate hypothesis generation, hypothesis uncertainty estimation, and efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-world dataset covering four abdominal diseases containing various clinical tests and show the benefit of explicitly training clinical decision-making for increasing diagnostic performance and efficiency.
Authors:Yifeng Yang, Lin Zhu, Zewen Sun, Hengyu Liu, Qinying Gu, Nanyang Ye
Title: OODD: Test-time Out-of-Distribution Detection with Dynamic Dictionary
Abstract:
Out-of-distribution (OOD) detection remains challenging for deep learning models, particularly when test-time OOD samples differ significantly from training outliers. We propose OODD, a novel test-time OOD detection method that dynamically maintains and updates an OOD dictionary without fine-tuning. Our approach leverages a priority queue-based dictionary that accumulates representative OOD features during testing, combined with an informative inlier sampling strategy for in-distribution (ID) samples. To ensure stable performance during early testing, we propose a dual OOD stabilization mechanism that leverages strategically generated outliers derived from ID data. To our best knowledge, extensive experiments on the OpenOOD benchmark demonstrate that OODD significantly outperforms existing methods, achieving a 26.0% improvement in FPR95 on CIFAR-100 Far OOD detection compared to the state-of-the-art approach. Furthermore, we present an optimized variant of the KNN-based OOD detection framework that achieves a 3x speedup while maintaining detection performance.
Authors:Fusang Wang, Hala Djeghim, Nathan Piasco, Moussab Bennehar, Luis Roldão, Dzmitry Tsishkou
Title: CoStruction: Conjoint radiance field optimization for urban scene reconStruction with limited image overlap
Abstract:
Reconstructing the surrounding surface geometry from recorded driving sequences poses a significant challenge due to the limited image overlap and complex topology of urban environments. SoTA neural implicit surface reconstruction methods often struggle in such setting, either failing due to small vision overlap or exhibiting suboptimal performance in accurately reconstructing both the surface and fine structures. To address these limitations, we introduce CoStruction, a novel hybrid implicit surface reconstruction method tailored for large driving sequences with limited camera overlap. CoStruction leverages cross-representation uncertainty estimation to filter out ambiguous geometry caused by limited observations. Our method performs joint optimization of both radiance fields in addition to guided sampling achieving accurate reconstruction of large areas along with fine structures in complex urban scenarios. Extensive evaluation on major driving datasets demonstrates the superiority of our approach in reconstructing large driving sequences with limited image overlap, outperforming concurrent SoTA methods.
Authors:Lukas Aichberger, Kajetan Schweighofer, Sepp Hochreiter
Title: Rethinking Uncertainty Estimation in Natural Language Generation
Abstract:
Large Language Models (LLMs) are increasingly employed in real-world applications, driving the need to evaluate the trustworthiness of their generated text. To this end, reliable uncertainty estimation is essential. Since current LLMs generate text autoregressively through a stochastic process, the same prompt can lead to varying outputs. Consequently, leading uncertainty estimation methods generate and analyze multiple output sequences to determine the LLM's uncertainty. However, generating output sequences is computationally expensive, making these methods impractical at scale. In this work, we inspect the theoretical foundations of the leading methods and explore new directions to enhance their computational efficiency. Building on the framework of proper scoring rules, we find that the negative log-likelihood of the most likely output sequence constitutes a theoretically grounded uncertainty measure. To approximate this alternative measure, we propose G-NLL, which has the advantage of being obtained using only a single output sequence generated by greedy decoding. This makes uncertainty estimation more efficient and straightforward, while preserving theoretical rigor. Empirical results demonstrate that G-NLL achieves state-of-the-art performance across various LLMs and tasks. Our work lays the foundation for efficient and reliable uncertainty estimation in natural language generation, challenging the necessity of more computationally involved methods currently leading the field.
Authors:G M Shahariar, Ali Nazari, Erfan Shayegani, Nael Abu-Ghazaleh
Title: Modeling Hierarchical Thinking in Large Reasoning Models
Abstract:
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities when they generate step-by-step solutions, known as chain-of-thought (CoT) reasoning. When trained to using chain-of-thought reasoning examples, the resulting models (called Large Reasoning Models, or LRMs) appear to learn hierarchical thinking strategies similar to those used by humans. However, understanding LRMs emerging reasoning capabilities remains a difficult open problem, with many potential important applications including improving training and understanding robustness. In this paper, we adopt a memoryless Finite State Machine formulation to approximate LRM's emerging hierarchical reasoning dynamics as a structured, interpretable abstraction. We identify a small set of discrete reasoning states including - initialization, deduction, augmentation-strategy, uncertainty-estimation, backtracking, and final-conclusion that capture the high-level states present in the model's reasoning process. By annotating each step of a model's CoT with these states, we can represent the reasoning trajectory as a transition sequence through the state graph. This FSM formulation provides a systematic way to analyze, interpret and visualize how different models approach problems. We describe the FSM model, provide examples of CoT annotations under this scheme, and discuss how it can shed light on differences between available models in their approach to reasoning. Our results demonstrate that this FSM-based analysis reveals distinct reasoning patterns and potential shortcomings, offering a new lens to evaluate and improve LLM reasoning.
Authors:Randall Balestriero, Nicolas Ballas, Mike Rabbat, Yann LeCun
Title: Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Abstract:
Joint Embedding Predictive Architectures (JEPAs) learn representations able to solve numerous downstream tasks out-of-the-box. JEPAs combine two objectives: (i) a latent-space prediction term, i.e., the representation of a slightly perturbed sample must be predictable from the original sample's representation, and (ii) an anti-collapse term, i.e., not all samples should have the same representation. While (ii) is often considered as an obvious remedy to representation collapse, we uncover that JEPAs' anti-collapse term does much more--it provably estimates the data density. In short, any successfully trained JEPA can be used to get sample probabilities, e.g., for data curation, outlier detection, or simply for density estimation. Our theoretical finding is agnostic of the dataset and architecture used--in any case one can compute the learned probabilities of sample $x$ efficiently and in closed-form using the model's Jacobian matrix at $x$. Our findings are empirically validated across datasets (synthetic, controlled, and Imagenet) and across different Self Supervised Learning methods falling under the JEPA family (I-JEPA and DINOv2) and on multimodal models, such as MetaCLIP. We denote the method extracting the JEPA learned density as {\bf JEPA-SCORE}.
Authors:Rohit Mohan, Julia Hindel, Florian Drews, Claudius Gläser, Daniele Cattaneo, Abhinav Valada
Title: Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Abstract:
Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
Authors:Rui Li, Jing Long, Muge Qi, Heming Xia, Lei Sha, Peiyi Wang, Zhifang Sui
Title: Towards Harmonized Uncertainty Estimation for Large Language Models
Abstract:
To facilitate robust and trustworthy deployment of large language models (LLMs), it is essential to quantify the reliability of their generations through uncertainty estimation. While recent efforts have made significant advancements by leveraging the internal logic and linguistic features of LLMs to estimate uncertainty scores, our empirical analysis highlights the pitfalls of these methods to strike a harmonized estimation between indication, balance, and calibration, which hinders their broader capability for accurate uncertainty estimation. To address this challenge, we propose CUE (Corrector for Uncertainty Estimation): A straightforward yet effective method that employs a lightweight model trained on data aligned with the target LLM's performance to adjust uncertainty scores. Comprehensive experiments across diverse models and tasks demonstrate its effectiveness, which achieves consistent improvements of up to 60% over existing methods.
Authors:Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy A Miller, Danielle Bitterman, Guanhua Chen, Anoop Mayampurath, Matthew Churpek, Majid Afshar
Title: Position Paper On Diagnostic Uncertainty Estimation from Large Language Models: Next-Word Probability Is Not Pre-test Probability
Abstract:
Large language models (LLMs) are being explored for diagnostic decision support, yet their ability to estimate pre-test probabilities, vital for clinical decision-making, remains limited. This study evaluates two LLMs, Mistral-7B and Llama3-70B, using structured electronic health record data on three diagnosis tasks. We examined three current methods of extracting LLM probability estimations and revealed their limitations. We aim to highlight the need for improved techniques in LLM confidence estimation.
Authors:Hsiu-Yuan Huang, Yutong Yang, Zhaoxi Zhang, Sanwoo Lee, Yunfang Wu
Title: A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice
Abstract:
As large language models (LLMs) continue to evolve, understanding and quantifying the uncertainty in their predictions is critical for enhancing application credibility. However, the existing literature relevant to LLM uncertainty estimation often relies on heuristic approaches, lacking systematic classification of the methods. In this survey, we clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions. On this basis, we integrate theoretical perspectives, including Bayesian inference, information theory, and ensemble strategies, to categorize various classes of uncertainty estimation methods derived from heuristic approaches. Additionally, we address challenges that arise when applying these methods to LLMs. We also explore techniques for incorporating uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification. Our review provides insights into uncertainty estimation from both definitional and theoretical angles, contributing to a comprehensive understanding of this critical aspect in LLMs. We aim to inspire the development of more reliable and effective uncertainty estimation approaches for LLMs in real-world scenarios.
Authors:Ao Ke, Wenlong Chen, Chuanwen Feng, Yukun Cao, Xike Xie, S. Kevin Zhou, Lei Feng
Title: Prototype-based Optimal Transport for Out-of-Distribution Detection
Abstract:
Detecting Out-of-Distribution (OOD) inputs is crucial for improving the reliability of deep neural networks in the real-world deployment. In this paper, inspired by the inherent distribution shift between ID and OOD data, we propose a novel method that leverages optimal transport to measure the distribution discrepancy between test inputs and ID prototypes. The resulting transport costs are used to quantify the individual contribution of each test input to the overall discrepancy, serving as a desirable measure for OOD detection. To address the issue that solely relying on the transport costs to ID prototypes is inadequate for identifying OOD inputs closer to ID data, we generate virtual outliers to approximate the OOD region via linear extrapolation. By combining the transport costs to ID prototypes with the costs to virtual outliers, the detection of OOD data near ID data is emphasized, thereby enhancing the distinction between ID and OOD inputs. Experiments demonstrate the superiority of our method over state-of-the-art methods.
Authors:Rahul Sengupta, Nooshin Yousefzadeh, Manav Sanghvi, Yash Ranjan, Anand Rangarajan, Sanjay Ranka, Yashaswi Karnati, Jeremy Dilmore, Tushar Patel, Ryan Casburn
Title: BigSUMO: A Scalable Framework for Big Data Traffic Analytics and Parallel Simulation
Abstract:
With growing urbanization worldwide, efficient management of traffic infrastructure is critical for transportation agencies and city planners. It is essential to have tools that help analyze large volumes of stored traffic data and make effective interventions. To address this need, we present ``BigSUMO", an end-to-end, scalable, open-source framework for analytics, interruption detection, and parallel traffic simulation. Our system ingests high-resolution loop detector and signal state data, along with sparse probe trajectory data. It first performs descriptive analytics and detects potential interruptions. It then uses the SUMO microsimulator for prescriptive analytics, testing hundreds of what-if scenarios to optimize traffic performance. The modular design allows integration of different algorithms for data processing and outlier detection. Built using open-source software and libraries, the pipeline is cost-effective, scalable, and easy to deploy. We hope BigSUMO will be a valuable aid in developing smart city mobility solutions.
Authors:Nimeshika Udayangani, Hadi M. Dolatabadi, Sarah Erfani, Christopher Leckie
Title: Exploiting Inter-Sample Information for Long-tailed Out-of-Distribution Detection
Abstract:
Detecting out-of-distribution (OOD) data is essential for safe deployment of deep neural networks (DNNs). This problem becomes particularly challenging in the presence of long-tailed in-distribution (ID) datasets, often leading to high false positive rates (FPR) and low tail-class ID classification accuracy. In this paper, we demonstrate that exploiting inter-sample relationships using a graph-based representation can significantly improve OOD detection in long-tailed recognition of vision datasets. To this end, we use the feature space of a pre-trained model to initialize our graph structure. We account for the differences between the activation layer distribution of the pre-training vs. training data, and actively introduce Gaussianization to alleviate any deviations from a standard normal distribution in the activation layers of the pre-trained model. We then refine this initial graph representation using graph convolutional networks (GCNs) to arrive at a feature space suitable for long-tailed OOD detection. This leads us to address the inferior performance observed in ID tail-classes within existing OOD detection methods. Experiments over three benchmarks CIFAR10-LT, CIFAR100-LT, and ImageNet-LT demonstrate that our method outperforms the state-of-the-art approaches by a large margin in terms of FPR and tail-class ID classification accuracy.
Authors:Zhixia He, Chen Zhao, Minglai Shao, Xintao Wu, Xujiang Zhao, Dong Li, Qin Tian, Linlin Yu
Title: Out-of-Distribution Detection with Positive and Negative Prompt Supervision Using Large Language Models
Abstract:
Out-of-distribution (OOD) detection is committed to delineating the classification boundaries between in-distribution (ID) and OOD images. Recent advances in vision-language models (VLMs) have demonstrated remarkable OOD detection performance by integrating both visual and textual modalities. In this context, negative prompts are introduced to emphasize the dissimilarity between image features and prompt content. However, these prompts often include a broad range of non-ID features, which may result in suboptimal outcomes due to the capture of overlapping or misleading information. To address this issue, we propose Positive and Negative Prompt Supervision, which encourages negative prompts to capture inter-class features and transfers this semantic knowledge to the visual modality to enhance OOD detection performance. Our method begins with class-specific positive and negative prompts initialized by large language models (LLMs). These prompts are subsequently optimized, with positive prompts focusing on features within each class, while negative prompts highlight features around category boundaries. Additionally, a graph-based architecture is employed to aggregate semantic-aware supervision from the optimized prompt representations and propagate it to the visual branch, thereby enhancing the performance of the energy-based OOD detector. Extensive experiments on two benchmarks, CIFAR-100 and ImageNet-1K, across eight OOD datasets and five different LLMs, demonstrate that our method outperforms state-of-the-art baselines.
Authors:Mingzhi Lin, Teng Huang, Han Ding, Cui Zhao, Fei Wang, Ge Wang, Wei Xi
Title: Active Domain Adaptation for mmWave-based HAR via Renyi Entropy-based Uncertainty Estimation
Abstract:
Human Activity Recognition (HAR) using mmWave radar provides a non-invasive alternative to traditional sensor-based methods but suffers from domain shift, where model performance declines in new users, positions, or environments. To address this, we propose mmADA, an Active Domain Adaptation (ADA) framework that efficiently adapts mmWave-based HAR models with minimal labeled data. mmADA enhances adaptation by introducing Renyi Entropy-based uncertainty estimation to identify and label the most informative target samples. Additionally, it leverages contrastive learning and pseudo-labeling to refine feature alignment using unlabeled data. Evaluations with a TI IWR1443BOOST radar across multiple users, positions, and environments show that mmADA achieves over 90% accuracy in various cross-domain settings. Comparisons with five baselines confirm its superior adaptation performance, while further tests on unseen users, environments, and two additional open-source datasets validate its robustness and generalization.
Authors:Danny Wang, Ruihong Qiu, Guangdong Bai, Zi Huang
Title: Text Meets Topology: Rethinking Out-of-distribution Detection in Text-Rich Networks
Abstract:
Out-of-distribution (OOD) detection remains challenging in text-rich networks, where textual features intertwine with topological structures. Existing methods primarily address label shifts or rudimentary domain-based splits, overlooking the intricate textual-structural diversity. For example, in social networks, where users represent nodes with textual features (name, bio) while edges indicate friendship status, OOD may stem from the distinct language patterns between bot and normal users. To address this gap, we introduce the TextTopoOOD framework for evaluating detection across diverse OOD scenarios: (1) attribute-level shifts via text augmentations and embedding perturbations; (2) structural shifts through edge rewiring and semantic connections; (3) thematically-guided label shifts; and (4) domain-based divisions. Furthermore, we propose TNT-OOD to model the complex interplay between Text aNd Topology using: 1) a novel cross-attention module to fuse local structure into node-level text representations, and 2) a HyperNetwork to generate node-specific transformation parameters. This aligns topological and semantic features of ID nodes, enhancing ID/OOD distinction across structural and textual shifts. Experiments on 11 datasets across four OOD scenarios demonstrate the nuanced challenge of TextTopoOOD for evaluating OOD detection in text-rich networks.
Authors:Jeng-Lin Li, Ming-Ching Chang, Wei-Chao Chen
Title: Sharpness-Aware Geometric Defense for Robust Out-Of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection ensures safe and reliable model deployment. Contemporary OOD algorithms using geometry projection can detect OOD or adversarial samples from clean in-distribution (ID) samples. However, this setting regards adversarial ID samples as OOD, leading to incorrect OOD predictions. Existing efforts on OOD detection with ID and OOD data under attacks are minimal. In this paper, we develop a robust OOD detection method that distinguishes adversarial ID samples from OOD ones. The sharp loss landscape created by adversarial training hinders model convergence, impacting the latent embedding quality for OOD score calculation. Therefore, we introduce a {\bf Sharpness-aware Geometric Defense (SaGD)} framework to smooth out the rugged adversarial loss landscape in the projected latent geometry. Enhanced geometric embedding convergence enables accurate ID data characterization, benefiting OOD detection against adversarial attacks. We use Jitter-based perturbation in adversarial training to extend the defense ability against unseen attacks. Our SaGD framework significantly improves FPR and AUC over the state-of-the-art defense approaches in differentiating CIFAR-100 from six other OOD datasets under various attacks. We further examine the effects of perturbations at various adversarial training levels, revealing the relationship between the sharp loss landscape and adversarial OOD detection.
Authors:Dominik Fuchsgruber, Tom Wollschläger, Johannes Bordne, Stephan Günnemann
Title: Uncertainty Estimation for Heterophilic Graphs Through the Lens of Information Theory
Abstract:
While uncertainty estimation for graphs recently gained traction, most methods rely on homophily and deteriorate in heterophilic settings. We address this by analyzing message passing neural networks from an information-theoretic perspective and developing a suitable analog to data processing inequality to quantify information throughout the model's layers. In contrast to non-graph domains, information about the node-level prediction target can increase with model depth if a node's features are semantically different from its neighbors. Therefore, on heterophilic graphs, the latent embeddings of an MPNN each provide different information about the data distribution - different from homophilic settings. This reveals that considering all node representations simultaneously is a key design principle for epistemic uncertainty estimation on graphs beyond homophily. We empirically confirm this with a simple post-hoc density estimator on the joint node embedding space that provides state-of-the-art uncertainty on heterophilic graphs. At the same time, it matches prior work on homophilic graphs without explicitly exploiting homophily through post-processing.
Authors:Tunyu Zhang, Haizhou Shi, Yibin Wang, Hengyi Wang, Xiaoxiao He, Zhuowei Li, Haoxian Chen, Ligong Han, Kai Xu, Huan Zhang, Dimitris Metaxas, Hao Wang
Title: TokUR: Token-Level Uncertainty Estimation for Large Language Model Reasoning
Abstract:
While Large Language Models (LLMs) have demonstrated impressive capabilities, their output quality remains inconsistent across various application scenarios, making it difficult to identify trustworthy responses, especially in complex tasks requiring multi-step reasoning. In this paper, we propose a Token-level Uncertainty estimation framework for Reasoning (TokUR) that enables LLMs to self-assess and self-improve their responses in mathematical reasoning. Specifically, we introduce low-rank random weight perturbation during LLM decoding to generate predictive distributions for token-level uncertainty estimation, and we aggregate these uncertainty quantities to capture the semantic uncertainty of generated responses. Experiments on mathematical reasoning datasets of varying difficulty demonstrate that TokUR exhibits a strong correlation with answer correctness and model robustness, and the uncertainty signals produced by TokUR can be leveraged to enhance the model's reasoning performance at test time. These results highlight the effectiveness of TokUR as a principled and scalable approach for improving the reliability and interpretability of LLMs in challenging reasoning tasks.
Authors:Chenhao Li, Andreas Krause, Marco Hutter
Title: Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator
Abstract:
Reinforcement Learning (RL) has demonstrated impressive capabilities in robotic control but remains challenging due to high sample complexity, safety concerns, and the sim-to-real gap. While offline RL eliminates the need for risky real-world exploration by learning from pre-collected data, it suffers from distributional shift, limiting policy generalization. Model-Based RL (MBRL) addresses this by leveraging predictive models for synthetic rollouts, yet existing approaches often lack robust uncertainty estimation, leading to compounding errors in offline settings. We introduce Offline Robotic World Model (RWM-O), a model-based approach that explicitly estimates epistemic uncertainty to improve policy learning without reliance on a physics simulator. By integrating these uncertainty estimates into policy optimization, our approach penalizes unreliable transitions, reducing overfitting to model errors and enhancing stability. Experimental results show that RWM-O improves generalization and safety, enabling policy learning purely from real-world data and advancing scalable, data-efficient RL for robotics.
Authors:Lucas Heublein, Nisha L. Raichur, Tobias Feigl, Tobias Brieger, Fin Heuer, Lennart Asbach, Alexander Rügamer, Felix Ott
Title: Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
Abstract:
The accuracy and reliability of vehicle localization on roads are crucial for applications such as self-driving cars, toll systems, and digital tachographs. To achieve accurate positioning, vehicles typically use global navigation satellite system (GNSS) receivers to validate their absolute positions. However, GNSS-based positioning can be compromised by interference signals, necessitating the identification, classification, determination of purpose, and localization of such interference to mitigate or eliminate it. Recent approaches based on machine learning (ML) have shown superior performance in monitoring interference. However, their feasibility in real-world applications and environments has yet to be assessed. Effective implementation of ML techniques requires training datasets that incorporate realistic interference signals, including real-world noise and potential multipath effects that may occur between transmitter, receiver, and satellite in the operational area. Additionally, these datasets require reference labels. Creating such datasets is often challenging due to legal restrictions, as causing interference to GNSS sources is strictly prohibited. Consequently, the performance of ML-based methods in practical applications remains unclear. To address this gap, we describe a series of large-scale measurement campaigns conducted in real-world settings at two highway locations in Germany and the Seetal Alps in Austria, and in large-scale controlled indoor environments. We evaluate the latest supervised ML-based methods to report on their performance in real-world settings and present the applicability of pseudo-labeling for unsupervised learning. We demonstrate the challenges of combining datasets due to data discrepancies and evaluate outlier detection, domain adaptation, and data augmentation techniques to present the models' capabilities to adapt to changes in the datasets.
Authors:Danny Wang, Ruihong Qiu, Guangdong Bai, Zi Huang
Title: GOLD: Graph Out-of-Distribution Detection via Implicit Adversarial Latent Generation
Abstract:
Despite graph neural networks' (GNNs) great success in modelling graph-structured data, out-of-distribution (OOD) test instances still pose a great challenge for current GNNs. One of the most effective techniques to detect OOD nodes is to expose the detector model with an additional OOD node-set, yet the extra OOD instances are often difficult to obtain in practice. Recent methods for image data address this problem using OOD data synthesis, typically relying on pre-trained generative models like Stable Diffusion. However, these approaches require vast amounts of additional data, as well as one-for-all pre-trained generative models, which are not available for graph data. Therefore, we propose the GOLD framework for graph OOD detection, an implicit adversarial learning pipeline with synthetic OOD exposure without pre-trained models. The implicit adversarial training process employs a novel alternating optimisation framework by training: (1) a latent generative model to regularly imitate the in-distribution (ID) embeddings from an evolving GNN, and (2) a GNN encoder and an OOD detector to accurately classify ID data while increasing the energy divergence between the ID embeddings and the generative model's synthetic embeddings. This novel approach implicitly transforms the synthetic embeddings into pseudo-OOD instances relative to the ID data, effectively simulating exposure to OOD scenarios without auxiliary data. Extensive OOD detection experiments are conducted on five benchmark graph datasets, verifying the superior performance of GOLD without using real OOD data compared with the state-of-the-art OOD exposure and non-exposure baselines.
Authors:Haiyun Yao, Zongbo Han, Huazhu Fu, Xi Peng, Qinghua Hu, Changqing Zhang
Title: Out-Of-Distribution Detection with Diversification (Provably)
Abstract:
Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of machine learning models. Recent advancements focus on utilizing easily accessible auxiliary outliers (e.g., data from the web or other datasets) in training. However, we experimentally reveal that these methods still struggle to generalize their detection capabilities to unknown OOD data, due to the limited diversity of the auxiliary outliers collected. Therefore, we thoroughly examine this problem from the generalization perspective and demonstrate that a more diverse set of auxiliary outliers is essential for enhancing the detection capabilities. However, in practice, it is difficult and costly to collect sufficiently diverse auxiliary outlier data. Therefore, we propose a simple yet practical approach with a theoretical guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix), which enhances the diversity of auxiliary outlier set for training in an efficient way. Extensive experiments show that diverseMix achieves superior performance on commonly used and recent challenging large-scale benchmarks, which further confirm the importance of the diversity of auxiliary outliers.
Authors:Jeng-Lin Li, Ming-Ching Chang, Wei-Chao Chen
Title: Learning Multi-Manifold Embedding for Out-Of-Distribution Detection
Abstract:
Detecting out-of-distribution (OOD) samples is crucial for trustworthy AI in real-world applications. Leveraging recent advances in representation learning and latent embeddings, Various scoring algorithms estimate distributions beyond the training data. However, a single embedding space falls short in characterizing in-distribution data and defending against diverse OOD conditions. This paper introduces a novel Multi-Manifold Embedding Learning (MMEL) framework, optimizing hypersphere and hyperbolic spaces jointly for enhanced OOD detection. MMEL generates representative embeddings and employs a prototype-aware scoring function to differentiate OOD samples. It operates with very few OOD samples and requires no model retraining. Experiments on six open datasets demonstrate MMEL's significant reduction in FPR while maintaining a high AUC compared to state-of-the-art distance-based OOD detection methods. We analyze the effects of learning multiple manifolds and visualize OOD score distributions across datasets. Notably, enrolling ten OOD samples without retraining achieves comparable FPR and AUC to modern outlier exposure methods using 80 million outlier samples for model training.
Authors:Lin Ai, Ziwei Gong, Harshsaiprasad Deshpande, Alexander Johnson, Emmy Phung, Ahmad Emami, Julia Hirschberg
Title: NovAScore: A New Automated Metric for Evaluating Document Level Novelty
Abstract:
The rapid expansion of online content has intensified the issue of information redundancy, underscoring the need for solutions that can identify genuinely new information. Despite this challenge, the research community has seen a decline in focus on novelty detection, particularly with the rise of large language models (LLMs). Additionally, previous approaches have relied heavily on human annotation, which is time-consuming, costly, and particularly challenging when annotators must compare a target document against a vast number of historical documents. In this work, we introduce NovAScore (Novelty Evaluation in Atomicity Score), an automated metric for evaluating document-level novelty. NovAScore aggregates the novelty and salience scores of atomic information, providing high interpretability and a detailed analysis of a document's novelty. With its dynamic weight adjustment scheme, NovAScore offers enhanced flexibility and an additional dimension to assess both the novelty level and the importance of information within a document. Our experiments show that NovAScore strongly correlates with human judgments of novelty, achieving a 0.626 Point-Biserial correlation on the TAP-DLND 1.0 dataset and a 0.920 Pearson correlation on an internal human-annotated dataset.
Authors:Junjie Li, Kong Aik Lee
Title: U3-xi: Pushing the Boundaries of Speaker Recognition via Incorporating Uncertainty
Abstract:
An utterance-level speaker embedding is typically obtained by aggregating a sequence of frame-level representations. However, in real-world scenarios, individual frames encode not only speaker-relevant information but also various nuisance factors. As a result, different frames contribute unequally to the final utterance-level speaker representation for Automatic Speaker Verification systems. To address this issue, we propose to estimate the inherent uncertainty of each frame and assign adaptive weights accordingly, where frames with higher uncertainty receive lower attention. Based on this idea, we present U3-xi, a comprehensive framework designed to produce more reliable and interpretable uncertainty estimates for speaker embeddings. Specifically, we introduce several strategies for uncertainty supervision. First, we propose speaker-level uncertainty supervision via a Stochastic Variance Loss, where the distance between an utterance embedding and its corresponding speaker centroid serves as a pseudo ground truth for uncertainty learning. Second, we incorporate global-level uncertainty supervision by injecting the predicted uncertainty into the sof tmax scale during training. This adaptive scaling mechanism adjusts the sharpness of the decision boundary according to sample difficulty, providing global guidance. Third, we redesign the uncertainty estimation module by integrating a Transformer encoder with multi-view self-attention, enabling the model to capture rich local and long-range temporal dependencies. Comprehensive experiments demonstrate that U3-xi is model-agnostic and can be seamlessly applied to various speaker encoders. In particular, when applied to ECAPA-TDNN, it achieves 21.1% and 15.57% relative improvements on the VoxCeleb1 test sets in terms of EER and minDCF, respectively.
Authors:Prabhant Singh, Pieter Gijsbers, Elif Ceren Gok Yildirim, Murat Onur Yildirim, Joaquin Vanschoren
Title: Automated Machine Learning for Unsupervised Tabular Tasks
Abstract:
In this work, we present LOTUS (Learning to Learn with Optimal Transport for Unsupervised Scenarios), a simple yet effective method to perform model selection for multiple unsupervised machine learning(ML) tasks such as outlier detection and clustering. Our intuition behind this work is that a machine learning pipeline will perform well in a new dataset if it previously worked well on datasets with a similar underlying data distribution. We use Optimal Transport distances to find this similarity between unlabeled tabular datasets and recommend machine learning pipelines with one unified single method on two downstream unsupervised tasks: outlier detection and clustering. We present the effectiveness of our approach with experiments against strong baselines and show that LOTUS is a very promising first step toward model selection for multiple unsupervised ML tasks.
Authors:Yigit E. Yildirim, Samet Demir, Zafer Dogan
Title: Benefits of Online Tilted Empirical Risk Minimization: A Case Study of Outlier Detection and Robust Regression
Abstract:
Empirical Risk Minimization (ERM) is a foundational framework for supervised learning but primarily optimizes average-case performance, often neglecting fairness and robustness considerations. Tilted Empirical Risk Minimization (TERM) extends ERM by introducing an exponential tilt hyperparameter $t$ to balance average-case accuracy with worst-case fairness and robustness. However, in online or streaming settings where data arrive one sample at a time, the classical TERM objective degenerates to standard ERM, losing tilt sensitivity. We address this limitation by proposing an online TERM formulation that removes the logarithm from the classical objective, preserving tilt effects without additional computational or memory overhead. This formulation enables a continuous trade-off controlled by $t$, smoothly interpolating between ERM ($t \to 0$), fairness emphasis ($t > 0$), and robustness to outliers ($t < 0$). We empirically validate online TERM on two representative streaming tasks: robust linear regression with adversarial outliers and minority-class detection in binary classification. Our results demonstrate that negative tilting effectively suppresses outlier influence, while positive tilting improves recall with minimal impact on precision, all at per-sample computational cost equivalent to ERM. Online TERM thus recovers the full robustness-fairness spectrum of classical TERM in an efficient single-sample learning regime.
Authors:Adam Goodge, Xun Xu, Bryan Hooi, Wee Siong Ng, Jingyi Liao, Yongyi Su, Xulei Yang
Title: SODA: Out-of-Distribution Detection in Domain-Shifted Point Clouds via Neighborhood Propagation
Abstract:
As point cloud data increases in prevalence in a variety of applications, the ability to detect out-of-distribution (OOD) point cloud objects becomes critical for ensuring model safety and reliability. However, this problem remains under-explored in existing research. Inspired by success in the image domain, we propose to exploit advances in 3D vision-language models (3D VLMs) for OOD detection in point cloud objects. However, a major challenge is that point cloud datasets used to pre-train 3D VLMs are drastically smaller in size and object diversity than their image-based counterparts. Critically, they often contain exclusively computer-designed synthetic objects. This leads to a substantial domain shift when the model is transferred to practical tasks involving real objects scanned from the physical environment. In this paper, our empirical experiments show that synthetic-to-real domain shift significantly degrades the alignment of point cloud with their associated text embeddings in the 3D VLM latent space, hindering downstream performance. To address this, we propose a novel methodology called SODA which improves the detection of OOD point clouds through a neighborhood-based score propagation scheme. SODA is inference-based, requires no additional model training, and achieves state-of-the-art performance over existing approaches across datasets and problem settings.
Authors:Xuyang Chen, Guojian Wang, Keyu Yan, Lin Zhao
Title: VIPO: Value Function Inconsistency Penalized Offline Reinforcement Learning
Abstract:
Offline reinforcement learning (RL) learns effective policies from pre-collected datasets, offering a practical solution for applications where online interactions are risky or costly. Model-based approaches are particularly advantageous for offline RL, owing to their data efficiency and generalizability. However, due to inherent model errors, model-based methods often artificially introduce conservatism guided by heuristic uncertainty estimation, which can be unreliable. In this paper, we introduce VIPO, a novel model-based offline RL algorithm that incorporates self-supervised feedback from value estimation to enhance model training. Specifically, the model is learned by additionally minimizing the inconsistency between the value learned directly from the offline data and the one estimated from the model. We perform comprehensive evaluations from multiple perspectives to show that VIPO can learn a highly accurate model efficiently and consistently outperform existing methods. It offers a general framework that can be readily integrated into existing model-based offline RL algorithms to systematically enhance model accuracy. As a result, VIPO achieves state-of-the-art performance on almost all tasks in both D4RL and NeoRL benchmarks.
Authors:Chen Liu, Peike Li, Liying Yang, Dadong Wang, Lincheng Li, Xin Yu
Title: Robust Audio-Visual Segmentation via Audio-Guided Visual Convergent Alignment
Abstract:
Accurately localizing audible objects based on audio-visual cues is the core objective of audio-visual segmentation. Most previous methods emphasize spatial or temporal multi-modal modeling, yet overlook challenges from ambiguous audio-visual correspondences such as nearby visually similar but acoustically different objects and frequent shifts in objects' sounding status. Consequently, they may struggle to reliably correlate audio and visual cues, leading to over- or under-segmentation. To address these limitations, we propose a novel framework with two primary components: an audio-guided modality alignment (AMA) module and an uncertainty estimation (UE) module. Instead of indiscriminately correlating audio-visual cues through a global attention mechanism, AMA performs audio-visual interactions within multiple groups and consolidates group features into compact representations based on their responsiveness to audio cues, effectively directing the model's attention to audio-relevant areas. Leveraging contrastive learning, AMA further distinguishes sounding regions from silent areas by treating features with strong audio responses as positive samples and weaker responses as negatives. Additionally, UE integrates spatial and temporal information to identify high-uncertainty regions caused by frequent changes in sound state, reducing prediction errors by lowering confidence in these areas. Experimental results demonstrate that our approach achieves superior accuracy compared to existing state-of-the-art methods, particularly in challenging scenarios where traditional approaches struggle to maintain reliable segmentation.
Authors:Vilém Zouhar, Maike Züfle, Beni Egressy, Julius Cheng, Mrinmaya Sachan, Jan Niehues
Title: Early-Exit and Instant Confidence Translation Quality Estimation
Abstract:
Quality estimation is omnipresent in machine translation, for both evaluation and generation. Unfortunately, quality estimation models are often opaque and computationally expensive, making them impractical to be part of large-scale pipelines. In this work, we tackle two connected challenges: (1) reducing the cost of quality estimation at scale, and (2) developing an inexpensive uncertainty estimation method for quality estimation. To address the latter, we introduce Instant Confidence COMET, an uncertainty-aware quality estimation model that matches the performance of previous approaches at a fraction of their costs. We extend this to Early-Exit COMET, a quality estimation model that can compute quality scores and associated confidences already at early model layers, allowing us to early-exit computations and reduce evaluation costs. We also apply our model to machine translation reranking. We combine Early-Exit COMET with an upper confidence bound bandit algorithm to find the best candidate from a large pool without having to run the full evaluation model on all candidates. In both cases (evaluation and reranking) our methods reduce the required compute by 50% with very little degradation in performance. Finally, we show how Instant Confidence COMET can be used to decide which translations a human evaluator should score rather than relying on the COMET score.
Authors:Qinhong Lin, Linna Zhou, Zhongliang Yang, Yuang Cai
Title: Label-Confidence-Aware Uncertainty Estimation in Natural Language Generation
Abstract:
Large Language Models (LLMs) display formidable capabilities in generative tasks but also pose potential risks due to their tendency to generate hallucinatory responses. Uncertainty Quantification (UQ), the evaluation of model output reliability, is crucial for ensuring the safety and robustness of AI systems. Recent studies have concentrated on model uncertainty by analyzing the relationship between output entropy under various sampling conditions and the corresponding labels. However, these methods primarily focus on measuring model entropy with precision to capture response characteristics, often neglecting the uncertainties associated with greedy decoding results-the sources of model labels, which can lead to biased classification outcomes. In this paper, we explore the biases introduced by greedy decoding and propose a label-confidence-aware (LCA) uncertainty estimation based on Kullback-Leibler (KL) divergence bridging between samples and label source, thus enhancing the reliability and stability of uncertainty assessments. Our empirical evaluations across a range of popular LLMs and NLP datasets reveal that different label sources can indeed affect classification, and that our approach can effectively capture differences in sampling results and label sources, demonstrating more effective uncertainty estimation.
Authors:Qingyang Zhang, Yatao Bian, Xinke Kong, Peilin Zhao, Changqing Zhang
Title: COME: Test-time adaption by Conservatively Minimizing Entropy
Abstract:
Machine learning models must continuously self-adjust themselves for novel data distribution in the open world. As the predominant principle, entropy minimization (EM) has been proven to be a simple yet effective cornerstone in existing test-time adaption (TTA) methods. While unfortunately its fatal limitation (i.e., overconfidence) tends to result in model collapse. For this issue, we propose to Conservatively Minimize the Entropy (COME), which is a simple drop-in replacement of traditional EM to elegantly address the limitation. In essence, COME explicitly models the uncertainty by characterizing a Dirichlet prior distribution over model predictions during TTA. By doing so, COME naturally regularizes the model to favor conservative confidence on unreliable samples. Theoretically, we provide a preliminary analysis to reveal the ability of COME in enhancing the optimization stability by introducing a data-adaptive lower bound on the entropy. Empirically, our method achieves state-of-the-art performance on commonly used benchmarks, showing significant improvements in terms of classification accuracy and uncertainty estimation under various settings including standard, life-long and open-world TTA, i.e., up to $34.5\%$ improvement on accuracy and $15.1\%$ on false positive rate.
Authors:Weijie Tu, Weijian Deng, Tom Gedeon
Title: Toward a Holistic Evaluation of Robustness in CLIP Models
Abstract:
Contrastive Language-Image Pre-training (CLIP) models have shown significant potential, particularly in zero-shot classification across diverse distribution shifts. Building on existing evaluations of overall classification robustness, this work aims to provide a more comprehensive assessment of CLIP by introducing several new perspectives. First, we investigate their robustness to variations in specific visual factors. Second, we assess two critical safety objectives--confidence uncertainty and out-of-distribution detection--beyond mere classification accuracy. Third, we evaluate the finesse with which CLIP models bridge the image and text modalities. Fourth, we extend our examination to 3D awareness in CLIP models, moving beyond traditional 2D image understanding. Finally, we explore the interaction between vision and language encoders within modern large multimodal models (LMMs) that utilize CLIP as the visual backbone, focusing on how this interaction impacts classification robustness. In each aspect, we consider the impact of six factors on CLIP models: model architecture, training distribution, training set size, fine-tuning, contrastive loss, and test-time prompts. Our study uncovers several previously unknown insights into CLIP. For instance, the architecture of the visual encoder in CLIP plays a significant role in their robustness against 3D corruption. CLIP models tend to exhibit a bias towards shape when making predictions. Moreover, this bias tends to diminish after fine-tuning on ImageNet. Vision-language models like LLaVA, leveraging the CLIP vision encoder, could exhibit benefits in classification performance for challenging categories over CLIP alone. Our findings are poised to offer valuable guidance for enhancing the robustness and reliability of CLIP models.
Authors:Yu-Hsiang Wang, Andrew Bai, Che-Ping Tsai, Cho-Jui Hsieh
Title: CLUE: Concept-Level Uncertainty Estimation for Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated remarkable proficiency in various natural language generation (NLG) tasks. Previous studies suggest that LLMs' generation process involves uncertainty. However, existing approaches to uncertainty estimation mainly focus on sequence-level uncertainty, overlooking individual pieces of information within sequences. These methods fall short in separately assessing the uncertainty of each component in a sequence. In response, we propose a novel framework for Concept-Level Uncertainty Estimation (CLUE) for LLMs. We leverage LLMs to convert output sequences into concept-level representations, breaking down sequences into individual concepts and measuring the uncertainty of each concept separately. We conduct experiments to demonstrate that CLUE can provide more interpretable uncertainty estimation results compared with sentence-level uncertainty, and could be a useful tool for various tasks such as hallucination detection and story generation.
Authors:Mehmet Ozgur Turkoglu, Dominik J. Mühlematter, Alexander Becker, Konrad Schindler, Helge Aasen
Title: Making Foundation Models Probabilistic via Singular Value Ensembles
Abstract:
Foundation models have become a dominant paradigm in machine learning, achieving remarkable performance across diverse tasks through large-scale pretraining. However, these models often yield overconfident, uncalibrated predictions. The standard approach to quantifying epistemic uncertainty, training an ensemble of independent models, incurs prohibitive computational costs that scale linearly with ensemble size, making it impractical for large foundation models. We propose Singular Value Ensemble (SVE), a parameter-efficient implicit ensemble method that builds on a simple, but powerful core assumption: namely, that the singular vectors of the weight matrices constitute meaningful subspaces of the model's knowledge. Pretrained foundation models encode rich, transferable information in their weight matrices. If the singular vectors are indeed meaningful (orthogonal) "knowledge directions". To obtain a model ensemble, we modulate only how strongly each direction contributes to the output. Rather than learning entirely new parameters, we freeze the singular vectors and only train per-member singular values that rescale the contribution of each direction in that shared knowledge basis. Ensemble diversity emerges naturally as stochastic initialization and random sampling of mini-batches during joint training cause different members to converge to different combinations of the same underlying knowledge. SVE achieves uncertainty quantification comparable to explicit deep ensembles while increasing the parameter count of the base model by less than 1%, making principled uncertainty estimation accessible in resource-constrained settings. We validate SVE on NLP and vision tasks with various different backbones and show that it improves calibration while maintaining predictive accuracy.
Authors:Zhiting Mei, Tenny Yin, Micah Baker, Ola Shorinwa, Anirudha Majumdar
Title: World Models That Know When They Don't Know: Controllable Video Generation with Calibrated Uncertainty
Abstract:
Recent advances in generative video models have led to significant breakthroughs in high-fidelity video synthesis, specifically in controllable video generation where the generated video is conditioned on text and action inputs, e.g., in instruction-guided video editing and world modeling in robotics. Despite these exceptional capabilities, controllable video models often hallucinate - generating future video frames that are misaligned with physical reality - which raises serious concerns in many tasks such as robot policy evaluation and planning. However, state-of-the-art video models lack the ability to assess and express their confidence, impeding hallucination mitigation. To rigorously address this challenge, we propose C3, an uncertainty quantification (UQ) method for training continuous-scale calibrated controllable video models for dense confidence estimation at the subpatch level, precisely localizing the uncertainty in each generated video frame. Our UQ method introduces three core innovations to empower video models to estimate their uncertainty. First, our method develops a novel framework that trains video models for correctness and calibration via strictly proper scoring rules. Second, we estimate the video model's uncertainty in latent space, avoiding training instability and prohibitive training costs associated with pixel-space approaches. Third, we map the dense latent-space uncertainty to interpretable pixel-level uncertainty in the RGB space for intuitive visualization, providing high-resolution uncertainty heatmaps that identify untrustworthy regions. Through extensive experiments on large-scale robot learning datasets (Bridge and DROID) and real-world evaluations, we demonstrate that our method not only provides calibrated uncertainty estimates within the training distribution, but also enables effective out-of-distribution detection.
Authors:Yihao Ang, Peicheng Yao, Yifan Bao, Yushuo Feng, Qiang Huang, Anthony K. H. Tung, Zhiyong Huang
Title: RFOD: Random Forest-based Outlier Detection for Tabular Data
Abstract:
Outlier detection in tabular data is crucial for safeguarding data integrity in high-stakes domains such as cybersecurity, financial fraud detection, and healthcare, where anomalies can cause serious operational and economic impacts. Despite advances in both data mining and deep learning, many existing methods struggle with mixed-type tabular data, often relying on encoding schemes that lose important semantic information. Moreover, they frequently lack interpretability, offering little insight into which specific values cause anomalies. To overcome these challenges, we introduce \textsf{\textbf{RFOD}}, a novel \textsf{\textbf{R}}andom \textsf{\textbf{F}}orest-based \textsf{\textbf{O}}utlier \textsf{\textbf{D}}etection framework tailored for tabular data. Rather than modeling a global joint distribution, \textsf{RFOD} reframes anomaly detection as a feature-wise conditional reconstruction problem, training dedicated random forests for each feature conditioned on the others. This design robustly handles heterogeneous data types while preserving the semantic integrity of categorical features. To further enable precise and interpretable detection, \textsf{RFOD} combines Adjusted Gower's Distance (AGD) for cell-level scoring, which adapts to skewed numerical data and accounts for categorical confidence, with Uncertainty-Weighted Averaging (UWA) to aggregate cell-level scores into robust row-level anomaly scores. Extensive experiments on 15 real-world datasets demonstrate that \textsf{RFOD} consistently outperforms state-of-the-art baselines in detection accuracy while offering superior robustness, scalability, and interpretability for mixed-type tabular data.
Authors:Mabel Heffring, Lincoln Linlin Xu
Title: Bayesian Transformer for Pan-Arctic Sea Ice Concentration Mapping and Uncertainty Estimation using Sentinel-1, RCM, and AMSR2 Data
Abstract:
Although high-resolution mapping of Pan-Arctic sea ice with reliable corresponding uncertainty is essential for operational sea ice concentration (SIC) charting, it is a difficult task due to some key challenges, e.g., the subtle nature of ice signature features, model uncertainty, and data heterogeneity. This letter presents a novel Bayesian Transformer approach for Pan-Arctic SIC mapping and uncertainty quantification using Sentinel-1, RADARSAT Constellation Mission (RCM), and Advanced Microwave Scanning Radiometer 2 (AMSR2) data. First, to improve feature extraction, we design a novel high-resolution Transformer model with both global and local modules that can better discern the subtle differences in sea ice patterns. Second, to improve uncertainty quantification, we design a Bayesian extension of the proposed Transformer model, treating its parameters as random variables to more effectively capture uncertainties. Third, to address data heterogeneity, we fuse three different data types (Sentinel-1, RCM, and AMSR2) at decision-level to improve both SIC mapping and uncertainty quantification. The proposed approach is tested on Pan-Arctic datasets from September 2021, and the results demonstrate that the proposed model can achieve both high-resolution SIC maps and robust uncertainty maps compared to other uncertainty quantification approaches.
Authors:Chenhao Wang, Yingrui Ji, Yu Meng, Yunjian Zhang, Yao Zhu
Title: RS-OOD: A Vision-Language Augmented Framework for Out-of-Distribution Detection in Remote Sensing
Abstract:
Out-of-distribution (OOD) detection represents a critical challenge in remote sensing applications, where reliable identification of novel or anomalous patterns is essential for autonomous monitoring, disaster response, and environmental assessment. Despite remarkable progress in OOD detection for natural images, existing methods and benchmarks remain poorly suited to remote sensing imagery due to data scarcity, complex multi-scale scene structures, and pronounced distribution shifts. To this end, we propose RS-OOD, a novel framework that leverages remote sensing-specific vision-language modeling to enable robust few-shot OOD detection. Our approach introduces three key innovations: spatial feature enhancement that improved scene discrimination, a dual-prompt alignment mechanism that cross-verifies scene context against fine-grained semantics for spatial-semantic consistency, and a confidence-guided self-training loop that dynamically mines pseudo-labels to expand training data without manual annotation. RS-OOD consistently outperforms existing methods across multiple remote sensing benchmarks and enables efficient adaptation with minimal labeled data, demonstrating the critical value of spatial-semantic integration.
Authors:Yannik Hahn, Jan Voets, Antonin Koenigsfeld, Hasan Tercan, Tobias Meisen
Title: Out of Distribution Detection for Efficient Continual Learning in Quality Prediction for Arc Welding
Abstract:
Modern manufacturing relies heavily on fusion welding processes, including gas metal arc welding (GMAW). Despite significant advances in machine learning-based quality prediction, current models exhibit critical limitations when confronted with the inherent distribution shifts that occur in dynamic manufacturing environments. In this work, we extend the VQ-VAE Transformer architecture - previously demonstrating state-of-the-art performance in weld quality prediction - by leveraging its autoregressive loss as a reliable out-of-distribution (OOD) detection mechanism. Our approach exhibits superior performance compared to conventional reconstruction methods, embedding error-based techniques, and other established baselines. By integrating OOD detection with continual learning strategies, we optimize model adaptation, triggering updates only when necessary and thereby minimizing costly labeling requirements. We introduce a novel quantitative metric that simultaneously evaluates OOD detection capability while interpreting in-distribution performance. Experimental validation in real-world welding scenarios demonstrates that our framework effectively maintains robust quality prediction capabilities across significant distribution shifts, addressing critical challenges in dynamic manufacturing environments where process parameters frequently change. This research makes a substantial contribution to applied artificial intelligence by providing an explainable and at the same time adaptive solution for quality assurance in dynamic manufacturing processes - a crucial step towards robust, practical AI systems in the industrial environment.
Authors:Nasir Khan, Asmaa Abdallah, Abdulkadir Celik, Ahmed M. Eltawil, Sinem Coleri
Title: Digital Twin-Assisted Explainable AI for Robust Beam Prediction in mmWave MIMO Systems
Abstract:
In line with the AI-native 6G vision, explainability and robustness are crucial for building trust and ensuring reliable performance in millimeter-wave (mmWave) systems. Efficient beam alignment is essential for initial access, but deep learning (DL) solutions face challenges, including high data collection overhead, hardware constraints, lack of explainability, and susceptibility to adversarial attacks. This paper proposes a robust and explainable DL-based beam alignment engine (BAE) for mmWave multiple-input multiple output (MIMO) systems. The BAE uses received signal strength indicator (RSSI) measurements from wide beams to predict the best narrow beam, reducing the overhead of exhaustive beam sweeping. To overcome the challenge of real-world data collection, this work leverages a site-specific digital twin (DT) to generate synthetic channel data closely resembling real-world environments. A model refinement via transfer learning is proposed to fine-tune the pre-trained model residing in the DT with minimal real-world data, effectively bridging mismatches between the digital replica and real-world environments. To reduce beam training overhead and enhance transparency, the framework uses deep Shapley additive explanations (SHAP) to rank input features by importance, prioritizing key spatial directions and minimizing beam sweeping. It also incorporates the Deep k-nearest neighbors (DkNN) algorithm, providing a credibility metric for detecting out-of-distribution inputs and ensuring robust, transparent decision-making. Experimental results show that the proposed framework reduces real-world data needs by 70%, beam training overhead by 62%, and improves outlier detection robustness by up to 8.5x, achieving near-optimal spectral efficiency and transparent decision making compared to traditional softmax based DL models.
Authors:Steven Braun, Sahil Sidheekh, Antonio Vergari, Martin Mundt, Sriraam Natarajan, Kristian Kersting
Title: Tractable Representation Learning with Probabilistic Circuits
Abstract:
Probabilistic circuits (PCs) are powerful probabilistic models that enable exact and tractable inference, making them highly suitable for probabilistic reasoning and inference tasks. While dominant in neural networks, representation learning with PCs remains underexplored, with prior approaches relying on external neural embeddings or activation-based encodings. To address this gap, we introduce autoencoding probabilistic circuits (APCs), a novel framework leveraging the tractability of PCs to model probabilistic embeddings explicitly. APCs extend PCs by jointly modeling data and embeddings, obtaining embedding representations through tractable probabilistic inference. The PC encoder allows the framework to natively handle arbitrary missing data and is seamlessly integrated with a neural decoder in a hybrid, end-to-end trainable architecture enabled by differentiable sampling. Our empirical evaluation demonstrates that APCs outperform existing PC-based autoencoding methods in reconstruction quality, generate embeddings competitive with, and exhibit superior robustness in handling missing data compared to neural autoencoders. These results highlight APCs as a powerful and flexible representation learning method that exploits the probabilistic inference capabilities of PCs, showing promising directions for robust inference, out-of-distribution detection, and knowledge distillation.
Authors:Tao Yin, Chen Zhao, Xiaoyan Liu, Minglai Shao
Title: Out-of-Distribution Detection in Heterogeneous Graphs via Energy Propagation
Abstract:
Graph neural networks (GNNs) are proven effective in extracting complex node and structural information from graph data. While current GNNs perform well in node classification tasks within in-distribution (ID) settings, real-world scenarios often present distribution shifts, leading to the presence of out-of-distribution (OOD) nodes. OOD detection in graphs is a crucial and challenging task. Most existing research focuses on homogeneous graphs, but real-world graphs are often heterogeneous, consisting of diverse node and edge types. This heterogeneity adds complexity and enriches the informational content. To the best of our knowledge, OOD detection in heterogeneous graphs remains an underexplored area. In this context, we propose a novel methodology for OOD detection in heterogeneous graphs (OODHG) that aims to achieve two main objectives: 1) detecting OOD nodes and 2) classifying all ID nodes based on the first task's results. Specifically, we learn representations for each node in the heterogeneous graph, calculate energy values to determine whether nodes are OOD, and then classify ID nodes. To leverage the structural information of heterogeneous graphs, we introduce a meta-path-based energy propagation mechanism and an energy constraint to enhance the distinction between ID and OOD nodes. Extensive experimental findings substantiate the simplicity and effectiveness of OODHG, demonstrating its superiority over baseline models in OOD detection tasks and its accuracy in ID node classification.
Authors:Haoyan Xu, Zhengtao Yao, Yushun Dong, Ziyi Wang, Ryan A. Rossi, Mengyuan Li, Yue Zhao
Title: Few-Shot Graph Out-of-Distribution Detection with LLMs
Abstract:
Existing methods for graph out-of-distribution (OOD) detection typically depend on training graph neural network (GNN) classifiers using a substantial amount of labeled in-distribution (ID) data. However, acquiring high-quality labeled nodes in text-attributed graphs (TAGs) is challenging and costly due to their complex textual and structural characteristics. Large language models (LLMs), known for their powerful zero-shot capabilities in textual tasks, show promise but struggle to naturally capture the critical structural information inherent to TAGs, limiting their direct effectiveness. To address these challenges, we propose LLM-GOOD, a general framework that effectively combines the strengths of LLMs and GNNs to enhance data efficiency in graph OOD detection. Specifically, we first leverage LLMs' strong zero-shot capabilities to filter out likely OOD nodes, significantly reducing the human annotation burden. To minimize the usage and cost of the LLM, we employ it only to annotate a small subset of unlabeled nodes. We then train a lightweight GNN filter using these noisy labels, enabling efficient predictions of ID status for all other unlabeled nodes by leveraging both textual and structural information. After obtaining node embeddings from the GNN filter, we can apply informativeness-based methods to select the most valuable nodes for precise human annotation. Finally, we train the target ID classifier using these accurately annotated ID nodes. Extensive experiments on four real-world TAG datasets demonstrate that LLM-GOOD significantly reduces human annotation costs and outperforms state-of-the-art baselines in terms of both ID classification accuracy and OOD detection performance.
Authors:Morteza Rohanian, Roya M. Hüppi, Farhad Nooralahzadeh, Noemi Dannecker, Yves Pauli, Werner Surbeck, Iris Sommer, Wolfram Hinzen, Nicolas Langer, Michael Krauthammer, Philipp Homan
Title: Uncertainty Modeling in Multimodal Speech Analysis Across the Psychosis Spectrum
Abstract:
Capturing subtle speech disruptions across the psychosis spectrum is challenging because of the inherent variability in speech patterns. This variability reflects individual differences and the fluctuating nature of symptoms in both clinical and non-clinical populations. Accounting for uncertainty in speech data is essential for predicting symptom severity and improving diagnostic precision. Speech disruptions characteristic of psychosis appear across the spectrum, including in non-clinical individuals. We develop an uncertainty-aware model integrating acoustic and linguistic features to predict symptom severity and psychosis-related traits. Quantifying uncertainty in specific modalities allows the model to address speech variability, improving prediction accuracy. We analyzed speech data from 114 participants, including 32 individuals with early psychosis and 82 with low or high schizotypy, collected through structured interviews, semi-structured autobiographical tasks, and narrative-driven interactions in German. The model improved prediction accuracy, reducing RMSE and achieving an F1-score of 83% with ECE = 4.5e-2, showing robust performance across different interaction contexts. Uncertainty estimation improved model interpretability by identifying reliability differences in speech markers such as pitch variability, fluency disruptions, and spectral instability. The model dynamically adjusted to task structures, weighting acoustic features more in structured settings and linguistic features in unstructured contexts. This approach strengthens early detection, personalized assessment, and clinical decision-making in psychosis-spectrum research.
Authors:Nasir Khan, Asmaa Abdallah, Abdulkadir Celik, Ahmed M. Eltawil, Sinem Coleri
Title: Explainable and Robust Millimeter Wave Beam Alignment for AI-Native 6G Networks
Abstract:
Integrated artificial intelligence (AI) and communication has been recognized as a key pillar of 6G and beyond networks. In line with AI-native 6G vision, explainability and robustness in AI-driven systems are critical for establishing trust and ensuring reliable performance in diverse and evolving environments. This paper addresses these challenges by developing a robust and explainable deep learning (DL)-based beam alignment engine (BAE) for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. The proposed convolutional neural network (CNN)-based BAE utilizes received signal strength indicator (RSSI) measurements over a set of wide beams to accurately predict the best narrow beam for each UE, significantly reducing the overhead associated with exhaustive codebook-based narrow beam sweeping for initial access (IA) and data transmission. To ensure transparency and resilience, the Deep k-Nearest Neighbors (DkNN) algorithm is employed to assess the internal representations of the network via nearest neighbor approach, providing human-interpretable explanations and confidence metrics for detecting out-of-distribution inputs. Experimental results demonstrate that the proposed DL-based BAE exhibits robustness to measurement noise, reduces beam training overhead by 75% compared to the exhaustive search while maintaining near-optimal performance in terms of spectral efficiency. Moreover, the proposed framework improves outlier detection robustness by up to 5x and offers clearer insights into beam prediction decisions compared to traditional softmax-based classifiers.
Authors:Zheng Zhang, Hossein Amiri, Dazhou Yu, Yuntong Hu, Liang Zhao, Andreas Zufle
Title: Transferable Unsupervised Outlier Detection Framework for Human Semantic Trajectories
Abstract:
Semantic trajectories, which enrich spatial-temporal data with textual information such as trip purposes or location activities, are key for identifying outlier behaviors critical to healthcare, social security, and urban planning. Traditional outlier detection relies on heuristic rules, which requires domain knowledge and limits its ability to identify unseen outliers. Besides, there lacks a comprehensive approach that can jointly consider multi-modal data across spatial, temporal, and textual dimensions. Addressing the need for a domain-agnostic model, we propose the Transferable Outlier Detection for Human Semantic Trajectories (TOD4Traj) framework.TOD4Traj first introduces a modality feature unification module to align diverse data feature representations, enabling the integration of multi-modal information and enhancing transferability across different datasets. A contrastive learning module is further pro-posed for identifying regular mobility patterns both temporally and across populations, allowing for a joint detection of outliers based on individual consistency and group majority patterns. Our experimental results have shown TOD4Traj's superior performance over existing models, demonstrating its effectiveness and adaptability in detecting human trajectory outliers across various datasets.
Authors:Patrick Knab, Sascha Marton, Christian Bartelt, Robert Fuder
Title: Interpreting Outliers in Time Series Data through Decoding Autoencoder
Abstract:
Outlier detection is a crucial analytical tool in various fields. In critical systems like manufacturing, malfunctioning outlier detection can be costly and safety-critical. Therefore, there is a significant need for explainable artificial intelligence (XAI) when deploying opaque models in such environments. This study focuses on manufacturing time series data from a German automotive supply industry. We utilize autoencoders to compress the entire time series and then apply anomaly detection techniques to its latent features. For outlier interpretation, we (i) adopt widely used XAI techniques to the autoencoder's encoder. Additionally, (ii) we propose AEE, Aggregated Explanatory Ensemble, a novel approach that fuses explanations of multiple XAI techniques into a single, more expressive interpretation. For evaluation of explanations, (iii) we propose a technique to measure the quality of encoder explanations quantitatively. Furthermore, we qualitatively assess the effectiveness of outlier explanations with domain expertise.
Authors:Erum Mushtaq, Zalan Fabian, Yavuz Faruk Bakman, Anil Ramakrishna, Mahdi Soltanolkotabi, Salman Avestimehr
Title: HARMONY: Hidden Activation Representations and Model Output-Aware Uncertainty Estimation for Vision-Language Models
Abstract:
The growing deployment of Vision-Language Models (VLMs) in high-stakes applications such as autonomous driving and assistive technologies for visually impaired individuals necessitates reliable mechanisms to assess the trustworthiness of their generation. Uncertainty Estimation (UE) plays a central role in quantifying the reliability of model outputs and reducing unsafe generations via selective prediction. In this regard, most existing probability-based UE approaches rely on output probability distributions, aggregating token probabilities into a single uncertainty score using predefined functions such as length-normalization. Another line of research leverages model hidden representations and trains MLP-based models to predict uncertainty. However, these methods often fail to capture the complex multimodal relationships between semantic and textual tokens and struggle to identify biased probabilities often influenced by language priors. Motivated by these observations, we propose a novel UE framework, HARMONY, that jointly leverages fused multimodal information in model activations and the output distribution of the VLM to determine the reliability of responses. The key hypothesis of our work is that both the model's internal belief in its visual understanding, captured by its hidden representations, and the produced token probabilities carry valuable reliability signals that can be jointly leveraged to improve UE performance, surpassing approaches that rely on only one of these components. Experimental results on three open-ended VQA benchmarks, A-OKVQA, VizWiz, and PathVQA, and three state-of-the-art VLMs, LLaVa-7b, LLaVA-13b and InstructBLIP demonstrate that our method consistently performs on par with or better than existing approaches, achieving up to 4\% improvement in AUROC, and 6\% in PRR, establishing new state of the art in uncertainty estimation for VLMs.
Authors:Lei Ma, Ling Guo, Hao Wu, Tao Zhou
Title: Deep set based operator learning with uncertainty quantification
Abstract:
Learning operators from data is central to scientific machine learning. While DeepONets are widely used for their ability to handle complex domains, they require fixed sensor numbers and locations, lack mechanisms for uncertainty quantification (UQ), and are thus limited in practical applicability. Recent permutationinvariant extensions, such as the Variable-Input Deep Operator Network (VIDON), relax these sensor constraints but still rely on sufficiently dense observations and cannot capture uncertainties arising from incomplete measurements or from operators with inherent randomness. To address these challenges, we propose UQ-SONet, a permutation-invariant operator learning framework with built-in UQ. Our model integrates a set transformer embedding to handle sparse and variable sensor locations, and employs a conditional variational autoencoder (cVAE) to approximate the conditional distribution of the solution operator. By minimizing the negative ELBO, UQ-SONet provides principled uncertainty estimation while maintaining predictive accuracy. Numerical experiments on deterministic and stochastic PDEs, including the Navier-Stokes equation, demonstrate the robustness and effectiveness of the proposed framework.
Authors:Yucen Lily Li, Daohan Lu, Polina Kirichenko, Shikai Qiu, Tim G. J. Rudner, C. Bayan Bruss, Andrew Gordon Wilson
Title: Out-of-Distribution Detection Methods Answer the Wrong Questions
Abstract:
To detect distribution shifts and improve model safety, many out-of-distribution (OOD) detection methods rely on the predictive uncertainty or features of supervised models trained on in-distribution data. In this paper, we critically re-examine this popular family of OOD detection procedures, and we argue that these methods are fundamentally answering the wrong questions for OOD detection. There is no simple fix to this misalignment, since a classifier trained only on in-distribution classes cannot be expected to identify OOD points; for instance, a cat-dog classifier may confidently misclassify an airplane if it contains features that distinguish cats from dogs, despite generally appearing nothing alike. We find that uncertainty-based methods incorrectly conflate high uncertainty with being OOD, while feature-based methods incorrectly conflate far feature-space distance with being OOD. We show how these pathologies manifest as irreducible errors in OOD detection and identify common settings where these methods are ineffective. Additionally, interventions to improve OOD detection such as feature-logit hybrid methods, scaling of model and data size, epistemic uncertainty representation, and outlier exposure also fail to address this fundamental misalignment in objectives. We additionally consider unsupervised density estimation and generative models for OOD detection, which we show have their own fundamental limitations.
Authors:Yan Liu, Zonglin Yang, Soujanya Poria, Thanh-Son Nguyen, Erik Cambria
Title: Harnessing Large Language Models for Scientific Novelty Detection
Abstract:
In an era of exponential scientific growth, identifying novel research ideas is crucial and challenging in academia. Despite potential, the lack of an appropriate benchmark dataset hinders the research of novelty detection. More importantly, simply adopting existing NLP technologies, e.g., retrieving and then cross-checking, is not a one-size-fits-all solution due to the gap between textual similarity and idea conception. In this paper, we propose to harness large language models (LLMs) for scientific novelty detection (ND), associated with two new datasets in marketing and NLP domains. To construct the considerate datasets for ND, we propose to extract closure sets of papers based on their relationship, and then summarize their main ideas based on LLMs. To capture idea conception, we propose to train a lightweight retriever by distilling the idea-level knowledge from LLMs to align ideas with similar conception, enabling efficient and accurate idea retrieval for LLM novelty detection. Experiments show our method consistently outperforms others on the proposed benchmark datasets for idea retrieval and ND tasks. Codes and data are available at https://anonymous.4open.science/r/NoveltyDetection-10FB/.
Authors:Harshil Vejendla, Haizhou Shi, Yibin Wang, Tunyu Zhang, Huan Zhang, Hao Wang
Title: Efficient Uncertainty Estimation via Distillation of Bayesian Large Language Models
Abstract:
Recent advances in uncertainty estimation for Large Language Models (LLMs) during downstream adaptation have addressed key challenges of reliability and simplicity. However, existing Bayesian methods typically require multiple sampling iterations during inference, creating significant efficiency issues that limit practical deployment. In this paper, we investigate the possibility of eliminating the need for test-time sampling for LLM uncertainty estimation. Specifically, when given an off-the-shelf Bayesian LLM, we distill its aligned confidence into a non-Bayesian student LLM by minimizing the divergence between their predictive distributions. Unlike typical calibration methods, our distillation is carried out solely on the training dataset without the need of an additional validation dataset. This simple yet effective approach achieves N-times more efficient uncertainty estimation during testing, where N is the number of samples traditionally required by Bayesian LLMs. Our extensive experiments demonstrate that uncertainty estimation capabilities on training data can successfully generalize to unseen test data through our distillation technique, consistently producing results comparable to (or even better than) state-of-the-art Bayesian LLMs.
Authors:Shenzhi Yang, Bin Liang, An Liu, Lin Gui, Xingkai Yao, Xiaofang Zhang
Title: Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Abstract:
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% (22.7%).
Authors:Guide Yang, Chao Hou, Weilong Peng, Xiang Fang, Yongwei Nie, Peican Zhu, Keke Tang
Title: EOOD: Entropy-based Out-of-distribution Detection
Abstract:
Deep neural networks (DNNs) often exhibit overconfidence when encountering out-of-distribution (OOD) samples, posing significant challenges for deployment. Since DNNs are trained on in-distribution (ID) datasets, the information flow of ID samples through DNNs inevitably differs from that of OOD samples. In this paper, we propose an Entropy-based Out-Of-distribution Detection (EOOD) framework. EOOD first identifies specific block where the information flow differences between ID and OOD samples are more pronounced, using both ID and pseudo-OOD samples. It then calculates the conditional entropy on the selected block as the OOD confidence score. Comprehensive experiments conducted across various ID and OOD settings demonstrate the effectiveness of EOOD in OOD detection and its superiority over state-of-the-art methods.
Authors:Akshat Ramachandran, Mingyu Lee, Huan Xu, Souvik Kundu, Tushar Krishna
Title: OuroMamba: A Data-Free Quantization Framework for Vision Mamba Models
Abstract:
We present OuroMamba, the first data-free post-training quantization (DFQ) method for vision Mamba-based models (VMMs). We identify two key challenges in enabling DFQ for VMMs, (1) VMM's recurrent state transitions restricts capturing of long-range interactions and leads to semantically weak synthetic data, (2) VMM activations exhibit dynamic outlier variations across time-steps, rendering existing static PTQ techniques ineffective. To address these challenges, OuroMamba presents a two-stage framework: (1) OuroMamba-Gen to generate semantically rich and meaningful synthetic data. It applies contrastive learning on patch level VMM features generated through neighborhood interactions in the latent state space, (2) OuroMamba-Quant to employ mixed-precision quantization with lightweight dynamic outlier detection during inference. In specific, we present a thresholding based outlier channel selection strategy for activations that gets updated every time-step. Extensive experiments across vision and generative tasks show that our data-free OuroMamba surpasses existing data-driven PTQ techniques, achieving state-of-the-art performance across diverse quantization settings. Additionally, we implement efficient GPU kernels to achieve practical latency speedup of up to 2.36x. Code will be released soon.
Authors:Xiao Li, Anouck Girard, Ilya Kolmanovsky
Title: Safe Adaptive Cruise Control Under Perception Uncertainty: A Deep Ensemble and Conformal Tube Model Predictive Control Approach
Abstract:
Autonomous driving heavily relies on perception systems to interpret the environment for decision-making. To enhance robustness in these safety critical applications, this paper considers a Deep Ensemble of Deep Neural Network regressors integrated with Conformal Prediction to predict and quantify uncertainties. In the Adaptive Cruise Control setting, the proposed method performs state and uncertainty estimation from RGB images, informing the downstream controller of the DNN perception uncertainties. An adaptive cruise controller using Conformal Tube Model Predictive Control is designed to ensure probabilistic safety. Evaluations with a high-fidelity simulator demonstrate the algorithm's effectiveness in speed tracking and safe distance maintaining, including in Out-Of-Distribution scenarios.
Authors:Haoliang Wang, Chen Zhao, Feng Chen
Title: MADOD: Generalizing OOD Detection to Unseen Domains via G-Invariance Meta-Learning
Abstract:
Real-world machine learning applications often face simultaneous covariate and semantic shifts, challenging traditional domain generalization and out-of-distribution (OOD) detection methods. We introduce Meta-learned Across Domain Out-of-distribution Detection (MADOD), a novel framework designed to address both shifts concurrently. MADOD leverages meta-learning and G-invariance to enhance model generalizability and OOD detection in unseen domains. Our key innovation lies in task construction: we randomly designate in-distribution classes as pseudo-OODs within each meta-learning task, simulating OOD scenarios using existing data. This approach, combined with energy-based regularization, enables the learning of robust, domain-invariant features while calibrating decision boundaries for effective OOD detection. Operating in a test domain-agnostic setting, MADOD eliminates the need for adaptation during inference, making it suitable for scenarios where test data is unavailable. Extensive experiments on real-world and synthetic datasets demonstrate MADOD's superior performance in semantic OOD detection across unseen domains, achieving an AUPR improvement of 8.48% to 20.81%, while maintaining competitive in-distribution classification accuracy, representing a significant advancement in handling both covariate and semantic shifts.
Authors:Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska, Jiming Chen, Peng Cheng
Title: FAST: Boosting Uncertainty-based Test Prioritization Methods for Neural Networks via Feature Selection
Abstract:
Due to the vast testing space, the increasing demand for effective and efficient testing of deep neural networks (DNNs) has led to the development of various DNN test case prioritization techniques. However, the fact that DNNs can deliver high-confidence predictions for incorrectly predicted examples, known as the over-confidence problem, causes these methods to fail to reveal high-confidence errors. To address this limitation, in this work, we propose FAST, a method that boosts existing prioritization methods through guided FeAture SelecTion. FAST is based on the insight that certain features may introduce noise that affects the model's output confidence, thereby contributing to high-confidence errors. It quantifies the importance of each feature for the model's correct predictions, and then dynamically prunes the information from the noisy features during inference to derive a new probability vector for the uncertainty estimation. With the help of FAST, the high-confidence errors and correctly classified examples become more distinguishable, resulting in higher APFD (Average Percentage of Fault Detection) values for test prioritization, and higher generalization ability for model enhancement. We conduct extensive experiments to evaluate FAST across a diverse set of model structures on multiple benchmark datasets to validate the effectiveness, efficiency, and scalability of FAST compared to the state-of-the-art prioritization techniques.
Authors:Shijing Wang, Yaping Huang, Jun Xie, Yi Tian, Feng Chen, Zhepeng Wang
Title: Cross-Dataset Gaze Estimation by Evidential Inter-intra Fusion
Abstract:
Achieving accurate and reliable gaze predictions in complex and diverse environments remains challenging. Fortunately, it is straightforward to access diverse gaze datasets in real-world applications. We discover that training these datasets jointly can significantly improve the generalization of gaze estimation, which is overlooked in previous works. However, due to the inherent distribution shift across different datasets, simply mixing multiple dataset decreases the performance in the original domain despite gaining better generalization abilities. To address the problem of ``cross-dataset gaze estimation'', we propose a novel Evidential Inter-intra Fusion EIF framework, for training a cross-dataset model that performs well across all source and unseen domains. Specifically, we build independent single-dataset branches for various datasets where the data space is partitioned into overlapping subspaces within each dataset for local regression, and further create a cross-dataset branch to integrate the generalizable features from single-dataset branches. Furthermore, evidential regressors based on the Normal and Inverse-Gamma (NIG) distribution are designed to additionally provide uncertainty estimation apart from predicting gaze. Building upon this foundation, our proposed framework achieves both intra-evidential fusion among multiple local regressors within each dataset and inter-evidential fusion among multiple branches by Mixture \textbfof Normal Inverse-Gamma (MoNIG distribution. Experiments demonstrate that our method consistently achieves notable improvements in both source domains and unseen domains.
Authors:Min Wu, Xiaofu Li, Haoze Wu, Clark Barrett
Title: Better Verified Explanations with Applications to Incorrectness and Out-of-Distribution Detection
Abstract:
Building on VeriX (Verified eXplainability, arXiv:2212.01051), a system for producing optimal verified explanations for machine learning model outputs, we present VeriX+, which significantly improves both the size and the generation time of verified explanations. We introduce a bound propagation-based sensitivity technique to improve the size, and a binary search-based traversal with confidence ranking for improving time -- the two techniques are orthogonal and can be used independently or together. We also show how to adapt the QuickXplain (Junker 2004) algorithm to our setting to provide a trade-off between size and time. Experimental evaluations on standard benchmarks demonstrate significant improvements on both metrics, e.g., a size reduction of 38% on the GTSRB dataset and a time reduction of 90% on MNIST. We also explore applications of our verified explanations and show that explanation size is a useful proxy for both incorrectness detection and out-of-distribution detection.
Authors:Ignacio Antequera-Sánchez, Juan Luis Suárez-Díaz, Rosana Montes, Francisco Herrera
Title: SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Abstract:
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
Authors:Penghao Rao, Runmin Jiang, Min Xu
Title: SG-OIF: A Stability-Guided Online Influence Framework for Reliable Vision Data
Abstract:
Approximating training-point influence on test predictions is critical for deploying deep-learning vision models, essential for locating noisy data. Though the influence function was proposed for attributing how infinitesimal up-weighting or removal of individual training examples affects model outputs, its implementation is still challenging in deep-learning vision models: inverse-curvature computations are expensive, and training non-stationarity invalidates static approximations. Prior works use iterative solvers and low-rank surrogates to reduce cost, but offline computation lags behind training dynamics, and missing confidence calibration yields fragile rankings that misidentify critical examples. To address these challenges, we introduce a Stability-Guided Online Influence Framework (SG-OIF), the first framework that treats algorithmic stability as a real-time controller, which (i) maintains lightweight anchor IHVPs via stochastic Richardson and preconditioned Neumann; (ii) proposes modular curvature backends to modulate per-example influence scores using stability-guided residual thresholds, anomaly gating, and confidence. Experimental results show that SG-OIF achieves SOTA (State-Of-The-Art) on noise-label and out-of-distribution detection tasks across multiple datasets with various corruption. Notably, our approach achieves 91.1\% accuracy in the top 1\% prediction samples on the CIFAR-10 (20\% asym), and gets 99.8\% AUPR score on MNIST, effectively demonstrating that this framework is a practical controller for online influence estimation.
Authors:Gaia Grosso, Sai Sumedh R. Hindupur, Thomas Fel, Samuel Bright-Thonney, Philip Harris, Demba Ba
Title: Sparse, self-organizing ensembles of local kernels detect rare statistical anomalies
Abstract:
Modern artificial intelligence has revolutionized our ability to extract rich and versatile data representations across scientific disciplines. Yet, the statistical properties of these representations remain poorly controlled, causing misspecified anomaly detection (AD) methods to falter. Weak or rare signals can remain hidden within the apparent regularity of normal data, creating a gap in our ability to detect and interpret anomalies. We examine this gap and identify a set of structural desiderata for detection methods operating under minimal prior information: sparsity, to enforce parsimony; locality, to preserve geometric sensitivity; and competition, to promote efficient allocation of model capacity. These principles define a class of self-organizing local kernels that adaptively partition the representation space around regions of statistical imbalance. As an instantiation of these principles, we introduce SparKer, a sparse ensemble of Gaussian kernels trained within a semi-supervised Neyman--Pearson framework to locally model the likelihood ratio between a sample that may contain anomalies and a nominal, anomaly-free reference. We provide theoretical insights into the mechanisms that drive detection and self-organization in the proposed model, and demonstrate the effectiveness of this approach on realistic high-dimensional problems of scientific discovery, open-world novelty detection, intrusion detection, and generative-model validation. Our applications span both the natural- and computer-science domains. We demonstrate that ensembles containing only a handful of kernels can identify statistically significant anomalous locations within representation spaces of thousands of dimensions, underscoring both the interpretability, efficiency and scalability of the proposed approach.
Authors:Shizhen Zhao, Jiahui Liu, Xin Wen, Haoru Tan, Xiaojuan Qi
Title: Equipping Vision Foundation Model with Mixture of Experts for Out-of-Distribution Detection
Abstract:
Pre-trained vision foundation models have transformed many computer vision tasks. Despite their strong ability to learn discriminative and generalizable features crucial for out-of-distribution (OOD) detection, their impact on this task remains underexplored. Motivated by this gap, we systematically investigate representative vision foundation models for OOD detection. Our findings reveal that a pre-trained DINOv2 model, even without fine-tuning on in-domain (ID) data, naturally provides a highly discriminative feature space for OOD detection, achieving performance comparable to existing state-of-the-art methods without requiring complex designs. Beyond this, we explore how fine-tuning foundation models on in-domain (ID) data can enhance OOD detection. However, we observe that the performance of vision foundation models remains unsatisfactory in scenarios with a large semantic space. This is due to the increased complexity of decision boundaries as the number of categories grows, which complicates the optimization process. To mitigate this, we propose the Mixture of Feature Experts (MoFE) module, which partitions features into subspaces, effectively capturing complex data distributions and refining decision boundaries. Further, we introduce a Dynamic-$β$ Mixup strategy, which samples interpolation weights from a dynamic beta distribution. This adapts to varying levels of learning difficulty across categories, improving feature learning for more challenging categories. Extensive experiments demonstrate the effectiveness of our approach, significantly outperforming baseline methods.
Authors:Ha Manh Bui, Felix Parker, Kimia Ghobadi, Anqi Liu
Title: Q-Learning with Shift-Aware Upper Confidence Bound in Non-Stationary Reinforcement Learning
Abstract:
We study the Non-Stationary Reinforcement Learning (RL) under distribution shifts in both finite-horizon episodic and infinite-horizon discounted Markov Decision Processes (MDPs). In the finite-horizon case, the transition functions may suddenly change at a particular episode. In the infinite-horizon setting, such changes can occur at an arbitrary time step during the agent's interaction with the environment. While the Q-learning Upper Confidence Bound algorithm (QUCB) can discover a proper policy during learning, due to the distribution shifts, this policy can exploit sub-optimal rewards after the shift happens. To address this issue, we propose Density-QUCB (DQUCB), a shift-aware Q-learning~UCB algorithm, which uses a transition density function to detect distribution shifts, then leverages its likelihood to enhance the uncertainty estimation quality of Q-learning~UCB, resulting in a balance between exploration and exploitation. Theoretically, we prove that our oracle DQUCB achieves a better regret guarantee than QUCB. Empirically, our DQUCB enjoys the computational efficiency of model-free RL and outperforms QUCB baselines by having a lower regret across RL tasks, as well as a real-world COVID-19 patient hospital allocation task using a Deep-Q-learning architecture.
Authors:Yating Liu, Xing Su, Hao Wu, Sijin Li, Yuxi Cheng, Fengyuan Xu, Sheng Zhong
Title: Revealing Adversarial Smart Contracts through Semantic Interpretation and Uncertainty Estimation
Abstract:
Adversarial smart contracts, mostly on EVM-compatible chains like Ethereum and BSC, are deployed as EVM bytecode to exploit vulnerable smart contracts for financial gain. Detecting such malicious contracts at the time of deployment is an important proactive strategy to prevent losses from victim contracts. It offers a better cost-benefit ratio than detecting vulnerabilities on diverse potential victims. However, existing works are not generic with limited detection types and effectiveness due to imbalanced samples, while the emerging LLM technologies, which show their potential in generalization, have two key problems impeding its application in this task: hard digestion of compiled-code inputs, especially those with task-specific logic, and hard assessment of LLM's certainty in its binary (yes-or-no) answers. Therefore, we propose a generic adversarial smart contracts detection framework FinDet, which leverages LLM with two enhancements addressing the above two problems. FinDet takes as input only the EVM bytecode contracts and identifies adversarial ones among them with high balanced accuracy. The first enhancement extracts concise semantic intentions and high-level behavioral logic from the low-level bytecode inputs, unleashing the LLM reasoning capability restricted by the task input. The second enhancement probes and measures the LLM uncertainty to its multi-round answering to the same query, improving the LLM answering robustness for binary classifications required by the task output. Our comprehensive evaluation shows that FinDet achieves a BAC of 0.9374 and a TPR of 0.9231, significantly outperforming existing baselines. It remains robust under challenging conditions including unseen attack patterns, low-data settings, and feature obfuscation. FinDet detects all 5 public and 20+ unreported adversarial contracts in a 10-day real-world test, confirmed manually.
Authors:Yalei Yu, Matthew Coombes, Wen-Hua Chen, Cong Sun, Myles Flanagan, Jingjing Jiang, Pramod Pashupathy, Masoud Sotoodeh-Bahraini, Peter Kinnell, Niels Lohse
Title: A Goal-Oriented Approach for Active Object Detection with Exploration-Exploitation Balance
Abstract:
Active object detection, which aims to identify objects of interest through controlled camera movements, plays a pivotal role in real-world visual perception for autonomous robotic applications, such as manufacturing tasks (e.g., assembly operations) performed in unknown environments. A dual control for exploration and exploitation (DCEE) algorithm is presented within goal-oriented control systems to achieve efficient active object detection, leveraging active learning by incorporating variance-based uncertainty estimation in the cost function. This novel method employs an exploration-exploitation balanced cost function to actively guide the selection of the next viewpoint. Specifically, active object detection is achieved through the development of a reward function that encodes knowledge about the confidence variation of objects as a function of viewpoint position within a given domain. By identifying the unknown parameters of this function, the system generates an optimal viewpoint planning strategy. DCEE integrates parameter estimation of the reward function and view planning, ensuring a balanced trade-off between the exploitation of learned knowledge and active exploration during the planning process. Moreover, it demonstrates remarkable adaptability across diverse scenarios, effectively handling LEGO brick detection at varying locations. Importantly, the algorithm maintains consistent configuration settings and a fixed number of parameters across various scenarios, underscoring its efficiency and robustness. To validate the proposed approach, extensive numerical studies, high-fidelity virtual simulations, and real-world experiments under various scenarios were conducted. The results confirm the effectiveness of DCEE in active object detection, showcasing superior performance compared to existing methods, including model predictive control (MPC) and entropy approaches.
Authors:Arantxa Urrea-Castaño, Nicolás Segura-Kunsagi, Juan Luis Suárez-Díaz, Rosana Montes, Francisco Herrera
Title: DCV-ROOD Evaluation Framework: Dual Cross-Validation for Robust Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection plays a key role in enhancing the robustness of artificial intelligence systems by identifying inputs that differ significantly from the training distribution, thereby preventing unreliable predictions and enabling appropriate fallback mechanisms. Developing reliable OOD detection methods is a significant challenge, and rigorous evaluation of these techniques is essential for ensuring their effectiveness, as it allows researchers to assess their performance under diverse conditions and to identify potential limitations or failure modes. Cross-validation (CV) has proven to be a highly effective tool for providing a reasonable estimate of the performance of a learning algorithm. Although OOD scenarios exhibit particular characteristics, an appropriate adaptation of CV can lead to a suitable evaluation framework for this setting. This work proposes a dual CV framework for robust evaluation of OOD detection models, aimed at improving the reliability of their assessment. The proposed evaluation framework aims to effectively integrate in-distribution (ID) and OOD data while accounting for their differing characteristics. To achieve this, ID data are partitioned using a conventional approach, whereas OOD data are divided by grouping samples based on their classes. Furthermore, we analyze the context of data with class hierarchy to propose a data splitting that considers the entire class hierarchy to obtain fair ID-OOD partitions to apply the proposed evaluation framework. This framework is called Dual Cross-Validation for Robust Out-of-Distribution Detection (DCV-ROOD). To test the validity of the evaluation framework, we selected a set of state-of-the-art OOD detection methods, both with and without outlier exposure. The results show that the method achieves very fast convergence to the true performance.
Authors:Guanyi Qin, Ziyue Wang, Daiyun Shen, Haofeng Liu, Hantao Zhou, Junde Wu, Runze Hu, Yueming Jin
Title: Structure Matters: Revisiting Boundary Refinement in Video Object Segmentation
Abstract:
Given an object mask, Semi-supervised Video Object Segmentation (SVOS) technique aims to track and segment the object across video frames, serving as a fundamental task in computer vision. Although recent memory-based methods demonstrate potential, they often struggle with scenes involving occlusion, particularly in handling object interactions and high feature similarity. To address these issues and meet the real-time processing requirements of downstream applications, in this paper, we propose a novel bOundary Amendment video object Segmentation method with Inherent Structure refinement, hereby named OASIS. Specifically, a lightweight structure refinement module is proposed to enhance segmentation accuracy. With the fusion of rough edge priors captured by the Canny filter and stored object features, the module can generate an object-level structure map and refine the representations by highlighting boundary features. Evidential learning for uncertainty estimation is introduced to further address challenges in occluded regions. The proposed method, OASIS, maintains an efficient design, yet extensive experiments on challenging benchmarks demonstrate its superior performance and competitive inference speed compared to other state-of-the-art methods, i.e., achieving the F values of 91.6 (vs. 89.7 on DAVIS-17 validation set) and G values of 86.6 (vs. 86.2 on YouTubeVOS 2019 validation set) while maintaining a competitive speed of 48 FPS on DAVIS.
Authors:Amir Hossein Rahmati, Sanket Jantre, Weifeng Zhang, Yucheng Wang, Byung-Jun Yoon, Nathan M. Urban, Xiaoning Qian
Title: C-LoRA: Contextual Low-Rank Adaptation for Uncertainty Estimation in Large Language Models
Abstract:
Low-Rank Adaptation (LoRA) offers a cost-effective solution for fine-tuning large language models (LLMs), but it often produces overconfident predictions in data-scarce few-shot settings. To address this issue, several classical statistical learning approaches have been repurposed for scalable uncertainty-aware LoRA fine-tuning. However, these approaches neglect how input characteristics affect the predictive uncertainty estimates. To address this limitation, we propose Contextual Low-Rank Adaptation (\textbf{C-LoRA}) as a novel uncertainty-aware and parameter efficient fine-tuning approach, by developing new lightweight LoRA modules contextualized to each input data sample to dynamically adapt uncertainty estimates. Incorporating data-driven contexts into the parameter posteriors, C-LoRA mitigates overfitting, achieves well-calibrated uncertainties, and yields robust predictions. Extensive experiments demonstrate that C-LoRA consistently outperforms the state-of-the-art uncertainty-aware LoRA methods in both uncertainty quantification and model generalization. Ablation studies further confirm the critical role of our contextual modules in capturing sample-specific uncertainties. C-LoRA sets a new standard for robust, uncertainty-aware LLM fine-tuning in few-shot regimes.
Authors:Pei-Fu Guo, Yun-Da Tsai, Shou-De Lin
Title: Uncertainty Profiles for LLMs: Uncertainty Source Decomposition and Adaptive Model-Metric Selection
Abstract:
Large language models (LLMs) often generate fluent but factually incorrect outputs, known as hallucinations, which undermine their reliability in real-world applications. While uncertainty estimation has emerged as a promising strategy for detecting such errors, current metrics offer limited interpretability and lack clarity about the types of uncertainty they capture. In this paper, we present a systematic framework for decomposing LLM uncertainty into four distinct sources, inspired by previous research. We develop a source-specific estimation pipeline to quantify these uncertainty types and evaluate how existing metrics relate to each source across tasks and models. Our results show that metrics, task, and model exhibit systematic variation in uncertainty characteristic. Building on this, we propose a method for task specific metric/model selection guided by the alignment or divergence between their uncertainty characteristics and that of a given task. Our experiments across datasets and models demonstrate that our uncertainty-aware selection strategy consistently outperforms baseline strategies, helping us select appropriate models or uncertainty metrics, and contributing to more reliable and efficient deployment in uncertainty estimation.
Authors:Yifu Tao, Maurice Fallon
Title: SiLVR: Scalable Lidar-Visual Radiance Field Reconstruction with Uncertainty Quantification
Abstract:
We present a neural radiance field (NeRF) based large-scale reconstruction system that fuses lidar and vision data to generate high-quality reconstructions that are geometrically accurate and capture photorealistic texture. Our system adopts the state-of-the-art NeRF representation to incorporate lidar. Adding lidar data adds strong geometric constraints on the depth and surface normals, which is particularly useful when modelling uniform texture surfaces which contain ambiguous visual reconstruction cues. A key contribution of this work is a novel method to quantify the epistemic uncertainty of the lidar-visual NeRF reconstruction by estimating the spatial variance of each point location in the radiance field given the sensor observations from the cameras and lidar. This provides a principled approach to evaluate the contribution of each sensor modality to the final reconstruction. In this way, reconstructions that are uncertain (due to e.g. uniform visual texture, limited observation viewpoints, or little lidar coverage) can be identified and removed. Our system is integrated with a real-time lidar SLAM system which is used to bootstrap a Structure-from-Motion (SfM) reconstruction procedure. It also helps to properly constrain the overall metric scale which is essential for the lidar depth loss. The refined SLAM trajectory can then be divided into submaps using Spectral Clustering to group sets of co-visible images together. This submapping approach is more suitable for visual reconstruction than distance-based partitioning. Our uncertainty estimation is particularly effective when merging submaps as their boundaries often contain artefacts due to limited observations. We demonstrate the reconstruction system using a multi-camera, lidar sensor suite in experiments involving both robot-mounted and handheld scanning. Our test datasets cover a total area of more than 20,000 square metres.
Authors:Shizuka Akahori, Satoshi Iizuka, Ken Mawatari, Kazuhiro Fukui
Title: Point Cloud Novelty Detection Based on Latent Representations of a General Feature Extractor
Abstract:
We propose an effective unsupervised 3D point cloud novelty detection approach, leveraging a general point cloud feature extractor and a one-class classifier. The general feature extractor consists of a graph-based autoencoder and is trained once on a point cloud dataset such as a mathematically generated fractal 3D point cloud dataset that is independent of normal/abnormal categories. The input point clouds are first converted into latent vectors by the general feature extractor, and then one-class classification is performed on the latent vectors. Compared to existing methods measuring the reconstruction error in 3D coordinate space, our approach utilizes latent representations where the shape information is condensed, which allows more direct and effective novelty detection. We confirm that our general feature extractor can extract shape features of unseen categories, eliminating the need for autoencoder re-training and reducing the computational burden. We validate the performance of our method through experiments on several subsets of the ShapeNet dataset and demonstrate that our latent-based approach outperforms the existing methods.
Authors:Li Ju, Mayank Nautiyal, Andreas Hellander, Ekta Vats, Prashant Singh
Title: Epistemic Uncertainty Quantification for Pre-trained VLMs via Riemannian Flow Matching
Abstract:
Vision-Language Models (VLMs) are typically deterministic in nature and lack intrinsic mechanisms to quantify epistemic uncertainty, which reflects the model's lack of knowledge or ignorance of its own representations. We theoretically motivate negative log-density of an embedding as a proxy for the epistemic uncertainty, where low-density regions signify model ignorance. The proposed method REPVLM computes the probability density on the hyperspherical manifold of the VLM embeddings using Riemannian Flow Matching. We empirically demonstrate that REPVLM achieves near-perfect correlation between uncertainty and prediction error, significantly outperforming existing baselines. Beyond classification, we also demonstrate that the model also provides a scalable metric for out-of-distribution detection and automated data curation.
Authors:Aneesh Rangnekar, Harini Veeraraghavan
Title: Tumor-anchored deep feature random forests for out-of-distribution detection in lung cancer segmentation
Abstract:
Accurate segmentation of cancerous lesions from 3D computed tomography (CT) scans is essential for automated treatment planning and response assessment. However, even state-of-the-art models combining self-supervised learning (SSL) pretrained transformers with convolutional decoders are susceptible to out-of-distribution (OOD) inputs, generating confidently incorrect tumor segmentations, posing risks for safe clinical deployment. Existing logit-based methods suffer from task-specific model biases, while architectural enhancements to explicitly detect OOD increase parameters and computational costs. Hence, we introduce a plug-and-play and lightweight post-hoc random forests-based OOD detection framework called RF-Deep that leverages deep features with limited outlier exposure. RF-Deep enhances generalization to imaging variations by repurposing the hierarchical features from the pretrained-then-finetuned backbone encoder, providing task-relevant OOD detection by extracting the features from multiple regions of interest anchored to the predicted tumor segmentations. Hence, it scales to images of varying fields-of-view. We compared RF-Deep against existing OOD detection methods using 1,916 CT scans across near-OOD (pulmonary embolism, negative COVID-19) and far-OOD (kidney cancer, healthy pancreas) datasets. RF-Deep achieved AUROC > 93.50 for the challenging near-OOD datasets and near-perfect detection (AUROC > 99.00) for the far-OOD datasets, substantially outperforming logit-based and radiomics approaches. RF-Deep maintained similar performance consistency across networks of different depths and pretraining strategies, demonstrating its effectiveness as a lightweight, architecture-agnostic approach to enhance the reliability of tumor segmentation from CT volumes.
Authors:Manh Nguyen, Sunil Gupta, Hung Le
Title: Distance Is All You Need: Radial Dispersion for Uncertainty Estimation in Large Language Models
Abstract:
Detecting when large language models (LLMs) are uncertain is critical for building reliable systems, yet existing methods are overly complicated, relying on brittle semantic clustering or internal states. We introduce \textbf{Radial Dispersion Score (RDS)}, a simple, parameter-free, fully model-agnostic uncertainty metric that measures the radial dispersion of sampled generations in embedding space. A lightweight probability-weighted variant further incorporates the model's own token probabilities when available, outperforming different nine strong baselines. Moroever, RDS naturally extends to per-sample scoring, enabling applications such as best-of-$N$ selection and confidence-based filtering. Across four challenging free-form QA datasets and multiple LLMs, our metrics achieve state-of-the-art hallucination detection and answer selection performance, while remaining robust and scalable with respect to sample size and embedding choice.
Authors:Manh Nguyen, Sunil Gupta, Hung Le
Title: Probabilities Are All You Need: A Probability-Only Approach to Uncertainty Estimation in Large Language Models
Abstract:
Large Language Models (LLMs) exhibit strong performance across various natural language processing (NLP) tasks but remain vulnerable to hallucinations, generating factually incorrect or misleading outputs. Uncertainty estimation, often using predictive entropy estimation, is key to addressing this issue. However, existing methods often require multiple samples or extra computation to assess semantic entropy. This paper proposes an efficient, training-free uncertainty estimation method that approximates predictive entropy using the responses' top-$K$ probabilities. Moreover, we employ an adaptive mechanism to determine $K$ to enhance flexibility and filter out low-confidence probabilities. Experimental results on three free-form question-answering datasets across several LLMs demonstrate that our method outperforms expensive state-of-the-art baselines, contributing to the broader goal of enhancing LLM trustworthiness.
Authors:Christian Maurer, Snehal Jauhri, Sophie Lueth, Georgia Chalvatzaki
Title: UniFField: A Generalizable Unified Neural Feature Field for Visual, Semantic, and Spatial Uncertainties in Any Scene
Abstract:
Comprehensive visual, geometric, and semantic understanding of a 3D scene is crucial for successful execution of robotic tasks, especially in unstructured and complex environments. Additionally, to make robust decisions, it is necessary for the robot to evaluate the reliability of perceived information. While recent advances in 3D neural feature fields have enabled robots to leverage features from pretrained foundation models for tasks such as language-guided manipulation and navigation, existing methods suffer from two critical limitations: (i) they are typically scene-specific, and (ii) they lack the ability to model uncertainty in their predictions. We present UniFField, a unified uncertainty-aware neural feature field that combines visual, semantic, and geometric features in a single generalizable representation while also predicting uncertainty in each modality. Our approach, which can be applied zero shot to any new environment, incrementally integrates RGB-D images into our voxel-based feature representation as the robot explores the scene, simultaneously updating uncertainty estimation. We evaluate our uncertainty estimations to accurately describe the model prediction errors in scene reconstruction and semantic feature prediction. Furthermore, we successfully leverage our feature predictions and their respective uncertainty for an active object search task using a mobile manipulator robot, demonstrating the capability for robust decision-making.
Authors:Aneesh Rangnekar, Harini Veeraraghavan
Title: Random forest-based out-of-distribution detection for robust lung cancer segmentation
Abstract:
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.
Authors:Honglong Yang, Shanshan Song, Yi Qin, Lehan Wang, Haonan Wang, Xinpeng Ding, Qixiang Zhang, Bodong Du, Xiaomeng Li
Title: Multi-Modal Explainable Medical AI Assistant for Trustworthy Human-AI Collaboration
Abstract:
Generalist Medical AI (GMAI) systems have demonstrated expert-level performance in biomedical perception tasks, yet their clinical utility remains limited by inadequate multi-modal explainability and suboptimal prognostic capabilities. Here, we present XMedGPT, a clinician-centric, multi-modal AI assistant that integrates textual and visual interpretability to support transparent and trustworthy medical decision-making. XMedGPT not only produces accurate diagnostic and descriptive outputs, but also grounds referenced anatomical sites within medical images, bridging critical gaps in interpretability and enhancing clinician usability. To support real-world deployment, we introduce a reliability indexing mechanism that quantifies uncertainty through consistency-based assessment via interactive question-answering. We validate XMedGPT across four pillars: multi-modal interpretability, uncertainty quantification, and prognostic modeling, and rigorous benchmarking. The model achieves an IoU of 0.703 across 141 anatomical regions, and a Kendall's tau-b of 0.479, demonstrating strong alignment between visual rationales and clinical outcomes. For uncertainty estimation, it attains an AUC of 0.862 on visual question answering and 0.764 on radiology report generation. In survival and recurrence prediction for lung and glioma cancers, it surpasses prior leading models by 26.9%, and outperforms GPT-4o by 25.0%. Rigorous benchmarking across 347 datasets covers 40 imaging modalities and external validation spans 4 anatomical systems confirming exceptional generalizability, with performance gains surpassing existing GMAI by 20.7% for in-domain evaluation and 16.7% on 11,530 in-house data evaluation. Together, XMedGPT represents a significant leap forward in clinician-centric AI integration, offering trustworthy and scalable support for diverse healthcare applications.
Authors:Changshun Wu, Weicheng He, Chih-Hong Cheng, Xiaowei Huang, Saddek Bensalem
Title: Revisiting Out-of-Distribution Detection in Real-time Object Detection: From Benchmark Pitfalls to a New Mitigation Paradigm
Abstract:
Out-of-distribution (OoD) inputs pose a persistent challenge to deep learning models, often triggering overconfident predictions on non-target objects. While prior work has primarily focused on refining scoring functions and adjusting test-time thresholds, such algorithmic improvements offer only incremental gains. We argue that a rethinking of the entire development lifecycle is needed to mitigate these risks effectively. This work addresses two overlooked dimensions of OoD detection in object detection. First, we reveal fundamental flaws in widely used evaluation benchmarks: contrary to their design intent, up to 13% of objects in the OoD test sets actually belong to in-distribution classes, and vice versa. These quality issues severely distort the reported performance of existing methods and contribute to their high false positive rates. Second, we introduce a novel training-time mitigation paradigm that operates independently of external OoD detectors. Instead of relying solely on post-hoc scoring, we fine-tune the detector using a carefully synthesized OoD dataset that semantically resembles in-distribution objects. This process shapes a defensive decision boundary by suppressing objectness on OoD objects, leading to a 91% reduction in hallucination error of a YOLO model on BDD-100K. Our methodology generalizes across detection paradigms such as YOLO, Faster R-CNN, and RT-DETR, and supports few-shot adaptation. Together, these contributions offer a principled and effective way to reduce OoD-induced hallucination in object detectors. Code and data are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
Authors:Jiuhong Xiao, Giuseppe Loianno
Title: UASTHN: Uncertainty-Aware Deep Homography Estimation for UAV Satellite-Thermal Geo-localization
Abstract:
Geo-localization is an essential component of Unmanned Aerial Vehicle (UAV) navigation systems to ensure precise absolute self-localization in outdoor environments. To address the challenges of GPS signal interruptions or low illumination, Thermal Geo-localization (TG) employs aerial thermal imagery to align with reference satellite maps to accurately determine the UAV's location. However, existing TG methods lack uncertainty measurement in their outputs, compromising system robustness in the presence of textureless or corrupted thermal images, self-similar or outdated satellite maps, geometric noises, or thermal images exceeding satellite maps. To overcome these limitations, this paper presents UASTHN, a novel approach for Uncertainty Estimation (UE) in Deep Homography Estimation (DHE) tasks for TG applications. Specifically, we introduce a novel Crop-based Test-Time Augmentation (CropTTA) strategy, which leverages the homography consensus of cropped image views to effectively measure data uncertainty. This approach is complemented by Deep Ensembles (DE) employed for model uncertainty, offering comparable performance with improved efficiency and seamless integration with any DHE model. Extensive experiments across multiple DHE models demonstrate the effectiveness and efficiency of CropTTA in TG applications. Analysis of detected failure cases underscores the improved reliability of CropTTA under challenging conditions. Finally, we demonstrate the capability of combining CropTTA and DE for a comprehensive assessment of both data and model uncertainty. Our research provides profound insights into the broader intersection of localization and uncertainty estimation. The code and models are publicly available.
Authors:Jingkun Chen, Guang Yang, Xiao Zhang, Jingchao Peng, Tianlu Zhang, Jianguo Zhang, Jungong Han, Vicente Grau
Title: Unsupervised Patch-GAN with Targeted Patch Ranking for Fine-Grained Novelty Detection in Medical Imaging
Abstract:
Detecting novel anomalies in medical imaging is challenging due to the limited availability of labeled data for rare abnormalities, which often display high variability and subtlety. This challenge is further compounded when small abnormal regions are embedded within larger normal areas, as whole-image predictions frequently overlook these subtle deviations. To address these issues, we propose an unsupervised Patch-GAN framework designed to detect and localize anomalies by capturing both local detail and global structure. Our framework first reconstructs masked images to learn fine-grained, normal-specific features, allowing for enhanced sensitivity to minor deviations from normality. By dividing these reconstructed images into patches and assessing the authenticity of each patch, our approach identifies anomalies at a more granular level, overcoming the limitations of whole-image evaluation. Additionally, a patch-ranking mechanism prioritizes regions with higher abnormal scores, reinforcing the alignment between local patch discrepancies and the global image context. Experimental results on the ISIC 2016 skin lesion and BraTS 2019 brain tumor datasets validate our framework's effectiveness, achieving AUCs of 95.79% and 96.05%, respectively, and outperforming three state-of-the-art baselines.
Authors:Yue Hou, Ruomei Liu, Yingke Su, Junran Wu, Ke Xu
Title: Graph Out-of-Distribution Detection via Test-Time Calibration with Dual Dynamic Dictionaries
Abstract:
A key challenge in graph out-of-distribution (OOD) detection lies in the absence of ground-truth OOD samples during training. Existing methods are typically optimized to capture features within the in-distribution (ID) data and calculate OOD scores, which often limits pre-trained models from representing distributional boundaries, leading to unreliable OOD detection. Moreover, the latent structure of graph data is often governed by multiple underlying factors, which remains less explored. To address these challenges, we propose a novel test-time graph OOD detection method, termed BaCa, that calibrates OOD scores using dual dynamically updated dictionaries without requiring fine-tuning the pre-trained model. Specifically, BaCa estimates graphons and applies a mix-up strategy solely with test samples to generate diverse boundary-aware discriminative topologies, eliminating the need for exposing auxiliary datasets as outliers. We construct dual dynamic dictionaries via priority queues and attention mechanisms to adaptively capture latent ID and OOD representations, which are then utilized for boundary-aware OOD score calibration. To the best of our knowledge, extensive experiments on real-world datasets show that BaCa significantly outperforms existing state-of-the-art methods in OOD detection.
Authors:Shu Hong, Yongsheng Mei, Mahdi Imani, Tian Lan
Title: Global Optimization on Graph-Structured Data via Gaussian Processes with Spectral Representations
Abstract:
Bayesian optimization (BO) is a powerful framework for optimizing expensive black-box objectives, yet extending it to graph-structured domains remains challenging due to the discrete and combinatorial nature of graphs. Existing approaches often rely on either full graph topology-impractical for large or partially observed graphs-or incremental exploration, which can lead to slow convergence. We introduce a scalable framework for global optimization over graphs that employs low-rank spectral representations to build Gaussian process (GP) surrogates from sparse structural observations. The method jointly infers graph structure and node representations through learnable embeddings, enabling efficient global search and principled uncertainty estimation even with limited data. We also provide theoretical analysis establishing conditions for accurate recovery of underlying graph structure under different sampling regimes. Experiments on synthetic and real-world datasets demonstrate that our approach achieves faster convergence and improved optimization performance compared to prior methods.
Authors:Yue Hou, He Zhu, Ruomei Liu, Yingke Su, Junran Wu, Ke Xu
Title: Redundancy-Aware Test-Time Graph Out-of-Distribution Detection
Abstract:
Distributional discrepancy between training and test data can lead models to make inaccurate predictions when encountering out-of-distribution (OOD) samples in real-world applications. Although existing graph OOD detection methods leverage data-centric techniques to extract effective representations, their performance remains compromised by structural redundancy that induces semantic shifts. To address this dilemma, we propose RedOUT, an unsupervised framework that integrates structural entropy into test-time OOD detection for graph classification. Concretely, we introduce the Redundancy-aware Graph Information Bottleneck (ReGIB) and decompose the objective into essential information and irrelevant redundancy. By minimizing structural entropy, the decoupled redundancy is reduced, and theoretically grounded upper and lower bounds are proposed for optimization. Extensive experiments on real-world datasets demonstrate the superior performance of RedOUT on OOD detection. Specifically, our method achieves an average improvement of 6.7%, significantly surpassing the best competitor by 17.3% on the ClinTox/LIPO dataset pair.
Authors:Shourya Verma, Mengbo Wang, Nadia Atallah Lanman, Ananth Grama
Title: RestoRect: Degraded Image Restoration via Latent Rectified Flow & Feature Distillation
Abstract:
Current approaches for restoration of degraded images face a critical trade-off: high-performance models are too slow for practical use, while fast models produce poor results. Knowledge distillation transfers teacher knowledge to students, but existing static feature matching methods cannot capture how modern transformer architectures dynamically generate features. We propose 'RestoRect', a novel Latent Rectified Flow Feature Distillation method for restoring degraded images. We apply rectified flow to reformulate feature distillation as a generative process where students learn to synthesize teacher-quality features through learnable trajectories in latent space. Our framework combines Retinex theory for physics-based decomposition with learnable anisotropic diffusion constraints, and trigonometric color space polarization. We introduce a Feature Layer Extraction loss for robust knowledge transfer between different network architectures through cross-normalized transformer feature alignment with percentile-based outlier detection. RestoRect achieves better training stability, and faster convergence and inference while preserving restoration quality. We demonstrate superior results across 15 image restoration datasets, covering 4 tasks, on 8 metrics.
Authors:Ang Nan Gu, Michael Tsang, Hooman Vaseli, Purang Abolmaesumi, Teresa Tsang
Title: Pseudo-D: Informing Multi-View Uncertainty Estimation with Calibrated Neural Training Dynamics
Abstract:
Computer-aided diagnosis systems must make critical decisions from medical images that are often noisy, ambiguous, or conflicting, yet today's models are trained on overly simplistic labels that ignore diagnostic uncertainty. One-hot labels erase inter-rater variability and force models to make overconfident predictions, especially when faced with incomplete or artifact-laden inputs. We address this gap by introducing a novel framework that brings uncertainty back into the label space. Our method leverages neural network training dynamics (NNTD) to assess the inherent difficulty of each training sample. By aggregating and calibrating model predictions during training, we generate uncertainty-aware pseudo-labels that reflect the ambiguity encountered during learning. This label augmentation approach is architecture-agnostic and can be applied to any supervised learning pipeline to enhance uncertainty estimation and robustness. We validate our approach on a challenging echocardiography classification benchmark, demonstrating superior performance over specialized baselines in calibration, selective classification, and multi-view fusion.
Authors:Nicholas A. Pearson, Francesca Zanello, Davide Russo, Luca Bortolussi, Francesca Cairoli
Title: CoCAI: Copula-based Conformal Anomaly Identification for Multivariate Time-Series
Abstract:
We propose a novel framework that harnesses the power of generative artificial intelligence and copula-based modeling to address two critical challenges in multivariate time-series analysis: delivering accurate predictions and enabling robust anomaly detection. Our method, Copula-based Conformal Anomaly Identification for Multivariate Time-Series (CoCAI), leverages a diffusion-based model to capture complex dependencies within the data, enabling high quality forecasting. The model's outputs are further calibrated using a conformal prediction technique, yielding predictive regions which are statistically valid, i.e., cover the true target values with a desired confidence level. Starting from these calibrated forecasts, robust outlier detection is performed by combining dimensionality reduction techniques with copula-based modeling, providing a statistically grounded anomaly score. CoCAI benefits from an offline calibration phase that allows for minimal overhead during deployment and delivers actionable results rooted in established theoretical foundations. Empirical tests conducted on real operational data derived from water distribution and sewerage systems confirm CoCAI's effectiveness in accurately forecasting target sequences of data and in identifying anomalous segments within them.
Authors:Anju Chhetri, Jari Korhonen, Prashnna Gyawali, Binod Bhattarai
Title: NERO: Explainable Out-of-Distribution Detection with Neuron-level Relevance
Abstract:
Ensuring reliability is paramount in deep learning, particularly within the domain of medical imaging, where diagnostic decisions often hinge on model outputs. The capacity to separate out-of-distribution (OOD) samples has proven to be a valuable indicator of a model's reliability in research. In medical imaging, this is especially critical, as identifying OOD inputs can help flag potential anomalies that might otherwise go undetected. While many OOD detection methods rely on feature or logit space representations, recent works suggest these approaches may not fully capture OOD diversity. To address this, we propose a novel OOD scoring mechanism, called NERO, that leverages neuron-level relevance at the feature layer. Specifically, we cluster neuron-level relevance for each in-distribution (ID) class to form representative centroids and introduce a relevance distance metric to quantify a new sample's deviation from these centroids, enhancing OOD separability. Additionally, we refine performance by incorporating scaled relevance in the bias term and combining feature norms. Our framework also enables explainable OOD detection. We validate its effectiveness across multiple deep learning architectures on the gastrointestinal imaging benchmarks Kvasir and GastroVision, achieving improvements over state-of-the-art OOD detection methods.
Authors:Paul Hofman, Yusuf Sale, Eyke Hüllermeier
Title: Uncertainty Quantification with Proper Scoring Rules: Adjusting Measures to Prediction Tasks
Abstract:
We address the problem of uncertainty quantification and propose measures of total, aleatoric, and epistemic uncertainty based on a known decomposition of (strictly) proper scoring rules, a specific type of loss function, into a divergence and an entropy component. This leads to a flexible framework for uncertainty quantification that can be instantiated with different losses (scoring rules), which makes it possible to tailor uncertainty quantification to the use case at hand. We show that this flexibility is indeed advantageous. In particular, we analyze the task of selective prediction and show that the scoring rule should ideally match the task loss. In addition, we perform experiments on two other common tasks. For out-of-distribution detection, our results confirm that a widely used measure of epistemic uncertainty, mutual information, performs best. Moreover, in the setting of active learning, our measure of epistemic uncertainty based on the zero-one-loss consistently outperforms other uncertainty measures.
Authors:Kun Fang, Qinghua Tao, Mingzhen He, Kexin Lv, Runze Yang, Haibo Hu, Xiaolin Huang, Jie Yang, Longbin Cao
Title: Kernel PCA for Out-of-Distribution Detection: Non-Linear Kernel Selections and Approximations
Abstract:
Out-of-Distribution (OoD) detection is vital for the reliability of deep neural networks, the key of which lies in effectively characterizing the disparities between OoD and In-Distribution (InD) data. In this work, such disparities are exploited through a fresh perspective of non-linear feature subspace. That is, a discriminative non-linear subspace is learned from InD features to capture representative patterns of InD, while informative patterns of OoD features cannot be well captured in such a subspace due to their different distribution. Grounded on this perspective, we exploit the deviations of InD and OoD features in such a non-linear subspace for effective OoD detection. To be specific, we leverage the framework of Kernel Principal Component Analysis (KPCA) to attain the discriminative non-linear subspace and deploy the reconstruction error on such subspace to distinguish InD and OoD data. Two challenges emerge: (i) the learning of an effective non-linear subspace, i.e., the selection of kernel function in KPCA, and (ii) the computation of the kernel matrix with large-scale InD data. For the former, we reveal two vital non-linear patterns that closely relate to the InD-OoD disparity, leading to the establishment of a Cosine-Gaussian kernel for constructing the subspace. For the latter, we introduce two techniques to approximate the Cosine-Gaussian kernel with significantly cheap computations. In particular, our approximation is further tailored by incorporating the InD data confidence, which is demonstrated to promote the learning of discriminative subspaces for OoD data. Our study presents new insights into the non-linear feature subspace for OoD detection and contributes practical explorations on the associated kernel design and efficient computations, yielding a KPCA detection method with distinctively improved efficacy and efficiency.
Authors:Sebastian Schmidt, Julius Körner, Dominik Fuchsgruber, Stefano Gasperini, Federico Tombari, Stephan Günnemann
Title: Prior2Former -- Evidential Modeling of Mask Transformers for Assumption-Free Open-World Panoptic Segmentation
Abstract:
In panoptic segmentation, individual instances must be separated within semantic classes. As state-of-the-art methods rely on a pre-defined set of classes, they struggle with novel categories and out-of-distribution (OOD) data. This is particularly problematic in safety-critical applications, such as autonomous driving, where reliability in unseen scenarios is essential. We address the gap between outstanding benchmark performance and reliability by proposing Prior2Former (P2F), the first approach for segmentation vision transformers rooted in evidential learning. P2F extends the mask vision transformer architecture by incorporating a Beta prior for computing model uncertainty in pixel-wise binary mask assignments. This design enables high-quality uncertainty estimation that effectively detects novel and OOD objects enabling state-of-the-art anomaly instance segmentation and open-world panoptic segmentation. Unlike most segmentation models addressing unknown classes, P2F operates without access to OOD data samples or contrastive training on void (i.e., unlabeled) classes, making it highly applicable in real-world scenarios where such prior information is unavailable. Additionally, P2F can be flexibly applied to anomaly instance and panoptic segmentation. Through comprehensive experiments on the Cityscapes, COCO, SegmentMeIfYouCan, and OoDIS datasets, P2F demonstrates state-of-the-art performance across the board.
Authors:Pu Wang, Yu Zhang, Zhuoran Zheng
Title: UAKNN: Label Distribution Learning via Uncertainty-Aware KNN
Abstract:
Label Distribution Learning (LDL) aims to characterize the polysemy of an instance by building a set of descriptive degrees corresponding to the instance. In recent years, researchers seek to model to obtain an accurate label distribution by using low-rank, label relations, expert experiences, and label uncertainty estimation. In general, these methods are based on algorithms with parameter learning in a linear (including kernel functions) or deep learning framework. However, these methods are difficult to deploy and update online due to high training costs, limited scalability, and outlier sensitivity. To address this problem, we design a novel LDL method called UAKNN, which has the advantages of the KNN algorithm with the benefits of uncertainty modeling. In addition, we provide solutions to the dilemma of existing work on extremely label distribution spaces. Extensive experiments demonstrate that our method is significantly competitive on 12 benchmarks and that the inference speed of the model is well-suited for industrial-level applications.
Authors:Nariman Naderi, Seyed Amir Ahmad Safavi-Naini, Thomas Savage, Zahra Atf, Peter Lewis, Girish Nadkarni, Ali Soroush
Title: Self-Reported Confidence of Large Language Models in Gastroenterology: Analysis of Commercial, Open-Source, and Quantized Models
Abstract:
This study evaluated self-reported response certainty across several large language models (GPT, Claude, Llama, Phi, Mistral, Gemini, Gemma, and Qwen) using 300 gastroenterology board-style questions. The highest-performing models (GPT-o1 preview, GPT-4o, and Claude-3.5-Sonnet) achieved Brier scores of 0.15-0.2 and AUROC of 0.6. Although newer models demonstrated improved performance, all exhibited a consistent tendency towards overconfidence. Uncertainty estimation presents a significant challenge to the safe use of LLMs in healthcare. Keywords: Large Language Models; Confidence Elicitation; Artificial Intelligence; Gastroenterology; Uncertainty Quantification
Authors:Ruoqi Zhang, Ziwei Luo, Jens Sjölund, Per Mattsson, Linus Gisslén, Alessandro Sestini
Title: Real-Time Diffusion Policies for Games: Enhancing Consistency Policies with Q-Ensembles
Abstract:
Diffusion models have shown impressive performance in capturing complex and multi-modal action distributions for game agents, but their slow inference speed prevents practical deployment in real-time game environments. While consistency models offer a promising approach for one-step generation, they often suffer from training instability and performance degradation when applied to policy learning. In this paper, we present CPQE (Consistency Policy with Q-Ensembles), which combines consistency models with Q-ensembles to address these challenges.CPQE leverages uncertainty estimation through Q-ensembles to provide more reliable value function approximations, resulting in better training stability and improved performance compared to classic double Q-network methods. Our extensive experiments across multiple game scenarios demonstrate that CPQE achieves inference speeds of up to 60 Hz -- a significant improvement over state-of-the-art diffusion policies that operate at only 20 Hz -- while maintaining comparable performance to multi-step diffusion approaches. CPQE consistently outperforms state-of-the-art consistency model approaches, showing both higher rewards and enhanced training stability throughout the learning process. These results indicate that CPQE offers a practical solution for deploying diffusion-based policies in games and other real-time applications where both multi-modal behavior modeling and rapid inference are critical requirements.
Authors:Yue Hou, He Zhu, Ruomei Liu, Yingke Su, Jinxiang Xia, Junran Wu, Ke Xu
Title: Structural Entropy Guided Unsupervised Graph Out-Of-Distribution Detection
Abstract:
With the emerging of huge amount of unlabeled data, unsupervised out-of-distribution (OOD) detection is vital for ensuring the reliability of graph neural networks (GNNs) by identifying OOD samples from in-distribution (ID) ones during testing, where encountering novel or unknown data is inevitable. Existing methods often suffer from compromised performance due to redundant information in graph structures, which impairs their ability to effectively differentiate between ID and OOD data. To address this challenge, we propose SEGO, an unsupervised framework that integrates structural entropy into OOD detection regarding graph classification. Specifically, within the architecture of contrastive learning, SEGO introduces an anchor view in the form of coding tree by minimizing structural entropy. The obtained coding tree effectively removes redundant information from graphs while preserving essential structural information, enabling the capture of distinct graph patterns between ID and OOD samples. Furthermore, we present a multi-grained contrastive learning scheme at local, global, and tree levels using triplet views, where coding trees with essential information serve as the anchor view. Extensive experiments on real-world datasets validate the effectiveness of SEGO, demonstrating superior performance over state-of-the-art baselines in OOD detection. Specifically, our method achieves the best performance on 9 out of 10 dataset pairs, with an average improvement of 3.7\% on OOD detection datasets, significantly surpassing the best competitor by 10.8\% on the FreeSolv/ToxCast dataset pair.
Authors:Shailik Sarkar, Raquib Bin Yousuf, Linhan Wang, Brian Mayer, Thomas Mortier, Victor Deklerck, Jakub Truszkowski, John C. Simeone, Marigold Norman, Jade Saunders, Chang-Tien Lu, Naren Ramakrishnan
Title: Chasing the Timber Trail: Machine Learning to Reveal Harvest Location Misrepresentation
Abstract:
Illegal logging poses a significant threat to global biodiversity, climate stability, and depresses international prices for legal wood harvesting and responsible forest products trade, affecting livelihoods and communities across the globe. Stable isotope ratio analysis (SIRA) is rapidly becoming an important tool for determining the harvest location of traded, organic, products. The spatial pattern in stable isotope ratio values depends on factors such as atmospheric and environmental conditions and can thus be used for geographic origin identification. We present here the results of a deployed machine learning pipeline where we leverage both isotope values and atmospheric variables to determine timber harvest location. Additionally, the pipeline incorporates uncertainty estimation to facilitate the interpretation of harvest location determination for analysts. We present our experiments on a collection of oak (Quercus spp.) tree samples from its global range. Our pipeline outperforms comparable state-of-the-art models determining geographic harvest origin of commercially traded wood products, and has been used by European enforcement agencies to identify harvest location misrepresentation. We also identify opportunities for further advancement of our framework and how it can be generalized to help identify the origin of falsely labeled organic products throughout the supply chain.
Authors:Yimu Wang, Evelien Riddell, Adrian Chow, Sean Sedwards, Krzysztof Czarnecki
Title: Mitigating the Modality Gap: Few-Shot Out-of-Distribution Detection with Multi-modal Prototypes and Image Bias Estimation
Abstract:
Existing vision-language model (VLM)-based methods for out-of-distribution (OOD) detection typically rely on similarity scores between input images and in-distribution (ID) text prototypes. However, the modality gap between image and text often results in high false positive rates, as OOD samples can exhibit high similarity to ID text prototypes. To mitigate the impact of this modality gap, we propose incorporating ID image prototypes along with ID text prototypes. We present theoretical analysis and empirical evidence indicating that this approach enhances VLM-based OOD detection performance without any additional training. To further reduce the gap between image and text, we introduce a novel few-shot tuning framework, SUPREME, comprising biased prompts generation (BPG) and image-text consistency (ITC) modules. BPG enhances image-text fusion and improves generalization by conditioning ID text prototypes on the Gaussian-based estimated image domain bias; ITC reduces the modality gap by minimizing intra- and inter-modal distances. Moreover, inspired by our theoretical and empirical findings, we introduce a novel OOD score $S_{\textit{GMP}}$, leveraging uni- and cross-modal similarities. Finally, we present extensive experiments to demonstrate that SUPREME consistently outperforms existing VLM-based OOD detection methods.
Authors:Ke Wu, Zicheng Zhang, Muer Tie, Ziqing Ai, Zhongxue Gan, Wenchao Ding
Title: VINGS-Mono: Visual-Inertial Gaussian Splatting Monocular SLAM in Large Scenes
Abstract:
VINGS-Mono is a monocular (inertial) Gaussian Splatting (GS) SLAM framework designed for large scenes. The framework comprises four main components: VIO Front End, 2D Gaussian Map, NVS Loop Closure, and Dynamic Eraser. In the VIO Front End, RGB frames are processed through dense bundle adjustment and uncertainty estimation to extract scene geometry and poses. Based on this output, the mapping module incrementally constructs and maintains a 2D Gaussian map. Key components of the 2D Gaussian Map include a Sample-based Rasterizer, Score Manager, and Pose Refinement, which collectively improve mapping speed and localization accuracy. This enables the SLAM system to handle large-scale urban environments with up to 50 million Gaussian ellipsoids. To ensure global consistency in large-scale scenes, we design a Loop Closure module, which innovatively leverages the Novel View Synthesis (NVS) capabilities of Gaussian Splatting for loop closure detection and correction of the Gaussian map. Additionally, we propose a Dynamic Eraser to address the inevitable presence of dynamic objects in real-world outdoor scenes. Extensive evaluations in indoor and outdoor environments demonstrate that our approach achieves localization performance on par with Visual-Inertial Odometry while surpassing recent GS/NeRF SLAM methods. It also significantly outperforms all existing methods in terms of mapping and rendering quality. Furthermore, we developed a mobile app and verified that our framework can generate high-quality Gaussian maps in real time using only a smartphone camera and a low-frequency IMU sensor. To the best of our knowledge, VINGS-Mono is the first monocular Gaussian SLAM method capable of operating in outdoor environments and supporting kilometer-scale large scenes.
Authors:Yan Zhang, Ming Li, Chun Li, Zhaoxia Liu, Ye Zhang, Fei Richard Yu
Title: Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning
Abstract:
Evidence-based deep learning represents a burgeoning paradigm for uncertainty estimation, offering reliable predictions with negligible extra computational overheads. Existing methods usually adopt Kullback-Leibler divergence to estimate the uncertainty of network predictions, ignoring domain gaps among various modalities. To tackle this issue, this paper introduces a novel algorithm based on Hölder Divergence (HD) to enhance the reliability of multi-view learning by addressing inherent uncertainty challenges from incomplete or noisy data. Generally, our method extracts the representations of multiple modalities through parallel network branches, and then employs HD to estimate the prediction uncertainties. Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result that considers all available representations. Mathematically, HD proves to better measure the ``distance'' between real data distribution and predictive distribution of the model and improve the performances of multi-class recognition tasks. Specifically, our method surpass the existing state-of-the-art counterparts on all evaluating benchmarks. We further conduct extensive experiments on different backbones to verify our superior robustness. It is demonstrated that our method successfully pushes the corresponding performance boundaries. Finally, we perform experiments on more challenging scenarios, \textit{i.e.}, learning with incomplete or noisy data, revealing that our method exhibits a high tolerance to such corrupted data.
Authors:Martin Bubel, Jochen Schmid, Maximilian Carmesin, Volodymyr Kozachynskyi, Erik Esche, Michael Bortz
Title: Cubature-based uncertainty estimation for nonlinear regression models
Abstract:
Calibrating model parameters to measured data by minimizing loss functions is an important step in obtaining realistic predictions from model-based approaches, e.g., for process optimization. This is applicable to both knowledge-driven and data-driven model setups. Due to measurement errors, the calibrated model parameters also carry uncertainty. In this contribution, we use cubature formulas based on sparse grids to calculate the variance of the regression results. The number of cubature points is close to the theoretical minimum required for a given level of exactness. We present exact benchmark results, which we also compare to other cubatures. This scheme is then applied to estimate the prediction uncertainty of the NRTL model, calibrated to observations from different experimental designs.
Authors:Zhimao Peng, Enguang Wang, Xialei Liu, Ming-Ming Cheng
Title: Predictive Sample Assignment for Semantically Coherent Out-of-Distribution Detection
Abstract:
Semantically coherent out-of-distribution detection (SCOOD) is a recently proposed realistic OOD detection setting: given labeled in-distribution (ID) data and mixed in-distribution and out-of-distribution unlabeled data as the training data, SCOOD aims to enable the trained model to accurately identify OOD samples in the testing data. Current SCOOD methods mainly adopt various clustering-based in-distribution sample filtering (IDF) strategies to select clean ID samples from unlabeled data, and take the remaining samples as auxiliary OOD data, which inevitably introduces a large number of noisy samples in training. To address the above issue, we propose a concise SCOOD framework based on predictive sample assignment (PSA). PSA includes a dual-threshold ternary sample assignment strategy based on the predictive energy score that can significantly improve the purity of the selected ID and OOD sample sets by assigning unconfident unlabeled data to an additional discard sample set, and a concept contrastive representation learning loss to further expand the distance between ID and OOD samples in the representation space to assist ID/OOD discrimination. In addition, we also introduce a retraining strategy to help the model fully fit the selected auxiliary ID/OOD samples. Experiments on two standard SCOOD benchmarks demonstrate that our approach outperforms the state-of-the-art methods by a significant margin.
Authors:Tommaso Amico, Pernille Matthews, Lena Krieger, Arthur Zimek, Ira Assent
Title: DCFO: Density-Based Counterfactuals for Outliers - Additional Material
Abstract:
Outlier detection identifies data points that significantly deviate from the majority of the data distribution. Explaining outliers is crucial for understanding the underlying factors that contribute to their detection, validating their significance, and identifying potential biases or errors. Effective explanations provide actionable insights, facilitating preventive measures to avoid similar outliers in the future. Counterfactual explanations clarify why specific data points are classified as outliers by identifying minimal changes required to alter their prediction. Although valuable, most existing counterfactual explanation methods overlook the unique challenges posed by outlier detection, and fail to target classical, widely adopted outlier detection algorithms. Local Outlier Factor (LOF) is one the most popular unsupervised outlier detection methods, quantifying outlierness through relative local density. Despite LOF's widespread use across diverse applications, it lacks interpretability. To address this limitation, we introduce Density-based Counterfactuals for Outliers (DCFO), a novel method specifically designed to generate counterfactual explanations for LOF. DCFO partitions the data space into regions where LOF behaves smoothly, enabling efficient gradient-based optimisation. Extensive experimental validation on 50 OpenML datasets demonstrates that DCFO consistently outperforms benchmarked competitors, offering superior proximity and validity of generated counterfactuals.
Authors:Guangmingmei Yang, David J. Miller, George Kesidis
Title: Improving the Sensitivity of Backdoor Detectors via Class Subspace Orthogonalization
Abstract:
Most post-training backdoor detection methods rely on attacked models exhibiting extreme outlier detection statistics for the target class of an attack, compared to non-target classes. However, these approaches may fail: (1) when some (non-target) classes are easily discriminable from all others, in which case they may naturally achieve extreme detection statistics (e.g., decision confidence); and (2) when the backdoor is subtle, i.e., with its features weak relative to intrinsic class-discriminative features. A key observation is that the backdoor target class has contributions to its detection statistic from both the backdoor trigger and from its intrinsic features, whereas non-target classes only have contributions from their intrinsic features. To achieve more sensitive detectors, we thus propose to suppress intrinsic features while optimizing the detection statistic for a given class. For non-target classes, such suppression will drastically reduce the achievable statistic, whereas for the target class the (significant) contribution from the backdoor trigger remains. In practice, we formulate a constrained optimization problem, leveraging a small set of clean examples from a given class, and optimizing the detection statistic while orthogonalizing with respect to the class's intrinsic features. We dub this plug-and-play approach Class Subspace Orthogonalization (CSO) and assess it against challenging mixed-label and adaptive attacks.
Authors:Giulia Lanzillotta, Damiano Meier, Thomas Hofmann
Title: Asymptotic analysis of shallow and deep forgetting in replay with Neural Collapse
Abstract:
A persistent paradox in continual learning (CL) is that neural networks often retain linearly separable representations of past tasks even when their output predictions fail. We formalize this distinction as the gap between deep feature-space and shallow classifier-level forgetting. We reveal a critical asymmetry in Experience Replay: while minimal buffers successfully anchor feature geometry and prevent deep forgetting, mitigating shallow forgetting typically requires substantially larger buffer capacities. To explain this, we extend the Neural Collapse framework to the sequential setting. We characterize deep forgetting as a geometric drift toward out-of-distribution subspaces and prove that any non-zero replay fraction asymptotically guarantees the retention of linear separability. Conversely, we identify that the "strong collapse" induced by small buffers leads to rank-deficient covariances and inflated class means, effectively blinding the classifier to true population boundaries. By unifying CL with out-of-distribution detection, our work challenges the prevailing reliance on large buffers, suggesting that explicitly correcting these statistical artifacts could unlock robust performance with minimal replay.
Authors:Momin Abbas, Ali Falahati, Hossein Goli, Mohammad Mohammadi Amiri
Title: A Median Perspective on Unlabeled Data for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection plays a crucial role in ensuring the robustness and reliability of machine learning systems deployed in real-world applications. Recent approaches have explored the use of unlabeled data, showing potential for enhancing OOD detection capabilities. However, effectively utilizing unlabeled in-the-wild data remains challenging due to the mixed nature of both in-distribution (InD) and OOD samples. The lack of a distinct set of OOD samples complicates the task of training an optimal OOD classifier. In this work, we introduce Medix, a novel framework designed to identify potential outliers from unlabeled data using the median operation. We use the median because it provides a stable estimate of the central tendency, as an OOD detection mechanism, due to its robustness against noise and outliers. Using these identified outliers, along with labeled InD data, we train a robust OOD classifier. From a theoretical perspective, we derive error bounds that demonstrate Medix achieves a low error rate. Empirical results further substantiate our claims, as Medix outperforms existing methods across the board in open-world settings, confirming the validity of our theoretical insights.
Authors:Shubham Mishra, The Anh Han, Bruno Silvester Lopes, Shatha Ghareeb, Zia Ush Shamszaman
Title: Predicting Antimicrobial Resistance (AMR) in Campylobacter, a Foodborne Pathogen, and Cost Burden Analysis Using Machine Learning
Abstract:
Antimicrobial resistance (AMR) poses a significant public health and economic challenge, increasing treatment costs and reducing antibiotic effectiveness. This study employs machine learning to analyze genomic and epidemiological data from the public databases for molecular typing and microbial genome diversity (PubMLST), incorporating data from UK government-supported AMR surveillance by the Food Standards Agency and Food Standards Scotland. We identify AMR patterns in Campylobacter jejuni and Campylobacter coli isolates collected in the UK from 2001 to 2017. The research integrates whole-genome sequencing (WGS) data, epidemiological metadata, and economic projections to identify key resistance determinants and forecast future resistance trends and healthcare costs. We investigate gyrA mutations for fluoroquinolone resistance and the tet(O) gene for tetracycline resistance, training a Random Forest model validated with bootstrap resampling (1,000 samples, 95% confidence intervals), achieving 74% accuracy in predicting AMR phenotypes. Time-series forecasting models (SARIMA, SIR, and Prophet) predict a rise in campylobacteriosis cases, potentially exceeding 130 cases per 100,000 people by 2050, with an economic burden projected to surpass 1.9 billion GBP annually if left unchecked. An enhanced Random Forest system, analyzing 6,683 isolates, refines predictions by incorporating temporal patterns, uncertainty estimation, and resistance trend modeling, indicating sustained high beta-lactam resistance, increasing fluoroquinolone resistance, and fluctuating tetracycline resistance.
Authors:Tsai Hor Chan, Dora Yan Zhang, Guosheng Yin, Lequan Yu
Title: Feature Preserving Shrinkage on Bayesian Neural Networks via the R2D2 Prior
Abstract:
Bayesian neural networks (BNNs) treat neural network weights as random variables, which aim to provide posterior uncertainty estimates and avoid overfitting by performing inference on the posterior weights. However, the selection of appropriate prior distributions remains a challenging task, and BNNs may suffer from catastrophic inflated variance or poor predictive performance when poor choices are made for the priors. Existing BNN designs apply different priors to weights, while the behaviours of these priors make it difficult to sufficiently shrink noisy signals or they are prone to overshrinking important signals in the weights. To alleviate this problem, we propose a novel R2D2-Net, which imposes the R^2-induced Dirichlet Decomposition (R2D2) prior to the BNN weights. The R2D2-Net can effectively shrink irrelevant coefficients towards zero, while preventing key features from over-shrinkage. To approximate the posterior distribution of weights more accurately, we further propose a variational Gibbs inference algorithm that combines the Gibbs updating procedure and gradient-based optimization. This strategy enhances stability and consistency in estimation when the variational objective involving the shrinkage parameters is non-convex. We also analyze the evidence lower bound (ELBO) and the posterior concentration rates from a theoretical perspective. Experiments on both natural and medical image classification and uncertainty estimation tasks demonstrate satisfactory performance of our method.
Authors:Ziliang Wang, Xiaohong Zhang, Ze Shi Li, Meng Yan
Title: QoSBERT: An Uncertainty-Aware Approach based on Pre-trained Language Models for Service Quality Prediction
Abstract:
Accurate prediction of Quality of Service (QoS) metrics is fundamental for selecting and managing cloud based services. Traditional QoS models rely on manual feature engineering and yield only point estimates, offering no insight into the confidence of their predictions. In this paper, we propose QoSBERT, the first framework that reformulates QoS prediction as a semantic regression task based on pre trained language models. Unlike previous approaches relying on sparse numerical features, QoSBERT automatically encodes user service metadata into natural language descriptions, enabling deep semantic understanding. Furthermore, we integrate a Monte Carlo Dropout based uncertainty estimation module, allowing for trustworthy and risk-aware service quality prediction, which is crucial yet underexplored in existing QoS models. QoSBERT applies attentive pooling over contextualized embeddings and a lightweight multilayer perceptron regressor, fine tuned jointly to minimize absolute error. We further exploit the resulting uncertainty estimates to select high quality training samples, improving robustness in low resource settings. On standard QoS benchmark datasets, QoSBERT achieves an average reduction of 11.7% in MAE and 6.7% in RMSE for response time prediction, and 6.9% in MAE for throughput prediction compared to the strongest baselines, while providing well calibrated confidence intervals for robust and trustworthy service quality estimation. Our approach not only advances the accuracy of service quality prediction but also delivers reliable uncertainty quantification, paving the way for more trustworthy, data driven service selection and optimization.
Authors:Maria Marina, Nikolay Ivanov, Sergey Pletenev, Mikhail Salnikov, Daria Galimzianova, Nikita Krayko, Vasily Konovalov, Alexander Panchenko, Viktor Moskvoretskii
Title: LLM-Independent Adaptive RAG: Let the Question Speak for Itself
Abstract:
Large Language Models~(LLMs) are prone to hallucinations, and Retrieval-Augmented Generation (RAG) helps mitigate this, but at a high computational cost while risking misinformation. Adaptive retrieval aims to retrieve only when necessary, but existing approaches rely on LLM-based uncertainty estimation, which remain inefficient and impractical. In this study, we introduce lightweight LLM-independent adaptive retrieval methods based on external information. We investigated 27 features, organized into 7 groups, and their hybrid combinations. We evaluated these methods on 6 QA datasets, assessing the QA performance and efficiency. The results show that our approach matches the performance of complex LLM-based methods while achieving significant efficiency gains, demonstrating the potential of external information for adaptive retrieval.
Authors:Yoonhyuk Choi, Jiho Choi, Taewook Ko, Chong-Kwon Kim
Title: Hierarchical Uncertainty-Aware Graph Neural Network
Abstract:
Recent research on graph neural networks (GNNs) has explored mechanisms for capturing local uncertainty and exploiting graph hierarchies to mitigate data sparsity and leverage structural properties. However, the synergistic integration of these two approaches remains underexplored. This work introduces a novel architecture, the Hierarchical Uncertainty-Aware Graph Neural Network (HU-GNN), which unifies multi-scale representation learning, principled uncertainty estimation, and self-supervised embedding diversity within a single end-to-end framework. Specifically, HU-GNN adaptively forms node clusters and estimates uncertainty at multiple structural scales from individual nodes to higher levels. These uncertainty estimates guide a robust message-passing mechanism and attention weighting, effectively mitigating noise and adversarial perturbations while preserving predictive accuracy on semi-supervised classification tasks. We also offer key theoretical contributions, including a probabilistic formulation, rigorous uncertainty-calibration guarantees, and formal robustness bounds. Extensive experiments on standard benchmarks demonstrate that our model achieves state-of-the-art robustness and interpretability.
Authors:Junn Yong Loo, Michelle Adeline, Julia Kaiwen Lau, Fang Yu Leong, Hwa Hui Tew, Arghya Pal, Vishnu Monn Baskaran, Chee-Ming Ting, Raphaël C. -W. Phan
Title: Learning Energy-Based Generative Models via Potential Flow: A Variational Principle Approach to Probability Density Homotopy Matching
Abstract:
Energy-based models (EBMs) are a powerful class of probabilistic generative models due to their flexibility and interpretability. However, relationships between potential flows and explicit EBMs remain underexplored, while contrastive divergence training via implicit Markov chain Monte Carlo (MCMC) sampling is often unstable and expensive in high-dimensional settings. In this paper, we propose Variational Potential Flow Bayes (VPFB), a new energy-based generative framework that eliminates the need for implicit MCMC sampling and does not rely on auxiliary networks or cooperative training. VPFB learns an energy-parameterized potential flow by constructing a flow-driven density homotopy that is matched to the data distribution through a variational loss minimizing the Kullback-Leibler divergence between the flow-driven and marginal homotopies. This principled formulation enables robust and efficient generative modeling while preserving the interpretability of EBMs. Experimental results on image generation, interpolation, out-of-distribution detection, and compositional generation confirm the effectiveness of VPFB, showing that our method performs competitively with existing approaches in terms of sample quality and versatility across diverse generative modeling tasks.
Authors:Sajad Marvi, Christoph Rist, Julian Schmidt, Julian Jordan, Abhinav Valada
Title: Evidential Uncertainty Estimation for Multi-Modal Trajectory Prediction
Abstract:
Accurate trajectory prediction is crucial for autonomous driving, yet uncertainty in agent behavior and perception noise makes it inherently challenging. While multi-modal trajectory prediction models generate multiple plausible future paths with associated probabilities, effectively quantifying uncertainty remains an open problem. In this work, we propose a novel multi-modal trajectory prediction approach based on evidential deep learning that estimates both positional and mode probability uncertainty in real time. Our approach leverages a Normal Inverse Gamma distribution for positional uncertainty and a Dirichlet distribution for mode uncertainty. Unlike sampling-based methods, it infers both types of uncertainty in a single forward pass, significantly improving efficiency. Additionally, we experimented with uncertainty-driven importance sampling to improve training efficiency by prioritizing underrepresented high-uncertainty samples over redundant ones. We perform extensive evaluations of our method on the Argoverse 1 and Argoverse 2 datasets, demonstrating that it provides reliable uncertainty estimates while maintaining high trajectory prediction accuracy.
Authors:Hyunsu Kim, Giung Nam, Chulhee Yun, Hongseok Yang, Juho Lee
Title: Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Abstract:
Bayesian Neural Networks (BNNs) provide a promising framework for modeling predictive uncertainty and enhancing out-of-distribution robustness (OOD) by estimating the posterior distribution of network parameters. Stochastic Gradient Markov Chain Monte Carlo (SGMCMC) is one of the most powerful methods for scalable posterior sampling in BNNs, achieving efficiency by combining stochastic gradient descent with second-order Langevin dynamics. However, SGMCMC often suffers from limited sample diversity in practice, which affects uncertainty estimation and model performance. We propose a simple yet effective approach to enhance sample diversity in SGMCMC without the need for tempering or running multiple chains. Our approach reparameterizes the neural network by decomposing each of its weight matrices into a product of matrices, resulting in a sampling trajectory that better explores the target parameter space. This approach produces a more diverse set of samples, allowing faster mixing within the same computational budget. Notably, our sampler achieves these improvements without increasing the inference cost compared to the standard SGMCMC. Extensive experiments on image classification tasks, including OOD robustness, diversity, loss surface analyses, and a comparative study with Hamiltonian Monte Carlo, demonstrate the superiority of the proposed approach.
Authors:Bowen Song, Andrea Iannelli
Title: Convergence Guarantees of Model-free Policy Gradient Methods for LQR with Stochastic Data
Abstract:
Policy gradient (PG) methods are the backbone of many reinforcement learning algorithms due to their good performance in policy optimization problems. As a gradient-based approach, PG methods typically rely on knowledge of the system dynamics. If this is not available, trajectory data can be utilized to approximate first-order information. When the data are noisy, gradient estimates become inaccurate and a study that investigates uncertainty estimation and the analysis of its propagation through the algorithm is currently missing. To address this, our work focuses on the Linear Quadratic Regulator (LQR) problem for systems subject to additive stochastic noise. After briefly summarizing the state of the art for cases with a known model, we focus on scenarios where the system dynamics are unknown, and approximate gradient information is obtained using zeroth-order optimization techniques. We analyze the theoretical properties by computing the error in the estimated gradient and examining how this error affects the convergence of PG algorithms. Additionally, we provide global convergence guarantees for various versions of PG methods, including those employing adaptive step sizes and variance reduction techniques, which help increase the convergence rate and reduce sample complexity. This study contributed to characterizing robustness of the study of the robustness of model-free PG methods, aiming to identify their limitations in the presence of stochastic noise and proposing improvements to enhance their applicability.
Authors:Yimin Zhu, Lincoln Linlin Xu
Title: Language-Informed Hyperspectral Image Synthesis for Imbalanced-Small Sample Classification via Semi-Supervised Conditional Diffusion Model
Abstract:
Data augmentation effectively addresses the imbalanced-small sample data (ISSD) problem in hyperspectral image classification (HSIC). While most methodologies extend features in the latent space, few leverage text-driven generation to create realistic and diverse samples. Recently, text-guided diffusion models have gained significant attention due to their ability to generate highly diverse and high-quality images based on text prompts in natural image synthesis. Motivated by this, this paper proposes Txt2HSI-LDM(VAE), a novel language-informed hyperspectral image synthesis method to address the ISSD in HSIC. The proposed approach uses a denoising diffusion model, which iteratively removes Gaussian noise to generate hyperspectral samples conditioned on textual descriptions. First, to address the high-dimensionality of hyperspectral data, a universal variational autoencoder (VAE) is designed to map the data into a low-dimensional latent space, which provides stable features and reduces the inference complexity of diffusion model. Second, a semi-supervised diffusion model is designed to fully take advantage of unlabeled data. Random polygon spatial clipping (RPSC) and uncertainty estimation of latent feature (LF-UE) are used to simulate the varying degrees of mixing. Third, the VAE decodes HSI from latent space generated by the diffusion model with the language conditions as input. In our experiments, we fully evaluate synthetic samples' effectiveness from statistical characteristics and data distribution in 2D-PCA space. Additionally, visual-linguistic cross-attention is visualized on the pixel level to prove that our proposed model can capture the spatial layout and geometry of the generated data. Experiments demonstrate that the performance of the proposed Txt2HSI-LDM(VAE) surpasses the classical backbone models, state-of-the-art CNNs, and semi-supervised methods.
Authors:Alessandro Canevaro, Julian Schmidt, Mohammad Sajad Marvi, Hang Yu, Georg Martius, Julian Jordan
Title: Advancing Out-of-Distribution Detection via Local Neuroplasticity
Abstract:
In the domain of machine learning, the assumption that training and test data share the same distribution is often violated in real-world scenarios, requiring effective out-of-distribution (OOD) detection. This paper presents a novel OOD detection method that leverages the unique local neuroplasticity property of Kolmogorov-Arnold Networks (KANs). Unlike traditional multilayer perceptrons, KANs exhibit local plasticity, allowing them to preserve learned information while adapting to new tasks. Our method compares the activation patterns of a trained KAN against its untrained counterpart to detect OOD samples. We validate our approach on benchmarks from image and medical domains, demonstrating superior performance and robustness compared to state-of-the-art techniques. These results underscore the potential of KANs in enhancing the reliability of machine learning systems in diverse environments.
Authors:Tuo Zhang, Asal Mehradfar, Dimitrios Dimitriadis, Salman Avestimehr
Title: Leveraging Uncertainty Estimation for Efficient LLM Routing
Abstract:
Deploying large language models (LLMs) in edge-cloud environments requires an efficient routing strategy to balance cost and response quality. Traditional approaches prioritize either human-preference data or accuracy metrics from benchmark datasets as routing criteria, but these methods suffer from rigidity and subjectivity. Moreover, existing routing frameworks primarily focus on accuracy and cost, neglecting response quality from a human preference perspective. In this work, we propose the Confidence-Driven LLM Router, a novel framework that leverages uncertainty estimation to optimize routing decisions. To comprehensively assess routing performance, we evaluate both system cost efficiency and response quality. In particular, we introduce the novel use of LLM-as-a-Judge to simulate human rating preferences, providing the first systematic assessment of response quality across different routing strategies. Extensive experiments on MT-Bench, GSM8K, and MMLU demonstrate that our approach outperforms state-of-the-art routing methods, achieving superior response quality while maintaining cost efficiency.
Authors:Federico Cinus, Corrado Monti, Paolo Bajardi, Gianmarco De Francisci Morales
Title: Uncovering the Sociodemographic Fabric of Reddit
Abstract:
Understanding the sociodemographic composition of online platforms is essential for accurately interpreting digital behavior and its societal implications. Yet, current methods often lack the transparency and reliability required, risking misrepresenting social identities and distorting our understanding of digital society. Here, we introduce a principled framework for sociodemographic inference on Reddit that leverages over 850,000 user self-declarations of age, gender, and partisan affiliation. By training models on sparse user activity signals from this extensive, self-disclosed dataset, we demonstrate that simple probabilistic models, such as Naive Bayes, outperform more complex embedding-based alternatives. Our approach improves classification performance over the state of the art by up to 19% in ROC AUC and maintains quantification error below 15%. The models produce well-calibrated and interpretable outputs, enabling uncertainty estimation and subreddit-level feature importance analysis. More broadly, this work advocates for a shift toward more ethical and transparent computational social science by grounding sociodemographic analysis in user-provided data rather than researcher assumptions.
Authors:Qiaojie Zheng, Jiucai Zhang, Xiaoli Zhang
Title: Enhancing accuracy of uncertainty estimation in appearance-based gaze tracking with probabilistic evaluation and calibration
Abstract:
Accurately knowing uncertainties in appearance-based gaze tracking is critical for ensuring reliable downstream applications. Due to the lack of individual uncertainty labels, current uncertainty-aware approaches adopt probabilistic models to acquire uncertainties by following distributions in the training dataset. Without regulations, this approach lets the uncertainty model build biases and overfits the training data, leading to poor performance when deployed. We first presented a strict proper evaluation metric from the probabilistic perspective based on comparing the coverage probability between prediction and observation to provide quantitative evaluation for better assessment on the inferred uncertainties. We then proposed a correction strategy based on probability calibration to mitigate biases in the estimated uncertainties of the trained models. Finally, we demonstrated the effectiveness of the correction strategy with experiments performed on two popular gaze estimation datasets with distinctive image characteristics caused by data collection settings.
Authors:Yu Feng, Phu Mon Htut, Zheng Qi, Wei Xiao, Manuel Mager, Nikolaos Pappas, Kishaloy Halder, Yang Li, Yassine Benajiba, Dan Roth
Title: Rethinking LLM Uncertainty: A Multi-Agent Approach to Estimating Black-Box Model Uncertainty
Abstract:
Quantifying uncertainty in black-box LLMs is vital for reliable responses and scalable oversight. Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the target query, can be misleading: an LLM may confidently provide an incorrect answer to a target query, yet give a confident and accurate answer to that same target query when answering a knowledge-preserving perturbation of the query. We systematically analyze the model behaviors and demonstrate that this discrepancy stems from suboptimal retrieval of parametric knowledge, often due to contextual biases that prevent consistent access to stored knowledge. We then introduce DiverseAgentEntropy, a novel, theoretically-grounded method employing multi-agent interaction across diverse query variations for uncertainty estimation of black-box LLMs. This approach more accurately assesses an LLM's true uncertainty and improves hallucination detection, outperforming existing self-consistency based techniques.
Authors:Chao Li, Zhicheng Xu, Bo Wen, Ruibin Mao, Can Li, Thomas Kämpfe, Kai Ni, Xunzhao Yin
Title: FeBiM: Efficient and Compact Bayesian Inference Engine Empowered with Ferroelectric In-Memory Computing
Abstract:
In scenarios with limited training data or where explainability is crucial, conventional neural network-based machine learning models often face challenges. In contrast, Bayesian inference-based algorithms excel in providing interpretable predictions and reliable uncertainty estimation in these scenarios. While many state-of-the-art in-memory computing (IMC) architectures leverage emerging non-volatile memory (NVM) technologies to offer unparalleled computing capacity and energy efficiency for neural network workloads, their application in Bayesian inference is limited. This is because the core operations in Bayesian inference differ significantly from the multiplication-accumulation (MAC) operations common in neural networks, rendering them generally unsuitable for direct implementation in most existing IMC designs. In this paper, we propose FeBiM, an efficient and compact Bayesian inference engine powered by multi-bit ferroelectric field-effect transistor (FeFET)-based IMC. FeBiM effectively encodes the trained probabilities of a Bayesian inference model within a compact FeFET-based crossbar. It maps quantized logarithmic probabilities to discrete FeFET states. As a result, the accumulated outputs of the crossbar naturally represent the posterior probabilities, i.e., the Bayesian inference model's output given a set of observations. This approach enables efficient in-memory Bayesian inference without the need for additional calculation circuitry. As the first FeFET-based in-memory Bayesian inference engine, FeBiM achieves an impressive storage density of 26.32 Mb/mm$^{2}$ and a computing efficiency of 581.40 TOPS/W in a representative Bayesian classification task. These results demonstrate 10.7$\times$/43.4$\times$ improvement in compactness/efficiency compared to the state-of-the-art hardware implementation of Bayesian inference.
Authors:Siyuan Dong, Zhuotong Cai, Gilbert Hangel, Wolfgang Bogner, Georg Widhalm, Yaqing Huang, Qinghao Liang, Chenyu You, Chathura Kumaragamage, Robert K. Fulbright, Amit Mahajan, Amin Karbasi, John A. Onofrey, Robin A. de Graaf, James S. Duncan
Title: A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging
Abstract:
Magnetic Resonance Spectroscopic Imaging (MRSI) is a non-invasive imaging technique for studying metabolism and has become a crucial tool for understanding neurological diseases, cancers and diabetes. High spatial resolution MRSI is needed to characterize lesions, but in practice MRSI is acquired at low resolution due to time and sensitivity restrictions caused by the low metabolite concentrations. Therefore, there is an imperative need for a post-processing approach to generate high-resolution MRSI from low-resolution data that can be acquired fast and with high sensitivity. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but they still have limited capability to generate accurate and high-quality images. Recently, diffusion models have demonstrated superior learning capability than other generative models in various tasks, but sampling from diffusion models requires iterating through a large number of diffusion steps, which is time-consuming. This work introduces a Flow-based Truncated Denoising Diffusion Model (FTDDM) for super-resolution MRSI, which shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network. The network is conditioned on upscaling factors to enable multi-scale super-resolution. To train and evaluate the deep learning models, we developed a 1H-MRSI dataset acquired from 25 high-grade glioma patients. We demonstrate that FTDDM outperforms existing generative models while speeding up the sampling process by over 9-fold compared to the baseline diffusion model. Neuroradiologists' evaluations confirmed the clinical advantages of our method, which also supports uncertainty estimation and sharpness adjustment, extending its potential clinical applications.
Authors:Sung-Wook Lee, Xuhui Kang, Yen-Ling Kuo
Title: Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation
Abstract:
Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 39.0%, the task completion rate by 20.6%, and reduces the wall-clock time by a factor of 7.8. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings. The project website is available at: https://diffdagger.github.io.
Authors:Linfeng Li, Gang Yang, Lin Shao, David Hsu
Title: Differentiable Contact Dynamics for Stable Object Placement Under Geometric Uncertainties
Abstract:
From serving a cup of coffee to positioning mechanical parts during assembly, stable object placement is a crucial skill for future robots. It becomes particularly challenging under geometric uncertainties, e.g., when the object pose or shape is not known accurately. This work leverages a differentiable simulation model of contact dynamics to tackle this challenge. We derive a novel gradient that relates force-torque sensor readings to geometric uncertainties, thus enabling uncertainty estimation by minimizing discrepancies between sensor data and model predictions via gradient descent. Gradient-based methods are sensitive to initialization. To mitigate this effect, we maintain a belief over multiple estimates and choose the robot action based on the current belief at each timestep. In experiments on a Franka robot arm, our method achieved promising results on multiple objects under various geometric uncertainties, including the in-hand pose uncertainty of a grasped object, the object shape uncertainty, and the environment uncertainty.
Authors:Xinran Xu, Li Rong Wang, Xiuyi Fan
Title: Robust Uncertainty Estimation under Distribution Shift via Difference Reconstruction
Abstract:
Estimating uncertainty in deep learning models is critical for reliable decision-making in high-stakes applications such as medical imaging. Prior research has established that the difference between an input sample and its reconstructed version produced by an auxiliary model can serve as a useful proxy for uncertainty. However, directly comparing reconstructions with the original input is degraded by information loss and sensitivity to superficial details, which limits its effectiveness. In this work, we propose Difference Reconstruction Uncertainty Estimation (DRUE), a method that mitigates this limitation by reconstructing inputs from two intermediate layers and measuring the discrepancy between their outputs as the uncertainty score. To evaluate uncertainty estimation in practice, we follow the widely used out-of-distribution (OOD) detection paradigm, where in-distribution (ID) training data are compared against datasets with increasing domain shift. Using glaucoma detection as the ID task, we demonstrate that DRUE consistently achieves superior AUC and AUPR across multiple OOD datasets, highlighting its robustness and reliability under distribution shift. This work provides a principled and effective framework for enhancing model reliability in uncertain environments.
Authors:Maryam Dialameh, Hossein Rajabzadeh, Weiwei Zhang, Walid Ahmed, Hyock Ju Kwon
Title: Bayesian Mixture of Experts For Large Language Models
Abstract:
We present Bayesian Mixture of Experts (Bayesian-MoE), a post-hoc uncertainty estimation framework for fine-tuned large language models (LLMs) based on Mixture-of-Experts architectures. Our method applies a structured Laplace approximation to the second linear layer of each expert, enabling calibrated uncertainty estimation without modifying the original training procedure or introducing new parameters. Unlike prior approaches, which apply Bayesian inference to added adapter modules, Bayesian-MoE directly targets the expert pathways already present in MoE models, leveraging their modular design for tractable block-wise posterior estimation. We use Kronecker-factored low-rank approximations to model curvature and derive scalable estimates of predictive uncertainty and marginal likelihood. Experiments on common-sense reasoning benchmarks with Qwen1.5-MoE and DeepSeek-MoE demonstrate that Bayesian-MoE improves both expected calibration error (ECE) and negative log-likelihood (NLL) over baselines, confirming its effectiveness for reliable downstream decision-making.
Authors:Zizhao Li, Zhengkang Xiang, Jiayang Ao, Joseph West, Kourosh Khoshelham
Title: Relative Energy Learning for LiDAR Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is a critical requirement for reliable autonomous driving, where safety depends on recognizing road obstacles and unexpected objects beyond the training distribution. Despite extensive research on OOD detection in 2D images, direct transfer to 3D LiDAR point clouds has been proven ineffective. Current LiDAR OOD methods struggle to distinguish rare anomalies from common classes, leading to high false-positive rates and overconfident errors in safety-critical settings. We propose Relative Energy Learning (REL), a simple yet effective framework for OOD detection in LiDAR point clouds. REL leverages the energy gap between positive (in-distribution) and negative logits as a relative scoring function, mitigating calibration issues in raw energy values and improving robustness across various scenes. To address the absence of OOD samples during training, we propose a lightweight data synthesis strategy called Point Raise, which perturbs existing point clouds to generate auxiliary anomalies without altering the inlier semantics. Evaluated on SemanticKITTI and the Spotting the Unexpected (STU) benchmark, REL consistently outperforms existing methods by a large margin. Our results highlight that modeling relative energy, combined with simple synthetic outliers, provides a principled and scalable solution for reliable OOD detection in open-world autonomous driving.
Authors:Narine Kokhlikyan, Kamalika Chaudhuri, Saeed Mahloujifar
Title: Z0-Inf: Zeroth Order Approximation for Data Influence
Abstract:
A critical aspect of analyzing and improving modern machine learning systems lies in understanding how individual training examples influence a model's predictive behavior. Estimating this influence enables critical applications, including data selection and model debugging; in particular, self-influence, which quantifies the influence of a training point on itself, has found many uses in data quality assessment and outlier detection. Existing methods for measuring data influence, however, are often impractical for large models due to low accuracy or prohibitive computational costs: most approaches either provide poor approximations or rely on gradients and inverse-Hessian computations that remain challenging to scale. In this work, we introduce a highly efficient zeroth-order approximation for estimating the influence of training data that requires only a fraction of the time and memory footprint of prior methods. Notably, our method relies solely on loss values of intermediate checkpoints on the training and test data, along with the checkpoints themselves, making it broadly applicable even when the loss function of interest is non-differentiable. Beyond its computational efficiency, our approach achieves superior accuracy in estimating self-influence and comparable or improved accuracy in estimating train-test influence for fine-tuned large language models, enabling scalable and practical analysis of how training data shapes model behavior.
Authors:Charmaine Barker, Daniel Bethell, Simos Gerasimou
Title: Guided Uncertainty Learning Using a Post-Hoc Evidential Meta-Model
Abstract:
Reliable uncertainty quantification remains a major obstacle to the deployment of deep learning models under distributional shift. Existing post-hoc approaches that retrofit pretrained models either inherit misplaced confidence or merely reshape predictions, without teaching the model when to be uncertain. We introduce GUIDE, a lightweight evidential learning meta-model approach that attaches to a frozen deep learning model and explicitly learns how and when to be uncertain. GUIDE identifies salient internal features via a calibration stage, and then employs these features to construct a noise-driven curriculum that teaches the model how and when to express uncertainty. GUIDE requires no retraining, no architectural modifications, and no manual intermediate-layer selection to the base deep learning model, thus ensuring broad applicability and minimal user intervention. The resulting model avoids distilling overconfidence from the base model, improves out-of-distribution detection by ~77% and adversarial attack detection by ~80%, while preserving in-distribution performance. Across diverse benchmarks, GUIDE consistently outperforms state-of-the-art approaches, evidencing the need for actively guiding uncertainty to close the gap between predictive confidence and reliability.
Authors:Hang Li, Dianmo Sheng, Qiankun Dong, Zichun Wang, Zhiwei Xu, Tao Li
Title: FishBEV: Distortion-Resilient Bird's Eye View Segmentation with Surround-View Fisheye Cameras
Abstract:
As a cornerstone technique for autonomous driving, Bird's Eye View (BEV) segmentation has recently achieved remarkable progress with pinhole cameras. However, it is non-trivial to extend the existing methods to fisheye cameras with severe geometric distortion, ambiguous multi-view correspondences and unstable temporal dynamics, all of which significantly degrade BEV performance. To address these challenges, we propose FishBEV, a novel BEV segmentation framework specifically tailored for fisheye cameras. This framework introduces three complementary innovations, including a Distortion-Resilient Multi-scale Extraction (DRME) backbone that learns robust features under distortion while preserving scale consistency, an Uncertainty-aware Spatial Cross-Attention (U-SCA) mechanism that leverages uncertainty estimation for reliable cross-view alignment, a Distance-aware Temporal Self-Attention (D-TSA) module that adaptively balances near field details and far field context to ensure temporal coherence. Extensive experiments on the Synwoodscapes dataset demonstrate that FishBEV consistently outperforms SOTA baselines, regarding the performance evaluation of FishBEV on the surround-view fisheye BEV segmentation tasks.
Authors:Hyeonseok Kim, Byeongkeun Kang, Yeejin Lee
Title: Generalized Zero-Shot Learning for Point Cloud Segmentation with Evidence-Based Dynamic Calibration
Abstract:
Generalized zero-shot semantic segmentation of 3D point clouds aims to classify each point into both seen and unseen classes. A significant challenge with these models is their tendency to make biased predictions, often favoring the classes encountered during training. This problem is more pronounced in 3D applications, where the scale of the training data is typically smaller than in image-based tasks. To address this problem, we propose a novel method called E3DPC-GZSL, which reduces overconfident predictions towards seen classes without relying on separate classifiers for seen and unseen data. E3DPC-GZSL tackles the overconfidence problem by integrating an evidence-based uncertainty estimator into a classifier. This estimator is then used to adjust prediction probabilities using a dynamic calibrated stacking factor that accounts for pointwise prediction uncertainty. In addition, E3DPC-GZSL introduces a novel training strategy that improves uncertainty estimation by refining the semantic space. This is achieved by merging learnable parameters with text-derived features, thereby improving model optimization for unseen data. Extensive experiments demonstrate that the proposed approach achieves state-of-the-art performance on generalized zero-shot semantic segmentation datasets, including ScanNet v2 and S3DIS.
Authors:Barış Zöngür, Robin Hesse, Stefan Roth
Title: Activation Subspaces for Out-of-Distribution Detection
Abstract:
To ensure the reliability of deep models in real-world applications, out-of-distribution (OOD) detection methods aim to distinguish samples close to the training distribution (in-distribution, ID) from those farther away (OOD). In this work, we propose a novel OOD detection method that utilizes singular value decomposition of the weight matrix of the classification head to decompose the model's activations into decisive and insignificant components, which contribute maximally, respectively minimally, to the final classifier output. We find that the subspace of insignificant components more effectively distinguishes ID from OOD data than raw activations in regimes of large distribution shifts (Far-OOD). This occurs because the classification objective leaves the insignificant subspace largely unaffected, yielding features that are ''untainted'' by the target classification task. Conversely, in regimes of smaller distribution shifts (Near-OOD), we find that activation shaping methods profit from only considering the decisive subspace, as the insignificant component can cause interference in the activation space. By combining two findings into a single approach, termed ActSub, we achieve state-of-the-art results in various standard OOD benchmarks.
Authors:Lorenzo Busellato, Federico Cunico, Diego Dall'Alba, Marco Emporio, Andrea Giachetti, Riccardo Muradore, Marco Cristani
Title: Uncertainty Aware-Predictive Control Barrier Functions: Safer Human Robot Interaction through Probabilistic Motion Forecasting
Abstract:
To enable flexible, high-throughput automation in settings where people and robots share workspaces, collaborative robotic cells must reconcile stringent safety guarantees with the need for responsive and effective behavior. A dynamic obstacle is the stochastic, task-dependent variability of human motion: when robots fall back on purely reactive or worst-case envelopes, they brake unnecessarily, stall task progress, and tamper with the fluidity that true Human-Robot Interaction demands. In recent years, learning-based human-motion prediction has rapidly advanced, although most approaches produce worst-case scenario forecasts that often do not treat prediction uncertainty in a well-structured way, resulting in over-conservative planning algorithms, limiting their flexibility. We introduce Uncertainty-Aware Predictive Control Barrier Functions (UA-PCBFs), a unified framework that fuses probabilistic human hand motion forecasting with the formal safety guarantees of Control Barrier Functions. In contrast to other variants, our framework allows for dynamic adjustment of the safety margin thanks to the human motion uncertainty estimation provided by a forecasting module. Thanks to uncertainty estimation, UA-PCBFs empower collaborative robots with a deeper understanding of future human states, facilitating more fluid and intelligent interactions through informed motion planning. We validate UA-PCBFs through comprehensive real-world experiments with an increasing level of realism, including automated setups (to perform exactly repeatable motions) with a robotic hand and direct human-robot interactions (to validate promptness, usability, and human confidence). Relative to state-of-the-art HRI architectures, UA-PCBFs show better performance in task-critical metrics, significantly reducing the number of violations of the robot's safe space during interaction with respect to the state-of-the-art.
Authors:Weide Liu, Xiaoyang Zhong, Lu Wang, Jingwen Hou, Yuemei Luo, Jiebin Yan, Yuming Fang
Title: Uncertainty Awareness on Unsupervised Domain Adaptation for Time Series Data
Abstract:
Unsupervised domain adaptation methods seek to generalize effectively on unlabeled test data, especially when encountering the common challenge in time series data that distribution shifts occur between training and testing datasets. In this paper, we propose incorporating multi-scale feature extraction and uncertainty estimation to improve the model's generalization and robustness across domains. Our approach begins with a multi-scale mixed input architecture that captures features at different scales, increasing training diversity and reducing feature discrepancies between the training and testing domains. Based on the mixed input architecture, we further introduce an uncertainty awareness mechanism based on evidential learning by imposing a Dirichlet prior on the labels to facilitate both target prediction and uncertainty estimation. The uncertainty awareness mechanism enhances domain adaptation by aligning features with the same labels across different domains, which leads to significant performance improvements in the target domain. Additionally, our uncertainty-aware model demonstrates a much lower Expected Calibration Error (ECE), indicating better-calibrated prediction confidence. Our experimental results show that this combined approach of mixed input architecture with the uncertainty awareness mechanism achieves state-of-the-art performance across multiple benchmark datasets, underscoring its effectiveness in unsupervised domain adaptation for time series data.
Authors:Runhe Lai, Xinhua Lu, Kanghao Chen, Qichao Chen, Wei-Shi Zheng, Ruixuan Wang
Title: Hierarchical Vision-Language Learning for Medical Out-of-Distribution Detection
Abstract:
In trustworthy medical diagnosis systems, integrating out-of-distribution (OOD) detection aims to identify unknown diseases in samples, thereby mitigating the risk of misdiagnosis. In this study, we propose a novel OOD detection framework based on vision-language models (VLMs), which integrates hierarchical visual information to cope with challenging unknown diseases that resemble known diseases. Specifically, a cross-scale visual fusion strategy is proposed to couple visual embeddings from multiple scales. This enriches the detailed representation of medical images and thus improves the discrimination of unknown diseases. Moreover, a cross-scale hard pseudo-OOD sample generation strategy is proposed to benefit OOD detection maximally. Experimental evaluations on three public medical datasets support that the proposed framework achieves superior OOD detection performance compared to existing methods. The source code is available at https://openi.pcl.ac.cn/OpenMedIA/HVL.
Authors:Mattia Litrico, Mario Valerio Giuffrida, Sebastiano Battiato, Devis Tuia
Title: TRUST: Leveraging Text Robustness for Unsupervised Domain Adaptation
Abstract:
Recent unsupervised domain adaptation (UDA) methods have shown great success in addressing classical domain shifts (e.g., synthetic-to-real), but they still suffer under complex shifts (e.g. geographical shift), where both the background and object appearances differ significantly across domains. Prior works showed that the language modality can help in the adaptation process, exhibiting more robustness to such complex shifts. In this paper, we introduce TRUST, a novel UDA approach that exploits the robustness of the language modality to guide the adaptation of a vision model. TRUST generates pseudo-labels for target samples from their captions and introduces a novel uncertainty estimation strategy that uses normalised CLIP similarity scores to estimate the uncertainty of the generated pseudo-labels. Such estimated uncertainty is then used to reweight the classification loss, mitigating the adverse effects of wrong pseudo-labels obtained from low-quality captions. To further increase the robustness of the vision model, we propose a multimodal soft-contrastive learning loss that aligns the vision and language feature spaces, by leveraging captions to guide the contrastive training of the vision model on target images. In our contrastive loss, each pair of images acts as both a positive and a negative pair and their feature representations are attracted and repulsed with a strength proportional to the similarity of their captions. This solution avoids the need for hardly determining positive and negative pairs, which is critical in the UDA setting. Our approach outperforms previous methods, setting the new state-of-the-art on classical (DomainNet) and complex (GeoNet) domain shifts. The code will be available upon acceptance.
Authors:Yachun Mi, Xingyang He, Shixin Sun, Yu Li, Yanting Li, Zhixuan Li, Jian Jin, Chen Hui, Shaohui Liu
Title: UGD-IML: A Unified Generative Diffusion-based Framework for Constrained and Unconstrained Image Manipulation Localization
Abstract:
In the digital age, advanced image editing tools pose a serious threat to the integrity of visual content, making image forgery detection and localization a key research focus. Most existing Image Manipulation Localization (IML) methods rely on discriminative learning and require large, high-quality annotated datasets. However, current datasets lack sufficient scale and diversity, limiting model performance in real-world scenarios. To overcome this, recent studies have explored Constrained IML (CIML), which generates pixel-level annotations through algorithmic supervision. However, existing CIML approaches often depend on complex multi-stage pipelines, making the annotation process inefficient. In this work, we propose a novel generative framework based on diffusion models, named UGD-IML, which for the first time unifies both IML and CIML tasks within a single framework. By learning the underlying data distribution, generative diffusion models inherently reduce the reliance on large-scale labeled datasets, allowing our approach to perform effectively even under limited data conditions. In addition, by leveraging a class embedding mechanism and a parameter-sharing design, our model seamlessly switches between IML and CIML modes without extra components or training overhead. Furthermore, the end-to-end design enables our model to avoid cumbersome steps in the data annotation process. Extensive experimental results on multiple datasets demonstrate that UGD-IML outperforms the SOTA methods by an average of 9.66 and 4.36 in terms of F1 metrics for IML and CIML tasks, respectively. Moreover, the proposed method also excels in uncertainty estimation, visualization and robustness.
Authors:Da Fan, David John Gagne, Steven J. Greybush, Eugene E. Clothiaux, John S. Schreck, Chaopeng Shen
Title: Bayesian Deep Learning for Convective Initiation Nowcasting Uncertainty Estimation
Abstract:
This study evaluated the probability and uncertainty forecasts of five recently proposed Bayesian deep learning methods relative to a deterministic residual neural network (ResNet) baseline for 0-1 h convective initiation (CI) nowcasting using GOES-16 satellite infrared observations. Uncertainty was assessed by how well probabilistic forecasts were calibrated and how well uncertainty separated forecasts with large and small errors. Most of the Bayesian deep learning methods produced probabilistic forecasts that outperformed the deterministic ResNet, with one, the initial-weights ensemble + Monte Carlo (MC) dropout, an ensemble of deterministic ResNets with different initial weights to start training and dropout activated during inference, producing the most skillful and well-calibrated forecasts. The initial-weights ensemble + MC dropout benefited from generating multiple solutions that more thoroughly sampled the hypothesis space. The Bayesian ResNet ensemble was the only one that performed worse than the deterministic ResNet at longer lead times, likely due to the challenge of optimizing a larger number of parameters. To address this issue, the Bayesian-MOPED (MOdel Priors with Empirical Bayes using Deep neural network) ResNet ensemble was adopted, and it enhanced forecast skill by constraining the hypothesis search near the deterministic ResNet hypothesis. All Bayesian methods demonstrated well-calibrated uncertainty and effectively separated cases with large and small errors. In case studies, the initial-weights ensemble + MC dropout demonstrated better forecast skill than the Bayesian-MOPED ensemble and the deterministic ResNet on selected CI events in clear-sky regions. However, the initial-weights ensemble + MC dropout exhibited poorer generalization in clear-sky and anvil cloud regions without CI occurrence compared to the deterministic ResNet and Bayesian-MOPED ensemble.
Authors:Yu-Jen Chen, Xueyang Li, Yiyu Shi, Tsung-Yi Ho
Title: Unsupervised Out-of-Distribution Detection in Medical Imaging Using Multi-Exit Class Activation Maps and Feature Masking
Abstract:
Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models in medical imaging applications. This work is motivated by the observation that class activation maps (CAMs) for in-distribution (ID) data typically emphasize regions that are highly relevant to the model's predictions, whereas OOD data often lacks such focused activations. By masking input images with inverted CAMs, the feature representations of ID data undergo more substantial changes compared to those of OOD data, offering a robust criterion for differentiation. In this paper, we introduce a novel unsupervised OOD detection framework, Multi-Exit Class Activation Map (MECAM), which leverages multi-exit CAMs and feature masking. By utilizing mult-exit networks that combine CAMs from varying resolutions and depths, our method captures both global and local feature representations, thereby enhancing the robustness of OOD detection. We evaluate MECAM on multiple ID datasets, including ISIC19 and PathMNIST, and test its performance against three medical OOD datasets, RSNA Pneumonia, COVID-19, and HeadCT, and one natural image OOD dataset, iSUN. Comprehensive comparisons with state-of-the-art OOD detection methods validate the effectiveness of our approach. Our findings emphasize the potential of multi-exit networks and feature masking for advancing unsupervised OOD detection in medical imaging, paving the way for more reliable and interpretable models in clinical practice.
Authors:Zengli Luo, Canlong Zhang, Zhixin Li, Zhiwen Wang, Chunrong Wei
Title: Uncertainty-Aware Prototype Semantic Decoupling for Text-Based Person Search in Full Images
Abstract:
Text-based pedestrian search (TBPS) in full images aims to locate a target pedestrian in untrimmed images using natural language descriptions. However, in complex scenes with multiple pedestrians, existing methods are limited by uncertainties in detection and matching, leading to degraded performance. To address this, we propose UPD-TBPS, a novel framework comprising three modules: Multi-granularity Uncertainty Estimation (MUE), Prototype-based Uncertainty Decoupling (PUD), and Cross-modal Re-identification (ReID). MUE conducts multi-granularity queries to identify potential targets and assigns confidence scores to reduce early-stage uncertainty. PUD leverages visual context decoupling and prototype mining to extract features of the target pedestrian described in the query. It separates and learns pedestrian prototype representations at both the coarse-grained cluster level and the fine-grained individual level, thereby reducing matching uncertainty. ReID evaluates candidates with varying confidence levels, improving detection and retrieval accuracy. Experiments on CUHK-SYSU-TBPS and PRW-TBPS datasets validate the effectiveness of our framework.
Authors:Yu Liu, Hao Tang, Haiqi Zhang, Jing Qin, Zechao Li
Title: OT-DETECTOR: Delving into Optimal Transport for Zero-shot Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications. While zero-shot OOD detection, which requires no training on in-distribution (ID) data, has become feasible with the emergence of vision-language models like CLIP, existing methods primarily focus on semantic matching and fail to fully capture distributional discrepancies. To address these limitations, we propose OT-DETECTOR, a novel framework that employs Optimal Transport (OT) to quantify both semantic and distributional discrepancies between test samples and ID labels. Specifically, we introduce cross-modal transport mass and transport cost as semantic-wise and distribution-wise OOD scores, respectively, enabling more robust detection of OOD samples. Additionally, we present a semantic-aware content refinement (SaCR) module, which utilizes semantic cues from ID labels to amplify the distributional discrepancy between ID and hard OOD samples. Extensive experiments on several benchmarks demonstrate that OT-DETECTOR achieves state-of-the-art performance across various OOD detection tasks, particularly in challenging hard-OOD scenarios.
Authors:Tong Yang, Bo Dai, Lin Xiao, Yuejie Chi
Title: Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent RL for Markov Games
Abstract:
Multi-agent reinforcement learning (MARL) lies at the heart of a plethora of applications involving the interaction of a group of agents in a shared unknown environment. A prominent framework for studying MARL is Markov games, with the goal of finding various notions of equilibria in a sample-efficient manner, such as the Nash equilibrium (NE) and the coarse correlated equilibrium (CCE). However, existing sample-efficient approaches either require tailored uncertainty estimation under function approximation, or careful coordination of the players. In this paper, we propose a novel model-based algorithm, called VMG, that incentivizes exploration via biasing the empirical estimate of the model parameters towards those with a higher collective best-response values of all the players when fixing the other players' policies, thus encouraging the policy to deviate from its current equilibrium for more exploration. VMG is oblivious to different forms of function approximation, and permits simultaneous and uncoupled policy updates of all players. Theoretically, we also establish that VMG achieves a near-optimal regret for finding both the NEs of two-player zero-sum Markov games and CCEs of multi-player general-sum Markov games under linear function approximation in an online environment, which nearly match their counterparts with sophisticated uncertainty quantification.
Authors:Hanna Zubkova, Ji-Hoon Park, Seong-Whan Lee
Title: SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
Abstract:
Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
Authors:Amol Khanna, Chenyi Ling, Derek Everett, Edward Raff, Nathan Inkawhich
Title: Multi-layer Radial Basis Function Networks for Out-of-distribution Detection
Abstract:
Existing methods for out-of-distribution (OOD) detection use various techniques to produce a score, separate from classification, that determines how ``OOD'' an input is. Our insight is that OOD detection can be simplified by using a neural network architecture which can effectively merge classification and OOD detection into a single step. Radial basis function networks (RBFNs) inherently link classification confidence and OOD detection; however, these networks have lost popularity due to the difficult of training them in a multi-layer fashion. In this work, we develop a multi-layer radial basis function network (MLRBFN) which can be easily trained. To ensure that these networks are also effective for OOD detection, we develop a novel depression mechanism. We apply MLRBFNs as standalone classifiers and as heads on top of pretrained feature extractors, and find that they are competitive with commonly used methods for OOD detection. Our MLRBFN architecture demonstrates a promising new direction for OOD detection methods.
Authors:Saadat Behzadi, Danial Sharifrazi, Roohallah Alizadehsani, Mojtaba Lotfaliany, Mohammadreza Mohebbi
Title: Brain Ageing Prediction using Isolation Forest Technique and Residual Neural Network (ResNet)
Abstract:
Brain aging is a complex and dynamic process, leading to functional and structural changes in the brain. These changes could lead to the increased risk of neurodegenerative diseases and cognitive decline. Accurate brain-age estimation utilizing neuroimaging data has become necessary for detecting initial signs of neurodegeneration. Here, we propose a novel deep learning approach using the Residual Neural Network 101 Version 2 (ResNet101V2) model to predict brain age from MRI scans. To train, validate and test our proposed model, we used a large dataset of 2102 images which were selected randomly from the International Consortium for Brain Mapping (ICBM). Next, we applied data preprocessing techniques, including normalizing the images and using outlier detection via Isolation Forest method. Then, we evaluated various pre-trained approaches (namely: MobileNetV2, ResNet50V2, ResNet101V2, Xception). The results demonstrated that the ResNet101V2 model has higher performance compared with the other models, attaining MAEs of 0.9136 and 0.8242 years for before and after using Isolation Forest process. Our method achieved a high accuracy in brain age estimation in ICBM dataset and it provides a reliable brain age prediction.
Authors:Yifan Wu, Xichen Ye, Songmin Dai, Dengye Pan, Xiaoqiang Li, Weizhong Zhang, Yifan Chen
Title: Revisiting Energy-Based Model for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is an essential approach to robustifying deep learning models, enabling them to identify inputs that fall outside of their trained distribution. Existing OOD detection methods usually depend on crafted data, such as specific outlier datasets or elaborate data augmentations. While this is reasonable, the frequent mismatch between crafted data and OOD data limits model robustness and generalizability. In response to this issue, we introduce Outlier Exposure by Simple Transformations (OEST), a framework that enhances OOD detection by leveraging "peripheral-distribution" (PD) data. Specifically, PD data are samples generated through simple data transformations, thus providing an efficient alternative to manually curated outliers. We adopt energy-based models (EBMs) to study PD data. We recognize the "energy barrier" in OOD detection, which characterizes the energy difference between in-distribution (ID) and OOD samples and eases detection. PD data are introduced to establish the energy barrier during training. Furthermore, this energy barrier concept motivates a theoretically grounded energy-barrier loss to replace the classical energy-bounded loss, leading to an improved paradigm, OEST*, which achieves a more effective and theoretically sound separation between ID and OOD samples. We perform empirical validation of our proposal, and extensive experiments across various benchmarks demonstrate that OEST* achieves better or similar accuracy compared with state-of-the-art methods.
Authors:Zhihua Duan, Jialin Wang
Title: Enhancing Multi-Agent Consensus through Third-Party LLM Integration: Analyzing Uncertainty and Mitigating Hallucinations in Large Language Models
Abstract:
Large Language Models (LLMs) still face challenges when dealing with complex reasoning tasks, often resulting in hallucinations, which limit the practical application of LLMs. To alleviate this issue, this paper proposes a new method that integrates different LLMs to expand the knowledge boundary, reduce dependence on a single model, and promote in-depth debate among agents. The main contributions include: 1) Introducing third-party LLMs to adjust the attention weights of agents through uncertainty estimation and confidence analysis, optimizing consensus formation in multi-agent systems; 2) Experiments on arithmetic datasets have validated the effectiveness of the method, surpassing traditional multi-agent baselines. This research provides a new perspective for large models to alleviate hallucination phenomena when dealing with complex tasks.
Authors:Kun Fang, Qinghua Tao, Zuopeng Yang, Xiaolin Huang, Jie Yang
Title: Beyond Perceptual Distances: Rethinking Disparity Assessment for Out-of-Distribution Detection with Diffusion Models
Abstract:
Out-of-Distribution (OoD) detection aims to justify whether a given sample is from the training distribution of the classifier-under-protection, i.e., In-Distribution (InD), or from OoD. Diffusion Models (DMs) are recently utilized in OoD detection by using the perceptual distances between the given image and its DM generation. DM-based methods bring fresh insights to the field, yet remain under-explored. In this work, we point out two main limitations in DM-based OoD detection methods: (i) the perceptual metrics on the disparities between the given sample and its generation are devised only at human-perceived levels, ignoring the abstract or high-level patterns that help better reflect the intrinsic disparities in distribution; (ii) only the raw image contents are taken to measure the disparities, while other representations, i.e., the features and probabilities from the classifier-under-protection, are easy to access at hand but are ignored. To this end, our proposed detection framework goes beyond the perceptual distances and looks into the deep representations from the classifier-under-protection with our novel metrics devised correspondingly, leading to more informative disparity assessments between InD and OoD. An anomaly-removal strategy is integrated to remove the abnormal OoD information in the generation, further enhancing the distinctiveness of disparities. Our work has demonstrated state-of-the-art detection performances among DM-based methods in extensive experiments.
Authors:Sijia li, Xinran Li, Shibo Chen, Jun Zhang
Title: Puzzle it Out: Local-to-Global World Model for Offline Multi-Agent Reinforcement Learning
Abstract:
Offline multi-agent reinforcement learning (MARL) aims to solve cooperative decision-making problems in multi-agent systems using pre-collected datasets. Existing offline MARL methods primarily constrain training within the dataset distribution, resulting in overly conservative policies that struggle to generalize beyond the support of the data. While model-based approaches offer a promising solution by expanding the original dataset with synthetic data generated from a learned world model, the high dimensionality, non-stationarity, and complexity of multi-agent systems make it challenging to accurately estimate the transitions and reward functions in offline MARL. Given the difficulty of directly modeling joint dynamics, we propose a local-to-global (LOGO) world model, a novel framework that leverages local predictions-which are easier to estimate-to infer global state dynamics, thus improving prediction accuracy while implicitly capturing agent-wise dependencies. Using the trained world model, we generate synthetic data to augment the original dataset, expanding the effective state-action space. To ensure reliable policy learning, we further introduce an uncertainty-aware sampling mechanism that adaptively weights synthetic data by prediction uncertainty, reducing approximation error propagation to policies. In contrast to conventional ensemble-based methods, our approach requires only an additional encoder for uncertainty estimation, significantly reducing computational overhead while maintaining accuracy. Extensive experiments across 8 scenarios against 8 baselines demonstrate that our method surpasses state-of-the-art baselines on standard offline MARL benchmarks, establishing a new model-based baseline for generalizable offline multi-agent learning.
Authors:Matias Cosarinsky, Nicolas Gaggion, Rodrigo Echeveste, Enzo Ferrante
Title: CheXmask-U: Quantifying uncertainty in landmark-based anatomical segmentation for X-ray images
Abstract:
Uncertainty estimation is essential for the safe clinical deployment of medical image segmentation systems, enabling the identification of unreliable predictions and supporting human oversight. While prior work has largely focused on pixel-level uncertainty, landmark-based segmentation offers inherent topological guarantees yet remains underexplored from an uncertainty perspective. In this work, we study uncertainty estimation for anatomical landmark-based segmentation on chest X-rays. Inspired by hybrid neural network architectures that combine standard image convolutional encoders with graph-based generative decoders, and leveraging their variational latent space, we derive two complementary measures: (i) latent uncertainty, captured directly from the learned distribution parameters, and (ii) predictive uncertainty, obtained by generating multiple stochastic output predictions from latent samples. Through controlled corruption experiments we show that both uncertainty measures increase with perturbation severity, reflecting both global and local degradation. We demonstrate that these uncertainty signals can identify unreliable predictions by comparing with manual ground-truth, and support out-of-distribution detection on the CheXmask dataset. More importantly, we release CheXmask-U (huggingface.co/datasets/mcosarinsky/CheXmask-U), a large scale dataset of 657,566 chest X-ray landmark segmentations with per-node uncertainty estimates, enabling researchers to account for spatial variations in segmentation quality when using these anatomical masks. Our findings establish uncertainty estimation as a promising direction to enhance robustness and safe deployment of landmark-based anatomical segmentation methods in chest X-ray. A fully working interactive demo of the method is available at huggingface.co/spaces/matiasky/CheXmask-U and the source code at github.com/mcosarinsky/CheXmask-U.
Authors:Zhongyi Cai, Bryce Gernon, Wentao Bao, Yifan Li, Matthew Wright, Yu Kong
Title: Open Set Face Forgery Detection via Dual-Level Evidence Collection
Abstract:
The proliferation of face forgeries has increasingly undermined confidence in the authenticity of online content. Given the rapid development of face forgery generation algorithms, new fake categories are likely to keep appearing, posing a major challenge to existing face forgery detection methods. Despite recent advances in face forgery detection, existing methods are typically limited to binary Real-vs-Fake classification or the identification of known fake categories, and are incapable of detecting the emergence of novel types of forgeries. In this work, we study the Open Set Face Forgery Detection (OSFFD) problem, which demands that the detection model recognize novel fake categories. We reformulate the OSFFD problem and address it through uncertainty estimation, enhancing its applicability to real-world scenarios. Specifically, we propose the Dual-Level Evidential face forgery Detection (DLED) approach, which collects and fuses category-specific evidence on the spatial and frequency levels to estimate prediction uncertainty. Extensive evaluations conducted across diverse experimental settings demonstrate that the proposed DLED method achieves state-of-the-art performance, outperforming various baseline models by an average of 20% in detecting forgeries from novel fake categories. Moreover, on the traditional Real-versus-Fake face forgery detection task, our DLED method concurrently exhibits competitive performance.
Authors:Juan A. Lara, David Lizcano, Víctor Rampérez, Javier Soriano
Title: A method for outlier detection based on cluster analysis and visual expert criteria
Abstract:
Outlier detection is an important problem occurring in a wide range of areas. Outliers are the outcome of fraudulent behaviour, mechanical faults, human error, or simply natural deviations. Many data mining applications perform outlier detection, often as a preliminary step in order to filter out outliers and build more representative models. In this paper, we propose an outlier detection method based on a clustering process. The aim behind the proposal outlined in this paper is to overcome the specificity of many existing outlier detection techniques that fail to take into account the inherent dispersion of domain objects. The outlier detection method is based on four criteria designed to represent how human beings (experts in each domain) visually identify outliers within a set of objects after analysing the clusters. This has an advantage over other clustering-based outlier detection techniques that are founded on a purely numerical analysis of clusters. Our proposal has been evaluated, with satisfactory results, on data (particularly time series) from two different domains: stabilometry, a branch of medicine studying balance-related functions in human beings and electroencephalography (EEG), a neurological exploration used to diagnose nervous system disorders. To validate the proposed method, we studied method outlier detection and efficiency in terms of runtime. The results of regression analyses confirm that our proposal is useful for detecting outlier data in different domains, with a false positive rate of less than 2% and a reliability greater than 99%.
Authors:Taeseong Yoon, Heeyoung Kim
Title: Uncertainty Estimation by Flexible Evidential Deep Learning
Abstract:
Uncertainty quantification (UQ) is crucial for deploying machine learning models in high-stakes applications, where overconfident predictions can lead to serious consequences. An effective UQ method must balance computational efficiency with the ability to generalize across diverse scenarios. Evidential deep learning (EDL) achieves efficiency by modeling uncertainty through the prediction of a Dirichlet distribution over class probabilities. However, the restrictive assumption of Dirichlet-distributed class probabilities limits EDL's robustness, particularly in complex or unforeseen situations. To address this, we propose \textit{flexible evidential deep learning} ($\mathcal{F}$-EDL), which extends EDL by predicting a flexible Dirichlet distribution -- a generalization of the Dirichlet distribution -- over class probabilities. This approach provides a more expressive and adaptive representation of uncertainty, significantly enhancing UQ generalization and reliability under challenging scenarios. We theoretically establish several advantages of $\mathcal{F}$-EDL and empirically demonstrate its state-of-the-art UQ performance across diverse evaluation settings, including classical, long-tailed, and noisy in-distribution scenarios.
Authors:Brett Barkley, Preston Culbertson, David Fridovich-Keil
Title: SCOPED: Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion
Abstract:
Out-of-distribution (OOD) detection is essential for reliable deployment of machine learning systems in vision, robotics, reinforcement learning, and beyond. We introduce Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion (SCOPED), a fast and general-purpose OOD detection method for diffusion models that reduces the number of forward passes on the trained model by an order of magnitude compared to prior methods, outperforming most diffusion-based baselines and closely approaching the accuracy of the strongest ones. SCOPED is computed from a single diffusion model trained once on a diverse dataset, and combines the Jacobian trace and squared norm of the model's score function into a single test statistic. Rather than thresholding on a fixed value, we estimate the in-distribution density of SCOPED scores using kernel density estimation, enabling a flexible, unsupervised test that, in the simplest case, only requires a single forward pass and one Jacobian-vector product (JVP), made efficient by Hutchinson's trace estimator. On four vision benchmarks, SCOPED achieves competitive or state-of-the-art precision-recall scores despite its low computational cost. The same method generalizes to robotic control tasks with shared state and action spaces, identifying distribution shifts across reward functions and training regimes. These results position SCOPED as a practical foundation for fast and reliable OOD detection in real-world domains, including perceptual artifacts in vision, outlier detection in autoregressive models, exploration in reinforcement learning, and dataset curation for unsupervised training.
Authors:Daofu Zhang, Mehrdad Pournaderi, Hanne M. Clifford, Yu Xiang, Pramod K. Varshney
Title: On the Adversarial Robustness of Learning-based Conformal Novelty Detection
Abstract:
This paper studies the adversarial robustness of conformal novelty detection. In particular, we focus on AdaDetect, a powerful learning-based framework for novelty detection with finite-sample false discovery rate (FDR) control. While AdaDetect provides rigorous statistical guarantees under benign conditions, its behavior under adversarial perturbations remains unexplored. We first formulate an oracle attack setting that quantifies the worst-case degradation of FDR, deriving an upper bound that characterizes the statistical cost of attacks. This idealized formulation directly motivates a practical and effective attack scheme that only requires query access to AdaDetect's output labels. Coupling these formulations with two popular and complementary black-box adversarial algorithms, we systematically evaluate the vulnerability of AdaDetect on synthetic and real-world datasets. Our results show that adversarial perturbations can significantly increase the FDR while maintaining high detection power, exposing fundamental limitations of current error-controlled novelty detection methods and motivating the development of more robust alternatives.
Authors:Lin Tian, Xiaoling Hu, Juan Eugenio Iglesias
Title: Test-time Uncertainty Estimation for Medical Image Registration via Transformation Equivariance
Abstract:
Accurate image registration is essential for downstream applications, yet current deep registration networks provide limited indications of whether and when their predictions are reliable. Existing uncertainty estimation strategies, such as Bayesian methods, ensembles, or MC dropout, require architectural changes or retraining, limiting their applicability to pretrained registration networks. Instead, we propose a test-time uncertainty estimation framework that is compatible with any pretrained networks. Our framework is grounded in the transformation equivariance property of registration, which states that the true mapping between two images should remain consistent under spatial perturbations of the input. By analyzing the variance of network predictions under such perturbations, we derive a theoretical decomposition of perturbation-based uncertainty in registration. This decomposition separates into two terms: (i) an intrinsic spread, reflecting epistemic noise, and (ii) a bias jitter, capturing how systematic error drifts under perturbations. Across four anatomical structures (brain, cardiac, abdominal, and lung) and multiple registration models (uniGradICON, SynthMorph), the uncertainty maps correlate consistently with registration errors and highlight regions requiring caution. Our framework turns any pretrained registration network into a risk-aware tool at test time, placing medical image registration one step closer to safe deployment in clinical and large-scale research settings.
Authors:Muhammad Rajabinasab, Farhad Pakdaman, Moncef Gabbouj, Peter Schneider-Kamp, Arthur Zimek
Title: Randomized PCA Forest for Outlier Detection
Abstract:
We propose a novel unsupervised outlier detection method based on Randomized Principal Component Analysis (PCA). Inspired by the performance of Randomized PCA (RPCA) Forest in approximate K-Nearest Neighbor (KNN) search, we develop a novel unsupervised outlier detection method that utilizes RPCA Forest for outlier detection. Experimental results showcase the superiority of the proposed approach compared to the classical and state-of-the-art methods in performing the outlier detection task on several datasets while performing competitively on the rest. The extensive analysis of the proposed method reflects it high generalization power and its computational efficiency, highlighting it as a good choice for unsupervised outlier detection.
Authors:Sanghun Jung, Daehoon Gwak, Byron Boots, James Hays
Title: Uncertainty-aware Accurate Elevation Modeling for Off-road Navigation via Neural Processes
Abstract:
Terrain elevation modeling for off-road navigation aims to accurately estimate changes in terrain geometry in real-time and quantify the corresponding uncertainties. Having precise estimations and uncertainties plays a crucial role in planning and control algorithms to explore safe and reliable maneuver strategies. However, existing approaches, such as Gaussian Processes (GPs) and neural network-based methods, often fail to meet these needs. They are either unable to perform in real-time due to high computational demands, underestimating sharp geometry changes, or harming elevation accuracy when learned with uncertainties. Recently, Neural Processes (NPs) have emerged as a promising approach that integrates the Bayesian uncertainty estimation of GPs with the efficiency and flexibility of neural networks. Inspired by NPs, we propose an effective NP-based method that precisely estimates sharp elevation changes and quantifies the corresponding predictive uncertainty without losing elevation accuracy. Our method leverages semantic features from LiDAR and camera sensors to improve interpolation and extrapolation accuracy in unobserved regions. Also, we introduce a local ball-query attention mechanism to effectively reduce the computational complexity of global attention by 17\% while preserving crucial local and spatial information. We evaluate our method on off-road datasets having interesting geometric features, collected from trails, deserts, and hills. Our results demonstrate superior performance over baselines and showcase the potential of neural processes for effective and expressive terrain modeling in complex off-road environments.
Authors:Thomas Gottwald, Edgar Heinert, Matthias Rottmann
Title: Uncertainty Estimation for Novel Views in Gaussian Splatting from Primitive-Based Representations of Error and Visibility
Abstract:
In this work, we present a novel method for uncertainty estimation (UE) in Gaussian Splatting. UE is crucial for using Gaussian Splatting in critical applications such as robotics and medicine. Previous methods typically estimate the variance of Gaussian primitives and use the rendering process to obtain pixel-wise uncertainties. Our method establishes primitive representations of error and visibility of trainings views, which carries meaningful uncertainty information. This representation is obtained by projection of training error and visibility onto the primitives. Uncertainties of novel views are obtained by rendering the primitive representations of uncertainty for those novel views, yielding uncertainty feature maps. To aggregate these uncertainty feature maps of novel views, we perform a pixel-wise regression on holdout data. In our experiments, we analyze the different components of our method, investigating various combinations of uncertainty feature maps and regression models. Furthermore, we considered the effect of separating splatting into foreground and background. Our UEs show high correlations to true errors, outperforming state-of-the-art methods, especially on foreground objects. The trained regression models show generalization capabilities to new scenes, allowing uncertainty estimation without the need for holdout data.
Authors:Yuhang Liu, Yuefei Wu, Bin Shi, Bo Dong
Title: Feature Bank Enhancement for Distance-based Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is critical to ensuring the reliability of deep learning applications and has attracted significant attention in recent years. A rich body of literature has emerged to develop efficient score functions that assign high scores to in-distribution (ID) samples and low scores to OOD samples, thereby helping distinguish OOD samples. Among these methods, distance-based score functions are widely used because of their efficiency and ease of use. However, deep learning often leads to a biased distribution of data features, and extreme features are inevitable. These extreme features make the distance-based methods tend to assign too low scores to ID samples. This limits the OOD detection capabilities of such methods. To address this issue, we propose a simple yet effective method, Feature Bank Enhancement (FBE), that uses statistical characteristics from dataset to identify and constrain extreme features to the separation boundaries, therapy making the distance between samples inside and outside the distribution farther. We conducted experiments on large-scale ImageNet-1k and CIFAR-10 respectively, and the results show that our method achieves state-of-the-art performance on both benchmark. Additionally, theoretical analysis and supplementary experiments are conducted to provide more insights into our method.
Authors:Zhipeng Xue, Yan Zhang, Ming Li, Chun Li, Yue Liu, Fei Yu
Title: Uncertainty Quantification for Incomplete Multi-View Data Using Divergence Measures
Abstract:
Existing multi-view classification and clustering methods typically improve task accuracy by leveraging and fusing information from different views. However, ensuring the reliability of multi-view integration and final decisions is crucial, particularly when dealing with noisy or corrupted data. Current methods often rely on Kullback-Leibler (KL) divergence to estimate uncertainty of network predictions, ignoring domain gaps between different modalities. To address this issue, KPHD-Net, based on Hölder divergence, is proposed for multi-view classification and clustering tasks. Generally, our KPHD-Net employs a variational Dirichlet distribution to represent class probability distributions, models evidences from different views, and then integrates it with Dempster-Shafer evidence theory (DST) to improve uncertainty estimation effects. Our theoretical analysis demonstrates that Proper Hölder divergence offers a more effective measure of distribution discrepancies, ensuring enhanced performance in multi-view learning. Moreover, Dempster-Shafer evidence theory, recognized for its superior performance in multi-view fusion tasks, is introduced and combined with the Kalman filter to provide future state estimations. This integration further enhances the reliability of the final fusion results. Extensive experiments show that the proposed KPHD-Net outperforms the current state-of-the-art methods in both classification and clustering tasks regarding accuracy, robustness, and reliability, with theoretical guarantees.
Authors:Philipp Reis, Joshua Ransiek, David Petri, Jacob Langner, Eric Sax
Title: A Data-Driven Novelty Score for Diverse In-Vehicle Data Recording
Abstract:
High-quality datasets are essential for training robust perception systems in autonomous driving. However, real-world data collection is often biased toward common scenes and objects, leaving novel cases underrepresented. This imbalance hinders model generalization and compromises safety. The core issue is the curse of rarity. Over time, novel events occur infrequently, and standard logging methods fail to capture them effectively. As a result, large volumes of redundant data are stored, while critical novel cases are diluted, leading to biased datasets. This work presents a real-time data selection method focused on object-level novelty detection to build more balanced and diverse datasets. The method assigns a data-driven novelty score to image frames using a novel dynamic Mean Shift algorithm. It models normal content based on mean and covariance statistics to identify frames with novel objects, discarding those with redundant elements. The main findings show that reducing the training dataset size with this method can improve model performance, whereas higher redundancy tends to degrade it. Moreover, as data redundancy increases, more aggressive filtering becomes both possible and beneficial. While random sampling can offer some gains, it often leads to overfitting and unpredictability in outcomes. The proposed method supports real-time deployment with 32 frames per second and is constant over time. By continuously updating the definition of normal content, it enables efficient detection of novelties in a continuous data stream.
Authors:Lakshita Dodeja, Karl Schmeckpeper, Shivam Vats, Thomas Weng, Mingxi Jia, George Konidaris, Stefanie Tellex
Title: Accelerating Residual Reinforcement Learning with Uncertainty Estimation
Abstract:
Residual Reinforcement Learning (RL) is a popular approach for adapting pretrained policies by learning a lightweight residual policy that provides corrective actions. While Residual RL is more sample-efficient than finetuning the entire base policy, existing methods struggle with sparse rewards and are designed for deterministic base policies. We propose two improvements to Residual RL that further enhance its sample efficiency and make it suitable for stochastic base policies. First, we leverage uncertainty estimates of the base policy to focus exploration on regions in which the base policy is not confident. Second, we propose a simple modification to off-policy residual learning that allows it to observe base actions and better handle stochastic base policies. We evaluate our method with both Gaussian-based and Diffusion-based stochastic base policies on tasks from Robosuite and D4RL, and compare against state-of-the-art finetuning methods, demo-augmented RL methods, and other residual RL methods. Our algorithm significantly outperforms existing baselines in a variety of simulation benchmark environments. We also deploy our learned polices in the real world to demonstrate their robustness with zero-shot sim-to-real transfer.
Authors:Xinyi Liu, Weiguang Wang, Hangfeng He
Title: The Role of Model Confidence on Bias Effects in Measured Uncertainties
Abstract:
With the growing adoption of Large Language Models (LLMs) for open-ended tasks, accurately assessing epistemic uncertainty, which reflects a model's lack of knowledge, has become crucial to ensuring reliable outcomes. However, quantifying epistemic uncertainty in such tasks is challenging due to the presence of aleatoric uncertainty, which arises from multiple valid answers. While bias can introduce noise into epistemic uncertainty estimation, it may also reduce noise from aleatoric uncertainty. To investigate this trade-off, we conduct experiments on Visual Question Answering (VQA) tasks and find that mitigating prompt-introduced bias improves uncertainty quantification in GPT-4o. Building on prior work showing that LLMs tend to copy input information when model confidence is low, we further analyze how these prompt biases affect measured epistemic and aleatoric uncertainty across varying bias-free confidence levels with GPT-4o and Qwen2-VL. We find that all considered biases induce greater changes in both uncertainties when bias-free model confidence is lower. Moreover, lower bias-free model confidence leads to greater underestimation of epistemic uncertainty (i.e. overconfidence) due to bias, whereas it has no significant effect on the direction of changes in aleatoric uncertainty estimation. These distinct effects deepen our understanding of bias mitigation for uncertainty quantification and potentially inform the development of more advanced techniques.
Authors:Mirko Borszukovszki, Ivo Pascal de Jong, Matias Valdenegro-Toro
Title: Know What You do Not Know: Verbalized Uncertainty Estimation Robustness on Corrupted Images in Vision-Language Models
Abstract:
To leverage the full potential of Large Language Models (LLMs) it is crucial to have some information on their answers' uncertainty. This means that the model has to be able to quantify how certain it is in the correctness of a given response. Bad uncertainty estimates can lead to overconfident wrong answers undermining trust in these models. Quite a lot of research has been done on language models that work with text inputs and provide text outputs. Still, since the visual capabilities have been added to these models recently, there has not been much progress on the uncertainty of Visual Language Models (VLMs). We tested three state-of-the-art VLMs on corrupted image data. We found that the severity of the corruption negatively impacted the models' ability to estimate their uncertainty and the models also showed overconfidence in most of the experiments.
Authors:Hyunho Lee, Wenwen Li
Title: Geospatial Artificial Intelligence for Satellite-Based Flood Extent Mapping: Concepts, Advances, and Future Perspectives
Abstract:
Geospatial Artificial Intelligence (GeoAI) for satellite-based flood extent mapping systematically integrates artificial intelligence techniques with satellite data to identify flood events and assess their impacts, for disaster management and spatial decision-making. The primary output often includes flood extent maps, which delineate the affected areas, along with additional analytical outputs such as uncertainty estimation and change detection.
Authors:Parker Ewen, Hao Chen, Seth Isaacson, Joey Wilson, Katherine A. Skinner, Ram Vasudevan
Title: These Magic Moments: Differentiable Uncertainty Quantification of Radiance Field Models
Abstract:
This paper introduces a novel approach to uncertainty quantification for radiance fields by leveraging higher-order moments of the rendering equation. Uncertainty quantification is crucial for downstream tasks including view planning and scene understanding, where safety and robustness are paramount. However, the high dimensionality and complexity of radiance fields pose significant challenges for uncertainty quantification, limiting the use of these uncertainty quantification methods in high-speed decision-making. We demonstrate that the probabilistic nature of the rendering process enables efficient and differentiable computation of higher-order moments for radiance field outputs, including color, depth, and semantic predictions. Our method outperforms existing radiance field uncertainty estimation techniques while offering a more direct, computationally efficient, and differentiable formulation without the need for post-processing. Beyond uncertainty quantification, we also illustrate the utility of our approach in downstream applications such as next-best-view (NBV) selection and active ray sampling for neural radiance field training. Extensive experiments on synthetic and real-world scenes confirm the efficacy of our approach, which achieves state-of-the-art performance while maintaining simplicity.
Authors:Riccardo Mazzieri, Jacopo Pegoraro, Michele Rossi
Title: Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds
Abstract:
The adoption of Millimeter-Wave (mmWave) radar devices for human sensing, particularly gait recognition, has recently gathered significant attention due to their efficiency, resilience to environmental conditions, and privacy-preserving nature. In this work, we tackle the challenging problem of Open-set Gait Recognition (OSGR) from sparse mmWave radar point clouds. Unlike most existing research, which assumes a closed-set scenario, our work considers the more realistic open-set case, where unknown subjects might be present at inference time, and should be correctly recognized by the system. Point clouds are well-suited for edge computing applications with resource constraints, but are more significantly affected by noise and random fluctuations than other representations, like the more common micro-Doppler signature. This is the first work addressing open-set gait recognition with sparse point cloud data. To do so, we propose a novel neural network architecture that combines supervised classification with unsupervised reconstruction of the point clouds, creating a robust, rich, and highly regularized latent space of gait features. To detect unknown subjects at inference time, we introduce a probabilistic novelty detection algorithm that leverages the structured latent space and offers a tunable trade-off between inference speed and prediction accuracy. Along with this paper, we release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects, under varied walking modalities. Extensive experimental results show that our solution attains F1-Score improvements by 24% over state-of-the-art methods adapted for point clouds, on average, and across multiple openness levels.
Authors:Momin Abbas, Muneeza Azmat, Raya Horesh, Mikhail Yurochkin
Title: Out-of-Distribution Detection using Synthetic Data Generation
Abstract:
Distinguishing in- and out-of-distribution (OOD) inputs is crucial for reliable deployment of classification systems. However, OOD data is typically unavailable or difficult to collect, posing a significant challenge for accurate OOD detection. In this work, we present a method that harnesses the generative capabilities of Large Language Models (LLMs) to create high-quality synthetic OOD proxies, eliminating the dependency on any external OOD data source. We study the efficacy of our method on classical text classification tasks such as toxicity detection and sentiment classification as well as classification tasks arising in LLM development and deployment, such as training a reward model for RLHF and detecting misaligned generations. Extensive experiments on nine InD-OOD dataset pairs and various model sizes show that our approach dramatically lowers false positive rates (achieving a perfect zero in some cases) while maintaining high accuracy on in-distribution tasks, outperforming baseline methods by a significant margin.
Authors:Abdullah Abdullah, Fannya Ratana Sandjaja, Ayesha Abdul Majeed, Gyan Wickremasinghe, Karen Rafferty, Vishal Sharma
Title: Uncertainty in Supply Chain Digital Twins: A Quantum-Classical Hybrid Approach
Abstract:
This study investigates uncertainty quantification (UQ) using quantum-classical hybrid machine learning (ML) models for applications in complex and dynamic fields, such as attaining resiliency in supply chain digital twins and financial risk assessment. Although quantum feature transformations have been integrated into ML models for complex data tasks, a gap exists in determining their impact on UQ within their hybrid architectures (quantum-classical approach). This work applies existing UQ techniques for different models within a hybrid framework, examining how quantum feature transformation affects uncertainty propagation. Increasing qubits from 4 to 16 shows varied model responsiveness to outlier detection (OD) samples, which is a critical factor for resilient decision-making in dynamic environments. This work shows how quantum computing techniques can transform data features for UQ, particularly when combined with classical methods.
Authors:Zhilong Zhang, Ruifeng Chen, Junyin Ye, Yihao Sun, Pengyuan Wang, Jingcheng Pang, Kaiyuan Li, Tianshuo Liu, Haoxin Lin, Yang Yu, Zhi-Hua Zhou
Title: WHALE: Towards Generalizable and Scalable World Models for Embodied Decision-making
Abstract:
World models play a crucial role in decision-making within embodied environments, enabling cost-free explorations that would otherwise be expensive in the real world. To facilitate effective decision-making, world models must be equipped with strong generalizability to support faithful imagination in out-of-distribution (OOD) regions and provide reliable uncertainty estimation to assess the credibility of the simulated experiences, both of which present significant challenges for prior scalable approaches. This paper introduces WHALE, a framework for learning generalizable world models, consisting of two key techniques: behavior-conditioning and retracing-rollout. Behavior-conditioning addresses the policy distribution shift, one of the primary sources of the world model generalization error, while retracing-rollout enables efficient uncertainty estimation without the necessity of model ensembles. These techniques are universal and can be combined with any neural network architecture for world model learning. Incorporating these two techniques, we present Whale-ST, a scalable spatial-temporal transformer-based world model with enhanced generalizability. We demonstrate the superiority of Whale-ST in simulation tasks by evaluating both value estimation accuracy and video generation fidelity. Additionally, we examine the effectiveness of our uncertainty estimation technique, which enhances model-based policy optimization in fully offline scenarios. Furthermore, we propose Whale-X, a 414M parameter world model trained on 970K trajectories from Open X-Embodiment datasets. We show that Whale-X exhibits promising scalability and strong generalizability in real-world manipulation scenarios using minimal demonstrations.
Authors:Taeseong Yoon, Heeyoung Kim
Title: Uncertainty Estimation by Density Aware Evidential Deep Learning
Abstract:
Evidential deep learning (EDL) has shown remarkable success in uncertainty estimation. However, there is still room for improvement, particularly in out-of-distribution (OOD) detection and classification tasks. The limited OOD detection performance of EDL arises from its inability to reflect the distance between the testing example and training data when quantifying uncertainty, while its limited classification performance stems from its parameterization of the concentration parameters. To address these limitations, we propose a novel method called Density Aware Evidential Deep Learning (DAEDL). DAEDL integrates the feature space density of the testing example with the output of EDL during the prediction stage, while using a novel parameterization that resolves the issues in the conventional parameterization. We prove that DAEDL enjoys a number of favorable theoretical properties. DAEDL demonstrates state-of-the-art performance across diverse downstream tasks related to uncertainty estimation and classification
Authors:Thanh Tung Khuat, Robert Bassett, Ellen Otte, Bogdan Gabrys
Title: Uncertainty Quantification Using Ensemble Learning and Monte Carlo Sampling for Performance Prediction and Monitoring in Cell Culture Processes
Abstract:
Biopharmaceutical products, particularly monoclonal antibodies (mAbs), have gained prominence in the pharmaceutical market due to their high specificity and efficacy. As these products are projected to constitute a substantial portion of global pharmaceutical sales, the application of machine learning models in mAb development and manufacturing is gaining momentum. This paper addresses the critical need for uncertainty quantification in machine learning predictions, particularly in scenarios with limited training data. Leveraging ensemble learning and Monte Carlo simulations, our proposed method generates additional input samples to enhance the robustness of the model in small training datasets. We evaluate the efficacy of our approach through two case studies: predicting antibody concentrations in advance and real-time monitoring of glucose concentrations during bioreactor runs using Raman spectra data. Our findings demonstrate the effectiveness of the proposed method in estimating the uncertainty levels associated with process performance predictions and facilitating real-time decision-making in biopharmaceutical manufacturing. This contribution not only introduces a novel approach for uncertainty quantification but also provides insights into overcoming challenges posed by small training datasets in bioprocess development. The evaluation demonstrates the effectiveness of our method in addressing key challenges related to uncertainty estimation within upstream cell cultivation, illustrating its potential impact on enhancing process control and product quality in the dynamic field of biopharmaceuticals.
Authors:Joseph Hoche, Andrei Bursuc, David Brellmann, Gilles Louppe, Pavel Izmailov, Angela Yao, Gianni Franchi
Title: Improving Semantic Uncertainty Quantification in LVLMs with Semantic Gaussian Processes
Abstract:
Large Vision-Language Models (LVLMs) often produce plausible but unreliable outputs, making robust uncertainty estimation essential. Recent work on semantic uncertainty estimates relies on external models to cluster multiple sampled responses and measure their semantic consistency. However, these clustering methods are often fragile, highly sensitive to minor phrasing variations, and can incorrectly group or separate semantically similar answers, leading to unreliable uncertainty estimates. We propose Semantic Gaussian Process Uncertainty (SGPU), a Bayesian framework that quantifies semantic uncertainty by analyzing the geometric structure of answer embeddings, avoiding brittle clustering. SGPU maps generated answers into a dense semantic space, computes the Gram matrix of their embeddings, and summarizes their semantic configuration via the eigenspectrum. This spectral representation is then fed into a Gaussian Process Classifier that learns to map patterns of semantic consistency to predictive uncertainty, and that can be applied in both black-box and white-box settings. Across six LLMs and LVLMs on eight datasets spanning VQA, image classification, and textual QA, SGPU consistently achieves state-of-the-art calibration (ECE) and discriminative (AUROC, AUARC) performance. We further show that SGPU transfers across models and modalities, indicating that its spectral representation captures general patterns of semantic uncertainty.
Authors:Si-Hyun Kim, Heon-Gyu Kwak, Byoung-Hee Kwon, Seong-Whan Lee
Title: Meta-cognitive Multi-scale Hierarchical Reasoning for Motor Imagery Decoding
Abstract:
Brain-computer interface (BCI) aims to decode motor intent from noninvasive neural signals to enable control of external devices, but practical deployment remains limited by noise and variability in motor imagery (MI)-based electroencephalogram (EEG) signals. This work investigates a hierarchical and meta-cognitive decoding framework for four-class MI classification. We introduce a multi-scale hierarchical signal processing module that reorganizes backbone features into temporal multi-scale representations, together with an introspective uncertainty estimation module that assigns per-cycle reliability scores and guides iterative refinement. We instantiate this framework on three standard EEG backbones (EEGNet, ShallowConvNet, and DeepConvNet) and evaluate four-class MI decoding using the BCI Competition IV-2a dataset under a subject-independent setting. Across all backbones, the proposed components improve average classification accuracy and reduce inter-subject variance compared to the corresponding baselines, indicating increased robustness to subject heterogeneity and noisy trials. These results suggest that combining hierarchical multi-scale processing with introspective confidence estimation can enhance the reliability of MI-based BCI systems.
Authors:Kishansingh Rajput, Malachi Schram, Brian Sammuli, Sen Lin
Title: Uncertainty Guided Online Ensemble for Non-stationary Data Streams in Fusion Science
Abstract:
Machine Learning (ML) is poised to play a pivotal role in the development and operation of next-generation fusion devices. Fusion data shows non-stationary behavior with distribution drifts, resulted by both experimental evolution and machine wear-and-tear. ML models assume stationary distribution and fail to maintain performance when encountered with such non-stationary data streams. Online learning techniques have been leveraged in other domains, however it has been largely unexplored for fusion applications. In this paper, we present an application of online learning to continuously adapt to drifting data stream for prediction of Toroidal Field (TF) coils deflection at the DIII-D fusion facility. The results demonstrate that online learning is critical to maintain ML model performance and reduces error by 80% compared to a static model. Moreover, traditional online learning can suffer from short-term performance degradation as ground truth is not available before making the predictions. As such, we propose an uncertainty guided online ensemble method to further improve the performance. The Deep Gaussian Process Approximation (DGPA) technique is leveraged for calibrated uncertainty estimation and the uncertainty values are then used to guide a meta-algorithm that produces predictions based on an ensemble of learners trained on different horizon of historical data. The DGPA also provides uncertainty estimation along with the predictions for decision makers. The online ensemble and the proposed uncertainty guided online ensemble reduces predictions error by about 6%, and 10% respectively over standard single model based online learning.
Authors:Achref Jaziri, Martin Rogmann, Martin Mundt, Visvanathan Ramesh
Title: Beyond Binary Out-of-Distribution Detection: Characterizing Distributional Shifts with Multi-Statistic Diffusion Trajectories
Abstract:
Detecting out-of-distribution (OOD) data is critical for machine learning, be it for safety reasons or to enable open-ended learning. However, beyond mere detection, choosing an appropriate course of action typically hinges on the type of OOD data encountered. Unfortunately, the latter is generally not distinguished in practice, as modern OOD detection methods collapse distributional shifts into single scalar outlier scores. This work argues that scalar-based methods are thus insufficient for OOD data to be properly contextualized and prospectively exploited, a limitation we overcome with the introduction of DISC: Diffusion-based Statistical Characterization. DISC leverages the iterative denoising process of diffusion models to extract a rich, multi-dimensional feature vector that captures statistical discrepancies across multiple noise levels. Extensive experiments on image and tabular benchmarks show that DISC matches or surpasses state-of-the-art detectors for OOD detection and, crucially, also classifies OOD type, a capability largely absent from prior work. As such, our work enables a shift from simple binary OOD detection to a more granular detection.
Authors:Sebastian Schmidt, Julius Körner, Stephan Günnemann
Title: A Machine Learning Perspective on Automated Driving Corner Cases
Abstract:
For high-stakes applications, like autonomous driving, a safe operation is necessary to prevent harm, accidents, and failures. Traditionally, difficult scenarios have been categorized into corner cases and addressed individually. However, this example-based categorization is not scalable and lacks a data coverage perspective, neglecting the generalization to training data of machine learning models. In our work, we propose a novel machine learning approach that takes the underlying data distribution into account. Based on our novel perspective, we present a framework for effective corner case recognition for perception on individual samples. In our evaluation, we show that our approach (i) unifies existing scenario-based corner case taxonomies under a distributional perspective, (ii) achieves strong performance on corner case detection tasks across standard benchmarks for which we extend established out-of-distribution detection benchmarks, and (iii) enables analysis of combined corner cases via a newly introduced fog-augmented Lost & Found dataset. These results provide a principled basis for corner case recognition, underlining our manual specification-free definition.
Authors:Carlo Bono, Federico Belotti, Matteo Palmonari
Title: Efficient Uncertainty Estimation for LLM-based Entity Linking in Tabular Data
Abstract:
Linking textual values in tabular data to their corresponding entities in a Knowledge Base is a core task across a variety of data integration and enrichment applications. Although Large Language Models (LLMs) have shown State-of-The-Art performance in Entity Linking (EL) tasks, their deployment in real-world scenarios requires not only accurate predictions but also reliable uncertainty estimates, which require resource-demanding multi-shot inference, posing serious limits to their actual applicability. As a more efficient alternative, we investigate a self-supervised approach for estimating uncertainty from single-shot LLM outputs using token-level features, reducing the need for multiple generations. Evaluation is performed on an EL task on tabular data across multiple LLMs, showing that the resulting uncertainty estimates are highly effective in detecting low-accuracy outputs. This is achieved at a fraction of the computational cost, ultimately supporting a cost-effective integration of uncertainty measures into LLM-based EL workflows. The method offers a practical way to incorporate uncertainty estimation into EL workflows with limited computational overhead.
Authors:Faizul Rakib Sayem, Shahana Ibrahim
Title: Prompt Optimization Meets Subspace Representation Learning for Few-shot Out-of-Distribution Detection
Abstract:
The reliability of artificial intelligence (AI) systems in open-world settings depends heavily on their ability to flag out-of-distribution (OOD) inputs unseen during training. Recent advances in large-scale vision-language models (VLMs) have enabled promising few-shot OOD detection frameworks using only a handful of in-distribution (ID) samples. However, existing prompt learning-based OOD methods rely solely on softmax probabilities, overlooking the rich discriminative potential of the feature embeddings learned by VLMs trained on millions of samples. To address this limitation, we propose a novel context optimization (CoOp)-based framework that integrates subspace representation learning with prompt tuning. Our approach improves ID-OOD separability by projecting the ID features into a subspace spanned by prompt vectors, while projecting ID-irrelevant features into an orthogonal null space. To train such OOD detection framework, we design an easy-to-handle end-to-end learning criterion that ensures strong OOD detection performance as well as high ID classification accuracy. Experiments on real-world datasets showcase the effectiveness of our approach.
Authors:Chaodong Tong, Qi Zhang, Lei Jiang, Yanbing Liu, Nannan Sun, Wei Li
Title: Semantic Reformulation Entropy for Robust Hallucination Detection in QA Tasks
Abstract:
Reliable question answering with large language models (LLMs) is challenged by hallucinations, fluent but factually incorrect outputs arising from epistemic uncertainty. Existing entropy-based semantic-level uncertainty estimation methods are limited by sampling noise and unstable clustering of variable-length answers. We propose Semantic Reformulation Entropy (SRE), which improves uncertainty estimation in two ways. First, input-side semantic reformulations produce faithful paraphrases, expand the estimation space, and reduce biases from superficial decoder tendencies. Second, progressive, energy-based hybrid clustering stabilizes semantic grouping. Experiments on SQuAD and TriviaQA show that SRE outperforms strong baselines, providing more robust and generalizable hallucination detection. These results demonstrate that combining input diversification with multi-signal clustering substantially enhances semantic-level uncertainty estimation.
Authors:Shuai Feng, Yuxin Ge, Yuntao Du, Mingcai Chen, Chongjun Wang, Lei Feng
Title: Long-Tailed Out-of-Distribution Detection with Refined Separate Class Learning
Abstract:
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models. However, when training data follows a long-tailed distribution, the model's ability to accurately detect OOD samples is significantly compromised, due to the confusion between OOD samples and head/tail classes. To distinguish OOD samples from both head and tail classes, the separate class learning (SCL) approach has emerged as a promising solution, which separately conduct head-specific and tail-specific class learning. To this end, we examine the limitations of existing works of SCL and reveal that the OOD detection performance is notably influenced by the use of static scaling temperature value and the presence of uninformative outliers. To mitigate these limitations, we propose a novel approach termed Refined Separate Class Learning (RSCL), which leverages dynamic class-wise temperature adjustment to modulate the temperature parameter for each in-distribution class and informative outlier mining to identify diverse types of outliers based on their affinity with head and tail classes. Extensive experiments demonstrate that RSCL achieves superior OOD detection performance while improving the classification accuracy on in-distribution data.
Authors:Yihao Guo, Haocheng Bian, Liutong Zhou, Ze Wang, Zhaoyi Zhang, Francois Kawala, Milan Dean, Ian Fischer, Yuantao Peng, Noyan Tokgozoglu, Ivan Barrientos, Riyaaz Shaik, Rachel Li, Chandru Venkataraman, Reza Shifteh Far, Moses Pawar, Venkat Sundaranatha, Michael Xu, Frank Chu
Title: Adversarial Distilled Retrieval-Augmented Guarding Model for Online Malicious Intent Detection
Abstract:
With the deployment of Large Language Models (LLMs) in interactive applications, online malicious intent detection has become increasingly critical. However, existing approaches fall short of handling diverse and complex user queries in real time. To address these challenges, we introduce ADRAG (Adversarial Distilled Retrieval-Augmented Guard), a two-stage framework for robust and efficient online malicious intent detection. In the training stage, a high-capacity teacher model is trained on adversarially perturbed, retrieval-augmented inputs to learn robust decision boundaries over diverse and complex user queries. In the inference stage, a distillation scheduler transfers the teacher's knowledge into a compact student model, with a continually updated knowledge base collected online. At deployment, the compact student model leverages top-K similar safety exemplars retrieved from the online-updated knowledge base to enable both online and real-time malicious query detection. Evaluations across ten safety benchmarks demonstrate that ADRAG, with a 149M-parameter model, achieves 98.5% of WildGuard-7B's performance, surpasses GPT-4 by 3.3% and Llama-Guard-3-8B by 9.5% on out-of-distribution detection, while simultaneously delivering up to 5.6x lower latency at 300 queries per second (QPS) in real-time applications.
Authors:H. Martin Gillis, Isaac Xu, Thomas Trappenberg
Title: Uncertainty Estimation using Variance-Gated Distributions
Abstract:
Evaluation of per-sample uncertainty quantification from neural networks is essential for decision-making involving high-risk applications. A common approach is to use the predictive distribution from Bayesian or approximation models and decompose the corresponding predictive uncertainty into epistemic (model-related) and aleatoric (data-related) components. However, additive decomposition has recently been questioned. In this work, we propose an intuitive framework for uncertainty estimation and decomposition based on the signal-to-noise ratio of class probability distributions across different model predictions. We introduce a variance-gated measure that scales predictions by a confidence factor derived from ensembles. We use this measure to discuss the existence of a collapse in the diversity of committee machines.
Authors:Mingyu Kim, Daniel Stilwell, Jorge Jimenez
Title: Outlier Detection of Poisson-Distributed Targets Using a Seabed Sensor Network
Abstract:
This paper presents a framework for classifying and detecting spatial commission outliers in maritime environments using seabed acoustic sensor networks and log Gaussian Cox processes (LGCPs). By modeling target arrivals as a mixture of normal and outlier processes, we estimate the probability that a newly observed event is an outlier. We propose a second-order approximation of this probability that incorporates both the mean and variance of the normal intensity function, providing improved classification accuracy compared to mean-only approaches. We analytically show that our method yields a tighter bound to the true probability using Jensen's inequality. To enhance detection, we integrate a real-time, near-optimal sensor placement strategy that dynamically adjusts sensor locations based on the evolving outlier intensity. The proposed framework is validated using real ship traffic data near Norfolk, Virginia, where numerical results demonstrate the effectiveness of our approach in improving both classification performance and outlier detection through sensor deployment.
Authors:Tarhib Al Azad, Faizul Rakib Sayem, Shahana Ibrahim
Title: Pseudo-label Induced Subspace Representation Learning for Robust Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection lies at the heart of robust artificial intelligence (AI), aiming to identify samples from novel distributions beyond the training set. Recent approaches have exploited feature representations as distinguishing signatures for OOD detection. However, most existing methods rely on restrictive assumptions on the feature space that limit the separability between in-distribution (ID) and OOD samples. In this work, we propose a novel OOD detection framework based on a pseudo-label-induced subspace representation, that works under more relaxed and natural assumptions compared to existing feature-based techniques. In addition, we introduce a simple yet effective learning criterion that integrates a cross-entropy-based ID classification loss with a subspace distance-based regularization loss to enhance ID-OOD separability. Extensive experiments validate the effectiveness of our framework.
Authors:Lucas Berry, Axel Brando, Wei-Di Chang, Juan Camilo Gamboa Higuera, David Meger
Title: Seeing the Unseen: How EMoE Unveils Bias in Text-to-Image Diffusion Models
Abstract:
Estimating uncertainty in text-to-image diffusion models is challenging because of their large parameter counts (often exceeding 100 million) and operation in complex, high-dimensional spaces with virtually infinite input possibilities. In this paper, we propose Epistemic Mixture of Experts (EMoE), a novel framework for efficiently estimating epistemic uncertainty in diffusion models. EMoE leverages pre-trained networks without requiring additional training, enabling direct uncertainty estimation from a prompt. We leverage a latent space within the diffusion process that captures epistemic uncertainty better than existing methods. Experimental results on the COCO dataset demonstrate EMoE's effectiveness, showing a strong correlation between uncertainty and image quality. Additionally, EMoE identifies under-sampled languages and regions with higher uncertainty, revealing hidden biases in the training set. This capability demonstrates the relevance of EMoE as a tool for addressing fairness and accountability in AI-generated content.
Authors:Qian Peng, Yajie Bao, Haojie Ren, Zhaojun Wang, Changliang Zou
Title: Conformal Prediction with Cellwise Outliers: A Detect-then-Impute Approach
Abstract:
Conformal prediction is a powerful tool for constructing prediction intervals for black-box models, providing a finite sample coverage guarantee for exchangeable data. However, this exchangeability is compromised when some entries of the test feature are contaminated, such as in the case of cellwise outliers. To address this issue, this paper introduces a novel framework called detect-then-impute conformal prediction. This framework first employs an outlier detection procedure on the test feature and then utilizes an imputation method to fill in those cells identified as outliers. To quantify the uncertainty in the processed test feature, we adaptively apply the detection and imputation procedures to the calibration set, thereby constructing exchangeable features for the conformal prediction interval of the test label. We develop two practical algorithms, PDI-CP and JDI-CP, and provide a distribution-free coverage analysis under some commonly used detection and imputation procedures. Notably, JDI-CP achieves a finite sample $1-2α$ coverage guarantee. Numerical experiments on both synthetic and real datasets demonstrate that our proposed algorithms exhibit robust coverage properties and comparable efficiency to the oracle baseline.
Authors:Chaohua Li, Enhao Zhang, Chuanxing Geng, Songcan Chen
Title: Recent Advances in Out-of-Distribution Detection with CLIP-Like Models: A Survey
Abstract:
Out-of-distribution detection (OOD) is a pivotal task for real-world applications that trains models to identify samples that are distributionally different from the in-distribution (ID) data during testing. Recent advances in AI, particularly Vision-Language Models (VLMs) like CLIP, have revolutionized OOD detection by shifting from traditional unimodal image detectors to multimodal image-text detectors. This shift has inspired extensive research; however, existing categorization schemes (e.g., few- or zero-shot types) still rely solely on the availability of ID images, adhering to a unimodal paradigm. To better align with CLIP's cross-modal nature, we propose a new categorization framework rooted in both image and text modalities. Specifically, we categorize existing methods based on how visual and textual information of OOD data is utilized within image + text modalities, and further divide them into four groups: OOD Images (i.e., outliers) Seen or Unseen, and OOD Texts (i.e., learnable vectors or class names) Known or Unknown, across two training strategies (i.e., train-free or training-required). More importantly, we discuss open problems in CLIP-like OOD detection and highlight promising directions for future research, including cross-domain integration, practical applications, and theoretical understanding.
Authors:Ju Yeon Kang, Ji Won Yoon, Semin Kim, Min Hyun Han, Nam Soo Kim
Title: FADEL: Uncertainty-aware Fake Audio Detection with Evidential Deep Learning
Abstract:
Recently, fake audio detection has gained significant attention, as advancements in speech synthesis and voice conversion have increased the vulnerability of automatic speaker verification (ASV) systems to spoofing attacks. A key challenge in this task is generalizing models to detect unseen, out-of-distribution (OOD) attacks. Although existing approaches have shown promising results, they inherently suffer from overconfidence issues due to the usage of softmax for classification, which can produce unreliable predictions when encountering unpredictable spoofing attempts. To deal with this limitation, we propose a novel framework called fake audio detection with evidential learning (FADEL). By modeling class probabilities with a Dirichlet distribution, FADEL incorporates model uncertainty into its predictions, thereby leading to more robust performance in OOD scenarios. Experimental results on the ASVspoof2019 Logical Access (LA) and ASVspoof2021 LA datasets indicate that the proposed method significantly improves the performance of baseline models. Furthermore, we demonstrate the validity of uncertainty estimation by analyzing a strong correlation between average uncertainty and equal error rate (EER) across different spoofing algorithms.
Authors:Djohan Bonnet, Kellian Cottart, Tifenn Hirtzlin, Tarcisius Januel, Thomas Dalgaty, Elisa Vianello, Damien Querlioz
Title: Bayesian continual learning and forgetting in neural networks
Abstract:
Biological synapses effortlessly balance memory retention and flexibility, yet artificial neural networks still struggle with the extremes of catastrophic forgetting and catastrophic remembering. Here, we introduce Metaplasticity from Synaptic Uncertainty (MESU), a Bayesian framework that updates network parameters according their uncertainty. This approach allows a principled combination of learning and forgetting that ensures that critical knowledge is preserved while unused or outdated information is gradually released. Unlike standard Bayesian approaches -- which risk becoming overly constrained, and popular continual-learning methods that rely on explicit task boundaries, MESU seamlessly adapts to streaming data. It further provides reliable epistemic uncertainty estimates, allowing out-of-distribution detection, the only computational cost being to sample the weights multiple times to provide proper output statistics. Experiments on image-classification benchmarks demonstrate that MESU mitigates catastrophic forgetting, while maintaining plasticity for new tasks. When training 200 sequential permuted MNIST tasks, MESU outperforms established continual learning techniques in terms of accuracy, capability to learn additional tasks, and out-of-distribution data detection. Additionally, due to its non-reliance on task boundaries, MESU outperforms conventional learning techniques on the incremental training of CIFAR-100 tasks consistently in a wide range of scenarios. Our results unify ideas from metaplasticity, Bayesian inference, and Hessian-based regularization, offering a biologically-inspired pathway to robust, perpetual learning.
Authors:Guillem Capellera, Antonio Rubio, Luis Ferraz, Antonio Agudo
Title: Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
Abstract:
Multi-agent trajectory modeling has primarily focused on forecasting future states, often overlooking broader tasks like trajectory completion, which are crucial for real-world applications such as correcting tracking data. Existing methods also generally predict agents' states without offering any state-wise measure of uncertainty. Moreover, popular multi-modal sampling methods lack any error probability estimates for each generated scene under the same prior observations, making it difficult to rank the predictions during inference time. We introduce U2Diff, a \textbf{unified} diffusion model designed to handle trajectory completion while providing state-wise \textbf{uncertainty} estimates jointly. This uncertainty estimation is achieved by augmenting the simple denoising loss with the negative log-likelihood of the predicted noise and propagating latent space uncertainty to the real state space. Additionally, we incorporate a Rank Neural Network in post-processing to enable \textbf{error probability} estimation for each generated mode, demonstrating a strong correlation with the error relative to ground truth. Our method outperforms the state-of-the-art solutions in trajectory completion and forecasting across four challenging sports datasets (NBA, Basketball-U, Football-U, Soccer-U), highlighting the effectiveness of uncertainty and error probability estimation. Video at https://youtu.be/ngw4D4eJToE
Authors:Jef Jonkers, Frank Coopman, Luc Duchateau, Glenn Van Wallendael, Sofie Van Hoecke
Title: Reliable uncertainty quantification for 2D/3D anatomical landmark localization using multi-output conformal prediction
Abstract:
Automatic anatomical landmark localization in medical imaging requires not just accurate predictions but reliable uncertainty quantification for effective clinical decision support. Current uncertainty quantification approaches often fall short, particularly when combined with normality assumptions, systematically underestimating total predictive uncertainty. This paper introduces conformal prediction as a framework for reliable uncertainty quantification in anatomical landmark localization, addressing a critical gap in automatic landmark localization. We present two novel approaches guaranteeing finite-sample validity for multi-output prediction: Multi-output Regression-as-Classification Conformal Prediction (M-R2CCP) and its variant Multi-output Regression to Classification Conformal Prediction set to Region (M-R2C2R). Unlike conventional methods that produce axis-aligned hyperrectangular or ellipsoidal regions, our approaches generate flexible, non-convex prediction regions that better capture the underlying uncertainty structure of landmark predictions. Through extensive empirical evaluation across multiple 2D and 3D datasets, we demonstrate that our methods consistently outperform existing multi-output conformal prediction approaches in both validity and efficiency. This work represents a significant advancement in reliable uncertainty estimation for anatomical landmark localization, providing clinicians with trustworthy confidence measures for their diagnoses. While developed for medical imaging, these methods show promise for broader applications in multi-output regression problems.
Authors:Moritz A. Zanger, Pascal R. Van der Vaart, Wendelin Böhmer, Matthijs T. J. Spaan
Title: Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Abstract:
Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.
Authors:Qi Wu, Yingguang Yang, hao liu, Hao Peng, Buyun He, Yutong Xia, Yong Liao
Title: Certainly Bot Or Not? Trustworthy Social Bot Detection via Robust Multi-Modal Neural Processes
Abstract:
Social bot detection is crucial for mitigating misinformation, online manipulation, and coordinated inauthentic behavior. While existing neural network-based detectors perform well on benchmarks, they struggle with generalization due to distribution shifts across datasets and frequently produce overconfident predictions for out-of-distribution accounts beyond the training data. To address this, we introduce a novel Uncertainty Estimation for Social Bot Detection (UESBD) framework, which quantifies the predictive uncertainty of detectors beyond mere classification. For this task, we propose Robust Multi-modal Neural Processes (RMNP), which aims to enhance the robustness of multi-modal neural processes to modality inconsistencies caused by social bot camouflage. RMNP first learns unimodal representations through modality-specific encoders. Then, unimodal attentive neural processes are employed to encode the Gaussian distribution of unimodal latent variables. Furthermore, to avoid social bots stealing human features to camouflage themselves thus causing certain modalities to provide conflictive information, we introduce an evidential gating network to explicitly model the reliability of modalities. The joint latent distribution is learned through the generalized product of experts, which takes the reliability of each modality into consideration during fusion. The final prediction is obtained through Monte Carlo sampling of the joint latent distribution followed by a decoder. Experiments on three real-world benchmarks show the effectiveness of RMNP in classification and uncertainty estimation, as well as its robustness to modality conflicts.
Authors:Changhong Lin, Jiarong Lin, Zhiqiang Sui, XiaoZhi Qu, Rui Wang, Kehua Sheng, Bo Zhang
Title: An End-to-End Learning-Based Multi-Sensor Fusion for Autonomous Vehicle Localization
Abstract:
Multi-sensor fusion is essential for autonomous vehicle localization, as it is capable of integrating data from various sources for enhanced accuracy and reliability. The accuracy of the integrated location and orientation depends on the precision of the uncertainty modeling. Traditional methods of uncertainty modeling typically assume a Gaussian distribution and involve manual heuristic parameter tuning. However, these methods struggle to scale effectively and address long-tail scenarios. To address these challenges, we propose a learning-based method that encodes sensor information using higher-order neural network features, thereby eliminating the need for uncertainty estimation. This method significantly eliminates the need for parameter fine-tuning by developing an end-to-end neural network that is specifically designed for multi-sensor fusion. In our experiments, we demonstrate the effectiveness of our approach in real-world autonomous driving scenarios. Results show that the proposed method outperforms existing multi-sensor fusion methods in terms of both accuracy and robustness. A video of the results can be viewed at https://youtu.be/q4iuobMbjME.
Authors:Petr Sychev, Andrey Goncharov, Daniil Vyazhev, Edvard Khalafyan, Alexey Zaytsev
Title: When an LLM is apprehensive about its answers -- and when its uncertainty is justified
Abstract:
Uncertainty estimation is crucial for evaluating Large Language Models (LLMs), particularly in high-stakes domains where incorrect answers result in significant consequences. Numerous approaches consider this problem, while focusing on a specific type of uncertainty, ignoring others. We investigate what estimates, specifically token-wise entropy and model-as-judge (MASJ), would work for multiple-choice question-answering tasks for different question topics. Our experiments consider three LLMs: Phi-4, Mistral, and Qwen of different sizes from 1.5B to 72B and $14$ topics. While MASJ performs similarly to a random error predictor, the response entropy predicts model error in knowledge-dependent domains and serves as an effective indicator of question difficulty: for biology ROC AUC is $0.73$. This correlation vanishes for the reasoning-dependent domain: for math questions ROC-AUC is $0.55$. More principally, we found out that the entropy measure required a reasoning amount. Thus, data-uncertainty related entropy should be integrated within uncertainty estimates frameworks, while MASJ requires refinement. Moreover, existing MMLU-Pro samples are biased, and should balance required amount of reasoning for different subdomains to provide a more fair assessment of LLMs performance.
Authors:Jacopo Teneggi, J Webster Stayman, Jeremias Sulam
Title: Conformal Risk Control for Semantic Uncertainty Quantification in Computed Tomography
Abstract:
Uncertainty quantification is necessary for developers, physicians, and regulatory agencies to build trust in machine learning predictors and improve patient care. Beyond measuring uncertainty, it is crucial to express it in clinically meaningful terms that provide actionable insights. This work introduces a conformal risk control (CRC) procedure for organ-dependent uncertainty estimation, ensuring high-probability coverage of the ground-truth image. We first present a high-dimensional CRC procedure that leverages recent ideas of length minimization. We make this procedure semantically adaptive to each patient's anatomy and positioning of organs. Our method, sem-CRC, provides tighter uncertainty intervals with valid coverage on real-world computed tomography (CT) data while communicating uncertainty with clinically relevant features.
Authors:Huan Ma, Jingdong Chen, Joey Tianyi Zhou, Guangyu Wang, Changqing Zhang
Title: Estimating LLM Uncertainty with Evidence
Abstract:
Over the past few years, Large Language Models (LLMs) have developed rapidly and are widely applied in various domains. However, LLMs face the issue of hallucinations, generating responses that may be unreliable when the models lack relevant knowledge. To be aware of potential hallucinations, uncertainty estimation methods have been introduced, and most of them have confirmed that reliability lies in critical tokens. However, probability-based methods perform poorly in identifying token reliability, limiting their practical utility. In this paper, we reveal that the probability-based method fails to estimate token reliability due to the loss of evidence strength information which is accumulated in the training stage. Therefore, we present Logits-induced token uncertainty (LogTokU), a framework for estimating decoupled token uncertainty in LLMs, enabling real-time uncertainty estimation without requiring multiple sampling processes. We employ evidence modeling to implement LogTokU and use the estimated uncertainty to guide downstream tasks. The experimental results demonstrate that LogTokU has significant effectiveness and promise.
Authors:Annita Vapsi, Andrés Muñoz, Nancy Thomas, Keshav Ramani, Daniel Borrajo
Title: Hypercone Assisted Contour Generation for Out-of-Distribution Detection
Abstract:
Recent advances in the field of out-of-distribution (OOD) detection have placed great emphasis on learning better representations suited to this task. While there are distance-based approaches, distributional awareness has seldom been exploited for better performance. We present HAC$_k$-OOD, a novel OOD detection method that makes no distributional assumption about the data, but automatically adapts to its distribution. Specifically, HAC$_k$-OOD constructs a set of hypercones by maximizing the angular distance to neighbors in a given data-point's vicinity to approximate the contour within which in-distribution (ID) data-points lie. Experimental results show state-of-the-art FPR@95 and AUROC performance on Near-OOD detection and on Far-OOD detection on the challenging CIFAR-100 benchmark without explicitly training for OOD performance.
Authors:Matias Valdenegro-Toro, Marco Zullich
Title: Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Abstract:
Inputs to machine learning models can have associated noise or uncertainties, but they are often ignored and not modelled. It is unknown if Bayesian Neural Networks and their approximations are able to consider uncertainty in their inputs. In this paper we build a two input Bayesian Neural Network (mean and standard deviation) and evaluate its capabilities for input uncertainty estimation across different methods like Ensembles, MC-Dropout, and Flipout. Our results indicate that only some uncertainty estimation methods for approximate Bayesian NNs can model input uncertainty, in particular Ensembles and Flipout.
Authors:Sophie Steger, Christian Knoll, Bernhard Klein, Holger Fröning, Franz Pernkopf
Title: Function Space Diversity for Uncertainty Prediction via Repulsive Last-Layer Ensembles
Abstract:
Bayesian inference in function space has gained attention due to its robustness against overparameterization in neural networks. However, approximating the infinite-dimensional function space introduces several challenges. In this work, we discuss function space inference via particle optimization and present practical modifications that improve uncertainty estimation and, most importantly, make it applicable for large and pretrained networks. First, we demonstrate that the input samples, where particle predictions are enforced to be diverse, are detrimental to the model performance. While diversity on training data itself can lead to underfitting, the use of label-destroying data augmentation, or unlabeled out-of-distribution data can improve prediction diversity and uncertainty estimates. Furthermore, we take advantage of the function space formulation, which imposes no restrictions on network parameterization other than sufficient flexibility. Instead of using full deep ensembles to represent particles, we propose a single multi-headed network that introduces a minimal increase in parameters and computation. This allows seamless integration to pretrained networks, where this repulsive last-layer ensemble can be used for uncertainty aware fine-tuning at minimal additional cost. We achieve competitive results in disentangling aleatoric and epistemic uncertainty for active learning, detecting out-of-domain data, and providing calibrated uncertainty estimates under distribution shifts with minimal compute and memory.
Authors:Maniraj Sai Adapa, Marco Zullich, Matias Valdenegro-Toro
Title: Uncertainty Estimation for Super-Resolution using ESRGAN
Abstract:
Deep Learning-based image super-resolution (SR) has been gaining traction with the aid of Generative Adversarial Networks. Models like SRGAN and ESRGAN are constantly ranked between the best image SR tools. However, they lack principled ways for estimating predictive uncertainty. In the present work, we enhance these models using Monte Carlo-Dropout and Deep Ensemble, allowing the computation of predictive uncertainty. When coupled with a prediction, uncertainty estimates can provide more information to the model users, highlighting pixels where the SR output might be uncertain, hence potentially inaccurate, if these estimates were to be reliable. Our findings suggest that these uncertainty estimates are decently calibrated and can hence fulfill this goal, while providing no performance drop with respect to the corresponding models without uncertainty estimation.
Authors:Navid Ansari, Hans-Peter Seidel, Vahid Babaei
Title: Uncertainty separation via ensemble quantile regression
Abstract:
This paper introduces a novel and scalable framework for uncertainty estimation and separation with applications in data driven modeling in science and engineering tasks where reliable uncertainty quantification is critical. Leveraging an ensemble of quantile regression (E-QR) models, our approach enhances aleatoric uncertainty estimation while preserving the quality of epistemic uncertainty, surpassing competing methods, such as Deep Ensembles (DE) and Monte Carlo (MC) dropout. To address challenges in separating uncertainty types, we propose an algorithm that iteratively improves separation through progressive sampling in regions of high uncertainty. Our framework is scalable to large datasets and demonstrates superior performance on synthetic benchmarks, offering a robust tool for uncertainty quantification in data-driven applications.
Authors:Ruiyang Zhang, Hu Zhang, Zhedong Zheng
Title: VL-Uncertainty: Detecting Hallucination in Large Vision-Language Model via Uncertainty Estimation
Abstract:
Given the higher information load processed by large vision-language models (LVLMs) compared to single-modal LLMs, detecting LVLM hallucinations requires more human and time expense, and thus rise a wider safety concerns. In this paper, we introduce VL-Uncertainty, the first uncertainty-based framework for detecting hallucinations in LVLMs. Different from most existing methods that require ground-truth or pseudo annotations, VL-Uncertainty utilizes uncertainty as an intrinsic metric. We measure uncertainty by analyzing the prediction variance across semantically equivalent but perturbed prompts, including visual and textual data. When LVLMs are highly confident, they provide consistent responses to semantically equivalent queries. However, when uncertain, the responses of the target LVLM become more random. Considering semantically similar answers with different wordings, we cluster LVLM responses based on their semantic content and then calculate the cluster distribution entropy as the uncertainty measure to detect hallucination. Our extensive experiments on 10 LVLMs across four benchmarks, covering both free-form and multi-choice tasks, show that VL-Uncertainty significantly outperforms strong baseline methods in hallucination detection.
Authors:Jiaxin Wan, Lin Liu, Haoran Wang, Liangwei Li, Wei Li, Shuheng Kou, Runtian Li, Jiayi Tang, Juanxiu Liu, Jing Zhang, Xiaohui Du, Ruqian Hao
Title: UNSCT-HRNet: Modeling Anatomical Uncertainty for Landmark Detection in Total Hip Arthroplasty
Abstract:
Total hip arthroplasty (THA) relies on accurate landmark detection from radiographic images, but unstructured data caused by irregular patient postures or occluded anatomical markers pose significant challenges for existing methods. To address this, we propose UNSCT-HRNet (Unstructured CT - High-Resolution Net), a deep learning-based framework that integrates a Spatial Relationship Fusion (SRF) module and an Uncertainty Estimation (UE) module. The SRF module, utilizing coordinate convolution and polarized attention, enhances the model's ability to capture complex spatial relationships. Meanwhile, the UE module which based on entropy ensures predictions are anatomically relevant. For unstructured data, the proposed method can predict landmarks without relying on the fixed number of points, which shows higher accuracy and better robustness comparing with the existing methods. Our UNSCT-HRNet demonstrates over a 60% improvement across multiple metrics in unstructured data. The experimental results also reveal that our approach maintains good performance on the structured dataset. Overall, the proposed UNSCT-HRNet has the potential to be used as a new reliable, automated solution for THA surgical planning and postoperative monitoring.
Authors:Mingjian Jiang, Yangjun Ruan, Prasanna Sattigeri, Salim Roukos, Tatsunori Hashimoto
Title: Graph-based Uncertainty Metrics for Long-form Language Model Outputs
Abstract:
Recent advancements in Large Language Models (LLMs) have significantly improved text generation capabilities, but these systems are still known to hallucinate, and granular uncertainty estimation for long-form LLM generations remains challenging. In this work, we propose Graph Uncertainty -- which represents the relationship between LLM generations and claims within them as a bipartite graph and estimates the claim-level uncertainty with a family of graph centrality metrics. Under this view, existing uncertainty estimation methods based on the concept of self-consistency can be viewed as using degree centrality as an uncertainty measure, and we show that more sophisticated alternatives such as closeness centrality provide consistent gains at claim-level uncertainty estimation. Moreover, we present uncertainty-aware decoding techniques that leverage both the graph structure and uncertainty estimates to improve the factuality of LLM generations by preserving only the most reliable claims. Compared to existing methods, our graph-based uncertainty metrics lead to an average of 6.8% relative gains on AUPRC across various long-form generation settings, and our end-to-end system provides consistent 2-4% gains in factuality over existing decoding techniques while significantly improving the informativeness of generated responses.
Authors:Michael J. Kenney, Katerina G. Malollari, Sergei V. Kalinin, Maxim Ziatdinov
Title: Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors
Abstract:
Lithium-ion batteries are a key energy storage technology driving revolutions in mobile electronics, electric vehicles and renewable energy storage. Capacity retention is a vital performance measure that is frequently utilized to assess whether these batteries have approached their end-of-life. Machine learning (ML) offers a powerful tool for predicting capacity degradation based on past data, and, potentially, prior physical knowledge, but the degree to which an ML prediction can be trusted is of significant practical importance in situations where consequential decisions must be made based on battery state of health. This study explores the efficacy of fully Bayesian machine learning in forecasting battery health with the quantification of uncertainty in its predictions. Specifically, we implemented three probabilistic ML approaches and evaluated the accuracy of their predictions and uncertainty estimates: a standard Gaussian process (GP), a structured Gaussian process (sGP), and a fully Bayesian neural network (BNN). In typical applications of GP and sGP, their hyperparameters are learned from a single sample while, in contrast, BNNs are typically pre-trained on an existing dataset to learn the weight distributions before being used for inference. This difference in methodology gives the BNN an advantage in learning global trends in a dataset and makes BNNs a good choice when training data is available. However, we show that pre-training can also be leveraged for GP and sGP approaches to learn the prior distributions of the hyperparameters and that in the case of the pre-trained sGP, similar accuracy and improved uncertainty estimation compared to the BNN can be achieved. This approach offers a framework for a broad range of probabilistic machine learning scenarios where past data is available and can be used to learn priors for (hyper)parameters of probabilistic ML models.
Authors:Guangxuan Song, Dongmei Fu, Zhongwei Qiu, Jintao Meng, Dawei Zhang
Title: Taylor-Sensus Network: Embracing Noise to Enlighten Uncertainty for Scientific Data
Abstract:
Uncertainty estimation is crucial in scientific data for machine learning. Current uncertainty estimation methods mainly focus on the model's inherent uncertainty, while neglecting the explicit modeling of noise in the data. Furthermore, noise estimation methods typically rely on temporal or spatial dependencies, which can pose a significant challenge in structured scientific data where such dependencies among samples are often absent. To address these challenges in scientific research, we propose the Taylor-Sensus Network (TSNet). TSNet innovatively uses a Taylor series expansion to model complex, heteroscedastic noise and proposes a deep Taylor block for aware noise distribution. TSNet includes a noise-aware contrastive learning module and a data density perception module for aleatoric and epistemic uncertainty. Additionally, an uncertainty combination operator is used to integrate these uncertainties, and the network is trained using a novel heteroscedastic mean square error loss. TSNet demonstrates superior performance over mainstream and state-of-the-art methods in experiments, highlighting its potential in scientific research and noise resistance. It will be open-source to facilitate the community of "AI for Science".
Authors:Paul Hofman, Yusuf Sale, Eyke Hüllermeier
Title: Uncertainty Quantification for Machine Learning: One Size Does Not Fit All
Abstract:
Proper quantification of predictive uncertainty is essential for the use of machine learning in safety-critical applications. Various uncertainty measures have been proposed for this purpose, typically claiming superiority over other measures. In this paper, we argue that there is no single best measure. Instead, uncertainty quantification should be tailored to the specific application. To this end, we use a flexible family of uncertainty measures that distinguishes between total, aleatoric, and epistemic uncertainty of second-order distributions. These measures can be instantiated with specific loss functions, so-called proper scoring rules, to control their characteristics, and we show that different characteristics are useful for different tasks. In particular, we show that, for the task of selective prediction, the scoring rule should ideally match the task loss. On the other hand, for out-of-distribution detection, our results confirm that mutual information, a widely used measure of epistemic uncertainty, performs best. Furthermore, in an active learning setting, epistemic uncertainty based on zero-one loss is shown to consistently outperform other uncertainty measures.
Authors:Hendrik Borras, Yong Wu, Bernhard Klein, Holger Fröning
Title: Uncertainty-Preserving QBNNs: Multi-Level Quantization of SVI-Based Bayesian Neural Networks for Image Classification
Abstract:
Bayesian Neural Networks (BNNs) provide principled uncertainty quantification but suffer from substantial computational and memory overhead compared to deterministic networks. While quantization techniques have successfully reduced resource requirements in standard deep learning models, their application to probabilistic models remains largely unexplored. We introduce a systematic multi-level quantization framework for Stochastic Variational Inference based BNNs that distinguishes between three quantization strategies: Variational Parameter Quantization (VPQ), Sampled Parameter Quantization (SPQ), and Joint Quantization (JQ). Our logarithmic quantization for variance parameters, and specialized activation functions to preserve the distributional structure are essential for calibrated uncertainty estimation. Through comprehensive experiments on Dirty-MNIST, we demonstrate that BNNs can be quantized down to 4-bit precision while maintaining both classification accuracy and uncertainty disentanglement. At 4 bits, Joint Quantization achieves up to 8x memory reduction compared to floating-point implementations with minimal degradation in epistemic and aleatoric uncertainty estimation. These results enable deployment of BNNs on resource-constrained edge devices and provide design guidelines for future analog "Bayesian Machines" operating at inherently low precision.
Authors:Gilhyun Nam, Taewon Kim, Joonhyun Jeong, Eunho Yang
Title: Towards Reliable Test-Time Adaptation: Style Invariance as a Correctness Likelihood
Abstract:
Test-time adaptation (TTA) enables efficient adaptation of deployed models, yet it often leads to poorly calibrated predictive uncertainty - a critical issue in high-stakes domains such as autonomous driving, finance, and healthcare. Existing calibration methods typically assume fixed models or static distributions, resulting in degraded performance under real-world, dynamic test conditions. To address these challenges, we introduce Style Invariance as a Correctness Likelihood (SICL), a framework that leverages style-invariance for robust uncertainty estimation. SICL estimates instance-wise correctness likelihood by measuring prediction consistency across style-altered variants, requiring only the model's forward pass. This makes it a plug-and-play, backpropagation-free calibration module compatible with any TTA method. Comprehensive evaluations across four baselines, five TTA methods, and two realistic scenarios with three model architecture demonstrate that SICL reduces calibration error by an average of 13 percentage points compared to conventional calibration approaches.
Authors:Zhongyu Yang, Yingfang Yuan, Xuanming Jiang, Baoyi An, Wei Pang
Title: InEx: Hallucination Mitigation via Introspection and Cross-Modal Multi-Agent Collaboration
Abstract:
Hallucination remains a critical challenge in large language models (LLMs), hindering the development of reliable multimodal LLMs (MLLMs). Existing solutions often rely on human intervention or underutilize the agent's ability to autonomously mitigate hallucination. To address these limitations, we draw inspiration from how humans make reliable decisions in the real world. They begin with introspective reasoning to reduce uncertainty and form an initial judgment, then rely on external verification from diverse perspectives to reach a final decision. Motivated by this cognitive paradigm, we propose InEx, a training-free, multi-agent framework designed to autonomously mitigate hallucination. InEx introduces internal introspective reasoning, guided by entropy-based uncertainty estimation, to improve the reliability of the decision agent's reasoning process. The agent first generates a response, which is then iteratively verified and refined through external cross-modal multi-agent collaboration with the editing agent and self-reflection agents, further enhancing reliability and mitigating hallucination. Extensive experiments show that InEx consistently outperforms existing methods, achieving 4%-27% gains on general and hallucination benchmarks, and demonstrating strong robustness.
Authors:Bernhard Klein, Falk Selker, Hendrik Borras, Sophie Steger, Franz Pernkopf, Holger Fröning
Title: Accelerated Execution of Bayesian Neural Networks using a Single Probabilistic Forward Pass and Code Generation
Abstract:
Machine learning models perform well across domains such as diagnostics, weather forecasting, NLP, and autonomous driving, but their limited uncertainty handling restricts use in safety-critical settings. Traditional neural networks often fail to detect out-of-domain (OOD) data and may output confident yet incorrect predictions. Bayesian neural networks (BNNs) address this by providing probabilistic estimates, but incur high computational cost because predictions require sampling weight distributions and multiple forward passes. The Probabilistic Forward Pass (PFP) offers a highly efficient approximation to Stochastic Variational Inference (SVI) by assuming Gaussian-distributed weights and activations, enabling fully analytic uncertainty propagation and replacing sampling with a single deterministic forward pass. We present an end-to-end pipeline for training, compiling, optimizing, and deploying PFP-based BNNs on embedded ARM CPUs. Using the TVM deep learning compiler, we implement a dedicated library of Gaussian-propagating operators for multilayer perceptrons and convolutional neural networks, combined with manual and automated tuning strategies. Ablation studies show that PFP consistently outperforms SVI in computational efficiency, achieving speedups of up to 4200x for small mini-batches. PFP-BNNs match SVI-BNNs on Dirty-MNIST in accuracy, uncertainty estimation, and OOD detection while greatly reducing compute cost. These results highlight the potential of combining Bayesian approximations with code generation to enable efficient BNN deployment on resource-constrained systems.
Authors:Giorgio Palma, Andrea Serani, Matteo Diez
Title: Data-driven uncertainty-aware seakeeping prediction of the Delft 372 catamaran using ensemble Hankel dynamic mode decomposition
Abstract:
In this study, we present and validate an ensemble-based Hankel Dynamic Mode Decomposition with control (HDMDc) for uncertainty-aware seakeeping predictions of a high-speed catamaran, namely the Delft 372 model. Experimental measurements (time histories) of wave elevation at the longitudinal center of gravity, heave, pitch, notional flight-deck velocity, notional bridge acceleration, and total resistance were collected from irregular wave basin tests on a 1:33.3 scale replica of the Delft 372 model under sea state 5 conditions at Fr = 0.425, and organized into training, validation, and test sets. The HDMDc algorithm constructs an equation-free linear reduced-order model of the seakeeping vessel by augmenting states and inputs with their time-lagged copies to capture nonlinear and memory effects. Two ensembling strategies, namely Bayesian HDMDc (BHDMDc), which samples hyperparameters considered stochastic variables with prior distribution to produce posterior mean forecasts with confidence intervals, and Frequentist HDMDc (FHDMDc), which aggregates multiple model obtained over data subsets, are compared in providing seakeeping prediction and uncertainty quantification. The FHDMDc approach is found to improve the accuracy of the predictions compared to the deterministic counterpart, also providing robust uncertainty estimation; whereas the application of BHDMDc to the present test case is not found beneficial in comparison to the deterministic model. FHDMDc-derived probability density functions for the motions closely match both experimental data and URANS results, demonstrating reliable and computationally efficient seakeeping prediction for design and operational support.
Authors:Meenu Ravi, Shailik Sarkar, Yanshen Sun, Vaishnavi Singh, Chang-Tien Lu
Title: MVeLMA: Multimodal Vegetation Loss Modeling Architecture for Predicting Post-fire Vegetation Loss
Abstract:
Understanding post-wildfire vegetation loss is critical for developing effective ecological recovery strategies and is often challenging due to the extended time and effort required to capture the evolving ecosystem features. Recent works in this area have not fully explored all the contributing factors, their modalities, and interactions with each other. Furthermore, most research in this domain is limited by a lack of interpretability in predictive modeling, making it less useful in real-world settings. In this work, we propose a novel end-to-end ML pipeline called MVeLMA (\textbf{M}ultimodal \textbf{Ve}getation \textbf{L}oss \textbf{M}odeling \textbf{A}rchitecture) to predict county-wise vegetation loss from fire events. MVeLMA uses a multimodal feature integration pipeline and a stacked ensemble-based architecture to capture different modalities while also incorporating uncertainty estimation through probabilistic modeling. Through comprehensive experiments, we show that our model outperforms several state-of-the-art (SOTA) and baseline models in predicting post-wildfire vegetation loss. Furthermore, we generate vegetation loss confidence maps to identify high-risk counties, thereby helping targeted recovery efforts. The findings of this work have the potential to inform future disaster relief planning, ecological policy development, and wildlife recovery management.
Authors:Ji Won Park, Kyunghyun Cho
Title: Efficient semantic uncertainty quantification in language models via diversity-steered sampling
Abstract:
Accurately estimating semantic aleatoric and epistemic uncertainties in large language models (LLMs) is particularly challenging in free-form question answering (QA), where obtaining stable estimates often requires many expensive generations. We introduce a diversity-steered sampler that discourages semantically redundant outputs during decoding, covers both autoregressive and masked diffusion paradigms, and yields substantial sample-efficiency gains. The key idea is to inject a continuous semantic-similarity penalty into the model's proposal distribution using a natural language inference (NLI) model lightly finetuned on partial prefixes or intermediate diffusion states. We debias downstream uncertainty estimates with importance reweighting and shrink their variance with control variates. Across four QA benchmarks, our method matches or surpasses baselines while covering more semantic clusters with the same number of samples. Being modular and requiring no gradient access to the base LLM, the framework promises to serve as a drop-in enhancement for uncertainty estimation in risk-sensitive model deployments.
Authors:Ningkang Peng, Yuzhe Mao, Yuhao Zhang, Linjin Qian, Qianfeng Yu, Yanhui Gu, Yi Chen, Li Kong
Title: A Multi-dimensional Semantic Surprise Framework Based on Low-Entropy Semantic Manifolds for Fine-Grained Out-of-Distribution Detection
Abstract:
Out-of-Distribution (OOD) detection is a cornerstone for the safe deployment of AI systems in the open world. However, existing methods treat OOD detection as a binary classification problem, a cognitive flattening that fails to distinguish between semantically close (Near-OOD) and distant (Far-OOD) unknown risks. This limitation poses a significant safety bottleneck in applications requiring fine-grained risk stratification. To address this, we propose a paradigm shift from a conventional probabilistic view to a principled information-theoretic framework. We formalize the core task as quantifying the Semantic Surprise of a new sample and introduce a novel ternary classification challenge: In-Distribution (ID) vs. Near-OOD vs. Far-OOD. The theoretical foundation of our work is the concept of Low-Entropy Semantic Manifolds, which are explicitly structured to reflect the data's intrinsic semantic hierarchy. To construct these manifolds, we design a Hierarchical Prototypical Network. We then introduce the Semantic Surprise Vector (SSV), a universal probe that decomposes a sample's total surprise into three complementary and interpretable dimensions: conformity, novelty, and ambiguity. To evaluate performance on this new task, we propose the Normalized Semantic Risk (nSR), a cost-sensitive metric. Experiments demonstrate that our framework not only establishes a new state-of-the-art (sota) on the challenging ternary task, but its robust representations also achieve top results on conventional binary benchmarks, reducing the False Positive Rate by over 60% on datasets like LSUN.
Authors:Yu Li, Da Chang, Xi Xiao
Title: KG-SAM: Injecting Anatomical Knowledge into Segment Anything Models via Conditional Random Fields
Abstract:
While the Segment Anything Model (SAM) has achieved remarkable success in image segmentation, its direct application to medical imaging remains hindered by fundamental challenges, including ambiguous boundaries, insufficient modeling of anatomical relationships, and the absence of uncertainty quantification. To address these limitations, we introduce KG-SAM, a knowledge-guided framework that synergistically integrates anatomical priors with boundary refinement and uncertainty estimation. Specifically, KG-SAM incorporates (i) a medical knowledge graph to encode fine-grained anatomical relationships, (ii) an energy-based Conditional Random Field (CRF) to enforce anatomically consistent predictions, and (iii) an uncertainty-aware fusion module to enhance reliability in high-stakes clinical scenarios. Extensive experiments across multi-center medical datasets demonstrate the effectiveness of our approach: KG-SAM achieves an average Dice score of 82.69% on prostate segmentation and delivers substantial gains in abdominal segmentation, reaching 78.05% on MRI and 79.68% on CT. These results establish KG-SAM as a robust and generalizable framework for advancing medical image segmentation.
Authors:Moule Lin, Andrea Patane, Weipeng Jing, Shuhao Guan, Goetz Botterweck
Title: Flow-Induced Diagonal Gaussian Processes
Abstract:
We present Flow-Induced Diagonal Gaussian Processes (FiD-GP), a compression framework that incorporates a compact inducing weight matrix to project a neural network's weight uncertainty into a lower-dimensional subspace. Critically, FiD-GP relies on normalising-flow priors and spectral regularisations to augment its expressiveness and align the inducing subspace with feature-gradient geometry through a numerically stable projection mechanism objective. Furthermore, we demonstrate how the prediction framework in FiD-GP can help to design a single-pass projection for Out-of-Distribution (OoD) detection. Our analysis shows that FiD-GP improves uncertainty estimation ability on various tasks compared with SVGP-based baselines, satisfies tight spectral residual bounds with theoretically guaranteed OoD detection, and significantly compresses the neural network's storage requirements at the cost of increased inference computation dependent on the number of inducing weights employed. Specifically, in a comprehensive empirical study spanning regression, image classification, semantic segmentation, and out-of-distribution detection benchmarks, it cuts Bayesian training cost by several orders of magnitude, compresses parameters by roughly 51%, reduces model size by about 75%, and matches state-of-the-art accuracy and uncertainty estimation.
Authors:Yangyi Li, Mengdi Huai
Title: Quantifying Uncertainty in Natural Language Explanations of Large Language Models for Question Answering
Abstract:
Large language models (LLMs) have shown strong capabilities, enabling concise, context-aware answers in question answering (QA) tasks. The lack of transparency in complex LLMs has inspired extensive research aimed at developing methods to explain large language behaviors. Among existing explanation methods, natural language explanations stand out due to their ability to explain LLMs in a self-explanatory manner and enable the understanding of model behaviors even when the models are closed-source. However, despite these promising advancements, there is no existing work studying how to provide valid uncertainty guarantees for these generated natural language explanations. Such uncertainty quantification is critical in understanding the confidence behind these explanations. Notably, generating valid uncertainty estimates for natural language explanations is particularly challenging due to the auto-regressive generation process of LLMs and the presence of noise in medical inquiries. To bridge this gap, in this work, we first propose a novel uncertainty estimation framework for these generated natural language explanations, which provides valid uncertainty guarantees in a post-hoc and model-agnostic manner. Additionally, we also design a novel robust uncertainty estimation method that maintains valid uncertainty guarantees even under noise. Extensive experiments on QA tasks demonstrate the desired performance of our methods.
Authors:Zimo Yan, Jie Zhang, Zheng Xie, Yiping Song, Hao Li
Title: A Multi-Scale Graph Neural Process with Cross-Drug Co-Attention for Drug-Drug Interactions Prediction
Abstract:
Accurate prediction of drug-drug interactions (DDI) is crucial for medication safety and effective drug development. However, existing methods often struggle to capture structural information across different scales, from local functional groups to global molecular topology, and typically lack mechanisms to quantify prediction confidence. To address these limitations, we propose MPNP-DDI, a novel Multi-scale Graph Neural Process framework. The core of MPNP-DDI is a unique message-passing scheme that, by being iteratively applied, learns a hierarchy of graph representations at multiple scales. Crucially, a cross-drug co-attention mechanism then dynamically fuses these multi-scale representations to generate context-aware embeddings for interacting drug pairs, while an integrated neural process module provides principled uncertainty estimation. Extensive experiments demonstrate that MPNP-DDI significantly outperforms state-of-the-art baselines on benchmark datasets. By providing accurate, generalizable, and uncertainty-aware predictions built upon multi-scale structural features, MPNP-DDI represents a powerful computational tool for pharmacovigilance, polypharmacy risk assessment, and precision medicine.
Authors:Waqar Ahmad, Evan Murphy, Vladimir A. Krylov
Title: Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Abstract:
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning. We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
Authors:Shiping Ma, Haoming Zhang, Marc Toussaint
Title: SVN-ICP: Uncertainty Estimation of ICP-based LiDAR Odometry using Stein Variational Newton
Abstract:
This letter introduces SVN-ICP, a novel Iterative Closest Point (ICP) algorithm with uncertainty estimation that leverages Stein Variational Newton (SVN) on manifold. Designed specifically for fusing LiDAR odometry in multisensor systems, the proposed method ensures accurate pose estimation and consistent noise parameter inference, even in LiDAR-degraded environments. By approximating the posterior distribution using particles within the Stein Variational Inference framework, SVN-ICP eliminates the need for explicit noise modeling or manual parameter tuning. To evaluate its effectiveness, we integrate SVN-ICP into a simple error-state Kalman filter alongside an IMU and test it across multiple datasets spanning diverse environments and robot types. Extensive experimental results demonstrate that our approach outperforms best-in-class methods on challenging scenarios while providing reliable uncertainty estimates.
Authors:Erwin de Gelder, Maren Buermann, Olaf Op den Camp
Title: Comparing Normalizing Flows with Kernel Density Estimation in Estimating Risk of Automated Driving Systems
Abstract:
The development of safety validation methods is essential for the safe deployment and operation of Automated Driving Systems (ADSs). One of the goals of safety validation is to prospectively evaluate the risk of an ADS dealing with real-world traffic. Scenario-based assessment is a widely-used approach, where test cases are derived from real-world driving data. To allow for a quantitative analysis of the system performance, the exposure of the scenarios must be accurately estimated. The exposure of scenarios at parameter level is expressed using a Probability Density Function (PDF). However, assumptions about the PDF, such as parameter independence, can introduce errors, while avoiding assumptions often leads to oversimplified models with limited parameters to mitigate the curse of dimensionality. This paper considers the use of Normalizing Flows (NF) for estimating the PDF of the parameters. NF are a class of generative models that transform a simple base distribution into a complex one using a sequence of invertible and differentiable mappings, enabling flexible, high-dimensional density estimation without restrictive assumptions on the PDF's shape. We demonstrate the effectiveness of NF in quantifying risk and risk uncertainty of an ADS, comparing its performance with Kernel Density Estimation (KDE), a traditional method for non-parametric PDF estimation. While NF require more computational resources compared to KDE, NF is less sensitive to the curse of dimensionality. As a result, NF can improve risk uncertainty estimation, offering a more precise assessment of an ADS's safety. This work illustrates the potential of NF in scenario-based safety. Future work involves experimenting more with using NF for scenario generation and optimizing the NF architecture, transformation types, and training hyperparameters to further enhance their applicability.
Authors:Thomas Monninger, Zihan Zhang, Zhipeng Mo, Md Zafar Anwar, Steffen Staab, Sihao Ding
Title: MapDiffusion: Generative Diffusion for Vectorized Online HD Map Construction and Uncertainty Estimation in Autonomous Driving
Abstract:
Autonomous driving requires an understanding of the static environment from sensor data. Learned Bird's-Eye View (BEV) encoders are commonly used to fuse multiple inputs, and a vector decoder predicts a vectorized map representation from the latent BEV grid. However, traditional map construction models provide deterministic point estimates, failing to capture uncertainty and the inherent ambiguities of real-world environments, such as occlusions and missing lane markings. We propose MapDiffusion, a novel generative approach that leverages the diffusion paradigm to learn the full distribution of possible vectorized maps. Instead of predicting a single deterministic output from learned queries, MapDiffusion iteratively refines randomly initialized queries, conditioned on a BEV latent grid, to generate multiple plausible map samples. This allows aggregating samples to improve prediction accuracy and deriving uncertainty estimates that directly correlate with scene ambiguity. Extensive experiments on the nuScenes dataset demonstrate that MapDiffusion achieves state-of-the-art performance in online map construction, surpassing the baseline by 5% in single-sample performance. We further show that aggregating multiple samples consistently improves performance along the ROC curve, validating the benefit of distribution modeling. Additionally, our uncertainty estimates are significantly higher in occluded areas, reinforcing their value in identifying regions with ambiguous sensor input. By modeling the full map distribution, MapDiffusion enhances the robustness and reliability of online vectorized HD map construction, enabling uncertainty-aware decision-making for autonomous vehicles in complex environments.
Authors:Yiwei Lou, Yuanpeng He, Rongchao Zhang, Yongzhi Cao, Hanpin Wang, Yu Huang
Title: DEFNet: Multitasks-based Deep Evidential Fusion Network for Blind Image Quality Assessment
Abstract:
Blind image quality assessment (BIQA) methods often incorporate auxiliary tasks to improve performance. However, existing approaches face limitations due to insufficient integration and a lack of flexible uncertainty estimation, leading to suboptimal performance. To address these challenges, we propose a multitasks-based Deep Evidential Fusion Network (DEFNet) for BIQA, which performs multitask optimization with the assistance of scene and distortion type classification tasks. To achieve a more robust and reliable representation, we design a novel trustworthy information fusion strategy. It first combines diverse features and patterns across sub-regions to enhance information richness, and then performs local-global information fusion by balancing fine-grained details with coarse-grained context. Moreover, DEFNet exploits advanced uncertainty estimation technique inspired by evidential learning with the help of normal-inverse gamma distribution mixture. Extensive experiments on both synthetic and authentic distortion datasets demonstrate the effectiveness and robustness of the proposed framework. Additional evaluation and analysis are carried out to highlight its strong generalization capability and adaptability to previously unseen scenarios.
Authors:Hyein Hong, Sangbong Yoo, SeokHwan Choi, Jisue Kim, Seongbum Seo, Haneol Cho, Chansoo Kim, Yun Jang
Title: d-DQIVAR: Data-centric Visual Analytics and Reasoning for Data Quality Improvement
Abstract:
Approaches to enhancing data quality (DQ) are classified into two main categories: data- and process-driven. However, prior research has predominantly utilized batch data preprocessing within the data-driven framework, which often proves insufficient for optimizing machine learning (ML) model performance and frequently leads to distortions in data characteristics. Existing studies have primarily focused on data preprocessing rather than genuine data quality improvement (DQI). In this paper, we introduce d-DQIVAR, a novel visual analytics system designed to facilitate DQI strategies aimed at improving ML model performance. Our system integrates visual analytics techniques that leverage both data-driven and process-driven approaches. Data-driven techniques tackle DQ issues such as imputation, outlier detection, deletion, format standardization, removal of duplicate records, and feature selection. Process-driven strategies encompass evaluating DQ and DQI procedures by considering DQ dimensions and ML model performance and applying the Kolmogorov-Smirnov test. We illustrate how our system empowers users to harness expert and domain knowledge effectively within a practical workflow through case studies, evaluations, and user studies.
Authors:Mohsi Jawaid, Marcus Märtens, Tat-Jun Chin
Title: Event-RGB Fusion for Spacecraft Pose Estimation Under Harsh Lighting
Abstract:
Spacecraft pose estimation is crucial for autonomous in-space operations, such as rendezvous, docking and on-orbit servicing. Vision-based pose estimation methods, which typically employ RGB imaging sensors, is a compelling solution for spacecraft pose estimation, but are challenged by harsh lighting conditions, which produce imaging artifacts such as glare, over-exposure, blooming and lens flare. Due to their much higher dynamic range, neuromorphic or event sensors are more resilient to extreme lighting conditions. However, event sensors generally have lower spatial resolution and suffer from reduced signal-to-noise ratio during periods of low relative motion. This work addresses these individual sensor limitations by introducing a sensor fusion approach combining RGB and event sensors. A beam-splitter prism was employed to achieve precise optical and temporal alignment. Then, a RANSAC-based technique was developed to fuse the information from the RGB and event channels to achieve pose estimation that leveraged the strengths of the two modalities. The pipeline was complemented by dropout uncertainty estimation to detect extreme conditions that affect either channel. To benchmark the performance of the proposed event-RGB fusion method, we collected a comprehensive real dataset of RGB and event data for satellite pose estimation in a laboratory setting under a variety of challenging illumination conditions. Encouraging results on the dataset demonstrate the efficacy of our event-RGB fusion approach and further supports the usage of event sensors for spacecraft pose estimation. To support community research on this topic, our dataset will be released publicly.
Authors:Zizhao Li, Xueyang Kang, Joseph West, Kourosh Khoshelham
Title: Out-of-distribution detection in 3D applications: a review
Abstract:
The ability to detect objects that are not prevalent in the training set is a critical capability in many 3D applications, including autonomous driving. Machine learning methods for object recognition often assume that all object categories encountered during inference belong to a closed set of classes present in the training data. This assumption limits generalization to the real world, as objects not seen during training may be misclassified or entirely ignored. As part of reliable AI, OOD detection identifies inputs that deviate significantly from the training distribution. This paper provides a comprehensive overview of OOD detection within the broader scope of trustworthy and uncertain AI. We begin with key use cases across diverse domains, introduce benchmark datasets spanning multiple modalities, and discuss evaluation metrics. Next, we present a comparative analysis of OOD detection methodologies, exploring model structures, uncertainty indicators, and distributional distance taxonomies, alongside uncertainty calibration techniques. Finally, we highlight promising research directions, including adversarially robust OOD detection and failure identification, particularly relevant to 3D applications. The paper offers both theoretical and practical insights into OOD detection, showcasing emerging research opportunities such as 3D vision integration. These insights help new researchers navigate the field more effectively, contributing to the development of reliable, safe, and robust AI systems.
Authors:George Webber, Alexander Hammers, Andrew P King, Andrew J Reader
Title: Supervised Diffusion-Model-Based PET Image Reconstruction
Abstract:
Diffusion models (DMs) have recently been introduced as a regularizing prior for PET image reconstruction, integrating DMs trained on high-quality PET images with unsupervised schemes that condition on measured data. While these approaches have potential generalization advantages due to their independence from the scanner geometry and the injected activity level, they forgo the opportunity to explicitly model the interaction between the DM prior and noisy measurement data, potentially limiting reconstruction accuracy. To address this, we propose a supervised DM-based algorithm for PET reconstruction. Our method enforces the non-negativity of PET's Poisson likelihood model and accommodates the wide intensity range of PET images. Through experiments on realistic brain PET phantoms, we demonstrate that our approach outperforms or matches state-of-the-art deep learning-based methods quantitatively across a range of dose levels. We further conduct ablation studies to demonstrate the benefits of the proposed components in our model, as well as its dependence on training data, parameter count, and number of diffusion steps. Additionally, we show that our approach enables more accurate posterior sampling than unsupervised DM-based methods, suggesting improved uncertainty estimation. Finally, we extend our methodology to a practical approach for fully 3D PET and present example results from real [$^{18}$F]FDG brain PET data.
Authors:Xiang Fang, Arvind Easwaran, Blaise Genest
Title: Adaptive Multi-prompt Contrastive Network for Few-shot Out-of-distribution Detection
Abstract:
Out-of-distribution (OOD) detection attempts to distinguish outlier samples to prevent models trained on the in-distribution (ID) dataset from producing unavailable outputs. Most OOD detection methods require many IID samples for training, which seriously limits their real-world applications. To this end, we target a challenging setting: few-shot OOD detection, where {Only a few {\em labeled ID} samples are available.} Therefore, few-shot OOD detection is much more challenging than the traditional OOD detection setting. Previous few-shot OOD detection works ignore the distinct diversity between different classes. In this paper, we propose a novel network: Adaptive Multi-prompt Contrastive Network (AMCN), which adapts the ID-OOD separation boundary by learning inter- and intra-class distribution. To compensate for the absence of OOD and scarcity of ID {\em image samples}, we leverage CLIP, connecting text with images, engineering learnable ID and OOD {\em textual prompts}. Specifically, we first generate adaptive prompts (learnable ID prompts, label-fixed OOD prompts and label-adaptive OOD prompts). Then, we generate an adaptive class boundary for each class by introducing a class-wise threshold. Finally, we propose a prompt-guided ID-OOD separation module to control the margin between ID and OOD prompts. Experimental results show that AMCN outperforms other state-of-the-art works.
Authors:Stefan Roth, Aydin Sezgin
Title: Anomaly Detection for Sensing Security
Abstract:
Various approaches in the field of physical layer security involve anomaly detection, such as physical layer authentication, sensing attacks, and anti-tampering solutions. Depending on the context in which these approaches are applied, anomaly detection needs to be computationally lightweight, resilient to changes in temperature and environment, and robust against phase noise. We adapt moving average filters, autoregression filters and Kalman filters to provide predictions of feature vectors that fulfill the above criteria. Different hypothesis test designs are employed that allow omnidirectional and unidirectional outlier detection. In a case study, a sensing attack is investigated that employs the described algorithms with various channel features based on commodity WiFi devices. Thereby, various combinations of algorithms and channel features show effectiveness for motion detection by an attacker. Countermeasures only utilizing transmit power randomization are shown insufficient to mitigate such attacks if the attacker has access to channel state information (CSI) measurements, suggesting that mitigation solutions might require frequency-variant randomization.
Authors:Xinyue Hu, Zhibin Duan, Bo Chen, Mingyuan Zhou
Title: Enhancing Uncertainty Estimation and Interpretability via Bayesian Non-negative Decision Layer
Abstract:
Although deep neural networks have demonstrated significant success due to their powerful expressiveness, most models struggle to meet practical requirements for uncertainty estimation. Concurrently, the entangled nature of deep neural networks leads to a multifaceted problem, where various localized explanation techniques reveal that multiple unrelated features influence the decisions, thereby undermining interpretability. To address these challenges, we develop a Bayesian Non-negative Decision Layer (BNDL), which reformulates deep neural networks as a conditional Bayesian non-negative factor analysis. By leveraging stochastic latent variables, the BNDL can model complex dependencies and provide robust uncertainty estimation. Moreover, the sparsity and non-negativity of the latent variables encourage the model to learn disentangled representations and decision layers, thereby improving interpretability. We also offer theoretical guarantees that BNDL can achieve effective disentangled learning. In addition, we developed a corresponding variational inference method utilizing a Weibull variational inference network to approximate the posterior distribution of the latent variables. Our experimental results demonstrate that with enhanced disentanglement capabilities, BNDL not only improves the model's accuracy but also provides reliable uncertainty estimation and improved interpretability.
Authors:Heydar Soudani, Evangelos Kanoulas, Faegheh Hasibi
Title: Why Uncertainty Estimation Methods Fall Short in RAG: An Axiomatic Analysis
Abstract:
Large Language Models (LLMs) are valued for their strong performance across various tasks, but they also produce inaccurate or misleading outputs. Uncertainty Estimation (UE) quantifies the model's confidence and helps users assess response reliability. However, existing UE methods have not been thoroughly examined in scenarios like Retrieval-Augmented Generation (RAG), where the input prompt includes non-parametric knowledge. This paper shows that current UE methods cannot reliably assess correctness in the RAG setting. We further propose an axiomatic framework to identify deficiencies in existing methods and guide the development of improved approaches. Our framework introduces five constraints that an effective UE method should meet after incorporating retrieved documents into the LLM's prompt. Experimental results reveal that no existing UE method fully satisfies all the axioms, explaining their suboptimal performance in RAG. We further introduce a simple yet effective calibration function based on our framework, which not only satisfies more axioms than baseline methods but also improves the correlation between uncertainty estimates and correctness.
Authors:Maryam Sultana, Neil Yorke-Smith, Kaizheng Wang, Shireen Kudukkil Manchingal, Muhammad Mubashar, Fabio Cuzzolin
Title: Epistemic Wrapping for Uncertainty Quantification
Abstract:
Uncertainty estimation is pivotal in machine learning, especially for classification tasks, as it improves the robustness and reliability of models. We introduce a novel `Epistemic Wrapping' methodology aimed at improving uncertainty estimation in classification. Our approach uses Bayesian Neural Networks (BNNs) as a baseline and transforms their outputs into belief function posteriors, effectively capturing epistemic uncertainty and offering an efficient and general methodology for uncertainty quantification. Comprehensive experiments employing a Bayesian Neural Network (BNN) baseline and an Interval Neural Network for inference on the MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100 datasets demonstrate that our Epistemic Wrapper significantly enhances generalisation and uncertainty quantification.
Authors:Lars Ullrich, Zurab Mujirishvili, Knut Graichen
Title: Enhancing System Self-Awareness and Trust of AI: A Case Study in Trajectory Prediction and Planning
Abstract:
In the trajectory planning of automated driving, data-driven statistical artificial intelligence (AI) methods are increasingly established for predicting the emergent behavior of other road users. While these methods achieve exceptional performance in defined datasets, they usually rely on the independent and identically distributed (i.i.d.) assumption and thus tend to be vulnerable to distribution shifts that occur in the real world. In addition, these methods lack explainability due to their black box nature, which poses further challenges in terms of the approval process and social trustworthiness. Therefore, in order to use the capabilities of data-driven statistical AI methods in a reliable and trustworthy manner, the concept of TrustMHE is introduced and investigated in this paper. TrustMHE represents a complementary approach, independent of the underlying AI systems, that combines AI-driven out-of-distribution detection with control-driven moving horizon estimation (MHE) to enable not only detection and monitoring, but also intervention. The effectiveness of the proposed TrustMHE is evaluated and proven in three simulation scenarios.
Authors:Xiaofan Zhou, Liangjie Huang, Pinyang Cheng, Wenpen Yin, Rui Zhang, Wenrui Hao, Lu Cheng
Title: Accelerating Causal Network Discovery of Alzheimer Disease Biomarkers via Scientific Literature-based Retrieval Augmented Generation
Abstract:
The causal relationships between biomarkers are essential for disease diagnosis and medical treatment planning. One notable application is Alzheimer's disease (AD) diagnosis, where certain biomarkers may influence the presence of others, enabling early detection, precise disease staging, targeted treatments, and improved monitoring of disease progression. However, understanding these causal relationships is complex and requires extensive research. Constructing a comprehensive causal network of biomarkers demands significant effort from human experts, who must analyze a vast number of research papers, and have bias in understanding diseases' biomarkers and their relation. This raises an important question: Can advanced large language models (LLMs), such as those utilizing retrieval-augmented generation (RAG), assist in building causal networks of biomarkers for further medical analysis? To explore this, we collected 200 AD-related research papers published over the past 25 years and then integrated scientific literature with RAG to extract AD biomarkers and generate causal relations among them. Given the high-risk nature of the medical diagnosis, we applied uncertainty estimation to assess the reliability of the generated causal edges and examined the faithfulness and scientificness of LLM reasoning using both automatic and human evaluation. We find that RAG enhances the ability of LLMs to generate more accurate causal networks from scientific papers. However, the overall performance of LLMs in identifying causal relations of AD biomarkers is still limited. We hope this study will inspire further foundational research on AI-driven analysis of AD biomarkers causal network discovery.
Authors:Wenxi Chen, Raymond A. Yeh, Shaoshuai Mou, Yan Gu
Title: Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is the task of identifying inputs that deviate from the training data distribution. This capability is essential for safely deploying deep computer vision models in open-world environments. In this work, we propose a post-hoc method, Perturbation-Rectified OOD detection (PRO), based on the insight that prediction confidence for OOD inputs is more susceptible to reduction under perturbation than in-distribution (IND) inputs. Based on the observation, we propose an adversarial score function that searches for the local minimum scores near the original inputs by applying gradient descent. This procedure enhances the separability between IND and OOD samples. Importantly, the approach improves OOD detection performance without complex modifications to the underlying model architectures. We conduct extensive experiments using the OpenOOD benchmark~\cite{yang2022openood}. Our approach further pushes the limit of softmax-based OOD detection and is the leading post-hoc method for small-scale models. On a CIFAR-10 model with adversarial training, PRO effectively detects near-OOD inputs, achieving a reduction of more than 10\% on FPR@95 compared to state-of-the-art methods.
Authors:Enrico Foglia, Benjamin Bobbia, Nikita Durasov, Michael Bauerheim, Pascal Fua, Stephane Moreau, Thierry Jardin
Title: Do you understand epistemic uncertainty? Think again! Rigorous frequentist epistemic uncertainty estimation in regression
Abstract:
Quantifying model uncertainty is critical for understanding prediction reliability, yet distinguishing between aleatoric and epistemic uncertainty remains challenging. We extend recent work from classification to regression to provide a novel frequentist approach to epistemic and aleatoric uncertainty estimation. We train models to generate conditional predictions by feeding their initial output back as an additional input. This method allows for a rigorous measurement of model uncertainty by observing how prediction responses change when conditioned on the model's previous answer. We provide a complete theoretical framework to analyze epistemic uncertainty in regression in a frequentist way, and explain how it can be exploited in practice to gauge a model's uncertainty, with minimal changes to the original architecture.
Authors:Yicong Dong, Rundong He, Guangyao Chen, Wentao Zhang, Zhongyi Han, Jieming Shi, Yilong Yin
Title: G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition
Abstract:
Graph Neural Networks (GNNs) have achieved significant success in machine learning, with wide applications in social networks, bioinformatics, knowledge graphs, and other fields. Most research assumes ideal closed-set environments. However, in real-world open-set environments, graph learning models face challenges in robustness and reliability due to unseen classes. This highlights the need for Graph Open-Set Recognition (GOSR) methods to address these issues and ensure effective GNN application in practical scenarios. Research in GOSR is in its early stages, with a lack of a comprehensive benchmark spanning diverse tasks and datasets to evaluate methods. Moreover, traditional methods, Graph Out-of-Distribution Detection (GOODD), GOSR, and Graph Anomaly Detection (GAD) have mostly evolved in isolation, with little exploration of their interconnections or potential applications to GOSR. To fill these gaps, we introduce \textbf{G-OSR}, a comprehensive benchmark for evaluating GOSR methods at both the node and graph levels, using datasets from multiple domains to ensure fair and standardized comparisons of effectiveness and efficiency across traditional, GOODD, GOSR, and GAD methods. The results offer critical insights into the generalizability and limitations of current GOSR methods and provide valuable resources for advancing research in this field through systematic analysis of diverse approaches.
Authors:Aidan Curtis, Eric Li, Michael Noseworthy, Nishad Gothoskar, Sachin Chitta, Hui Li, Leslie Pack Kaelbling, Nicole Carey
Title: Flow-based Domain Randomization for Learning and Sequencing Robotic Skills
Abstract:
Domain randomization in reinforcement learning is an established technique for increasing the robustness of control policies trained in simulation. By randomizing environment properties during training, the learned policy can become robust to uncertainties along the randomized dimensions. While the environment distribution is typically specified by hand, in this paper we investigate automatically discovering a sampling distribution via entropy-regularized reward maximization of a normalizing-flow-based neural sampling distribution. We show that this architecture is more flexible and provides greater robustness than existing approaches that learn simpler, parameterized sampling distributions, as demonstrated in six simulated and one real-world robotics domain. Lastly, we explore how these learned sampling distributions, combined with a privileged value function, can be used for out-of-distribution detection in an uncertainty-aware multi-step manipulation planner.
Authors:Sabri Mustafa Kahya, Boran Hamdi Sivrikaya, Muhammet Sami Yavuz, Eckehard Steinbach
Title: FARE: A Deep Learning-Based Framework for Radar-based Face Recognition and Out-of-distribution Detection
Abstract:
In this work, we propose a novel pipeline for face recognition and out-of-distribution (OOD) detection using short-range FMCW radar. The proposed system utilizes Range-Doppler and micro Range-Doppler Images. The architecture features a primary path (PP) responsible for the classification of in-distribution (ID) faces, complemented by intermediate paths (IPs) dedicated to OOD detection. The network is trained in two stages: first, the PP is trained using triplet loss to optimize ID face classification. In the second stage, the PP is frozen, and the IPs-comprising simple linear autoencoder networks-are trained specifically for OOD detection. Using our dataset generated with a 60 GHz FMCW radar, our method achieves an ID classification accuracy of 99.30% and an OOD detection AUROC of 96.91%.
Authors:Alexis Bose, Jonathan Ethier, Ryan G. Dempsey, Yifeng Qiu
Title: Uncertainty Estimation for Path Loss and Radio Metric Models
Abstract:
This research leverages Conformal Prediction (CP) in the form of Conformal Predictive Systems (CPS) to accurately estimate uncertainty in a suite of machine learning (ML)-based radio metric models [1] as well as in a 2-D map-based ML path loss model [2]. Utilizing diverse difficulty estimators, we construct 95% confidence prediction intervals (PIs) that are statistically robust. Our experiments demonstrate that CPS models, trained on Toronto datasets, generalize effectively to other cities such as Vancouver and Montreal, maintaining high coverage and reliability. Furthermore, the employed difficulty estimators identify challenging samples, leading to measurable reductions in RMSE as dataset difficulty decreases. These findings highlight the effectiveness of scalable and reliable uncertainty estimation through CPS in wireless network modeling, offering important potential insights for network planning, operations, and spectrum management.
Authors:Xiang Fang, Arvind Easwaran, Blaise Genest, Ponnuthurai Nagaratnam Suganthan
Title: Adaptive Hierarchical Graph Cut for Multi-granularity Out-of-distribution Detection
Abstract:
This paper focuses on a significant yet challenging task: out-of-distribution detection (OOD detection), which aims to distinguish and reject test samples with semantic shifts, so as to prevent models trained on in-distribution (ID) data from producing unreliable predictions. Although previous works have made decent success, they are ineffective for real-world challenging applications since these methods simply regard all unlabeled data as OOD data and ignore the case that different datasets have different label granularity. For example, "cat" on CIFAR-10 and "tabby cat" on Tiny-ImageNet share the same semantics but have different labels due to various label granularity. To this end, in this paper, we propose a novel Adaptive Hierarchical Graph Cut network (AHGC) to deeply explore the semantic relationship between different images. Specifically, we construct a hierarchical KNN graph to evaluate the similarities between different images based on the cosine similarity. Based on the linkage and density information of the graph, we cut the graph into multiple subgraphs to integrate these semantics-similar samples. If the labeled percentage in a subgraph is larger than a threshold, we will assign the label with the highest percentage to unlabeled images. To further improve the model generalization, we augment each image into two augmentation versions, and maximize the similarity between the two versions. Finally, we leverage the similarity score for OOD detection. Extensive experiments on two challenging benchmarks (CIFAR- 10 and CIFAR-100) illustrate that in representative cases, AHGC outperforms state-of-the-art OOD detection methods by 81.24% on CIFAR-100 and by 40.47% on CIFAR-10 in terms of "FPR95", which shows the effectiveness of our AHGC.
Authors:Xiang Fang, Arvind Easwaran, Blaise Genest, Ponnuthurai Nagaratnam Suganthan
Title: Your Data Is Not Perfect: Towards Cross-Domain Out-of-Distribution Detection in Class-Imbalanced Data
Abstract:
Previous OOD detection systems only focus on the semantic gap between ID and OOD samples. Besides the semantic gap, we are faced with two additional gaps: the domain gap between source and target domains, and the class-imbalance gap between different classes. In fact, similar objects from different domains should belong to the same class. In this paper, we introduce a realistic yet challenging setting: class-imbalanced cross-domain OOD detection (CCOD), which contains a well-labeled (but usually small) source set for training and conducts OOD detection on an unlabeled (but usually larger) target set for testing. We do not assume that the target domain contains only OOD classes or that it is class-balanced: the distribution among classes of the target dataset need not be the same as the source dataset. To tackle this challenging setting with an OOD detection system, we propose a novel uncertainty-aware adaptive semantic alignment (UASA) network based on a prototype-based alignment strategy. Specifically, we first build label-driven prototypes in the source domain and utilize these prototypes for target classification to close the domain gap. Rather than utilizing fixed thresholds for OOD detection, we generate adaptive sample-wise thresholds to handle the semantic gap. Finally, we conduct uncertainty-aware clustering to group semantically similar target samples to relieve the class-imbalance gap. Extensive experiments on three challenging benchmarks demonstrate that our proposed UASA outperforms state-of-the-art methods by a large margin.
Authors:Nikita Durasov, Rafid Mahmood, Jiwoong Choi, Marc T. Law, James Lucas, Pascal Fua, Jose M. Alvarez
Title: Uncertainty Estimation for 3D Object Detection via Evidential Learning
Abstract:
3D object detection is an essential task for computer vision applications in autonomous vehicles and robotics. However, models often struggle to quantify detection reliability, leading to poor performance on unfamiliar scenes. We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector. These uncertainty estimates require minimal computational overhead and are generalizable across different architectures. We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections; our framework consistently improves over baselines by 10-20% on average. Finally, we integrate this suite of tasks into a system where a 3D object detector auto-labels driving scenes and our uncertainty estimates verify label correctness before the labels are used to train a second model. Here, our uncertainty-driven verification results in a 1% improvement in mAP and a 1-2% improvement in NDS.
Authors:Yuxin Chen, Zijian Wu, Adam Schmidt, Septimiu E. Salcudean
Title: A-MFST: Adaptive Multi-Flow Sparse Tracker for Real-Time Tissue Tracking Under Occlusion
Abstract:
Purpose: Tissue tracking is critical for downstream tasks in robot-assisted surgery. The Sparse Efficient Neural Depth and Deformation (SENDD) model has previously demonstrated accurate and real-time sparse point tracking, but struggled with occlusion handling. This work extends SENDD to enhance occlusion detection and tracking consistency while maintaining real-time performance. Methods: We use the Segment Anything Model2 (SAM2) to detect and mask occlusions by surgical tools, and we develop and integrate into SENDD an Adaptive Multi-Flow Sparse Tracker (A-MFST) with forward-backward consistency metrics, to enhance occlusion and uncertainty estimation. A-MFST is an unsupervised variant of the Multi-Flow Dense Tracker (MFT). Results: We evaluate our approach on the STIR dataset and demonstrate a significant improvement in tracking accuracy under occlusion, reducing average tracking errors by 12 percent in Mean Endpoint Error (MEE) and showing a 6 percent improvement in the averaged accuracy over thresholds of 4, 8, 16, 32, and 64 pixels. The incorporation of forward-backward consistency further improves the selection of optimal tracking paths, reducing drift and enhancing robustness. Notably, these improvements were achieved without compromising the model's real-time capabilities. Conclusions: Using A-MFST and SAM2, we enhance SENDD's ability to track tissue in real time under instrument and tissue occlusions.
Authors:Mazen Soufi, Yoshito Otake, Makoto Iwasa, Keisuke Uemura, Tomoki Hakotani, Masahiro Hashimoto, Yoshitake Yamada, Minoru Yamada, Yoichi Yokoyama, Masahiro Jinzaki, Suzushi Kusano, Masaki Takao, Seiji Okada, Nobuhiko Sugano, Yoshinobu Sato
Title: Validation of musculoskeletal segmentation model with uncertainty estimation for bone and muscle assessment in hip-to-knee clinical CT images
Abstract:
Deep learning-based image segmentation has allowed for the fully automated, accurate, and rapid analysis of musculoskeletal (MSK) structures from medical images. However, current approaches were either applied only to 2D cross-sectional images, addressed few structures, or were validated on small datasets, which limit the application in large-scale databases. This study aimed to validate an improved deep learning model for volumetric MSK segmentation of the hip and thigh with uncertainty estimation from clinical computed tomography (CT) images. Databases of CT images from multiple manufacturers/scanners, disease status, and patient positioning were used. The segmentation accuracy, and accuracy in estimating the structures volume and density, i.e., mean HU, were evaluated. An approach for segmentation failure detection based on predictive uncertainty was also investigated. The model has shown an overall improvement with respect to all segmentation accuracy and structure volume/density evaluation metrics. The predictive uncertainty yielded large areas under the receiver operating characteristic (AUROC) curves (AUROCs>=.95) in detecting inaccurate and failed segmentations. The high segmentation and muscle volume/density estimation accuracy, along with the high accuracy in failure detection based on the predictive uncertainty, exhibited the model's reliability for analyzing individual MSK structures in large-scale CT databases.
Authors:Longxuan Wei, Yubo Zhang, Zijiao Zhang, Zhihu Wang, Shiwan Zhao, Tianyu Huang, Huiting Zhao, Chenfei Liu, Shenao Zhang, Junchi Yan
Title: Entropy-Tree: Tree-Based Decoding with Entropy-Guided Exploration
Abstract:
Large language models achieve strong reasoning performance, yet existing decoding strategies either explore blindly (random sampling) or redundantly (independent multi-sampling). We propose Entropy-Tree, a tree-based decoding method that exploits entropy as a signal for branching decisions--expanding the search tree only at positions where the model exhibits genuine uncertainty. Entropy-Tree shows superior accuracy and calibration in reasoning tasks: it achieves better pass@k than Multi-chain across multiple models and datasets, and its predictive entropy demonstrates better AUROC compared to several traditional metrics. Entropy-Tree unifies efficient structured exploration and reliable uncertainty estimation within a single decoding procedure.
Authors:Xixian Wu, Yang Ou, Pengchao Tian, Zian Yang, Jielei Zhang, Peiyi Li, Longwen Gao
Title: Improving VQA Reliability: A Dual-Assessment Approach with Self-Reflection and Cross-Model Verification
Abstract:
Vision-language models (VLMs) have demonstrated significant potential in Visual Question Answering (VQA). However, the susceptibility of VLMs to hallucinations can lead to overconfident yet incorrect answers, severely undermining answer reliability. To address this, we propose Dual-Assessment for VLM Reliability (DAVR), a novel framework that integrates Self-Reflection and Cross-Model Verification for comprehensive uncertainty estimation. The DAVR framework features a dual-pathway architecture: one pathway leverages dual selector modules to assess response reliability by fusing VLM latent features with QA embeddings, while the other deploys external reference models for factual cross-checking to mitigate hallucinations. Evaluated in the Reliable VQA Challenge at ICCV-CLVL 2025, DAVR achieves a leading $Φ_{100}$ score of 39.64 and a 100-AUC of 97.22, securing first place and demonstrating its effectiveness in enhancing the trustworthiness of VLM responses.
Authors:Ioannis Gasteratos, Antoine Jacquier, Maud Lemercier, Terry Lyons, Cristopher Salvi
Title: Novelty detection on path space
Abstract:
We frame novelty detection on path space as a hypothesis testing problem with signature-based test statistics. Using transportation-cost inequalities of Gasteratos and Jacquier (2023), we obtain tail bounds for false positive rates that extend beyond Gaussian measures to laws of RDE solutions with smooth bounded vector fields, yielding estimates of quantiles and p-values. Exploiting the shuffle product, we derive exact formulae for smooth surrogates of conditional value-at-risk (CVaR) in terms of expected signatures, leading to new one-class SVM algorithms optimising smooth CVaR objectives. We then establish lower bounds on type-$\mathrm{II}$ error for alternatives with finite first moment, giving general power bounds when the reference measure and the alternative are absolutely continuous with respect to each other. Finally, we evaluate numerically the type-$\mathrm{I}$ error and statistical power of signature-based test statistic, using synthetic anomalous diffusion data and real-world molecular biology data.
Authors:Jieting Wang, Huimei Shi, Feijiang Li, Xiaolei Shang
Title: Beyond MSE: Ordinal Cross-Entropy for Probabilistic Time Series Forecasting
Abstract:
Time series forecasting is an important task that involves analyzing temporal dependencies and underlying patterns (such as trends, cyclicality, and seasonality) in historical data to predict future values or trends. Current deep learning-based forecasting models primarily employ Mean Squared Error (MSE) loss functions for regression modeling. Despite enabling direct value prediction, this method offers no uncertainty estimation and exhibits poor outlier robustness. To address these limitations, we propose OCE-TS, a novel ordinal classification approach for time series forecasting that replaces MSE with Ordinal Cross-Entropy (OCE) loss, preserving prediction order while quantifying uncertainty through probability output. Specifically, OCE-TS begins by discretizing observed values into ordered intervals and deriving their probabilities via a parametric distribution as supervision signals. Using a simple linear model, we then predict probability distributions for each timestep. The OCE loss is computed between the cumulative distributions of predicted and ground-truth probabilities, explicitly preserving ordinal relationships among forecasted values. Through theoretical analysis using influence functions, we establish that cross-entropy (CE) loss exhibits superior stability and outlier robustness compared to MSE loss. Empirically, we compared OCE-TS with five baseline models-Autoformer, DLinear, iTransformer, TimeXer, and TimeBridge-on seven public time series datasets. Using MSE and Mean Absolute Error (MAE) as evaluation metrics, the results demonstrate that OCE-TS consistently outperforms benchmark models. The code will be published.
Authors:Xiaofan Guo, Yaxuan Luan, Yue Kang, Xiangchen Song, Jinxu Guo
Title: LLM-Centric RAG with Multi-Granular Indexing and Confidence Constraints
Abstract:
This paper addresses the issues of insufficient coverage, unstable results, and limited reliability in retrieval-augmented generation under complex knowledge environments, and proposes a confidence control method that integrates multi-granularity memory indexing with uncertainty estimation. The method builds a hierarchical memory structure that divides knowledge representations into different levels of granularity, enabling dynamic indexing and retrieval from local details to global context, and thus establishing closer semantic connections between retrieval and generation. On this basis, an uncertainty estimation mechanism is introduced to explicitly constrain and filter low-confidence paths during the generation process, allowing the model to maintain information coverage while effectively suppressing noise and false content. The overall optimization objective consists of generation loss, entropy constraints, and variance regularization, forming a unified confidence control framework. In the experiments, comprehensive sensitivity tests and comparative analyses were designed, covering hyperparameters, environmental conditions, and data structures, to verify the stability and robustness of the proposed method across different scenarios. The results show that the method achieves superior performance over existing models in QA accuracy, retrieval recall, ranking quality, and factual consistency, demonstrating the effectiveness of combining multi-granularity indexing with confidence control. This study not only provides a new technical pathway for retrieval-augmented generation but also offers practical evidence for improving the reliability and controllability of large models in complex contexts.
Authors:Christopher Bülte, Yusuf Sale, Gitta Kutyniok, Eyke Hüllermeier
Title: Uncertainty Quantification for Regression: A Unified Framework based on kernel scores
Abstract:
Regression tasks, notably in safety-critical domains, require proper uncertainty quantification, yet the literature remains largely classification-focused. In this light, we introduce a family of measures for total, aleatoric, and epistemic uncertainty based on proper scoring rules, with a particular emphasis on kernel scores. The framework unifies several well-known measures and provides a principled recipe for designing new ones whose behavior, such as tail sensitivity, robustness, and out-of-distribution responsiveness, is governed by the choice of kernel. We prove explicit correspondences between kernel-score characteristics and downstream behavior, yielding concrete design guidelines for task-specific measures. Extensive experiments demonstrate that these measures are effective in downstream tasks and reveal clear trade-offs among instantiations, including robustness and out-of-distribution detection performance.
Authors:Samuel Bright-Thonney, Christina Reissel, Gaia Grosso, Nathaniel Woodward, Katya Govorkova, Andrzej Novak, Sang Eon Park, Eric Moreno, Philip Harris
Title: AutoSciDACT: Automated Scientific Discovery through Contrastive Embedding and Hypothesis Testing
Abstract:
Novelty detection in large scientific datasets faces two key challenges: the noisy and high-dimensional nature of experimental data, and the necessity of making statistically robust statements about any observed outliers. While there is a wealth of literature on anomaly detection via dimensionality reduction, most methods do not produce outputs compatible with quantifiable claims of scientific discovery. In this work we directly address these challenges, presenting the first step towards a unified pipeline for novelty detection adapted for the rigorous statistical demands of science. We introduce AutoSciDACT (Automated Scientific Discovery with Anomalous Contrastive Testing), a general-purpose pipeline for detecting novelty in scientific data. AutoSciDACT begins by creating expressive low-dimensional data representations using a contrastive pre-training, leveraging the abundance of high-quality simulated data in many scientific domains alongside expertise that can guide principled data augmentation strategies. These compact embeddings then enable an extremely sensitive machine learning-based two-sample test using the New Physics Learning Machine (NPLM) framework, which identifies and statistically quantifies deviations in observed data relative to a reference distribution (null hypothesis). We perform experiments across a range of astronomical, physical, biological, image, and synthetic datasets, demonstrating strong sensitivity to small injections of anomalous data across all domains.
Authors:Lei Shi, Gang Li, Junxing Zhang
Title: Uncertainty-Aware Extreme Point Tracing for Weakly Supervised Ultrasound Image Segmentation
Abstract:
Automatic medical image segmentation is a fundamental step in computer-aided diagnosis, yet fully supervised approaches demand extensive pixel-level annotations that are costly and time-consuming. To alleviate this burden, we propose a weakly supervised segmentation framework that leverages only four extreme points as annotation. Specifically, bounding boxes derived from the extreme points are used as prompts for the Segment Anything Model 2 (SAM2) to generate reliable initial pseudo labels. These pseudo labels are progressively refined by an enhanced Feature-Guided Extreme Point Masking (FGEPM) algorithm, which incorporates Monte Carlo dropout-based uncertainty estimation to construct a unified gradient uncertainty cost map for boundary tracing. Furthermore, a dual-branch Uncertainty-aware Scale Consistency (USC) loss and a box alignment loss are introduced to ensure spatial consistency and precise boundary alignment during training. Extensive experiments on two public ultrasound datasets, BUSI and UNS, demonstrate that our method achieves performance comparable to, and even surpassing fully supervised counterparts while significantly reducing annotation cost. These results validate the effectiveness and practicality of the proposed weakly supervised framework for ultrasound image segmentation.
Authors:I. M. De la Jara, C. Rodriguez-Opazo, D. Teney, D. Ranasinghe, E. Abbasnejad
Title: Mysteries of the Deep: Role of Intermediate Representations in Out of Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is essential for reliably deploying machine learning models in the wild. Yet, most methods treat large pre-trained models as monolithic encoders and rely solely on their final-layer representations for detection. We challenge this wisdom. We reveal the \textit{intermediate layers} of pre-trained models, shaped by residual connections that subtly transform input projections, \textit{can} encode \textit{surprisingly rich and diverse signals} for detecting distributional shifts. Importantly, to exploit latent representation diversity across layers, we introduce an entropy-based criterion to \textit{automatically} identify layers offering the most complementary information in a training-free setting -- \textit{without access to OOD data}. We show that selectively incorporating these intermediate representations can increase the accuracy of OOD detection by up to \textbf{$10\%$} in far-OOD and over \textbf{$7\%$} in near-OOD benchmarks compared to state-of-the-art training-free methods across various model architectures and training objectives. Our findings reveal a new avenue for OOD detection research and uncover the impact of various training objectives and model architectures on confidence-based OOD detection methods.
Authors:Peng Luo, Xiayin Lou, Yu Zheng, Zhuo Zheng, Stefano Ermon
Title: GeoEvolve: Automating Geospatial Model Discovery via Multi-Agent Large Language Models
Abstract:
Geospatial modeling provides critical solutions for pressing global challenges such as sustainability and climate change. Existing large language model (LLM)-based algorithm discovery frameworks, such as AlphaEvolve, excel at evolving generic code but lack the domain knowledge and multi-step reasoning required for complex geospatial problems. We introduce GeoEvolve, a multi-agent LLM framework that couples evolutionary search with geospatial domain knowledge to automatically design and refine geospatial algorithms. GeoEvolve operates in two nested loops: an inner loop leverages a code evolver to generate and mutate candidate solutions, while an outer agentic controller evaluates global elites and queries a GeoKnowRAG module -- a structured geospatial knowledge base that injects theoretical priors from geography. This knowledge-guided evolution steers the search toward theoretically meaningful and computationally efficient algorithms. We evaluate GeoEvolve on two fundamental and classical tasks: spatial interpolation (kriging) and spatial uncertainty quantification (geospatial conformal prediction). Across these benchmarks, GeoEvolve automatically improves and discovers new algorithms, incorporating geospatial theory on top of classical models. It reduces spatial interpolation error (RMSE) by 13-21% and enhances uncertainty estimation performance by 17\%. Ablation studies confirm that domain-guided retrieval is essential for stable, high-quality evolution. These results demonstrate that GeoEvolve provides a scalable path toward automated, knowledge-driven geospatial modeling, opening new opportunities for trustworthy and efficient AI-for-Science discovery.
Authors:Damola Agbelese, Krishna Chaitanya, Pushpak Pati, Chaitanya Parmar, Pooya Mobadersany, Shreyas Fadnavis, Lindsey Surace, Shadi Yarandi, Louis R. Ghanem, Molly Lucas, Tommaso Mansi, Oana Gabriela Cula, Pablo F. Damasceno, Kristopher Standish
Title: MEGAN: Mixture of Experts for Robust Uncertainty Estimation in Endoscopy Videos
Abstract:
Reliable uncertainty quantification (UQ) is essential in medical AI. Evidential Deep Learning (EDL) offers a computationally efficient way to quantify model uncertainty alongside predictions, unlike traditional methods such as Monte Carlo (MC) Dropout and Deep Ensembles (DE). However, all these methods often rely on a single expert's annotations as ground truth for model training, overlooking the inter-rater variability in healthcare. To address this issue, we propose MEGAN, a Multi-Expert Gating Network that aggregates uncertainty estimates and predictions from multiple AI experts via EDL models trained with diverse ground truths and modeling strategies. MEGAN's gating network optimally combines predictions and uncertainties from each EDL model, enhancing overall prediction confidence and calibration. We extensively benchmark MEGAN on endoscopy videos for Ulcerative colitis (UC) disease severity estimation, assessed by visual labeling of Mayo Endoscopic Subscore (MES), where inter-rater variability is prevalent. In large-scale prospective UC clinical trial, MEGAN achieved a 3.5% improvement in F1-score and a 30.5% reduction in Expected Calibration Error (ECE) compared to existing methods. Furthermore, MEGAN facilitated uncertainty-guided sample stratification, reducing the annotation burden and potentially increasing efficiency and consistency in UC trials.
Authors:Shengjie Kris Liu, Siqin Wang, Lu Zhang
Title: Uncertainty-Aware Hourly Air Temperature Mapping at 2 km Resolution via Physics-Guided Deep Learning
Abstract:
Near-surface air temperature is a key physical property of the Earth's surface. Although weather stations offer continuous monitoring and satellites provide broad spatial coverage, no single data source offers seamless data in a spatiotemporal fashion. Here, we propose a data-driven, physics-guided deep learning approach to generate hourly air temperature data at 2 km resolution over the contiguous United States. The approach, called Amplifier Air-Transformer, first reconstructs GOES-16 surface temperature data obscured by clouds. It does so through a neural network encoded with the annual temperature cycle, incorporating a linear term to amplify ERA5 temperature values at finer scales and convolutional layers to capture spatiotemporal variations. Then, another neural network transforms the reconstructed surface temperature into air temperature by leveraging its latent relationship with key Earth surface properties. The approach is further enhanced with predictive uncertainty estimation through deep ensemble learning to improve reliability. The proposed approach is built and tested on 77.7 billion surface temperature pixels and 155 million air temperature records from weather stations across the contiguous United States (2018-2024), achieving hourly air temperature mapping accuracy of 1.93 C in station-based validation. The proposed approach streamlines surface temperature reconstruction and air temperature prediction, and it can be extended to other satellite sources for seamless air temperature monitoring at high spatiotemporal resolution. The generated data of this study can be downloaded at https://doi.org/10.5281/zenodo.15252812, and the project webpage can be found at https://skrisliu.com/HourlyAirTemp2kmUSA/.
Authors:Somayeh Kianpisheh, Tarik Taleb, Jari Iinatti, JaeSeung Song
Title: Deep Learning based Moving Target Defence for Federated Learning against Poisoning Attack in MEC Systems with a 6G Wireless Model
Abstract:
Collaboration opportunities for devices are facilitated with Federated Learning (FL). Edge computing facilitates aggregation at edge and reduces latency. To deal with model poisoning attacks, model-based outlier detection mechanisms may not operate efficiently with hetereogenous models or in recognition of complex attacks. This paper fosters the defense line against model poisoning attack by exploiting device-level traffic analysis to anticipate the reliability of participants. FL is empowered with a topology mutation strategy, as a Moving Target Defence (MTD) strategy to dynamically change the participants in learning. Based on the adoption of recurrent neural networks for time-series analysis of traffic and a 6G wireless model, optimization framework for MTD strategy is given. A deep reinforcement mechanism is provided to optimize topology mutation in adaption with the anticipated Byzantine status of devices and the communication channel capabilities at devices. For a DDoS attack detection application and under Botnet attack at devices level, results illustrate acceptable malicious models exclusion and improvement in recognition time and accuracy.
Authors:Youchao Zhou, Heyan Huang, Yicheng Liu, Rui Dai, Xinglin Wang, Xingchen Zhang, Shumin Shi, Yang Deng
Title: Do Retrieval Augmented Language Models Know When They Don't Know?
Abstract:
Existing large language models (LLMs) occasionally generate plausible yet factually incorrect responses, known as hallucinations. Two main approaches have been proposed to mitigate hallucinations: retrieval-augmented language models (RALMs) and refusal post-training. However, current research predominantly focuses on their individual effectiveness while overlooking the evaluation of the refusal capability of RALMs. Ideally, if RALMs know when they do not know, they should refuse to answer.In this study, we ask the fundamental question: Do RALMs know when they don't know? Specifically, we investigate three questions. First, are RALMs well calibrated with respect to different internal and external knowledge states? We examine the influence of various factors. Contrary to expectations, when all retrieved documents are irrelevant, RALMs still tend to refuse questions they could have answered correctly. Next, given the model's pronounced \textbf{over-refusal} behavior, we raise a second question: How does a RALM's refusal ability align with its calibration quality? Our results show that the over-refusal problem can be mitigated through in-context fine-tuning. However, we observe that improved refusal behavior does not necessarily imply better calibration or higher overall accuracy. Finally, we ask: Can we combine refusal-aware RALMs with uncertainty-based answer abstention to mitigate over-refusal? We develop a simple yet effective refusal mechanism for refusal-post-trained RALMs that improves their overall answer quality by balancing refusal and correct answers. Our study provides a more comprehensive understanding of the factors influencing RALM behavior. Meanwhile, we emphasize that uncertainty estimation for RALMs remains an open problem deserving deeper investigation.
Authors:Pedro Mendes, Paolo Romano, David Garlan
Title: Uncertainty Estimation by Human Perception versus Neural Models
Abstract:
Modern neural networks (NNs) often achieve high predictive accuracy but are poorly calibrated, producing overconfident predictions even when wrong. This miscalibration poses serious challenges in applications where reliable uncertainty estimates are critical. In this work, we investigate how human perceptual uncertainty compares to uncertainty estimated by NNs. Using three vision benchmarks annotated with both human disagreement and crowdsourced confidence, we assess the correlation between model-predicted uncertainty and human-perceived uncertainty. Our results show that current methods only weakly align with human intuition, with correlations varying significantly across tasks and uncertainty metrics. Notably, we find that incorporating human-derived soft labels into the training process can improve calibration without compromising accuracy. These findings reveal a persistent gap between model and human uncertainty and highlight the potential of leveraging human insights to guide the development of more trustworthy AI systems.
Authors:Giulio Delama, Igor Borowski, Roland Jung, Stephan Weiss
Title: Real-Time Initialization of Unknown Anchors for UWB-aided Navigation
Abstract:
This paper presents a framework for the real-time initialization of unknown Ultra-Wideband (UWB) anchors in UWB-aided navigation systems. The method is designed for localization solutions where UWB modules act as supplementary sensors. Our approach enables the automatic detection and calibration of previously unknown anchors during operation, removing the need for manual setup. By combining an online Positional Dilution of Precision (PDOP) estimation, a lightweight outlier detection method, and an adaptive robust kernel for non-linear optimization, our approach significantly improves robustness and suitability for real-world applications compared to state-of-the-art. In particular, we show that our metric which triggers an initialization decision is more conservative than current ones commonly based on initial linear or non-linear initialization guesses. This allows for better initialization geometry and subsequently lower initialization errors. We demonstrate the proposed approach on two different mobile robots: an autonomous forklift and a quadcopter equipped with a UWB-aided Visual-Inertial Odometry (VIO) framework. The results highlight the effectiveness of the proposed method with robust initialization and low positioning error. We open-source our code in a C++ library including a ROS wrapper.
Authors:Joran Leest, Claudia Raibulet, Patricia Lago, Ilias Gerostathopoulos
Title: From Tea Leaves to System Maps: A Survey and Framework on Context-aware Machine Learning Monitoring
Abstract:
Machine learning (ML) models in production fail when their broader systems -- from data pipelines to deployment environments -- deviate from training assumptions, not merely due to statistical anomalies in input data. Despite extensive work on data drift, data validation, and out-of-distribution detection, ML monitoring research remains largely model-centric while neglecting contextual information: auxiliary signals about the system around the model (external factors, data pipelines, downstream applications). Incorporating this context turns statistical anomalies into actionable alerts and structured root-cause analysis. Drawing on a systematic review of 94 primary studies, we identify three dimensions of contextual information for ML monitoring: the system element concerned (natural environment or technical infrastructure); the aspect of that element (runtime states, structural relationships, prescriptive properties); and the representation used (formal constructs or informal formats). This forms the Contextual System-Aspect-Representation (C-SAR) framework, a descriptive model synthesizing our findings. We identify 20 recurring triplets across these dimensions and map them to the monitoring activities they support. This study provides a holistic perspective on ML monitoring: from interpreting "tea leaves" (i.e., isolated data and performance statistics) to constructing and managing "system maps" (i.e., end-to-end views that connect data, models, and operating context).
Authors:Pedro Mendes, Paolo Romano, David Garlan
Title: CLUE: Neural Networks Calibration via Learning Uncertainty-Error alignment
Abstract:
Reliable uncertainty estimation is critical for deploying neural networks (NNs) in real-world applications. While existing calibration techniques often rely on post-hoc adjustments or coarse-grained binning methods, they remain limited in scalability, differentiability, and generalization across domains. In this work, we introduce CLUE (Calibration via Learning Uncertainty-Error Alignment), a novel approach that explicitly aligns predicted uncertainty with observed error during training, grounded in the principle that well-calibrated models should produce uncertainty estimates that match their empirical loss. CLUE adopts a novel loss function that jointly optimizes predictive performance and calibration, using summary statistics of uncertainty and loss as proxies. The proposed method is fully differentiable, domain-agnostic, and compatible with standard training pipelines. Through extensive experiments on vision, regression, and language modeling tasks, including out-of-distribution and domain-shift scenarios, we demonstrate that CLUE achieves superior calibration quality and competitive predictive performance with respect to state-of-the-art approaches without imposing significant computational overhead.
Authors:Vincent Freiberger, Arthur Fleig, Erik Buchmann
Title: Explainable AI in Usable Privacy and Security: Challenges and Opportunities
Abstract:
Large Language Models (LLMs) are increasingly being used for automated evaluations and explaining them. However, concerns about explanation quality, consistency, and hallucinations remain open research challenges, particularly in high-stakes contexts like privacy and security, where user trust and decision-making are at stake. In this paper, we investigate these issues in the context of PRISMe, an interactive privacy policy assessment tool that leverages LLMs to evaluate and explain website privacy policies. Based on a prior user study with 22 participants, we identify key concerns regarding LLM judgment transparency, consistency, and faithfulness, as well as variations in user preferences for explanation detail and engagement. We discuss potential strategies to mitigate these concerns, including structured evaluation criteria, uncertainty estimation, and retrieval-augmented generation (RAG). We identify a need for adaptive explanation strategies tailored to different user profiles for LLM-as-a-judge. Our goal is to showcase the application area of usable privacy and security to be promising for Human-Centered Explainable AI (HCXAI) to make an impact.
Authors:Jose Cribeiro-Ramallo, Federico Matteucci, Paul Enciu, Alexander Jenke, Vadim Arzamasov, Thorsten Strufe, Klemens Böhm
Title: Adversarial Subspace Generation for Outlier Detection in High-Dimensional Data
Abstract:
Outlier detection in high-dimensional tabular data is challenging since data is often distributed across multiple lower-dimensional subspaces -- a phenomenon known as the Multiple Views effect (MV). This effect led to a large body of research focused on mining such subspaces, known as subspace selection. However, as the precise nature of the MV effect was not well understood, traditional methods had to rely on heuristic-driven search schemes that struggle to accurately capture the true structure of the data. Properly identifying these subspaces is critical for unsupervised tasks such as outlier detection or clustering, where misrepresenting the underlying data structure can hinder the performance. We introduce Myopic Subspace Theory (MST), a new theoretical framework that mathematically formulates the Multiple Views effect and writes subspace selection as a stochastic optimization problem. Based on MST, we introduce V-GAN, a generative method trained to solve such an optimization problem. This approach avoids any exhaustive search over the feature space while ensuring that the intrinsic data structure is preserved. Experiments on 42 real-world datasets show that using V-GAN subspaces to build ensemble methods leads to a significant increase in one-class classification performance -- compared to existing subspace selection, feature selection, and embedding methods. Further experiments on synthetic data show that V-GAN identifies subspaces more accurately while scaling better than other relevant subspace selection methods. These results confirm the theoretical guarantees of our approach and also highlight its practical viability in high-dimensional settings.
Authors:Jonas Teufel, Annika Leinweber, Pascal Friederich
Title: Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Abstract:
Explainable AI (xAI) interventions aim to improve interpretability for complex black-box models, not only to improve user trust but also as a means to extract scientific insights from high-performing predictive systems. In molecular property prediction, counterfactual explanations offer a way to understand predictive behavior by highlighting which minimal perturbations in the input molecular structure cause the greatest deviation in the predicted property. However, such explanations only allow for meaningful scientific insights if they reflect the distribution of the true underlying property -- a feature we define as counterfactual truthfulness. To increase this truthfulness, we propose the integration of uncertainty estimation techniques to filter counterfactual candidates with high predicted uncertainty. Through computational experiments with synthetic and real-world datasets, we demonstrate that traditional uncertainty estimation methods, such as ensembles and mean-variance estimation, can already substantially reduce the average prediction error and increase counterfactual truthfulness, especially for out-of-distribution settings. Our results highlight the importance and potential impact of incorporating uncertainty estimation into explainability methods, especially considering the relatively high effectiveness of low-effort interventions like model ensembles.
Authors:Yinghe Zhang, Chi Liu, Shuai Zhou, Sheng Shen, Peng Gui
Title: Unleashing the Power of Pre-trained Encoders for Universal Adversarial Attack Detection
Abstract:
Adversarial attacks pose a critical security threat to real-world AI systems by injecting human-imperceptible perturbations into benign samples to induce misclassification in deep learning models. While existing detection methods, such as Bayesian uncertainty estimation and activation pattern analysis, have achieved progress through feature engineering, their reliance on handcrafted feature design and prior knowledge of attack patterns limits generalization capabilities and incurs high engineering costs. To address these limitations, this paper proposes a lightweight adversarial detection framework based on the large-scale pre-trained vision-language model CLIP. Departing from conventional adversarial feature characterization paradigms, we innovatively adopt an anomaly detection perspective. By jointly fine-tuning CLIP's dual visual-text encoders with trainable adapter networks and learnable prompts, we construct a compact representation space tailored for natural images. Notably, our detection architecture achieves substantial improvements in generalization capability across both known and unknown attack patterns compared to traditional methods, while significantly reducing training overhead. This study provides a novel technical pathway for establishing a parameter-efficient and attack-agnostic defense paradigm, markedly enhancing the robustness of vision systems against evolving adversarial threats.
Authors:Damian Boborzi, Phillip Mueller, Jonas Emrich, Dominik Schmid, Sebastian Mueller, Lars Mikelsons
Title: MeshFleet: Filtered and Annotated 3D Vehicle Dataset for Domain Specific Generative Modeling
Abstract:
Generative models have recently made remarkable progress in the field of 3D objects. However, their practical application in fields like engineering remains limited since they fail to deliver the accuracy, quality, and controllability needed for domain-specific tasks. Fine-tuning large generative models is a promising perspective for making these models available in these fields. Creating high-quality, domain-specific 3D datasets is crucial for fine-tuning large generative models, yet the data filtering and annotation process remains a significant bottleneck. We present MeshFleet, a filtered and annotated 3D vehicle dataset extracted from Objaverse-XL, the most extensive publicly available collection of 3D objects. Our approach proposes a pipeline for automated data filtering based on a quality classifier. This classifier is trained on a manually labeled subset of Objaverse, incorporating DINOv2 and SigLIP embeddings, refined through caption-based analysis and uncertainty estimation. We demonstrate the efficacy of our filtering method through a comparative analysis against caption and image aesthetic score-based techniques and fine-tuning experiments with SV3D, highlighting the importance of targeted data selection for domain-specific 3D generative modeling.
Authors:Mohit Prashant, Arvind Easwaran, Suman Das, Michael Yuhas
Title: Guaranteeing Out-Of-Distribution Detection in Deep RL via Transition Estimation
Abstract:
An issue concerning the use of deep reinforcement learning (RL) agents is whether they can be trusted to perform reliably when deployed, as training environments may not reflect real-life environments. Anticipating instances outside their training scope, learning-enabled systems are often equipped with out-of-distribution (OOD) detectors that alert when a trained system encounters a state it does not recognize or in which it exhibits uncertainty. There exists limited work conducted on the problem of OOD detection within RL, with prior studies being unable to achieve a consensus on the definition of OOD execution within the context of RL. By framing our problem using a Markov Decision Process, we assume there is a transition distribution mapping each state-action pair to another state with some probability. Based on this, we consider the following definition of OOD execution within RL: A transition is OOD if its probability during real-life deployment differs from the transition distribution encountered during training. As such, we utilize conditional variational autoencoders (CVAE) to approximate the transition dynamics of the training environment and implement a conformity-based detector using reconstruction loss that is able to guarantee OOD detection with a pre-determined confidence level. We evaluate our detector by adapting existing benchmarks and compare it with existing OOD detection models for RL.
Authors:Zhiqiu Xia, Jinxuan Xu, Yuqian Zhang, Hang Liu
Title: A Survey of Uncertainty Estimation Methods on Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, these models could offer biased, hallucinated, or non-factual responses camouflaged by their fluency and realistic appearance. Uncertainty estimation is the key method to address this challenge. While research efforts in uncertainty estimation are ramping up, there is a lack of comprehensive and dedicated surveys on LLM uncertainty estimation. This survey presents four major avenues of LLM uncertainty estimation. Furthermore, we perform extensive experimental evaluations across multiple methods and datasets. At last, we provide critical and promising future directions for LLM uncertainty estimation.
Authors:Natalie Grabowsky, Annika Mütze, Joshua Wendland, Nils Jansen, Matthias Rottmann
Title: Does Knowledge About Perceptual Uncertainty Help an Agent in Automated Driving?
Abstract:
Agents in real-world scenarios like automated driving deal with uncertainty in their environment, in particular due to perceptual uncertainty. Although, reinforcement learning is dedicated to autonomous decision-making under uncertainty these algorithms are typically not informed about the uncertainty currently contained in their environment. On the other hand, uncertainty estimation for perception itself is typically directly evaluated in the perception domain, e.g., in terms of false positive detection rates or calibration errors based on camera images. Its use for deciding on goal-oriented actions remains largely unstudied. In this paper, we investigate how an agent's behavior is influenced by an uncertain perception and how this behavior changes if information about this uncertainty is available. Therefore, we consider a proxy task, where the agent is rewarded for driving a route as fast as possible without colliding with other road users. For controlled experiments, we introduce uncertainty in the observation space by perturbing the perception of the given agent while informing the latter. Our experiments show that an unreliable observation space modeled by a perturbed perception leads to a defensive driving behavior of the agent. Furthermore, when adding the information about the current uncertainty directly to the observation space, the agent adapts to the specific situation and in general accomplishes its task faster while, at the same time, accounting for risks.
Authors:Meshi Bashari, Matteo Sesia, Yaniv Romano
Title: Robust Conformal Outlier Detection under Contaminated Reference Data
Abstract:
Conformal prediction is a flexible framework for calibrating machine learning predictions, providing distribution-free statistical guarantees. In outlier detection, this calibration relies on a reference set of labeled inlier data to control the type-I error rate. However, obtaining a perfectly labeled inlier reference set is often unrealistic, and a more practical scenario involves access to a contaminated reference set containing a small fraction of outliers. This paper analyzes the impact of such contamination on the validity of conformal methods. We prove that under realistic, non-adversarial settings, calibration on contaminated data yields conservative type-I error control, shedding light on the inherent robustness of conformal methods. This conservativeness, however, typically results in a loss of power. To alleviate this limitation, we propose a novel, active data-cleaning framework that leverages a limited labeling budget and an outlier detection model to selectively annotate data points in the contaminated reference set that are suspected as outliers. By removing only the annotated outliers in this ``suspicious'' subset, we can effectively enhance power while mitigating the risk of inflating the type-I error rate, as supported by our theoretical analysis. Experiments on real datasets validate the conservative behavior of conformal methods under contamination and show that the proposed data-cleaning strategy improves power without sacrificing validity.
Authors:Alejandro Antón Ruiz, John Kvarnstrand, Klas Arvidsson, Andrés Alayón Glazunov
Title: RC Measurement Uncertainty Estimation Method for Directive Antennas and Turntable Stirring
Abstract:
This paper investigates measurement uncertainty in a Reverberation Chamber (RC) within the lower FR2 bands (24.25-29.5 GHz). The study focuses on the impact of several factors contributing to RC measurement uncertainty, including finite sample size, polarization imbalance, and spatial non-uniformity. A series of 24 measurements were conducted using a horn antenna, known for its directivity in mmWave frequencies, varying antenna parameters such as height, orientation, position on the turntable, and polarization within a predefined chamber volume. The measurement uncertainty was evaluated by a method based on the standardized 3GPP and CTIA approaches, incorporating uncorrelated measurements and analyzing Pearson correlation coefficients between measurement pairs. An analysis of variance (ANOVA) was performed on the frequency-averaged power transfer function to identify the significance and impact of each variable on measurement variability. Additionally, the K-factor was estimated for each measurement set as part of the RC characterization, using an alternative approach to account for the turntable stirring effect. The findings highlight which variables most significantly influence measurement uncertainty, where the antenna orientation emerges as the most significant factor for the mmWave directive antenna setup.
Authors:Amanda S. Rios, Ibrahima J. Ndiour, Parual Datta, Jaroslaw Sydir, Omesh Tickoo, Nilesh Ahuja
Title: Uncertainty Quantification in Continual Open-World Learning
Abstract:
AI deployed in the real-world should be capable of autonomously adapting to novelties encountered after deployment. Yet, in the field of continual learning, the reliance on novelty and labeling oracles is commonplace albeit unrealistic. This paper addresses a challenging and under-explored problem: a deployed AI agent that continuously encounters unlabeled data - which may include both unseen samples of known classes and samples from novel (unknown) classes - and must adapt to it continuously. To tackle this challenge, we propose our method COUQ "Continual Open-world Uncertainty Quantification", an iterative uncertainty estimation algorithm tailored for learning in generalized continual open-world multi-class settings. We rigorously apply and evaluate COUQ on key sub-tasks in the Continual Open-World: continual novelty detection, uncertainty guided active learning, and uncertainty guided pseudo-labeling for semi-supervised CL. We demonstrate the effectiveness of our method across multiple datasets, ablations, backbones and performance superior to state-of-the-art.
Authors:Amanda Rios, Ibrahima Ndiour, Parual Datta, Omesh Tickoo, Nilesh Ahuja
Title: CONCLAD: COntinuous Novel CLAss Detector
Abstract:
In the field of continual learning, relying on so-called oracles for novelty detection is commonplace albeit unrealistic. This paper introduces CONCLAD ("COntinuous Novel CLAss Detector"), a comprehensive solution to the under-explored problem of continual novel class detection in post-deployment data. At each new task, our approach employs an iterative uncertainty estimation algorithm to differentiate between known and novel class(es) samples, and to further discriminate between the different novel classes themselves. Samples predicted to be from a novel class with high-confidence are automatically pseudo-labeled and used to update our model. Simultaneously, a tiny supervision budget is used to iteratively query ambiguous novel class predictions, which are also used during update. Evaluation across multiple datasets, ablations and experimental settings demonstrate our method's effectiveness at separating novel and old class samples continuously. We will release our code upon acceptance.
Authors:Amanda Rios, Ibrahima Ndiour, Parual Datta, Jerry Sydir, Omesh Tickoo, Nilesh Ahuja
Title: CUAL: Continual Uncertainty-aware Active Learner
Abstract:
AI deployed in many real-world use cases should be capable of adapting to novelties encountered after deployment. Here, we consider a challenging, under-explored and realistic continual adaptation problem: a deployed AI agent is continuously provided with unlabeled data that may contain not only unseen samples of known classes but also samples from novel (unknown) classes. In such a challenging setting, it has only a tiny labeling budget to query the most informative samples to help it continuously learn. We present a comprehensive solution to this complex problem with our model "CUAL" (Continual Uncertainty-aware Active Learner). CUAL leverages an uncertainty estimation algorithm to prioritize active labeling of ambiguous (uncertain) predicted novel class samples while also simultaneously pseudo-labeling the most certain predictions of each class. Evaluations across multiple datasets, ablations, settings and backbones (e.g. ViT foundation model) demonstrate our method's effectiveness. We will release our code upon acceptance.
Authors:Anuja Vats, Ivar Farup, Marius Pedersen, Kiran Raja
Title: Uncertainty-Aware Regularization for Image-to-Image Translation
Abstract:
The importance of quantifying uncertainty in deep networks has become paramount for reliable real-world applications. In this paper, we propose a method to improve uncertainty estimation in medical Image-to-Image (I2I) translation. Our model integrates aleatoric uncertainty and employs Uncertainty-Aware Regularization (UAR) inspired by simple priors to refine uncertainty estimates and enhance reconstruction quality. We show that by leveraging simple priors on parameters, our approach captures more robust uncertainty maps, effectively refining them to indicate precisely where the network encounters difficulties, while being less affected by noise. Our experiments demonstrate that UAR not only improves translation performance, but also provides better uncertainty estimations, particularly in the presence of noise and artifacts. We validate our approach using two medical imaging datasets, showcasing its effectiveness in maintaining high confidence in familiar regions while accurately identifying areas of uncertainty in novel/ambiguous scenarios.
Authors:Marvin Alles, Philip Becker-Ehmck, Patrick van der Smagt, Maximilian Karl
Title: Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning
Abstract:
In offline reinforcement learning, a policy is learned using a static dataset in the absence of costly feedback from the environment. In contrast to the online setting, only using static datasets poses additional challenges, such as policies generating out-of-distribution samples. Model-based offline reinforcement learning methods try to overcome these by learning a model of the underlying dynamics of the environment and using it to guide policy search. It is beneficial but, with limited datasets, errors in the model and the issue of value overestimation among out-of-distribution states can worsen performance. Current model-based methods apply some notion of conservatism to the Bellman update, often implemented using uncertainty estimation derived from model ensembles. In this paper, we propose Constrained Latent Action Policies (C-LAP) which learns a generative model of the joint distribution of observations and actions. We cast policy learning as a constrained objective to always stay within the support of the latent action distribution, and use the generative capabilities of the model to impose an implicit constraint on the generated actions. Thereby eliminating the need to use additional uncertainty penalties on the Bellman update and significantly decreasing the number of gradient steps required to learn a policy. We empirically evaluate C-LAP on the D4RL and V-D4RL benchmark, and show that C-LAP is competitive to state-of-the-art methods, especially outperforming on datasets with visual observations.
Authors:Jingyao Geng, Yuan Zhang, Jiaqi Huang, Feng Xue, Falong Tan, Chuanlong Xie, Shumei Zhang
Title: DSDE: Using Proportion Estimation to Improve Model Selection for Out-of-Distribution Detection
Abstract:
Model library is an effective tool for improving the performance of single-model Out-of-Distribution (OoD) detector, mainly through model selection and detector fusion. However, existing methods in the literature do not provide uncertainty quantification for model selection results. Additionally, the model ensemble process primarily focuses on controlling the True Positive Rate (TPR) while neglecting the False Positive Rate (FPR). In this paper, we emphasize the significance of the proportion of models in the library that identify the test sample as an OoD sample. This proportion holds crucial information and directly influences the error rate of OoD detection.To address this, we propose inverting the commonly-used sequential p-value strategies. We define the rejection region initially and then estimate the error rate. Furthermore, we introduce a novel perspective from change-point detection and propose an approach for proportion estimation with automatic hyperparameter selection. We name the proposed approach as DOS-Storey-based Detector Ensemble (DSDE). Experimental results on CIFAR10 and CIFAR100 demonstrate the effectiveness of our approach in tackling OoD detection challenges. Specifically, the CIFAR10 experiments show that DSDE reduces the FPR from 11.07% to 3.31% compared to the top-performing single-model detector.
Authors:Qidong Yang, Weicheng Zhu, Joseph Keslin, Laure Zanna, Tim G. J. Rudner, Carlos Fernandez-Granda
Title: A Monte Carlo Framework for Calibrated Uncertainty Estimation in Sequence Prediction
Abstract:
Probabilistic prediction of sequences from images and other high-dimensional data is a key challenge, particularly in risk-sensitive applications. In these settings, it is often desirable to quantify the uncertainty associated with the prediction (instead of just determining the most likely sequence, as in language modeling). In this paper, we propose a Monte Carlo framework to estimate probabilities and confidence intervals associated with the distribution of a discrete sequence. Our framework uses a Monte Carlo simulator, implemented as an autoregressively trained neural network, to sample sequences conditioned on an image input. We then use these samples to estimate the probabilities and confidence intervals. Experiments on synthetic and real data show that the framework produces accurate discriminative predictions, but can suffer from miscalibration. In order to address this shortcoming, we propose a time-dependent regularization method, which is shown to produce calibrated predictions.
Authors:Simon Thel, Lars Greve, Maximilian Karl, Patrick van der Smagt
Title: Adapting Deep Variational Bayes Filter for Enhanced Confidence Estimation in Finite Element Method Integrated Networks (FEMIN)
Abstract:
The Finite Element Method (FEM) is a widely used technique for simulating crash scenarios with high accuracy and reliability. To reduce the significant computational costs associated with FEM, the Finite Element Method Integrated Networks (FEMIN) framework integrates neural networks (NNs) with FEM solvers. However, this integration can introduce errors and deviations from full-FEM simulations, highlighting the need for an additional metric to assess prediction confidence, especially when no ground truth data is available. In this study, we adapt the Deep Variational Bayes Filter (DVBF) to the FEMIN framework, incorporating a probabilistic approach to provide qualitative insights into prediction confidence during FEMIN simulations. The adaptation involves using the learned transition model for a predictive decoding step, generating a preliminary force prediction. This predictive force is used alongside the displacement and the velocity data from the FEM solver as input for the encoder model. The decoder reconstructs the likelihood distribution based on the posterior. The mean force of this distribution is applied to the FEM solver, while the predicted standard deviation can be used for uncertainty estimation. Our findings demonstrate that the DVBF outperforms deterministic NN architectures in terms of accuracy. Furthermore, the standard deviation derived from the decoder serves as a valuable qualitative metric for assessing the confidence in FEMIN simulations. This approach enhances the robustness of FEMIN by providing a measure of reliability alongside the simulation results.
Authors:Wei Liu, Jiaqi Zhu, Guirong Zhuo, Wufei Fu, Zonglin Meng, Yishi Lu, Min Hua, Feng Qiao, You Li, Yi He, Lu Xiong
Title: UniMSF: A Unified Multi-Sensor Fusion Framework for Intelligent Transportation System Global Localization
Abstract:
Intelligent transportation systems (ITS) localization is of significant importance as it provides fundamental position and orientation for autonomous operations like intelligent vehicles. Integrating diverse and complementary sensors such as global navigation satellite system (GNSS) and 4D-radar can provide scalable and reliable global localization. Nevertheless, multi-sensor fusion encounters challenges including heterogeneity and time-varying uncertainty in measurements. Consequently, developing a reliable and unified multi-sensor framework remains challenging. In this paper, we introduce UniMSF, a comprehensive multi-sensor fusion localization framework for ITS, utilizing factor graphs. By integrating a multi-sensor fusion front-end, alongside outlier detection\&noise model estimation, and a factor graph optimization back-end, this framework accomplishes efficient fusion and ensures accurate localization for ITS. Specifically, in the multi-sensor fusion front-end module, we tackle the measurement heterogeneity among different modality sensors and establish effective measurement models. Reliable outlier detection and data-driven online noise estimation methods ensure that back-end optimization is immune to interference from outlier measurements. In addition, integrating multi-sensor observations via factor graph optimization offers the advantage of \enquote{plug and play}. Notably, our framework features high modularity and is seamlessly adapted to various sensor configurations. We demonstrate the effectiveness of the proposed framework through real vehicle tests by tightly integrating GNSS pseudorange and carrier phase information with IMU, and 4D-radar.
Authors:Viacheslav Barkov, Jonas Schmidinger, Robin Gebbers, Martin Atzmueller
Title: An Efficient Model-Agnostic Approach for Uncertainty Estimation in Data-Restricted Pedometric Applications
Abstract:
This paper introduces a model-agnostic approach designed to enhance uncertainty estimation in the predictive modeling of soil properties, a crucial factor for advancing pedometrics and the practice of digital soil mapping. For addressing the typical challenge of data scarcity in soil studies, we present an improved technique for uncertainty estimation. This method is based on the transformation of regression tasks into classification problems, which not only allows for the production of reliable uncertainty estimates but also enables the application of established machine learning algorithms with competitive performance that have not yet been utilized in pedometrics. Empirical results from datasets collected from two German agricultural fields showcase the practical application of the proposed methodology. Our results and findings suggest that the proposed approach has the potential to provide better uncertainty estimation than the models commonly used in pedometrics.
Authors:Junyu Gao, Mengyuan Chen, Liangyu Xiang, Changsheng Xu
Title: A Comprehensive Survey on Evidential Deep Learning and Its Applications
Abstract:
Reliable uncertainty estimation has become a crucial requirement for the industrial deployment of deep learning algorithms, particularly in high-risk applications such as autonomous driving and medical diagnosis. However, mainstream uncertainty estimation methods, based on deep ensembling or Bayesian neural networks, generally impose substantial computational overhead. To address this challenge, a novel paradigm called Evidential Deep Learning (EDL) has emerged, providing reliable uncertainty estimation with minimal additional computation in a single forward pass. This survey provides a comprehensive overview of the current research on EDL, designed to offer readers a broad introduction to the field without assuming prior knowledge. Specifically, we first delve into the theoretical foundation of EDL, the subjective logic theory, and discuss its distinctions from other uncertainty estimation frameworks. We further present existing theoretical advancements in EDL from four perspectives: reformulating the evidence collection process, improving uncertainty estimation via OOD samples, delving into various training strategies, and evidential regression networks. Thereafter, we elaborate on its extensive applications across various machine learning paradigms and downstream tasks. In the end, an outlook on future directions for better performances and broader adoption of EDL is provided, highlighting potential research avenues.
Authors:Shanu Saklani, Tushar M. Athawale, Nairita Pal, David Pugmire, Christopher R. Johnson, Soumya Dutta
Title: REV-INR: Regularized Evidential Implicit Neural Representation for Uncertainty-Aware Volume Visualization
Abstract:
Applications of Implicit Neural Representations (INRs) have emerged as a promising deep learning approach for compactly representing large volumetric datasets. These models can act as surrogates for volume data, enabling efficient storage and on-demand reconstruction via model predictions. However, conventional deterministic INRs only provide value predictions without insights into the model's prediction uncertainty or the impact of inherent noisiness in the data. This limitation can lead to unreliable data interpretation and visualization due to prediction inaccuracies in the reconstructed volume. Identifying erroneous results extracted from model-predicted data may be infeasible, as raw data may be unavailable due to its large size. To address this challenge, we introduce REV-INR, Regularized Evidential Implicit Neural Representation, which learns to predict data values accurately along with the associated coordinate-level data uncertainty and model uncertainty using only a single forward pass of the trained REV-INR during inference. By comprehensively comparing and contrasting REV-INR with existing well-established deep uncertainty estimation methods, we show that REV-INR achieves the best volume reconstruction quality with robust data (aleatoric) and model (epistemic) uncertainty estimates using the fastest inference time. Consequently, we demonstrate that REV-INR facilitates assessment of the reliability and trustworthiness of the extracted isosurfaces and volume visualization results, enabling analyses to be solely driven by model-predicted data.
Authors:Sixian Jia, Ruo-Syuan Mei, Chenhui Shao
Title: Adaptive few-shot learning for robust part quality classification in two-photon lithography
Abstract:
Two-photon lithography (TPL) is an advanced additive manufacturing (AM) technique for fabricating high-precision micro-structures. While computer vision (CV) is proofed for automated quality control, existing models are often static, rendering them ineffective in dynamic manufacturing environments. These models typically cannot detect new, unseen defect classes, be efficiently updated from scarce data, or adapt to new part geometries. To address this gap, this paper presents an adaptive CV framework for the entire life-cycle of quality model maintenance. The proposed framework is built upon a same, scale-robust backbone model and integrates three key methodologies: (1) a statistical hypothesis testing framework based on Linear Discriminant Analysis (LDA) for novelty detection, (2) a two-stage, rehearsal-based strategy for few-shot incremental learning, and (3) a few-shot Domain-Adversarial Neural Network (DANN) for few-shot domain adaptation. The framework was evaluated on a TPL dataset featuring hemisphere as source domain and cube as target domain structures, with each domain categorized into good, minor damaged, and damaged quality classes. The hypothesis testing method successfully identified new class batches with 99-100% accuracy. The incremental learning method integrated a new class to 92% accuracy using only K=20 samples. The domain adaptation model bridged the severe domain gap, achieving 96.19% accuracy on the target domain using only K=5 shots. These results demonstrate a robust and data-efficient solution for deploying and maintaining CV models in evolving production scenarios.
Authors:Kim Jun-Seong, Tae-Hyun Oh, Eduardo Pérez-Pellitero, Youngkyoon Jang
Title: SA-ResGS: Self-Augmented Residual 3D Gaussian Splatting for Next Best View Selection
Abstract:
We propose Self-Augmented Residual 3D Gaussian Splatting (SA-ResGS), a novel framework to stabilize uncertainty quantification and enhancing uncertainty-aware supervision in next-best-view (NBV) selection for active scene reconstruction. SA-ResGS improves both the reliability of uncertainty estimates and their effectiveness for supervision by generating Self-Augmented point clouds (SA-Points) via triangulation between a training view and a rasterized extrapolated view, enabling efficient scene coverage estimation. While improving scene coverage through physically guided view selection, SA-ResGS also addresses the challenge of under-supervised Gaussians, exacerbated by sparse and wide-baseline views, by introducing the first residual learning strategy tailored for 3D Gaussian Splatting. This targeted supervision enhances gradient flow in high-uncertainty Gaussians by combining uncertainty-driven filtering with dropout- and hard-negative-mining-inspired sampling. Our contributions are threefold: (1) a physically grounded view selection strategy that promotes efficient and uniform scene coverage; (2) an uncertainty-aware residual supervision scheme that amplifies learning signals for weakly contributing Gaussians, improving training stability and uncertainty estimation across scenes with diverse camera distributions; (3) an implicit unbiasing of uncertainty quantification as a consequence of constrained view selection and residual supervision, which together mitigate conflicting effects of wide-baseline exploration and sparse-view ambiguity in NBV planning. Experiments on active view selection demonstrate that SA-ResGS outperforms state-of-the-art baselines in both reconstruction quality and view selection robustness.
Authors:Wenjing lu, Zerui Tao, Dongping Zhang, Yuning Qiu, Yang Yang, Qibin Zhao
Title: Calibrating Uncertainty for Zero-Shot Adversarial CLIP
Abstract:
CLIP delivers strong zero-shot classification but remains highly vulnerable to adversarial attacks. Previous work of adversarial fine-tuning largely focuses on matching the predicted logits between clean and adversarial examples, which overlooks uncertainty calibration and may degrade the zero-shot generalization. A common expectation in reliable uncertainty estimation is that predictive uncertainty should increase as inputs become more difficult or shift away from the training distribution. However, we frequently observe the opposite in the adversarial setting: perturbations not only degrade accuracy but also suppress uncertainty, leading to severe miscalibration and unreliable over-confidence. This overlooked phenomenon highlights a critical reliability gap beyond robustness. To bridge this gap, we propose a novel adversarial fine-tuning objective for CLIP considering both prediction accuracy and uncertainty alignments. By reparameterizing the output of CLIP as the concentration parameter of a Dirichlet distribution, we propose a unified representation that captures relative semantic structure and the magnitude of predictive confidence. Our objective aligns these distributions holistically under perturbations, moving beyond single-logit anchoring and restoring calibrated uncertainty. Experiments on multiple zero-shot classification benchmarks demonstrate that our approach effectively restores calibrated uncertainty and achieves competitive adversarial robustness while maintaining clean accuracy.
Authors:Hong Yang, Devroop Kar, Qi Yu, Alex Ororbia, Travis Desell
Title: Domain Feature Collapse: Implications for Out-of-Distribution Detection and Solutions
Abstract:
Why do state-of-the-art OOD detection methods exhibit catastrophic failure when models are trained on single-domain datasets? We provide the first theoretical explanation for this phenomenon through the lens of information theory. We prove that supervised learning on single-domain data inevitably produces domain feature collapse -- representations where I(x_d; z) = 0, meaning domain-specific information is completely discarded. This is a fundamental consequence of information bottleneck optimization: models trained on single domains (e.g., medical images) learn to rely solely on class-specific features while discarding domain features, leading to catastrophic failure when detecting out-of-domain samples (e.g., achieving only 53% FPR@95 on MNIST). We extend our analysis using Fano's inequality to quantify partial collapse in practical scenarios. To validate our theory, we introduce Domain Bench, a benchmark of single-domain datasets, and demonstrate that preserving I(x_d; z) > 0 through domain filtering (using pretrained representations) resolves the failure mode. While domain filtering itself is conceptually straightforward, its effectiveness provides strong empirical evidence for our information-theoretic framework. Our work explains a puzzling empirical phenomenon, reveals fundamental limitations of supervised learning in narrow domains, and has broader implications for transfer learning and when to fine-tune versus freeze pretrained models.
Authors:Ben Shaw, Adam Rustad, Sofia Pelagalli Maia, Jake S. Rhodes, Kevin R. Moon
Title: The Generalized Proximity Forest
Abstract:
Recent work has demonstrated the utility of Random Forest (RF) proximities for various supervised machine learning tasks, including outlier detection, missing data imputation, and visualization. However, the utility of the RF proximities depends upon the success of the RF model, which itself is not the ideal model in all contexts. RF proximities have recently been extended to time series by means of the distance-based Proximity Forest (PF) model, among others, affording time series analysis with the benefits of RF proximities. In this work, we introduce the generalized PF model, thereby extending RF proximities to all contexts in which supervised distance-based machine learning can occur. Additionally, we introduce a variant of the PF model for regression tasks. We also introduce the notion of using the generalized PF model as a meta-learning framework, extending supervised imputation capability to any pre-trained classifier. We experimentally demonstrate the unique advantages of the generalized PF model compared with both the RF model and the $k$-nearest neighbors model.
Authors:Ashley S. Dale, Kangming Li, Brian DeCost, Hao Wan, Yuchen Han, Yao Fehlis, Jason Hattrick-Simpers
Title: When Active Learning Fails, Uncalibrated Out of Distribution Uncertainty Quantification Might Be the Problem
Abstract:
Efficiently and meaningfully estimating prediction uncertainty is important for exploration in active learning campaigns in materials discovery, where samples with high uncertainty are interpreted as containing information missing from the model. In this work, the effect of different uncertainty estimation and calibration methods are evaluated for active learning when using ensembles of ALIGNN, eXtreme Gradient Boost, Random Forest, and Neural Network model architectures. We compare uncertainty estimates from ALIGNN deep ensembles to loss landscape uncertainty estimates obtained for solubility, bandgap, and formation energy prediction tasks. We then evaluate how the quality of the uncertainty estimate impacts an active learning campaign that seeks model generalization to out-of-distribution data. Uncertainty calibration methods were found to variably generalize from in-domain data to out-of-domain data. Furthermore, calibrated uncertainties were generally unsuccessful in reducing the amount of data required by a model to improve during an active learning campaign on out-of-distribution data when compared to random sampling and uncalibrated uncertainties. The impact of poor-quality uncertainty persists for random forest and eXtreme Gradient Boosting models trained on the same data for the same tasks, indicating that this is at least partially intrinsic to the data and not due to model capacity alone. Analysis of the target, in-distribution uncertainty, out-of-distribution uncertainty, and training residual distributions suggest that future work focus on understanding empirical uncertainties in the feature input space for cases where ensemble prediction variances do not accurately capture the missing information required for the model to generalize.
Authors:Kaizheng Wang, Fabio Cuzzolin, David Moens, Hans Hallez
Title: Credal Ensemble Distillation for Uncertainty Quantification
Abstract:
Deep ensembles (DE) have emerged as a powerful approach for quantifying predictive uncertainty and distinguishing its aleatoric and epistemic components, thereby enhancing model robustness and reliability. However, their high computational and memory costs during inference pose significant challenges for wide practical deployment. To overcome this issue, we propose credal ensemble distillation (CED), a novel framework that compresses a DE into a single model, CREDIT, for classification tasks. Instead of a single softmax probability distribution, CREDIT predicts class-wise probability intervals that define a credal set, a convex set of probability distributions, for uncertainty quantification. Empirical results on out-of-distribution detection benchmarks demonstrate that CED achieves superior or comparable uncertainty estimation compared to several existing baselines, while substantially reducing inference overhead compared to DE.
Authors:Prithvi Raj Singh, Raju Gottumukkala, Anthony S. Maida, Alan B. Barhorst, Vijaya Gopu
Title: Physics-Guided Fusion for Robust 3D Tracking of Fast Moving Small Objects
Abstract:
While computer vision has advanced considerably for general object detection and tracking, the specific problem of fast-moving tiny objects remains underexplored. This paper addresses the significant challenge of detecting and tracking rapidly moving small objects using an RGB-D camera. Our novel system combines deep learning-based detection with physics-based tracking to overcome the limitations of existing approaches. Our contributions include: (1) a comprehensive system design for object detection and tracking of fast-moving small objects in 3D space, (2) an innovative physics-based tracking algorithm that integrates kinematics motion equations to handle outliers and missed detections, and (3) an outlier detection and correction module that significantly improves tracking performance in challenging scenarios such as occlusions and rapid direction changes. We evaluated our proposed system on a custom racquetball dataset. Our evaluation shows our system surpassing kalman filter based trackers with up to 70\% less Average Displacement Error. Our system has significant applications for improving robot perception on autonomous platforms and demonstrates the effectiveness of combining physics-based models with deep learning approaches for real-time 3D detection and tracking of challenging small objects.
Authors:Jinlun Ye, Zhuohao Sun, Yiqiao Qiu, Qiu Li, Zhijun Tan, Ruixuan Wang
Title: Local Background Features Matter in Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial when deploying deep neural networks in the real world to ensure the reliability and safety of their applications. One main challenge in OOD detection is that neural network models often produce overconfident predictions on OOD data. While some methods using auxiliary OOD datasets or generating fake OOD images have shown promising OOD detection performance, they are limited by the high costs of data collection and training. In this study, we propose a novel and effective OOD detection method that utilizes local background features as fake OOD features for model training. Inspired by the observation that OOD images generally share similar background regions with ID images, the background features are extracted from ID images as simulated OOD visual representations during training based on the local invariance of convolution. Through being optimized to reduce the $L_2$-norm of these background features, the neural networks are able to alleviate the overconfidence issue on OOD data. Extensive experiments on multiple standard OOD detection benchmarks confirm the effectiveness of our method and its wide combinatorial compatibility with existing post-hoc methods, with new state-of-the-art performance achieved from our method.
Authors:Ali Sarabadani, Kheirolah Rahsepar Fard
Title: MultiCNKG: Integrating Cognitive Neuroscience, Gene, and Disease Knowledge Graphs Using Large Language Models
Abstract:
The advent of large language models (LLMs) has revolutionized the integration of knowledge graphs (KGs) in biomedical and cognitive sciences, overcoming limitations in traditional machine learning methods for capturing intricate semantic links among genes, diseases, and cognitive processes. We introduce MultiCNKG, an innovative framework that merges three key knowledge sources: the Cognitive Neuroscience Knowledge Graph (CNKG) with 2.9K nodes and 4.3K edges across 9 node types and 20 edge types; Gene Ontology (GO) featuring 43K nodes and 75K edges in 3 node types and 4 edge types; and Disease Ontology (DO) comprising 11.2K nodes and 8.8K edges with 1 node type and 2 edge types. Leveraging LLMs like GPT-4, we conduct entity alignment, semantic similarity computation, and graph augmentation to create a cohesive KG that interconnects genetic mechanisms, neurological disorders, and cognitive functions. The resulting MultiCNKG encompasses 6.9K nodes across 5 types (e.g., Genes, Diseases, Cognitive Processes) and 11.3K edges spanning 7 types (e.g., Causes, Associated with, Regulates), facilitating a multi-layered view from molecular to behavioral domains. Assessments using metrics such as precision (85.20%), recall (87.30%), coverage (92.18%), graph consistency (82.50%), novelty detection (40.28%), and expert validation (89.50%) affirm its robustness and coherence. Link prediction evaluations with models like TransE (MR: 391, MRR: 0.411) and RotatE (MR: 263, MRR: 0.395) show competitive performance against benchmarks like FB15k-237 and WN18RR. This KG advances applications in personalized medicine, cognitive disorder diagnostics, and hypothesis formulation in cognitive neuroscience.
Authors:Hong Sun, Joshua A. Vita, Amit Samanta, Vincenzo Lordi
Title: Unsupervised Atomic Data Mining via Multi-Kernel Graph Autoencoders for Machine Learning Force Fields
Abstract:
Constructing a chemically diverse dataset while avoiding sampling bias is critical to training efficient and generalizable force fields. However, in computational chemistry and materials science, many common dataset generation techniques are prone to oversampling regions of the potential energy surface. Furthermore, these regions can be difficult to identify and isolate from each other or may not align well with human intuition, making it challenging to systematically remove bias in the dataset. While traditional clustering and pruning (down-sampling) approaches can be useful for this, they can often lead to information loss or a failure to properly identify distinct regions of the potential energy surface due to difficulties associated with the high dimensionality of atomic descriptors. In this work, we introduce the Multi-kernel Edge Attention-based Graph Autoencoder (MEAGraph) model, an unsupervised approach for analyzing atomic datasets. MEAGraph combines multiple linear kernel transformations with attention-based message passing to capture geometric sensitivity and enable effective dataset pruning without relying on labels or extensive training. Demonstrated applications on niobium, tantalum, and iron datasets show that MEAGraph efficiently groups similar atomic environments, allowing for the use of basic pruning techniques for removing sampling bias. This approach provides an effective method for representation learning and clustering that can be used for data analysis, outlier detection, and dataset optimization.
Authors:Akito Shinohara, Kohei Fukuda, Hiroaki Aizawa
Title: Logit Mixture Outlier Exposure for Fine-grained Out-of-Distribution Detection
Abstract:
The ability to detect out-of-distribution data is essential not only for ensuring robustness against unknown or unexpected input data but also for improving the generalization performance of the model. Among various out-of-distribution detection methods, Outlier Exposure and Mixture Outlier Exposure are promising approaches that enhance out-of-distribution detection performance by exposing the outlier data during training. However, even with these sophisticated techniques, it remains challenging for models to learn the relationships between classes effectively and to distinguish data sampling from in-distribution and out-of-distribution clearly. Therefore, we focus on the logit space, where the properties between class-wise distributions are distinctly separated from those in the input or feature spaces. Specifically, we propose a linear interpolation technique in the logit space that mixes in-distribution and out-of-distribution data to facilitate smoothing logits between classes and improve the out-of-distribution detection performance, particularly for out-of-distribution data that lie close to the in-distribution data. Additionally, we enforce consistency between the logits obtained through mixing in the logit space and those generated via mixing in the input space. Our experiments demonstrate that our logit-space mixing technique reduces the abrupt fluctuations in the model outputs near the decision boundaries, resulting in smoother and more reliable separation between in-distribution and out-of-distribution data. Furthermore, we evaluate the effectiveness of the proposed method on a fine-grained out-of-distribution detection task.
Authors:Jeremiah Fadugba, Petru Manescu, Bolanle Oladejo, Delmiro Fernandez-Reyes, Philipp Berens
Title: Uncertainty-Aware Retinal Vessel Segmentation via Ensemble Distillation
Abstract:
Uncertainty estimation is critical for reliable medical image segmentation, particularly in retinal vessel analysis, where accurate predictions are essential for diagnostic applications. Deep Ensembles, where multiple networks are trained individually, are widely used to improve medical image segmentation performance. However, training and testing costs increase with the number of ensembles. In this work, we propose Ensemble Distillation as a robust alternative to commonly used uncertainty estimation techniques by distilling the knowledge of multiple ensemble models into a single model. Through extensive experiments on the DRIVE and FIVES datasets, we demonstrate that Ensemble Distillation achieves comparable performance via calibration and segmentation metrics, while significantly reducing computational complexity. These findings suggest that Ensemble distillation provides an efficient and reliable approach for uncertainty estimation in the segmentation of the retinal vessels, making it a promising tool for medical imaging applications.
Authors:Jad Yehya, Mansour Benbakoura, Cédric Allain, Benoît Malezieux, Matthieu Kowalski, Thomas Moreau
Title: RoseCDL: Robust and Scalable Convolutional Dictionary Learning for Rare-event Detection
Abstract:
Identifying recurring patterns and rare events in large-scale signals is a fundamental challenge in fields such as astronomy, physical simulations, and biomedical science. Convolutional Dictionary Learning (CDL) offers a powerful framework for modeling local structures in signals, but its use for detecting rare or anomalous events remains largely unexplored. In particular, CDL faces two key challenges in this setting: high computational cost and sensitivity to artifacts and outliers. In this paper, we introduce RoseCDL, a scalable and robust CDL algorithm designed for unsupervised rare event detection in long signals. RoseCDL combines stochastic windowing for efficient training on large datasets with inline outlier detection to enhance robustness and isolate anomalous patterns. This reframes CDL as a practical tool for event discovery and characterization in real-world signals, extending its role beyond traditional tasks like compression or denoising.
Authors:Xueying Wu, Baijun Zhou, Zhihui Gao, Yuzhe Fu, Qilin Zheng, Yintao He, Hai Li
Title: KLLM: Fast LLM Inference with K-Means Quantization
Abstract:
Large language model (LLM) inference poses significant challenges due to its intensive memory and computation demands. Weight and activation quantization (WAQ) offers a promising solution by reducing both memory footprint and arithmetic complexity. Traditional WAQ designs rely on uniform integer quantization for hardware efficiency, but often suffer from significant model performance degradation at low precision. In contrast, K-Means quantization, a non-uniform technique, achieves higher accuracy by aligning with the Gaussian-like distributions of weights and activations in LLMs. However, two key challenges prevent the efficient deployment of K-Means-based WAQ designs for LLM inference: (1) The non-uniform structure of K-Means-quantized data precludes direct execution on low-precision compute units, necessitating dequantization and floating-point matrix multiplications (MatMuls) during inference. (2) Activation outliers hinder effective low-precision quantization. Offline thresholding methods for outlier detection degrade model performance substantially, while existing online detection techniques introduce significant runtime overhead. To address the aforementioned challenges and fully unleash the potential of K-Means-based WAQ for LLM inference, in this paper, we propose KLLM, an LLM inference accelerator for efficient execution with K-Means-quantized weights and activations. KLLM features an index-based computation scheme for efficient execution of MatMuls and nonlinear operations on K-Means-quantized data, which avoids most of the dequantization and full-precision computations. Moreover, KLLM incorporates a lightweight outlier detection engine, Orizuru, that efficiently identifies the top-$k$ largest and smallest elements in the activation data stream during online inference.
Authors:Koen Vellenga, H. Joe Steinhauer, Göran Falkman, Jonas Andersson, Anders Sjögren
Title: Last Layer Hamiltonian Monte Carlo
Abstract:
We explore the use of Hamiltonian Monte Carlo (HMC) sampling as a probabilistic last layer approach for deep neural networks (DNNs). While HMC is widely regarded as a gold standard for uncertainty estimation, the computational demands limit its application to large-scale datasets and large DNN architectures. Although the predictions from the sampled DNN parameters can be parallelized, the computational cost still scales linearly with the number of samples (similar to an ensemble). Last layer HMC (LL--HMC) reduces the required computations by restricting the HMC sampling to the final layer of a DNN, making it applicable to more data-intensive scenarios with limited computational resources. In this paper, we compare LL-HMC against five last layer probabilistic deep learning (LL-PDL) methods across three real-world video datasets for driver action and intention. We evaluate the in-distribution classification performance, calibration, and out-of-distribution (OOD) detection. Due to the stochastic nature of the probabilistic evaluations, we performed five grid searches for different random seeds to avoid being reliant on a single initialization for the hyperparameter configurations. The results show that LL--HMC achieves competitive in-distribution classification and OOD detection performance. Additional sampled last layer parameters do not improve the classification performance, but can improve the OOD detection. Multiple chains or starting positions did not yield consistent improvements.
Authors:Hanlin Cai, Haofan Dong, Houtianfu Wang, Kai Li, Ozgur B. Akan
Title: Graph Representation-based Model Poisoning on Federated Large Language Models
Abstract:
Federated large language models (FedLLMs) enable powerful generative capabilities within wireless networks while preserving data privacy. Nonetheless, FedLLMs remain vulnerable to model poisoning attacks. This article first reviews recent advancements in model poisoning techniques and existing defense mechanisms for FedLLMs, underscoring critical limitations, especially when dealing with non-IID textual data distributions. Current defense strategies predominantly employ distance or similarity-based outlier detection mechanisms, relying on the assumption that malicious updates markedly differ from benign statistical patterns. However, this assumption becomes inadequate against adaptive adversaries targeting billion-parameter LLMs. The article further investigates graph representation-based model poisoning (GRMP), an emerging attack paradigm that exploits higher-order correlations among benign client gradients to craft malicious updates indistinguishable from legitimate ones. GRMP can effectively circumvent advanced defense systems, causing substantial degradation in model accuracy and overall performance. Moreover, the article outlines a forward-looking research roadmap that emphasizes the necessity of graph-aware secure aggregation methods, specialized vulnerability metrics tailored for FedLLMs, and evaluation frameworks to enhance the robustness of federated language model deployments.
Authors:Deepak Kumar Panda, Weisi Guo
Title: Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
Abstract:
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
Authors:Yuhui Zhang, Dongshen Wu, Yuichiro Wada, Takafumi Kanamori
Title: TULiP: Test-time Uncertainty Estimation via Linearization and Weight Perturbation
Abstract:
A reliable uncertainty estimation method is the foundation of many modern out-of-distribution (OOD) detectors, which are critical for safe deployments of deep learning models in the open world. In this work, we propose TULiP, a theoretically-driven post-hoc uncertainty estimator for OOD detection. Our approach considers a hypothetical perturbation applied to the network before convergence. Based on linearized training dynamics, we bound the effect of such perturbation, resulting in an uncertainty score computable by perturbing model parameters. Ultimately, our approach computes uncertainty from a set of sampled predictions. We visualize our bound on synthetic regression and classification datasets. Furthermore, we demonstrate the effectiveness of TULiP using large-scale OOD detection benchmarks for image classification. Our method exhibits state-of-the-art performance, particularly for near-distribution samples.
Authors:Marko Tuononen, Heikki Penttinen, Duy Vu, Dani Korpi, Vesa Starck, Ville Hautamäki
Title: Out-of-Distribution Detection via Channelwise Feature Aggregation in Neural Network-Based Receivers
Abstract:
Neural network-based radio receivers are expected to play a key role in future wireless systems, making reliable Out-Of-Distribution (OOD) detection essential. We propose a post-hoc, layerwise OOD framework based on channelwise feature aggregation that avoids classwise statistics--critical for multi-label soft-bit outputs with astronomically many classes. Receiver activations exhibit no discrete clusters but a smooth Signal-to-Noise-Ratio (SNR)-aligned manifold, consistent with classical receiver behavior and motivating manifold-aware OOD detection. We evaluate multiple OOD feature types, distance metrics, and methods across layers. Gaussian Mahalanobis with mean activations is the strongest single detector, earlier layers outperform later, and SNR/classifier fusions offer small, inconsistent AUROC gains. High-delay OOD is detected reliably, while high-speed remains challenging.
Authors:Thibault de Surrel, Florian Yger, Fabien Lotte, Sylvain Chevallier
Title: A probabilistic view on Riemannian machine learning models for SPD matrices
Abstract:
The goal of this paper is to show how different machine learning tools on the Riemannian manifold $\mathcal{P}_d$ of Symmetric Positive Definite (SPD) matrices can be united under a probabilistic framework. For this, we will need several Gaussian distributions defined on $\mathcal{P}_d$. We will show how popular classifiers on $\mathcal{P}_d$ can be reinterpreted as Bayes Classifiers using these Gaussian distributions. These distributions will also be used for outlier detection and dimension reduction. By showing that those distributions are pervasive in the tools used on $\mathcal{P}_d$, we allow for other machine learning tools to be extended to $\mathcal{P}_d$.
Authors:Jonah Ekelund, Savvas Raptis, Vicki Toy-Edens, Wenli Mo, Drew L. Turner, Ian J. Cohen, Stefano Markidis
Title: Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions
Abstract:
Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
Authors:Hong Yang, Qi Yu, Travis Desel
Title: Can We Ignore Labels In Out of Distribution Detection?
Abstract:
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
Authors:Duy A. Nguyen, Quan Huu Do, Khoa D. Doan, Minh N. Do
Title: Are you SURE? Enhancing Multimodal Pretraining with Missing Modalities through Uncertainty Estimation
Abstract:
Multimodal learning has demonstrated incredible successes by integrating diverse data sources, yet it often relies on the availability of all modalities - an assumption that rarely holds in real-world applications. Pretrained multimodal models, while effective, struggle when confronted with small-scale and incomplete datasets (i.e., missing modalities), limiting their practical applicability. Previous studies on reconstructing missing modalities have overlooked the reconstruction's potential unreliability, which could compromise the quality of the final outputs. We present SURE (Scalable Uncertainty and Reconstruction Estimation), a novel framework that extends the capabilities of pretrained multimodal models by introducing latent space reconstruction and uncertainty estimation for both reconstructed modalities and downstream tasks. Our method is architecture-agnostic, reconstructs missing modalities, and delivers reliable uncertainty estimates, improving both interpretability and performance. SURE introduces a unique Pearson Correlation-based loss and applies statistical error propagation in deep networks for the first time, allowing precise quantification of uncertainties from missing data and model predictions. Extensive experiments across tasks such as sentiment analysis, genre classification, and action recognition show that SURE consistently achieves state-of-the-art performance, ensuring robust predictions even in the presence of incomplete data.
Authors:Yifan Ding, Xixi Liu, Jonas Unger, Gabriel Eilertsen
Title: Enhancing Out-of-Distribution Detection with Extended Logit Normalization
Abstract:
Out-of-distribution (OOD) detection is essential for the safe deployment of machine learning models. Recent advances have explored improved classification losses and representation learning strategies to enhance OOD detection. However, these methods are often tailored to specific post-hoc detection techniques, limiting their generalizability. In this work, we identify a critical issue in Logit Normalization (LogitNorm), which inhibits its effectiveness in improving certain post-hoc OOD detection methods. To address this, we propose Extended Logit Normalization ($\textbf{ELogitNorm}$), a novel hyperparameter-free formulation that significantly benefits a wide range of post-hoc detection methods. By incorporating feature distance-awareness to LogitNorm, $\textbf{ELogitNorm}$ shows more robust OOD separability and in-distribution (ID) confidence calibration than its predecessor. Extensive experiments across standard benchmarks demonstrate that our approach outperforms state-of-the-art training-time methods in OOD detection while maintaining strong ID classification accuracy.
Authors:Zhuo Zhi, Qiangqiang Wu, Minghe shen, Wenbo Li, Yinchuan Li, Kun Shao, Kaiwen Zhou
Title: VideoAgent2: Enhancing the LLM-Based Agent System for Long-Form Video Understanding by Uncertainty-Aware CoT
Abstract:
Long video understanding has emerged as an increasingly important yet challenging task in computer vision. Agent-based approaches are gaining popularity for processing long videos, as they can handle extended sequences and integrate various tools to capture fine-grained information. However, existing methods still face several challenges: (1) they often rely solely on the reasoning ability of large language models (LLMs) without dedicated mechanisms to enhance reasoning in long video scenarios; and (2) they remain vulnerable to errors or noise from external tools. To address these issues, we propose a specialized chain-of-thought (CoT) process tailored for long video analysis. Our proposed CoT with plan-adjust mode enables the LLM to incrementally plan and adapt its information-gathering strategy. We further incorporate heuristic uncertainty estimation of both the LLM and external tools to guide the CoT process. This allows the LLM to assess the reliability of newly collected information, refine its collection strategy, and make more robust decisions when synthesizing final answers. Empirical experiments show that our uncertainty-aware CoT effectively mitigates noise from external tools, leading to more reliable outputs. We implement our approach in a system called VideoAgent2, which also includes additional modules such as general context acquisition and specialized tool design. Evaluation on three dedicated long video benchmarks (and their subsets) demonstrates that VideoAgent2 outperforms the previous state-of-the-art agent-based method, VideoAgent, by an average of 13.1% and achieves leading performance among all zero-shot approaches
Authors:Kazuma Kitazawa, Takahito Aoto, Satoshi Ikehata, Tsuyoshi Takatani
Title: PS-EIP: Robust Photometric Stereo Based on Event Interval Profile
Abstract:
Recently, the energy-efficient photometric stereo method using an event camera has been proposed to recover surface normals from events triggered by changes in logarithmic Lambertian reflections under a moving directional light source. However, EventPS treats each event interval independently, making it sensitive to noise, shadows, and non-Lambertian reflections. This paper proposes Photometric Stereo based on Event Interval Profile (PS-EIP), a robust method that recovers pixelwise surface normals from a time-series profile of event intervals. By exploiting the continuity of the profile and introducing an outlier detection method based on profile shape, our approach enhances robustness against outliers from shadows and specular reflections. Experiments using real event data from 3D-printed objects demonstrate that PS-EIP significantly improves robustness to outliers compared to EventPS's deep-learning variant, EventPS-FCN, without relying on deep learning.
Authors:Andy Gray, Alma Rahat, Tom Crick, Stephen Lindsay
Title: Bayesian Active Learning for Multi-Criteria Comparative Judgement in Educational Assessment
Abstract:
Comparative Judgement (CJ) provides an alternative assessment approach by evaluating work holistically rather than breaking it into discrete criteria. This method leverages human ability to make nuanced comparisons, yielding more reliable and valid assessments. CJ aligns with real-world evaluations, where overall quality emerges from the interplay of various elements. However, rubrics remain widely used in education, offering structured criteria for grading and detailed feedback. This creates a gap between CJ's holistic ranking and the need for criterion-based performance breakdowns. This paper addresses this gap using a Bayesian approach. We build on Bayesian CJ (BCJ) by Gray et al., which directly models preferences instead of using likelihoods over total scores, allowing for expected ranks with uncertainty estimation. Their entropy-based active learning method selects the most informative pairwise comparisons for assessors. We extend BCJ to handle multiple independent learning outcome (LO) components, defined by a rubric, enabling both holistic and component-wise predictive rankings with uncertainty estimates. Additionally, we propose a method to aggregate entropies and identify the most informative comparison for assessors. Experiments on synthetic and real data demonstrate our method's effectiveness. Finally, we address a key limitation of BCJ, which is the inability to quantify assessor agreement. We show how to derive agreement levels, enhancing transparency in assessment.
Authors:Aravind Gollakota, Parikshit Gopalan, Aayush Karan, Charlotte Peale, Udi Wieder
Title: When does a predictor know its own loss?
Abstract:
Given a predictor and a loss function, how well can we predict the loss that the predictor will incur on an input? This is the problem of loss prediction, a key computational task associated with uncertainty estimation for a predictor. In a classification setting, a predictor will typically predict a distribution over labels and hence have its own estimate of the loss that it will incur, given by the entropy of the predicted distribution. Should we trust this estimate? In other words, when does the predictor know what it knows and what it does not know? In this work we study the theoretical foundations of loss prediction. Our main contribution is to establish tight connections between nontrivial loss prediction and certain forms of multicalibration, a multigroup fairness notion that asks for calibrated predictions across computationally identifiable subgroups. Formally, we show that a loss predictor that is able to improve on the self-estimate of a predictor yields a witness to a failure of multicalibration, and vice versa. This has the implication that nontrivial loss prediction is in effect no easier or harder than auditing for multicalibration. We support our theoretical results with experiments that show a robust positive correlation between the multicalibration error of a predictor and the efficacy of training a loss predictor.
Authors:Jonathan Kim, Anna Podlasek, Kie Shidara, Feng Liu, Ahmed Alaa, Danilo Bernardo
Title: Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning
Abstract:
Large Language Models (LLMs) have attained human-level accuracy on medical question-answer (QA) benchmarks. However, their limitations in navigating open-ended clinical scenarios have recently been shown, raising concerns about the robustness and generalizability of LLM reasoning across diverse, real-world medical tasks. To probe potential LLM failure modes in clinical problem-solving, we present the medical abstraction and reasoning corpus (M-ARC). M-ARC assesses clinical reasoning through scenarios designed to exploit the Einstellung effect -- the fixation of thought arising from prior experience, targeting LLM inductive biases toward inflexible pattern matching from their training data rather than engaging in flexible reasoning. We find that LLMs, including current state-of-the-art o1 and Gemini models, perform poorly compared to physicians on M-ARC, often demonstrating lack of commonsense medical reasoning and a propensity to hallucinate. In addition, uncertainty estimation analyses indicate that LLMs exhibit overconfidence in their answers, despite their limited accuracy. The failure modes revealed by M-ARC in LLM medical reasoning underscore the need to exercise caution when deploying these models in clinical settings.
Authors:Karn N. Watcharasupat, Yiwei Ding, T. Aleksandra Ma, Pavan Seshadri, Alexander Lerch
Title: Uncertainty Estimation in the Real World: A Study on Music Emotion Recognition
Abstract:
Any data annotation for subjective tasks shows potential variations between individuals. This is particularly true for annotations of emotional responses to musical stimuli. While older approaches to music emotion recognition systems frequently addressed this uncertainty problem through probabilistic modeling, modern systems based on neural networks tend to ignore the variability and focus only on predicting central tendencies of human subjective responses. In this work, we explore several methods for estimating not only the central tendencies of the subjective responses to a musical stimulus, but also for estimating the uncertainty associated with these responses. In particular, we investigate probabilistic loss functions and inference-time random sampling. Experimental results indicate that while the modeling of the central tendencies is achievable, modeling of the uncertainty in subjective responses proves significantly more challenging with currently available approaches even when empirical estimates of variations in the responses are available.
Authors:Ervin Moore, Ahmed Imteaj, Md Zarif Hossain, Shabnam Rezapour, M. Hadi Amini
Title: Blockchain-Empowered Cyber-Secure Federated Learning for Trustworthy Edge Computing
Abstract:
Federated Learning (FL) is a privacy-preserving distributed machine learning scheme, where each participant data remains on the participating devices and only the local model generated utilizing the local computational power is transmitted throughout the database. However, the distributed computational nature of FL creates the necessity to develop a mechanism that can remotely trigger any network agents, track their activities, and prevent threats to the overall process posed by malicious participants. Particularly, the FL paradigm may become vulnerable due to an active attack from the network participants, called a poisonous attack. In such an attack, the malicious participant acts as a benign agent capable of affecting the global model quality by uploading an obfuscated poisoned local model update to the server. This paper presents a cross-device FL model that ensures trustworthiness, fairness, and authenticity in the underlying FL training process. We leverage trustworthiness by constructing a reputation-based trust model based on contributions of agents toward model convergence. We ensure fairness by identifying and removing malicious agents from the training process through an outlier detection technique. Further, we establish authenticity by generating a token for each participating device through a distributed sensing mechanism and storing that unique token in a blockchain smart contract. Further, we insert the trust scores of all agents into a blockchain and validate their reputations using various consensus mechanisms that consider the computational task.
Authors:Evi M. C. Huijben, Sina Amirrajab, Josien P. W. Pluim
Title: Enhancing Reconstruction-Based Out-of-Distribution Detection in Brain MRI with Model and Metric Ensembles
Abstract:
Out-of-distribution (OOD) detection is crucial for safely deploying automated medical image analysis systems, as abnormal patterns in images could hamper their performance. However, OOD detection in medical imaging remains an open challenge, and we address three gaps: the underexplored potential of a simple OOD detection model, the lack of optimization of deep learning strategies specifically for OOD detection, and the selection of appropriate reconstruction metrics. In this study, we investigated the effectiveness of a reconstruction-based autoencoder for unsupervised detection of synthetic artifacts in brain MRI. We evaluated the general reconstruction capability of the model, analyzed the impact of the selected training epoch and reconstruction metrics, assessed the potential of model and/or metric ensembles, and tested the model on a dataset containing a diverse range of artifacts. Among the metrics assessed, the contrast component of SSIM and LPIPS consistently outperformed others in detecting homogeneous circular anomalies. By combining two well-converged models and using LPIPS and contrast as reconstruction metrics, we achieved a pixel-level area under the Precision-Recall curve of 0.66. Furthermore, with the more realistic OOD dataset, we observed that the detection performance varied between artifact types; local artifacts were more difficult to detect, while global artifacts showed better detection results. These findings underscore the importance of carefully selecting metrics and model configurations, and highlight the need for tailored approaches, as standard deep learning approaches do not always align with the unique needs of OOD detection.
Authors:Yuang Zhang, Liping Wang, Yihong Huang, Yuanxing Zheng, Fan Zhang, Xuemin Lin
Title: GradStop: Exploring Training Dynamics in Unsupervised Outlier Detection through Gradient
Abstract:
Unsupervised Outlier Detection (UOD) is a critical task in data mining and machine learning, aiming to identify instances that significantly deviate from the majority. Without any label, deep UOD methods struggle with the misalignment between the model's direct optimization goal and the final performance goal of Outlier Detection (OD) task. Through the perspective of training dynamics, this paper proposes an early stopping algorithm to optimize the training of deep UOD models, ensuring they perform optimally in OD rather than overfitting the entire contaminated dataset. Inspired by UOD mechanism and inlier priority phenomenon, where intuitively models fit inliers more quickly than outliers, we propose GradStop, a sampling-based label-free algorithm to estimate model's real-time performance during training. First, a sampling method generates two sets: one likely containing more outliers and the other more inliers, then a metric based on gradient cohesion is applied to probe into current training dynamics, which reflects model's performance on OD task. Experimental results on 4 deep UOD algorithms and 47 real-world datasets and theoretical proofs demonstrate the effectiveness of our proposed early stopping algorithm in enhancing the performance of deep UOD models. Auto Encoder (AE) enhanced by GradStop achieves better performance than itself, other SOTA UOD methods, and even ensemble AEs. Our method provides a robust and effective solution to the problem of performance degradation during training, enabling deep UOD models to achieve better potential in anomaly detection tasks.
Authors:Simon Kristoffersson Lind, Rudolph Triebel, Volker Krüger
Title: Making the Flow Glow -- Robot Perception under Severe Lighting Conditions using Normalizing Flow Gradients
Abstract:
Modern robotic perception is highly dependent on neural networks. It is well known that neural network-based perception can be unreliable in real-world deployment, especially in difficult imaging conditions. Out-of-distribution detection is commonly proposed as a solution for ensuring reliability in real-world deployment. Previous work has shown that normalizing flow models can be used for out-of-distribution detection to improve reliability of robotic perception tasks. Specifically, camera parameters can be optimized with respect to the likelihood output from a normalizing flow, which allows a perception system to adapt to difficult vision scenarios. With this work we propose to use the absolute gradient values from a normalizing flow, which allows the perception system to optimize local regions rather than the whole image. By setting up a table top picking experiment with exceptionally difficult lighting conditions, we show that our method achieves a 60% higher success rate for an object detection task compared to previous methods.
Authors:Edgar Mauricio Salazar Duque, Bart van der Holst, Pedro P. Vergara, Juan S. Giraldo, Phuong H. Nguyen, Anne Van der Molen, Han, Slootweg
Title: Lower Dimensional Spherical Representation of Medium Voltage Load Profiles for Visualization, Outlier Detection, and Generative Modelling
Abstract:
This paper presents the spherical lower dimensional representation for daily medium voltage load profiles, based on principal component analysis. The objective is to unify and simplify the tasks for (i) clustering visualisation, (ii) outlier detection and (iii) generative profile modelling under one concept. The lower dimensional projection of standardised load profiles unveils a latent distribution in a three-dimensional sphere. This spherical structure allows us to detect outliers by fitting probability distribution models in the spherical coordinate system, identifying measurements that deviate from the spherical shape. The same latent distribution exhibits an arc shape, suggesting an underlying order among load profiles. We develop a principal curve technique to uncover this order based on similarity, offering new advantages over conventional clustering techniques. This finding reveals that energy consumption in a wide region can be seen as a continuously changing process. Furthermore, we combined the principal curve with a von Mises-Fisher distribution to create a model capable of generating profiles with continuous mixtures between clusters. The presence of the spherical distribution is validated with data from four municipalities in the Netherlands. The uncovered spherical structure implies the possibility of employing new mathematical tools from directional statistics and differential geometry for load profile modelling.
Authors:Junhao Dong, Xinghua Qu, Z. Jane Wang, Yew-Soon Ong
Title: Enhancing Adversarial Robustness via Uncertainty-Aware Distributional Adversarial Training
Abstract:
Despite remarkable achievements in deep learning across various domains, its inherent vulnerability to adversarial examples still remains a critical concern for practical deployment. Adversarial training has emerged as one of the most effective defensive techniques for improving model robustness against such malicious inputs. However, existing adversarial training schemes often lead to limited generalization ability against underlying adversaries with diversity due to their overreliance on a point-by-point augmentation strategy by mapping each clean example to its adversarial counterpart during training. In addition, adversarial examples can induce significant disruptions in the statistical information w.r.t. the target model, thereby introducing substantial uncertainty and challenges to modeling the distribution of adversarial examples. To circumvent these issues, in this paper, we propose a novel uncertainty-aware distributional adversarial training method, which enforces adversary modeling by leveraging both the statistical information of adversarial examples and its corresponding uncertainty estimation, with the goal of augmenting the diversity of adversaries. Considering the potentially negative impact induced by aligning adversaries to misclassified clean examples, we also refine the alignment reference based on the statistical proximity to clean examples during adversarial training, thereby reframing adversarial training within a distribution-to-distribution matching framework interacted between the clean and adversarial domains. Furthermore, we design an introspective gradient alignment approach via matching input gradients between these domains without introducing external models. Extensive experiments across four benchmark datasets and various network architectures demonstrate that our approach achieves state-of-the-art adversarial robustness and maintains natural performance.
Authors:Xuchen Xie, Yiqiao Qiu, Run Lin, Weishi Zheng, Ruixuan Wang
Title: Class Incremental Learning with Task-Specific Batch Normalization and Out-of-Distribution Detection
Abstract:
This study focuses on incremental learning for image classification, exploring how to reduce catastrophic forgetting of all learned knowledge when access to old data is restricted due to memory or privacy constraints. The challenge of incremental learning lies in achieving an optimal balance between plasticity, the ability to learn new knowledge, and stability, the ability to retain old knowledge. Based on whether the task identifier (task-ID) of an image can be obtained during the test stage, incremental learning for image classifcation is divided into two main paradigms, which are task incremental learning (TIL) and class incremental learning (CIL). The TIL paradigm has access to the task-ID, allowing it to use multiple task-specific classification heads selected based on the task-ID. Consequently, in CIL, where the task-ID is unavailable, TIL methods must predict the task-ID to extend their application to the CIL paradigm. Our previous method for TIL adds task-specific batch normalization and classification heads incrementally. This work extends the method by predicting task-ID through an "unknown" class added to each classification head. The head with the lowest "unknown" probability is selected, enabling task-ID prediction and making the method applicable to CIL. The task-specific batch normalization (BN) modules effectively adjust the distribution of output feature maps across different tasks, enhancing the model's plasticity.Moreover, since BN has much fewer parameters compared to convolutional kernels, by only modifying the BN layers as new tasks arrive, the model can effectively manage parameter growth while ensuring stability across tasks. The innovation of this study lies in the first-time introduction of task-specific BN into CIL and verifying the feasibility of extending TIL methods to CIL through task-ID prediction with state-of-the-art performance on multiple datasets.
Authors:Sina Däubener, Kira Maag, David Krueger, Asja Fischer
Title: Integrating uncertainty quantification into randomized smoothing based robustness guarantees
Abstract:
Deep neural networks have proven to be extremely powerful, however, they are also vulnerable to adversarial attacks which can cause hazardous incorrect predictions in safety-critical applications. Certified robustness via randomized smoothing gives a probabilistic guarantee that the smoothed classifier's predictions will not change within an $\ell_2$-ball around a given input. On the other hand (uncertainty) score-based rejection is a technique often applied in practice to defend models against adversarial attacks. In this work, we fuse these two approaches by integrating a classifier that abstains from predicting when uncertainty is high into the certified robustness framework. This allows us to derive two novel robustness guarantees for uncertainty aware classifiers, namely (i) the radius of an $\ell_2$-ball around the input in which the same label is predicted and uncertainty remains low and (ii) the $\ell_2$-radius of a ball in which the predictions will either not change or be uncertain. While the former provides robustness guarantees with respect to attacks aiming at increased uncertainty, the latter informs about the amount of input perturbation necessary to lead the uncertainty aware model into a wrong prediction. Notably, this is on CIFAR10 up to 20.93% larger than for models not allowing for uncertainty based rejection. We demonstrate, that the novel framework allows for a systematic robustness evaluation of different network architectures and uncertainty measures and to identify desired properties of uncertainty quantification techniques. Moreover, we show that leveraging uncertainty in a smoothed classifier helps out-of-distribution detection.
Authors:Haomin Wen, Shurui Cao, Zeeshan Rasheed, Khurram Hassan Shafique, Leman Akoglu
Title: Uncertainty-aware Human Mobility Modeling and Anomaly Detection
Abstract:
Given the temporal GPS coordinates from a large set of human agents, how can we model their mobility behavior toward effective anomaly (e.g. bad-actor or malicious behavior) detection without any labeled data? Human mobility and trajectory modeling have been extensively studied, showcasing varying abilities to manage complex inputs and balance performance-efficiency trade-offs. In this work, we formulate anomaly detection in complex human behavior by modeling raw GPS data as a sequence of stay-point events, each characterized by spatio-temporal features, along with trips (i.e. commute) between the stay-points. Our problem formulation allows us to leverage modern sequence models for unsupervised training and anomaly detection. Notably, we equip our proposed model USTAD (for Uncertainty-aware Spatio-Temporal Anomaly Detection) with aleatoric (i.e. data) uncertainty estimation to account for inherent stochasticity in certain individuals' behavior, as well as epistemic (i.e. model) uncertainty to handle data sparsity under a large variety of human behaviors. Together, aleatoric and epistemic uncertainties unlock a robust loss function as well as uncertainty-aware decision-making in anomaly scoring. Extensive experiments shows that USTAD improves anomaly detection AUCROC by 3\%-15\% over baselines in industry-scale data.
Authors:Li Ling, Yiping Xie, Nils Bore, John Folkesson
Title: Score-Based Multibeam Point Cloud Denoising
Abstract:
Multibeam echo-sounder (MBES) is the de-facto sensor for bathymetry mapping. In recent years, cheaper MBES sensors and global mapping initiatives have led to exponential growth of available data. However, raw MBES data contains 1-25% of noise that requires semi-automatic filtering using tools such as Combined Uncertainty and Bathymetric Estimator (CUBE). In this work, we draw inspirations from the 3D point cloud community and adapted a score-based point cloud denoising network for MBES outlier detection and denoising. We trained and evaluated this network on real MBES survey data. The proposed method was found to outperform classical methods, and can be readily integrated into existing MBES standard workflow. To facilitate future research, the code and pretrained model are available online.
Authors:Jianing Wang, Yang Zhou, Xiaocheng Zhang, Mengjiao Bao, Peng Yan
Title: Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization
Abstract:
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs), but the performance is still underwhelming due to too much noisy preference data yielded in the loop. To combat this issue, we present an \textbf{U}ncertainty-enhanced \textbf{P}reference \textbf{O}ptimization (UPO) framework to make the LLM self-evolve with reliable feedback. The key idea is mitigating the noisy preference data derived from the current policy and reward models by performing pair-wise uncertainty estimation and judiciously reliable feedback sampling. To reach this goal, we thus introduce an estimator model, which incorporates Monte Carlo (MC) dropout in Bayesian neural network (BNN) to perform uncertainty estimation for the preference data derived from the LLM policy. Compared to the existing methods that directly filter generated responses based on the reward score, the estimator focuses on the model uncertainty in a pair-wise manner and effectively bypasses the confirmation bias problem of the reward model. Additionally, we also propose an uncertainty-enhanced self-evolution algorithm to improve the robustness of preference optimization and encourage the LLM to generate responses with both high reward and certainty. Extensive experiments over multiple benchmarks demonstrate that our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
Authors:Ruiyao Xu, Kaize Ding
Title: Large Language Models for Anomaly and Out-of-Distribution Detection: A Survey
Abstract:
Detecting anomalies or out-of-distribution (OOD) samples is critical for maintaining the reliability and trustworthiness of machine learning systems. Recently, Large Language Models (LLMs) have demonstrated their effectiveness not only in natural language processing but also in broader applications due to their advanced comprehension and generative capabilities. The integration of LLMs into anomaly and OOD detection marks a significant shift from the traditional paradigm in the field. This survey focuses on the problem of anomaly and OOD detection under the context of LLMs. We propose a new taxonomy to categorize existing approaches into two classes based on the role played by LLMs. Following our proposed taxonomy, we further discuss the related work under each of the categories and finally discuss potential challenges and directions for future research in this field. We also provide an up-to-date reading list of relevant papers.
Authors:Dabiao Ma, Zhiba Su, Jian Yang, Haojun Fei
Title: Out-of-Distribution Detection Based on Total Variation Estimation
Abstract:
This paper introduces a novel approach to securing machine learning model deployments against potential distribution shifts in practical applications, the Total Variation Out-of-Distribution (TV-OOD) detection method. Existing methods have produced satisfactory results, but TV-OOD improves upon these by leveraging the Total Variation Network Estimator to calculate each input's contribution to the overall total variation. By defining this as the total variation score, TV-OOD discriminates between in- and out-of-distribution data. The method's efficacy was tested across a range of models and datasets, consistently yielding results in image classification tasks that were either comparable or superior to those achieved by leading-edge out-of-distribution detection techniques across all evaluation metrics.
Authors:Rahul Yumlembam, Biju Issac, Seibu Mary Jacob
Title: Enhancing Decision-Making in Windows PE Malware Classification During Dataset Shifts with Uncertainty Estimation
Abstract:
Artificial intelligence techniques have achieved strong performance in classifying Windows Portable Executable (PE) malware, but their reliability often degrades under dataset shifts, leading to misclassifications with severe security consequences. To address this, we enhance an existing LightGBM (LGBM) malware detector by integrating Neural Networks (NN), PriorNet, and Neural Network Ensembles, evaluated across three benchmark datasets: EMBER, BODMAS, and UCSB. The UCSB dataset, composed mainly of packed malware, introduces a substantial distributional shift relative to EMBER and BODMAS, making it a challenging testbed for robustness. We study uncertainty-aware decision strategies, including probability thresholding, PriorNet, ensemble-derived estimates, and Inductive Conformal Evaluation (ICE). Our main contribution is the use of ensemble-based uncertainty estimates as Non-Conformity Measures within ICE, combined with a novel threshold optimisation method. On the UCSB dataset, where the shift is most severe, the state-of-the-art probability-based ICE (SOTA) yields an incorrect acceptance rate (IA%) of 22.8%. In contrast, our method reduces this to 16% a relative reduction of about 30% while maintaining competitive correct acceptance rates (CA%). These results demonstrate that integrating ensemble-based uncertainty with conformal prediction provides a more reliable safeguard against misclassifications under extreme dataset shifts, particularly in the presence of packed malware, thereby offering practical benefits for real-world security operations.
Authors:Bingbing Wang, Shengyan Sun, Jiaqi Wang, Yu Tang
Title: Robust Outlier Detection and Low-Latency Concept Drift Adaptation for Data Stream Regression: A Dual-Channel Architecture
Abstract:
Outlier detection and concept drift detection represent two challenges in data analysis. Most studies address these issues separately. However, joint detection mechanisms in regression remain underexplored, where the continuous nature of output spaces makes distinguishing drifts from outliers inherently challenging. To address this, we propose a novel robust regression framework for joint outlier and concept drift detection. Specifically, we introduce a dual-channel decision process that orchestrates prediction residuals into two coupled logic flows: a rapid response channel for filtering point outliers and a deep analysis channel for diagnosing drifts. We further develop the Exponentially Weighted Moving Absolute Deviation with Distinguishable Types (EWMAD-DT) detector to autonomously differentiate between abrupt and incremental drifts via dynamic thresholding. Comprehensive experiments on both synthetic and real-world datasets demonstrate that our unified framework, enhanced by EWMAD-DT, exhibits superior detection performance even when point outliers and concept drifts coexist.
Authors:Song Zhang, Ruohan Guo, Xiaohua Ge, Perter Mahon, Weixiang Shen
Title: Experimental Methods, Health Indicators, and Diagnostic Strategies for Retired Lithium-ion Batteries: A Comprehensive Review
Abstract:
Reliable health assessment of retired lithium-ion batteries is essential for safe and economically viable second-life deployment, yet remains difficult due to sparse measurements, incomplete historical records, heterogeneous chemistries, and limited or noisy battery health labels. Conventional laboratory diagnostics, such as full charge-discharge cycling, pulse tests, Electrochemical Impedance Spectroscopy (EIS) measurements, and thermal characterization, provide accurate degradation information but are too time-consuming, equipment-intensive, or condition-sensitive to be applied at scale during retirement-stage sorting, leaving real-world datasets fragmented and inconsistent. This review synthesizes recent advances that address these constraints through physical health indicators, experiment testing methods, data-generation and augmentation techniques, and a spectrum of learning-based modeling routes spanning supervised, semi-supervised, weakly supervised, and unsupervised paradigms. We highlight how minimal-test features, synthetic data, domain-invariant representations, and uncertainty-aware prediction enable robust inference under limited or approximate labels and across mixed chemistries and operating histories. A comparative evaluation further reveals trade-offs in accuracy, interpretability, scalability, and computational burden. Looking forward, progress toward physically constrained generative models, cross-chemistry generalization, calibrated uncertainty estimation, and standardized benchmarks will be crucial for building reliable, scalable, and deployment-ready health prediction tools tailored to the realities of retired-battery applications.
Authors:Yihan Dai, Dimitrios Stamatios Bouras, Haoxiang Jia, Sergey Mechtaev
Title: Statistical Independence Aware Caching for LLM Workflows
Abstract:
Large language models (LLMs) inference is both expensive and slow. Local caching of responses offers a practical solution to reduce the cost and latency of LLM queries. In research contexts, caching also enhances reproducibility and provides flexibility for experimentation. However, naive reuse of cached responses compromises statistical independence, a critical property for probabilistic workflows. In applications of LLM for code, it underpins performance metrics such as Pass@k and uncertainty estimation, as well as algorithms like program repair loops and retries. Existing LLM caching systems lack ways to enforce statistical independence constraints. To address this, we introduce Mnimi, a cache design pattern that supports modular LLM workflows while ensuring statistical integrity at the component level. Its core innovation lies in encapsulating statistical constraints within the type of LLM references, allowing users to manage and transform these types according to the scope and requirements of their algorithm. We implemented this design pattern in Python using a combination of decorators and iterators over infinite sequences. A case study on SpecFix, an recent automated program specification repair system, highlights how Mnimi improves reproducibility, ease of debugging, time and cost efficiency while preserving statistical correctness.
Authors:Xin Hong, Xinze Sun, Yinhao Li, Yen-Wei Chen
Title: Long-Term Alzheimers Disease Prediction: A Novel Image Generation Method Using Temporal Parameter Estimation with Normal Inverse Gamma Distribution on Uneven Time Series
Abstract:
Image generation can provide physicians with an imaging diagnosis basis in the prediction of Alzheimer's Disease (AD). Recent research has shown that long-term AD predictions by image generation often face difficulties maintaining disease-related characteristics when dealing with irregular time intervals in sequential data. Considering that the time-related aspects of the distribution can reflect changes in disease-related characteristics when images are distributed unevenly, this research proposes a model to estimate the temporal parameter within the Normal Inverse Gamma Distribution (T-NIG) to assist in generating images over the long term. The T-NIG model employs brain images from two different time points to create intermediate brain images, forecast future images, and predict the disease. T-NIG is designed by identifying features using coordinate neighborhoods. It incorporates a time parameter into the normal inverse gamma distribution to understand how features change in brain imaging sequences that have varying time intervals. Additionally, T-NIG utilizes uncertainty estimation to reduce both epistemic and aleatoric uncertainties in the model, which arise from insufficient temporal data. In particular, the T-NIG model demonstrates state-of-the-art performance in both short-term and long-term prediction tasks within the dataset. Experimental results indicate that T-NIG is proficient in forecasting disease progression while maintaining disease-related characteristics, even when faced with an irregular temporal data distribution.
Authors:Huanbo Lyu, Daniel Herring, Shiqiao Zhou, Miqing Li, Zheming Zuo, Jelena Ninic, James Andrews, Fabian Spill, Shuo Wang
Title: Uncertainty-Aware Dual-Ranking Strategy for Offline Data-Driven Multi-Objective Optimization
Abstract:
Offline data-driven Multi-Objective Optimization Problems (MOPs) rely on limited data from simulations, experiments, or sensors. This scarcity leads to high epistemic uncertainty in surrogate predictions. Conventional surrogate methods such as Kriging assume Gaussian distributions, which can yield suboptimal results when the assumptions fail. To address these issues, we propose a simple yet novel dual-ranking strategy, working with a basic multi-objective evolutionary algorithm, NSGA-II, where the built-in non-dominated sorting is kept and the second rank is devised for uncertainty estimation. In the latter, we utilize the uncertainty estimates given by several surrogate models, including Quantile Regression (QR), Monte Carlo Dropout (MCD), and Bayesian Neural Networks (BNNs). Concretely, with this dual-ranking strategy, each solution's final rank is the average of its non-dominated sorting rank and a rank derived from the uncertainty-adjusted fitness function, thus reducing the risk of misguided optimization under data constraints. We evaluate our approach on benchmark and real-world MOPs, comparing it to state-of-the-art methods. The results show that our dual-ranking strategy significantly improves the performance of NSGA-II in offline settings, achieving competitive outcomes compared with traditional surrogate-based methods. This framework advances uncertainty-aware multi-objective evolutionary algorithms, offering a robust solution for data-limited, real-world applications.
Authors:Ciaran O'Connor, Mohamed Bahloul, Steven Prestwich, Andrea Visentin
Title: The Evolution of Probabilistic Price Forecasting Techniques: A Review of the Day-Ahead, Intra-Day, and Balancing Markets
Abstract:
Electricity price forecasting has become a critical tool for decision-making in energy markets, particularly as the increasing penetration of renewable energy introduces greater volatility and uncertainty. Historically, research in this field has been dominated by point forecasting methods, which provide single-value predictions but fail to quantify uncertainty. However, as power markets evolve due to renewable integration, smart grids, and regulatory changes, the need for probabilistic forecasting has become more pronounced, offering a more comprehensive approach to risk assessment and market participation. This paper presents a review of probabilistic forecasting methods, tracing their evolution from Bayesian and distribution based approaches, through quantile regression techniques, to recent developments in conformal prediction. Particular emphasis is placed on advancements in probabilistic forecasting, including validity-focused methods which address key limitations in uncertainty estimation. Additionally, this review extends beyond the Day-Ahead Market to include the Intra-Day and Balancing Markets, where forecasting challenges are intensified by higher temporal granularity and real-time operational constraints. We examine state of the art methodologies, key evaluation metrics, and ongoing challenges, such as forecast validity, model selection, and the absence of standardised benchmarks, providing researchers and practitioners with a comprehensive and timely resource for navigating the complexities of modern electricity markets.
Authors:Yuanhao Lai, Pengfei Zheng, Chenpeng Ji, Yan Li, Songhan Zhang, Rutao Zhang, Zhengang Wang, Yunfei Du
Title: Centrum: Model-based Database Auto-tuning with Minimal Distributional Assumptions
Abstract:
Gaussian-Process-based Bayesian optimization (GP-BO), is a prevailing model-based framework for DBMS auto-tuning. However, recent work shows GP-BO-based DBMS auto-tuners significantly outperformed auto-tuners based on SMAC, which features random forest surrogate models; such results motivate us to rethink and investigate the limitations of GP-BO in auto-tuner design. We find the fundamental assumptions of GP-BO are widely violated when modeling and optimizing DBMS performance, while tree-ensemble-BOs (e.g., SMAC) can avoid the assumption pitfalls and deliver improved tuning efficiency and effectiveness. Moreover, we argue that existing tree-ensemble-BOs restrict further advancement in DBMS auto-tuning. First, existing tree-ensemble-BOs can only achieve distribution-free point estimates, but still impose unrealistic distributional assumptions on uncertainty estimates, compromising surrogate modeling and distort the acquisition function. Second, recent advances in gradient boosting, which can further enhance surrogate modeling against vanilla GP and random forest counterparts, have rarely been applied in optimizing DBMS auto-tuners. To address these issues, we propose a novel model-based DBMS auto-tuner, Centrum. Centrum improves distribution-free point and interval estimation in surrogate modeling with a two-phase learning procedure of stochastic gradient boosting ensembles. Moreover, Centrum adopts a generalized SGBE-estimated locally-adaptive conformal prediction to facilitate a distribution-free uncertainty estimation and acquisition function. To our knowledge, Centrum is the first auto-tuner to realize distribution-freeness, enhancing BO's practicality in DBMS auto-tuning, and the first to seamlessly fuse gradient boosting ensembles and conformal inference in BO. Extensive physical and simulation experiments on two DBMSs and three workloads show Centrum outperforms 21 SOTA methods.
Authors:Golnaz Raja, Ruslan Agishev, Miloš Prágr, Joni Pajarinen, Karel Zimmermann, Arun Kumar Singh, Reza Ghabcheloo
Title: ProTerrain: Probabilistic Physics-Informed Rough Terrain World Modeling
Abstract:
Uncertainty-aware robot motion prediction is crucial for downstream traversability estimation and safe autonomous navigation in unstructured, off-road environments, where terrain is heterogeneous and perceptual uncertainty is high. Most existing methods assume deterministic or spatially independent terrain uncertainties, ignoring the inherent local correlations of 3D spatial data and often producing unreliable predictions. In this work, we introduce an efficient probabilistic framework that explicitly models spatially correlated aleatoric uncertainty over terrain parameters as a probabilistic world model and propagates this uncertainty through a differentiable physics engine for probabilistic trajectory forecasting. By leveraging structured convolutional operators, our approach provides high-resolution multivariate predictions at manageable computational cost. Experimental evaluation on a publicly available dataset shows significantly improved uncertainty estimation and trajectory prediction accuracy over aleatoric uncertainty estimation baselines.
Authors:Ege Beyazit, KL Navaneet, Prashant Mathur, Roi Blanco, Vidit Bansal, Karim Bouyarmane
Title: Enabling Fine-Grained Operating Points for Black-Box LLMs
Abstract:
Black-box Large Language Models (LLMs) provide practical and accessible alternatives to other machine learning methods, as they require minimal labeled data and machine learning expertise to develop solutions for various decision making problems. However, for applications that need operating with constraints on specific metrics (e.g., precision $\geq$ 95%), decision making with black-box LLMs remains unfavorable, due to their low numerical output cardinalities. This results in limited control over their operating points, preventing fine-grained adjustment of their decision making behavior. In this paper, we study using black-box LLMs as classifiers, focusing on efficiently improving their operational granularity without performance loss. Specifically, we first investigate the reasons behind their low-cardinality numerical outputs and show that they are biased towards generating rounded but informative verbalized probabilities. Then, we experiment with standard prompt engineering, uncertainty estimation and confidence elicitation techniques, and observe that they do not effectively improve operational granularity without sacrificing performance or increasing inference cost. Finally, we propose efficient approaches to significantly increase the number and diversity of available operating points. Our proposed approaches provide finer-grained operating points and achieve comparable to or better performance than the benchmark methods across 11 datasets and 3 LLMs.
Authors:Hanieh Shojaei Miandashti, Claus Brenner
Title: Out-of-Distribution Detection in LiDAR Semantic Segmentation Using Epistemic Uncertainty from Hierarchical GMMs
Abstract:
In addition to accurate scene understanding through precise semantic segmentation of LiDAR point clouds, detecting out-of-distribution (OOD) objects, instances not encountered during training, is essential to prevent the incorrect assignment of unknown objects to known classes. While supervised OOD detection methods depend on auxiliary OOD datasets, unsupervised methods avoid this requirement but typically rely on predictive entropy, the entropy of the predictive distribution obtained by averaging over an ensemble or multiple posterior weight samples. However, these methods often conflate epistemic (model) and aleatoric (data) uncertainties, misclassifying ambiguous in distribution regions as OOD. To address this issue, we present an unsupervised OOD detection approach that employs epistemic uncertainty derived from hierarchical Bayesian modeling of Gaussian Mixture Model (GMM) parameters in the feature space of a deep neural network. Without requiring auxiliary data or additional training stages, our approach outperforms existing uncertainty-based methods on the SemanticKITTI dataset, achieving an 18\% improvement in AUROC, 22\% increase in AUPRC, and 36\% reduction in FPR95 (from 76\% to 40\%), compared to the predictive entropy approach used in prior works.
Authors:Hans Weytjens, Wouter Verbeke
Title: Uncertainty in Machine Learning
Abstract:
This book chapter introduces the principles and practical applications of uncertainty quantification in machine learning. It explains how to identify and distinguish between different types of uncertainty and presents methods for quantifying uncertainty in predictive models, including linear regression, random forests, and neural networks. The chapter also covers conformal prediction as a framework for generating predictions with predefined confidence intervals. Finally, it explores how uncertainty estimation can be leveraged to improve business decision-making, enhance model reliability, and support risk-aware strategies.
Authors:Carlo Dindorf, Jonas Dully, Steven Simon, Dennis Perchthaler, Stephan Becker, Hannah Ehmann, Kjell Heitmann, Bernd Stetter, Christian Diers, Michael Fröhlich
Title: Outlier Detection in Plantar Pressure: Human-Centered Comparison of Statistical Parametric Mapping and Explainable Machine Learning
Abstract:
Plantar pressure mapping is essential in clinical diagnostics and sports science, yet large heterogeneous datasets often contain outliers from technical errors or procedural inconsistencies. Statistical Parametric Mapping (SPM) provides interpretable analyses but is sensitive to alignment and its capacity for robust outlier detection remains unclear. This study compares an SPM approach with an explainable machine learning (ML) approach to establish transparent quality-control pipelines for plantar pressure datasets. Data from multiple centers were annotated by expert consensus and enriched with synthetic anomalies resulting in 798 valid samples and 2000 outliers. We evaluated (i) a non-parametric, registration-dependent SPM approach and (ii) a convolutional neural network (CNN), explained using SHapley Additive exPlanations (SHAP). Performance was assessed via nested cross-validation; explanation quality via a semantic differential survey with domain experts. The ML model reached high accuracy and outperformed SPM, which misclassified clinically meaningful variations and missed true outliers. Experts perceived both SPM and SHAP explanations as clear, useful, and trustworthy, though SPM was assessed less complex. These findings highlight the complementary potential of SPM and explainable ML as approaches for automated outlier detection in plantar pressure data, and underscore the importance of explainability in translating complex model outputs into interpretable insights that can effectively inform decision-making.
Authors:Buhe Li, Berkay Kaplan, Maksym Lazirko, Aleksandr Kogan
Title: Unsupervised Outlier Detection in Audit Analytics: A Case Study Using USA Spending Data
Abstract:
This study investigates the effectiveness of unsupervised outlier detection methods in audit analytics, utilizing USA spending data from the U.S. Department of Health and Human Services (DHHS) as a case example. We employ and compare multiple outlier detection algorithms, including Histogram-based Outlier Score (HBOS), Robust Principal Component Analysis (PCA), Minimum Covariance Determinant (MCD), and K-Nearest Neighbors (KNN) to identify anomalies in federal spending patterns. The research addresses the growing need for efficient and accurate anomaly detection in large-scale governmental datasets, where traditional auditing methods may fall short. Our methodology involves data preparation, algorithm implementation, and performance evaluation using precision, recall, and F1 scores. Results indicate that a hybrid approach, combining multiple detection strategies, enhances the robustness and accuracy of outlier identification in complex financial data. This study contributes to the field of audit analytics by providing insights into the comparative effectiveness of various outlier detection models and demonstrating the potential of unsupervised learning techniques in improving audit quality and efficiency. The findings have implications for auditors, policymakers, and researchers seeking to leverage advanced analytics in governmental financial oversight and risk management.
Authors:Yancheng Cai, Robert Wanat, Rafal Mantiuk
Title: CameraVDP: Perceptual Display Assessment with Uncertainty Estimation via Camera and Visual Difference Prediction
Abstract:
Accurate measurement of images produced by electronic displays is critical for the evaluation of both traditional and computational displays. Traditional display measurement methods based on sparse radiometric sampling and fitting a model are inadequate for capturing spatially varying display artifacts, as they fail to capture high-frequency and pixel-level distortions. While cameras offer sufficient spatial resolution, they introduce optical, sampling, and photometric distortions. Furthermore, the physical measurement must be combined with a model of a visual system to assess whether the distortions are going to be visible. To enable perceptual assessment of displays, we propose a combination of a camera-based reconstruction pipeline with a visual difference predictor, which account for both the inaccuracy of camera measurements and visual difference prediction. The reconstruction pipeline combines HDR image stacking, MTF inversion, vignetting correction, geometric undistortion, homography transformation, and color correction, enabling cameras to function as precise display measurement instruments. By incorporating a Visual Difference Predictor (VDP), our system models the visibility of various stimuli under different viewing conditions for the human visual system. We validate the proposed CameraVDP framework through three applications: defective pixel detection, color fringing awareness, and display non-uniformity evaluation. Our uncertainty analysis framework enables the estimation of the theoretical upper bound for defect pixel detection performance and provides confidence intervals for VDP quality scores.
Authors:Arslan Majal, Aamir Hussain Chughtai, Muhammad Tahir
Title: EMORF-II: Adaptive EM-based Outlier-Robust Filtering with Correlated Measurement Noise
Abstract:
We present a learning-based outlier-robust filter for a general setup where the measurement noise can be correlated. Since it is an enhanced version of EM-based outlier robust filter (EMORF), we call it as EMORF-II. As it is equipped with an additional powerful feature to learn the outlier characteristics during inference along with outlier-detection, EMORF-II has improved outlier-mitigation capability. Numerical experiments confirm performance gains as compared to the state-of-the-art methods in terms of accuracy with an increased computational overhead. However, thankfully the computational complexity order remains at par with other practical methods making it a useful choice for diverse applications.
Authors:Tarhib Al Azad, Shahana Ibrahim
Title: Tackling the Noisy Elephant in the Room: Label Noise-robust Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition
Abstract:
Robust out-of-distribution (OOD) detection is an indispensable component of modern artificial intelligence (AI) systems, especially in safety-critical applications where models must identify inputs from unfamiliar classes not seen during training. While OOD detection has been extensively studied in the machine learning literature--with both post hoc and training-based approaches--its effectiveness under noisy training labels remains underexplored. Recent studies suggest that label noise can significantly degrade OOD performance, yet principled solutions to this issue are lacking. In this work, we demonstrate that directly combining existing label noise-robust methods with OOD detection strategies is insufficient to address this critical challenge. To overcome this, we propose a robust OOD detection framework that integrates loss correction techniques from the noisy label learning literature with low-rank and sparse decomposition methods from signal processing. Extensive experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms the state-of-the-art OOD detection techniques, particularly under severe noisy label settings.
Authors:Marzieh Ajirak, Anand Ravishankar, Petar M. Djuric
Title: Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights
Abstract:
Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.
Authors:Nattapong Kurpukdee, Adrian G. Bors
Title: Unsupervised Video Continual Learning via Non-Parametric Deep Embedded Clustering
Abstract:
We propose a realistic scenario for the unsupervised video learning where neither task boundaries nor labels are provided when learning a succession of tasks. We also provide a non-parametric learning solution for the under-explored problem of unsupervised video continual learning. Videos represent a complex and rich spatio-temporal media information, widely used in many applications, but which have not been sufficiently explored in unsupervised continual learning. Prior studies have only focused on supervised continual learning, relying on the knowledge of labels and task boundaries, while having labeled data is costly and not practical. To address this gap, we study the unsupervised video continual learning (uVCL). uVCL raises more challenges due to the additional computational and memory requirements of processing videos when compared to images. We introduce a general benchmark experimental protocol for uVCL by considering the learning of unstructured video data categories during each task. We propose to use the Kernel Density Estimation (KDE) of deep embedded video features extracted by unsupervised video transformer networks as a non-parametric probabilistic representation of the data. We introduce a novelty detection criterion for the incoming new task data, dynamically enabling the expansion of memory clusters, aiming to capture new knowledge when learning a succession of tasks. We leverage the use of transfer learning from the previous tasks as an initial state for the knowledge transfer to the current learning task. We found that the proposed methodology substantially enhances the performance of the model when successively learning many tasks. We perform in-depth evaluations on three standard video action recognition datasets, including UCF101, HMDB51, and Something-to-Something V2, without using any labels or class boundaries.
Authors:Simon Baur, Wojciech Samek, Jackie Ma
Title: Benchmarking Uncertainty and its Disentanglement in multi-label Chest X-Ray Classification
Abstract:
Reliable uncertainty quantification is crucial for trustworthy decision-making and the deployment of AI models in medical imaging. While prior work has explored the ability of neural networks to quantify predictive, epistemic, and aleatoric uncertainties using an information-theoretical approach in synthetic or well defined data settings like natural image classification, its applicability to real life medical diagnosis tasks remains underexplored. In this study, we provide an extensive uncertainty quantification benchmark for multi-label chest X-ray classification using the MIMIC-CXR-JPG dataset. We evaluate 13 uncertainty quantification methods for convolutional (ResNet) and transformer-based (Vision Transformer) architectures across a wide range of tasks. Additionally, we extend Evidential Deep Learning, HetClass NNs, and Deep Deterministic Uncertainty to the multi-label setting. Our analysis provides insights into uncertainty estimation effectiveness and the ability to disentangle epistemic and aleatoric uncertainties, revealing method- and architecture-specific strengths and limitations.
Authors:Jiawei Gu, Ziyue Qiao, Zechao Li
Title: Gradient Short-Circuit: Efficient Out-of-Distribution Detection via Feature Intervention
Abstract:
Out-of-Distribution (OOD) detection is critical for safely deploying deep models in open-world environments, where inputs may lie outside the training distribution. During inference on a model trained exclusively with In-Distribution (ID) data, we observe a salient gradient phenomenon: around an ID sample, the local gradient directions for "enhancing" that sample's predicted class remain relatively consistent, whereas OOD samples--unseen in training--exhibit disorganized or conflicting gradient directions in the same neighborhood. Motivated by this observation, we propose an inference-stage technique to short-circuit those feature coordinates that spurious gradients exploit to inflate OOD confidence, while leaving ID classification largely intact. To circumvent the expense of recomputing the logits after this gradient short-circuit, we further introduce a local first-order approximation that accurately captures the post-modification outputs without a second forward pass. Experiments on standard OOD benchmarks show our approach yields substantial improvements. Moreover, the method is lightweight and requires minimal changes to the standard inference pipeline, offering a practical path toward robust OOD detection in real-world applications.
Authors:Matthew Lisondra, Beno Benhabib, Goldie Nejat
Title: Embodied AI with Foundation Models for Mobile Service Robots: A Systematic Review
Abstract:
Rapid advancements in foundation models, including Large Language Models, Vision-Language Models, Multimodal Large Language Models, and Vision-Language-Action Models, have opened new avenues for embodied AI in mobile service robotics. By combining foundation models with the principles of embodied AI, where intelligent systems perceive, reason, and act through physical interaction, mobile service robots can achieve more flexible understanding, adaptive behavior, and robust task execution in dynamic real-world environments. Despite this progress, embodied AI for mobile service robots continues to face fundamental challenges related to the translation of natural language instructions into executable robot actions, multimodal perception in human-centered environments, uncertainty estimation for safe decision-making, and computational constraints for real-time onboard deployment. In this paper, we present the first systematic review focused specifically on the integration of foundation models in mobile service robotics. We analyze how recent advances in foundation models address these core challenges through language-conditioned control, multimodal sensor fusion, uncertainty-aware reasoning, and efficient model scaling. We further examine real-world applications in domestic assistance, healthcare, and service automation, highlighting how foundation models enable context-aware, socially responsive, and generalizable robot behaviors. Beyond technical considerations, we discuss ethical, societal, and human-interaction implications associated with deploying foundation model-enabled service robots in human environments. Finally, we outline future research directions emphasizing reliability and lifelong adaptation, privacy-aware and resource-constrained deployment, and governance and human-in-the-loop frameworks required for safe, scalable, and trustworthy mobile service robotics.
Authors:Yassir Fathullah, Mark J. F. Gales
Title: Generalised Probabilistic Modelling and Improved Uncertainty Estimation in Comparative LLM-as-a-judge
Abstract:
This paper explores generalised probabilistic modelling and uncertainty estimation in comparative LLM-as-a-judge frameworks. We show that existing Product-of-Experts methods are specific cases of a broader framework, enabling diverse modelling options. Furthermore, we propose improved uncertainty estimates for individual comparisons, enabling more efficient selection and achieving strong performance with fewer evaluations. We also introduce a method for estimating overall ranking uncertainty. Finally, we demonstrate that combining absolute and comparative scoring improves performance. Experiments show that the specific expert model has a limited impact on final rankings but our proposed uncertainty estimates, especially the probability of reordering, significantly improve the efficiency of systems reducing the number of needed comparisons by ~50%. Furthermore, ranking-level uncertainty metrics can be used to identify low-performing predictions, where the nature of the probabilistic model has a notable impact on the quality of the overall uncertainty.
Authors:Jiawei Gu, Ziyue Qiao, Zechao Li
Title: SpectralGap: Graph-Level Out-of-Distribution Detection via Laplacian Eigenvalue Gaps
Abstract:
The task of graph-level out-of-distribution (OOD) detection is crucial for deploying graph neural networks in real-world settings. In this paper, we observe a significant difference in the relationship between the largest and second-largest eigenvalues of the Laplacian matrix for in-distribution (ID) and OOD graph samples: \textit{OOD samples often exhibit anomalous spectral gaps (the difference between the largest and second-largest eigenvalues)}. This observation motivates us to propose SpecGap, an effective post-hoc approach for OOD detection on graphs. SpecGap adjusts features by subtracting the component associated with the second-largest eigenvalue, scaled by the spectral gap, from the high-level features (i.e., $\mathbf{X}-\left(λ_n-λ_{n-1}\right) \mathbf{u}_{n-1} \mathbf{v}_{n-1}^T$). SpecGap achieves state-of-the-art performance across multiple benchmark datasets. We present extensive ablation studies and comprehensive theoretical analyses to support our empirical results. As a parameter-free post-hoc method, SpecGap can be easily integrated into existing graph neural network models without requiring any additional training or model modification.
Authors:Brian K. S. Isaac-Medina, Toby P. Breckon
Title: Dream-Box: Object-wise Outlier Generation for Out-of-Distribution Detection
Abstract:
Deep neural networks have demonstrated great generalization capabilities for tasks whose training and test sets are drawn from the same distribution. Nevertheless, out-of-distribution (OOD) detection remains a challenging task that has received significant attention in recent years. Specifically, OOD detection refers to the detection of instances that do not belong to the training distribution, while still having good performance on the in-distribution task (e.g., classification or object detection). Recent work has focused on generating synthetic outliers and using them to train an outlier detector, generally achieving improved OOD detection than traditional OOD methods. In this regard, outliers can be generated either in feature or pixel space. Feature space driven methods have shown strong performance on both the classification and object detection tasks, at the expense that the visualization of training outliers remains unknown, making further analysis on OOD failure modes challenging. On the other hand, pixel space outlier generation techniques enabled by diffusion models have been used for image classification using, providing improved OOD detection performance and outlier visualization, although their adaption to the object detection task is as yet unexplored. We therefore introduce Dream-Box, a method that provides a link to object-wise outlier generation in the pixel space for OOD detection. Specifically, we use diffusion models to generate object-wise outliers that are used to train an object detector for an in-distribution task and OOD detection. Our method achieves comparable performance to previous traditional methods while being the first technique to provide concrete visualization of generated OOD objects.
Authors:Zhe Huang, Simone Rossi, Rui Yuan, Thomas Hannagan
Title: From predictions to confidence intervals: an empirical study of conformal prediction methods for in-context learning
Abstract:
Transformers have become a standard architecture in machine learning, demonstrating strong in-context learning (ICL) abilities that allow them to learn from the prompt at inference time. However, uncertainty quantification for ICL remains an open challenge, particularly in noisy regression tasks. This paper investigates whether ICL can be leveraged for distribution-free uncertainty estimation, proposing a method based on conformal prediction to construct prediction intervals with guaranteed coverage. While traditional conformal methods are computationally expensive due to repeated model fitting, we exploit ICL to efficiently generate confidence intervals in a single forward pass. Our empirical analysis compares this approach against ridge regression-based conformal methods, showing that conformal prediction with in-context learning (CP with ICL) achieves robust and scalable uncertainty estimates. Additionally, we evaluate its performance under distribution shifts and establish scaling laws to guide model training. These findings bridge ICL and conformal prediction, providing a theoretically grounded and new framework for uncertainty quantification in transformer-based models.
Authors:Yuxuan Zhang, Jinkui Hao, Bo Zhou
Title: Dual-domain Multi-path Self-supervised Diffusion Model for Accelerated MRI Reconstruction
Abstract:
Magnetic resonance imaging (MRI) is a vital diagnostic tool, but its inherently long acquisition times reduce clinical efficiency and patient comfort. Recent advancements in deep learning, particularly diffusion models, have improved accelerated MRI reconstruction. However, existing diffusion models' training often relies on fully sampled data, models incur high computational costs, and often lack uncertainty estimation, limiting their clinical applicability. To overcome these challenges, we propose a novel framework, called Dual-domain Multi-path Self-supervised Diffusion Model (DMSM), that integrates a self-supervised dual-domain diffusion model training scheme, a lightweight hybrid attention network for the reconstruction diffusion model, and a multi-path inference strategy, to enhance reconstruction accuracy, efficiency, and explainability. Unlike traditional diffusion-based models, DMSM eliminates the dependency on training from fully sampled data, making it more practical for real-world clinical settings. We evaluated DMSM on two human MRI datasets, demonstrating that it achieves favorable performance over several supervised and self-supervised baselines, particularly in preserving fine anatomical structures and suppressing artifacts under high acceleration factors. Additionally, our model generates uncertainty maps that correlate reasonably well with reconstruction errors, offering valuable clinically interpretable guidance and potentially enhancing diagnostic confidence.
Authors:Zanting Ye, Xiaolong Niu, Xuanbin Wu, Wenxiang Yi, Yuan Chang, Lijun Lu
Title: Semi-KAN: KAN Provides an Effective Representation for Semi-Supervised Learning in Medical Image Segmentation
Abstract:
Deep learning-based medical image segmentation has shown remarkable success; however, it typically requires extensive pixel-level annotations, which are both expensive and time-intensive. Semi-supervised medical image segmentation (SSMIS) offers a viable alternative, driven by advancements in CNNs and ViTs. However, these networks often rely on single fixed activation functions and linear modeling patterns, limiting their ability to effectively learn robust representations. Given the limited availability of labeled date, achieving robust representation learning becomes crucial. Inspired by Kolmogorov-Arnold Networks (KANs), we propose Semi-KAN, which leverages the untapped potential of KANs to enhance backbone architectures for representation learning in SSMIS. Our findings indicate that: (1) compared to networks with fixed activation functions, KANs exhibit superior representation learning capabilities with fewer parameters, and (2) KANs excel in high-semantic feature spaces. Building on these insights, we integrate KANs into tokenized intermediate representations, applying them selectively at the encoder's bottleneck and the decoder's top layers within a U-Net pipeline to extract high-level semantic features. Although learnable activation functions improve feature expansion, they introduce significant computational overhead with only marginal performance gains. To mitigate this, we reduce the feature dimensions and employ horizontal scaling to capture multiple pattern representations. Furthermore, we design a multi-branch U-Net architecture with uncertainty estimation to effectively learn diverse pattern representations. Extensive experiments on four public datasets demonstrate that Semi-KAN surpasses baseline networks, utilizing fewer KAN layers and lower computational cost, thereby underscoring the potential of KANs as a promising approach for SSMIS.
Authors:Guoyou Sun, Panagiotis Karras, Qi Zhang
Title: Highly Efficient Direct Analytics on Semantic-aware Time Series Data Compression
Abstract:
Semantic communication has emerged as a promising paradigm to tackle the challenges of massive growing data traffic and sustainable data communication. It shifts the focus from data fidelity to goal-oriented or task-oriented semantic transmission. While deep learning-based methods are commonly used for semantic encoding and decoding, they struggle with the sequential nature of time series data and high computation cost, particularly in resource-constrained IoT environments. Data compression plays a crucial role in reducing transmission and storage costs, yet traditional data compression methods fall short of the demands of goal-oriented communication systems. In this paper, we propose a novel method for direct analytics on time series data compressed by the SHRINK compression algorithm. Through experimentation using outlier detection as a case study, we show that our method outperforms baselines running on uncompressed data in multiple cases, with merely 1% difference in the worst case. Additionally, it achieves four times lower runtime on average and accesses approximately 10% of the data volume, which enables edge analytics with limited storage and computation power. These results demonstrate that our approach offers reliable, high-speed outlier detection analytics for diverse IoT applications while extracting semantics from time-series data, achieving high compression, and reducing data transmission.
Authors:Yuyan Chen, Nico Lang, B. Christian Schmidt, Aditya Jain, Yves Basset, Sara Beery, Maxim Larrivée, David Rolnick
Title: Open-Set Recognition of Novel Species in Biodiversity Monitoring
Abstract:
Machine learning is increasingly being applied to facilitate long-term, large-scale biodiversity monitoring. With most species on Earth still undiscovered or poorly documented, species-recognition models are expected to encounter new species during deployment. We introduce Open-Insects, a fine-grained image recognition benchmark dataset for open-set recognition and out-of-distribution detection in biodiversity monitoring. Open-Insects makes it possible to evaluate algorithms for new species detection on several geographical open-set splits with varying difficulty. Furthermore, we present a test set recently collected in the wild with 59 species that are likely new to science. We evaluate a variety of open-set recognition algorithms, including post-hoc methods, training-time regularization, and training with auxiliary data, finding that the simple post-hoc approach of utilizing softmax scores remains a strong baseline. We also demonstrate how to leverage auxiliary data to improve the detection performance when the training dataset is limited. Our results provide timely insights to guide the development of computer vision methods for biodiversity monitoring and species discovery.
Authors:Rui Shi, Nedret Billor, Elvan Ceyhan
Title: Outlyingness Scores with Cluster Catch Digraphs
Abstract:
This paper introduces two novel, outlyingness scores (OSs) based on Cluster Catch Digraphs (CCDs): Outbound Outlyingness Score (OOS) and Inbound Outlyingness Score (IOS). These scores enhance the interpretability of outlier detection results. Both OSs employ graph-, density-, and distribution-based techniques, tailored to high-dimensional data with varying cluster shapes and intensities. OOS evaluates the outlyingness of a point relative to its nearest neighbors, while IOS assesses the total ``influence" a point receives from others within its cluster. Both OSs effectively identify global and local outliers, invariant to data collinearity. Moreover, IOS is robust to the masking problems. With extensive Monte Carlo simulations, we compare the performance of both OSs with CCD-based, traditional, and state-of-the-art outlier detection methods. Both OSs exhibit substantial overall improvements over the CCD-based methods in both artificial and real-world data sets, particularly with IOS, which delivers the best overall performance among all the methods, especially in high-dimensional settings. Keywords: Outlier detection, Outlyingness score, Graph-based clustering, Cluster catch digraphs, High-dimensional data.
Authors:Gianni Franchi, Dat Nguyen Trong, Nacim Belkhir, Guoxuan Xia, Andrea Pilzer
Title: Towards Understanding and Quantifying Uncertainty for Text-to-Image Generation
Abstract:
Uncertainty quantification in text-to-image (T2I) generative models is crucial for understanding model behavior and improving output reliability. In this paper, we are the first to quantify and evaluate the uncertainty of T2I models with respect to the prompt. Alongside adapting existing approaches designed to measure uncertainty in the image space, we also introduce Prompt-based UNCertainty Estimation for T2I models (PUNC), a novel method leveraging Large Vision-Language Models (LVLMs) to better address uncertainties arising from the semantics of the prompt and generated images. PUNC utilizes a LVLM to caption a generated image, and then compares the caption with the original prompt in the more semantically meaningful text space. PUNC also enables the disentanglement of both aleatoric and epistemic uncertainties via precision and recall, which image-space approaches are unable to do. Extensive experiments demonstrate that PUNC outperforms state-of-the-art uncertainty estimation techniques across various settings. Uncertainty quantification in text-to-image generation models can be used on various applications including bias detection, copyright protection, and OOD detection. We also introduce a comprehensive dataset of text prompts and generation pairs to foster further research in uncertainty quantification for generative models. Our findings illustrate that PUNC not only achieves competitive performance but also enables novel applications in evaluating and improving the trustworthiness of text-to-image models.
Authors:Ranganath Krishnan, Piyush Khanna, Omesh Tickoo
Title: Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning
Abstract:
Large language models (LLMs) have revolutionized the field of natural language processing with their impressive reasoning and question-answering capabilities. However, these models are sometimes prone to generating credible-sounding but incorrect information, a phenomenon known as LLM hallucinations. Reliable uncertainty estimation in LLMs is essential for fostering trust in their generated responses and serves as a critical tool for the detection and prevention of erroneous or hallucinated outputs. To achieve reliable and well-calibrated uncertainty quantification in open-ended and free-form natural language generation, we propose an uncertainty-aware fine-tuning approach for LLMs. This approach enhances the model's ability to provide reliable uncertainty estimates without compromising accuracy, thereby guiding them to produce more trustworthy responses. We introduce a novel uncertainty-aware causal language modeling loss function, grounded in the principles of decision theory. Through rigorous evaluation on multiple free-form question-answering datasets and models, we demonstrate that our uncertainty-aware fine-tuning approach yields better calibrated uncertainty estimates in natural language generation tasks than fine-tuning with the standard causal language modeling loss. Furthermore, the experimental results show that the proposed method significantly improves the model's ability to detect hallucinations and identify out-of-domain prompts.
Authors:Shabnam Fazliani, Mohammad Mowlavi Sorond, Arsalan Masoudifard
Title: Leveraging Ensemble-Based Semi-Supervised Learning for Illicit Account Detection in Ethereum DeFi Transactions
Abstract:
The advent of smart contracts has enabled the rapid rise of Decentralized Finance (DeFi) on the Ethereum blockchain, offering substantial rewards in financial innovation and inclusivity. However, this growth has also introduced significant security risks, including the proliferation of illicit accounts involved in fraudulent activities. Traditional detection methods are limited by the scarcity of labeled data and the evolving tactics of malicious actors. In this paper, we propose a novel Self-Learning Ensemble-based Illicit account Detection (SLEID) framework to address these challenges. SLEID employs an Isolation Forest for initial outlier detection and a self-training mechanism to iteratively generate pseudo-labels for unlabeled accounts, thereby enhancing detection accuracy. Extensive experiments demonstrate that SLEID significantly outperforms traditional supervised approaches and recent semi-supervised models, achieving superior precision, recall, and F1-scores, particularly in detecting illicit accounts. Compared to state-of-the-art methods, our approach achieves better detection performance while reducing reliance on labeled data. The results affirm SLEID's efficacy as a robust solution for safeguarding the DeFi ecosystem and mitigating risks posed by malicious accounts.
Authors:Brian K. S. Isaac-Medina, Mauricio Che, Yona F. A. Gaus, Samet Akcay, Toby P. Breckon
Title: FEVER-OOD: Free Energy Vulnerability Elimination for Robust Out-of-Distribution Detection
Abstract:
Modern machine learning models, that excel on computer vision tasks such as classification and object detection, are often overconfident in their predictions for Out-of-Distribution (OOD) examples, resulting in unpredictable behaviour for open-set environments. Recent works have demonstrated that the free energy score is an effective measure of uncertainty for OOD detection given its close relationship to the data distribution. However, despite free energy-based methods representing a significant empirical advance in OOD detection, our theoretical analysis reveals previously unexplored and inherent vulnerabilities within the free energy score formulation such that in-distribution and OOD instances can have distinct feature representations yet identical free energy scores. This phenomenon occurs when the vector direction representing the feature space difference between the in-distribution and OOD sample lies within the null space of the last layer of a neural-based classifier. To mitigate these issues, we explore lower-dimensional feature spaces to reduce the null space footprint and introduce novel regularisation to maximize the least singular value of the final linear layer, hence enhancing inter-sample free energy separation. We refer to these techniques as Free Energy Vulnerability Elimination for Robust Out-of-Distribution Detection (FEVER-OOD). Our experiments show that FEVER-OOD techniques achieve state of the art OOD detection in Imagenet-100, with average OOD false positive rate (at 95% true positive rate) of 35.83% when used with the baseline Dream-OOD model.
Authors:Boqi Li, Haojie Zhu, Henry X. Liu
Title: DECODE: Domain-aware Continual Domain Expansion for Motion Prediction
Abstract:
Motion prediction is critical for autonomous vehicles to effectively navigate complex environments and accurately anticipate the behaviors of other traffic participants. As autonomous driving continues to evolve, the need to assimilate new and varied driving scenarios necessitates frequent model updates through retraining. To address these demands, we introduce DECODE, a novel continual learning framework that begins with a pre-trained generalized model and incrementally develops specialized models for distinct domains. Unlike existing continual learning approaches that attempt to develop a unified model capable of generalizing across diverse scenarios, DECODE uniquely balances specialization with generalization, dynamically adjusting to real-time demands. The proposed framework leverages a hypernetwork to generate model parameters, significantly reducing storage requirements, and incorporates a normalizing flow mechanism for real-time model selection based on likelihood estimation. Furthermore, DECODE merges outputs from the most relevant specialized and generalized models using deep Bayesian uncertainty estimation techniques. This integration ensures optimal performance in familiar conditions while maintaining robustness in unfamiliar scenarios. Extensive evaluations confirm the effectiveness of the framework, achieving a notably low forgetting rate of 0.044 and an average minADE of 0.584 m, significantly surpassing traditional learning strategies and demonstrating adaptability across a wide range of driving conditions.
Authors:Hanieh Shojaei Miandashti, Qianqian Zou, Claus Brenner
Title: Calibrated and Efficient Sampling-Free Confidence Estimation for LiDAR Scene Semantic Segmentation
Abstract:
Reliable deep learning models require not only accurate predictions but also well-calibrated confidence estimates to ensure dependable uncertainty estimation. This is crucial in safety-critical applications like autonomous driving, which depend on rapid and precise semantic segmentation of LiDAR point clouds for real-time 3D scene understanding. In this work, we introduce a sampling-free approach for estimating well-calibrated confidence values for classification tasks, achieving alignment with true classification accuracy and significantly reducing inference time compared to sampling-based methods. Our evaluation using the Adaptive Calibration Error (ACE) metric for LiDAR semantic segmentation shows that our approach maintains well-calibrated confidence values while achieving increased processing speed compared to a sampling baseline. Additionally, reliability diagrams reveal that our method produces underconfidence rather than overconfident predictions, an advantage for safety-critical applications. Our sampling-free approach offers well-calibrated and time-efficient predictions for LiDAR scene semantic segmentation.
Authors:Ezgi Demircan-Tureyen, Felix Lucka, Tristan van Leeuwen
Title: Exploring Out-of-distribution Detection for Sparse-view Computed Tomography with Diffusion Models
Abstract:
Recent works demonstrate the effectiveness of diffusion models as unsupervised solvers for inverse imaging problems. Sparse-view computed tomography (CT) has greatly benefited from these advancements, achieving improved generalization without reliance on measurement parameters. However, this comes at the cost of potential hallucinations, especially when handling out-of-distribution (OOD) data. To ensure reliability, it is essential to study OOD detection for CT reconstruction across both clinical and industrial applications. This need further extends to enabling the OOD detector to function effectively as an anomaly inspection tool. In this paper, we explore the use of a diffusion model, trained to capture the target distribution for CT reconstruction, as an in-distribution prior. Building on recent research, we employ the model to reconstruct partially diffused input images and assess OOD-ness through multiple reconstruction errors. Adapting this approach for sparse-view CT requires redefining the notions of ``input'' and ``reconstruction error''. Here, we use filtered backprojection (FBP) reconstructions as input and investigate various definitions of reconstruction error. Our proof-of-concept experiments on the MNIST dataset highlight both successes and failures, demonstrating the potential and limitations of integrating such an OOD detector into a CT reconstruction system. Our findings suggest that effective OOD detection can be achieved by comparing measurements with forward-projected reconstructions, provided that reconstructions from noisy FBP inputs are conditioned on the measurements. However, conditioning can sometimes lead the OOD detector to inadvertently reconstruct OOD images well. To counter this, we introduce a weighting approach that improves robustness against highly informative OOD measurements, albeit with a trade-off in performance in certain cases.
Authors:Guillermo Villate-Castillo, Javier Del Ser, Borja Sanz
Title: A Collaborative Content Moderation Framework for Toxicity Detection based on Conformalized Estimates of Annotation Disagreement
Abstract:
Content moderation typically combines the efforts of human moderators and machine learning models. However, these systems often rely on data where significant disagreement occurs during moderation, reflecting the subjective nature of toxicity perception. Rather than dismissing this disagreement as noise, we interpret it as a valuable signal that highlights the inherent ambiguity of the content,an insight missed when only the majority label is considered. In this work, we introduce a novel content moderation framework that emphasizes the importance of capturing annotation disagreement. Our approach uses multitask learning, where toxicity classification serves as the primary task and annotation disagreement is addressed as an auxiliary task. Additionally, we leverage uncertainty estimation techniques, specifically Conformal Prediction, to account for both the ambiguity in comment annotations and the model's inherent uncertainty in predicting toxicity and disagreement.The framework also allows moderators to adjust thresholds for annotation disagreement, offering flexibility in determining when ambiguity should trigger a review. We demonstrate that our joint approach enhances model performance, calibration, and uncertainty estimation, while offering greater parameter efficiency and improving the review process in comparison to single-task methods.
Authors:Mouïn Ben Ammar, David Brellmann, Arturo Mendoza, Antoine Manzanera, Gianni Franchi
Title: Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity
Abstract:
Out-of-distribution (OOD) detection is essential for ensuring the reliability and safety of machine learning systems. In recent years, it has received increasing attention, particularly through post-hoc detection and training-based methods. In this paper, we focus on post-hoc OOD detection, which enables identifying OOD samples without altering the model's training procedure or objective. Our primary goal is to investigate the relationship between model capacity and its OOD detection performance. Specifically, we aim to answer the following question: Does the Double Descent phenomenon manifest in post-hoc OOD detection? This question is crucial, as it can reveal whether overparameterization, which is already known to benefit generalization, can also enhance OOD detection. Despite the growing interest in these topics by the classic supervised machine learning community, this intersection remains unexplored for OOD detection. We empirically demonstrate that the Double Descent effect does indeed appear in post-hoc OOD detection. Furthermore, we provide theoretical insights to explain why this phenomenon emerges in such setting. Finally, we show that the overparameterized regime does not yield superior results consistently, and we propose a method to identify the optimal regime for OOD detection based on our observations.
Authors:Sebastián Espinel-Ríos, José Montaño López, José L. Avalos
Title: Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation
Abstract:
This work presents an omics-driven modeling pipeline that integrates machine-learning tools to facilitate the dynamic modeling of multiscale biological systems. Random forests and permutation feature importance are proposed to mine omics datasets, guiding feature selection and dimensionality reduction for dynamic modeling. Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model, resulting in a hybrid model. As proof of concept, we apply this framework to a high-dimensional proteomics dataset of $\textit{Saccharomyces cerevisiae}$. After identifying key intracellular proteins that correlate with cell growth, targeted dynamic experiments are designed, and key model parameters are captured as functions of the selected proteins using Gaussian processes. This approach captures the dynamic behavior of yeast strains under varying proteome profiles while estimating the uncertainty in the hybrid model's predictions. The outlined modeling framework is adaptable to other scenarios, such as integrating additional layers of omics data for more advanced multiscale biological systems, or employing alternative machine-learning methods to handle larger datasets. Overall, this study outlines a strategy for leveraging omics data to inform multiscale dynamic modeling in systems biology and bioprocess engineering.
Authors:Mingle Xu, Jaehwan Lee, Sook Yoon, Dong Sun Park
Title: Adaptive Label Smoothing for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection, which aims to distinguish unknown classes from known classes, has received increasing attention recently. A main challenge within is the unavailable of samples from the unknown classes in the training process, and an effective strategy is to improve the performance for known classes. Using beneficial strategies such as data augmentation and longer training is thus a way to improve OOD detection. However, label smoothing, an effective method for classifying known classes, degrades the performance of OOD detection, and this phenomenon is under exploration. In this paper, we first analyze that the limited and predefined learning target in label smoothing results in the smaller maximal probability and logit, which further leads to worse OOD detection performance. To mitigate this issue, we then propose a novel regularization method, called adaptive label smoothing (ALS), and the core is to push the non-true classes to have same probabilities whereas the maximal probability is neither fixed nor limited. Extensive experimental results in six datasets with two backbones suggest that ALS contributes to classifying known samples and discerning unknown samples with clear margins. Our code will be available to the public.
Authors:Vinesh Sridhar, Rolf Svenning
Title: Fast Area-Weighted Peeling of Convex Hulls for Outlier Detection
Abstract:
We present a novel 2D convex hull peeling algorithm for outlier detection, which repeatedly removes the point on the hull that decreases the hull's area the most. To find k outliers among n points, one simply peels k points. The algorithm is an efficient heuristic for exact methods, which find the k points whose removal together results in the smallest convex hull. Our algorithm runs in O(nlogn) time using O(n) space for any choice of k. This is a significant speedup compared to the fastest exact algorithms, which run in O(n^2logn + (n - k)^3) time using O(n\logn + (n-k)^3) space by Eppstein et al., and O(nlogn + 4k_C_2k (3k)^k n) time by Atanassov et al. Existing heuristic peeling approaches are not area-based. Instead, an approach by Harsh et al. repeatedly removes the point furthest from the mean using various distance metrics and runs in O(nlogn + kn) time. Other approaches greedily peel one convex layer at a time, which is efficient when using an O(nlogn) time algorithm by Chazelle to compute the convex layers. However, in many cases this fails to recover outliers. For most values of n and k, our approach is the fastest and first practical choice for finding outliers based on minimizing the area of the convex hull. Our algorithm also generalizes to other objectives such as perimeter.
Authors:Rui Shi, Nedret Billor, Elvan Ceyhan
Title: Outlier Detection with Cluster Catch Digraphs
Abstract:
This paper introduces a novel family of outlier detection algorithms based on Cluster Catch Digraphs (CCDs), specifically tailored to address the challenges of high dimensionality and varying cluster shapes, which deteriorate the performance of most traditional outlier detection methods. We propose the Uniformity-Based CCD with Mutual Catch Graph (U-MCCD), the Uniformity- and Neighbor-Based CCD with Mutual Catch Graph (UN-MCCD), and their shape-adaptive variants (SU-MCCD and SUN-MCCD), which are designed to detect outliers in data sets with arbitrary cluster shapes and high dimensions. We present the advantages and shortcomings of these algorithms and provide the motivation or need to define each particular algorithm. Through comprehensive Monte Carlo simulations, we assess their performance and demonstrate the robustness and effectiveness of our algorithms across various settings and contamination levels. We also illustrate the use of our algorithms on various real-life data sets. The U-MCCD algorithm efficiently identifies outliers while maintaining high true negative rates, and the SU-MCCD algorithm shows substantial improvement in handling non-uniform clusters. Additionally, the UN-MCCD and SUN-MCCD algorithms address the limitations of existing methods in high-dimensional spaces by utilizing Nearest Neighbor Distances (NND) for clustering and outlier detection. Our results indicate that these novel algorithms offer substantial advancements in the accuracy and adaptability of outlier detection, providing a valuable tool for various real-world applications. Keyword: Outlier detection, Graph-based clustering, Cluster catch digraphs, $k$-nearest-neighborhood, Mutual catch graphs, Nearest neighbor distance.
Authors:Sawan Kumar, Rajdip Nayek, Souvik Chakraborty
Title: Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics
Abstract:
The growing demand for accurate, efficient, and scalable solutions in computational mechanics highlights the need for advanced operator learning algorithms that can efficiently handle large datasets while providing reliable uncertainty quantification. This paper introduces a novel Gaussian Process (GP) based neural operator for solving parametric differential equations. The approach proposed leverages the expressive capability of deterministic neural operators and the uncertainty awareness of conventional GP. In particular, we propose a ``neural operator-embedded kernel'' wherein the GP kernel is formulated in the latent space learned using a neural operator. Further, we exploit a stochastic dual descent (SDD) algorithm for simultaneously training the neural operator parameters and the GP hyperparameters. Our approach addresses the (a) resolution dependence and (b) cubic complexity of traditional GP models, allowing for input-resolution independence and scalability in high-dimensional and non-linear parametric systems, such as those encountered in computational mechanics. We apply our method to a range of non-linear parametric partial differential equations (PDEs) and demonstrate its superiority in both computational efficiency and accuracy compared to standard GP models and wavelet neural operators. Our experimental results highlight the efficacy of this framework in solving complex PDEs while maintaining robustness in uncertainty estimation, positioning it as a scalable and reliable operator-learning algorithm for computational mechanics.
Authors:Bhaktipriya Radharapu, Eshika Saxena, Kenneth Li, Chenxi Whitehouse, Adina Williams, Nicola Cancedda
Title: Calibrating LLM Judges: Linear Probes for Fast and Reliable Uncertainty Estimation
Abstract:
As LLM-based judges become integral to industry applications, obtaining well-calibrated uncertainty estimates efficiently has become critical for production deployment. However, existing techniques, such as verbalized confidence and multi-generation methods, are often either poorly calibrated or computationally expensive. We introduce linear probes trained with a Brier score-based loss to provide calibrated uncertainty estimates from reasoning judges' hidden states, requiring no additional model training. We evaluate our approach on both objective tasks (reasoning, mathematics, factuality, coding) and subjective human preference judgments. Our results demonstrate that probes achieve superior calibration compared to existing methods with $\approx10$x computational savings, generalize robustly to unseen evaluation domains, and deliver higher accuracy on high-confidence predictions. However, probes produce conservative estimates that underperform on easier datasets but may benefit safety-critical deployments prioritizing low false-positive rates. Overall, our work demonstrates that interpretability-based uncertainty estimation provides a practical and scalable plug-and-play solution for LLM judges in production.
Authors:David Graber, Victor Armegioiu, Rebecca Buller, Siddhartha Mishra
Title: Out-of-Distribution Detection in Molecular Complexes via Diffusion Models for Irregular Graphs
Abstract:
Predictive machine learning models generally excel on in-distribution data, but their performance degrades on out-of-distribution (OOD) inputs. Reliable deployment therefore requires robust OOD detection, yet this is particularly challenging for irregular 3D graphs that combine continuous geometry with categorical identities and are unordered by construction. Here, we present a probabilistic OOD detection framework for complex 3D graph data built on a diffusion model that learns a density of the training distribution in a fully unsupervised manner. A key ingredient we introduce is a unified continuous diffusion over both 3D coordinates and discrete features: categorical identities are embedded in a continuous space and trained with cross-entropy, while the corresponding diffusion score is obtained analytically via posterior-mean interpolation from predicted class probabilities. This yields a single self-consistent probability-flow ODE (PF-ODE) that produces per-sample log-likelihoods, providing a principled typicality score for distribution shift. We validate the approach on protein-ligand complexes and construct strict OOD datasets by withholding entire protein families from training. PF-ODE likelihoods identify held-out families as OOD and correlate strongly with prediction errors of an independent binding-affinity model (GEMS), enabling a priori reliability estimates on new complexes. Beyond scalar likelihoods, we show that multi-scale PF-ODE trajectory statistics - including path tortuosity, flow stiffness, and vector-field instability - provide complementary OOD information. Modeling the joint distribution of these trajectory features yields a practical, high-sensitivity detector that improves separation over likelihood-only baselines, offering a label-free OOD quantification workflow for geometric deep learning.
Authors:Hiroki Sawada, Alexandre Pitti, Mathias Quoy
Title: CERNet: Class-Embedding Predictive-Coding RNN for Unified Robot Motion, Recognition, and Confidence Estimation
Abstract:
Robots interacting with humans must not only generate learned movements in real-time, but also infer the intent behind observed behaviors and estimate the confidence of their own inferences. This paper proposes a unified model that achieves all three capabilities within a single hierarchical predictive-coding recurrent neural network (PC-RNN) equipped with a class embedding vector, CERNet, which leverages a dynamically updated class embedding vector to unify motor generation and recognition. The model operates in two modes: generation and inference. In the generation mode, the class embedding constrains the hidden state dynamics to a class-specific subspace; in the inference mode, it is optimized online to minimize prediction error, enabling real-time recognition. Validated on a humanoid robot across 26 kinesthetically taught alphabets, our hierarchical model achieves 76% lower trajectory reproduction error than a parameter-matched single-layer baseline, maintains motion fidelity under external perturbations, and infers the demonstrated trajectory class online with 68% Top-1 and 81% Top-2 accuracy. Furthermore, internal prediction errors naturally reflect the model's confidence in its recognition. This integration of robust generation, real-time recognition, and intrinsic uncertainty estimation within a compact PC-RNN framework offers a compact and extensible approach to motor memory in physical robots, with potential applications in intent-sensitive human-robot collaboration.
Authors:Dongdong Zhao, Ranxin Fang, Changtian Song, Zhihui Liu, Jianwen Xiang
Title: Known Meets Unknown: Mitigating Overconfidence in Open Set Recognition
Abstract:
Open Set Recognition (OSR) requires models not only to accurately classify known classes but also to effectively reject unknown samples. However, when unknown samples are semantically similar to known classes, inter-class overlap in the feature space often causes models to assign unjustifiably high confidence to them, leading to misclassification as known classes -- a phenomenon known as overconfidence. This overconfidence undermines OSR by blurring the decision boundary between known and unknown classes. To address this issue, we propose a framework that explicitly mitigates overconfidence caused by inter-class overlap. The framework consists of two components: a perturbation-based uncertainty estimation module, which applies controllable parameter perturbations to generate diverse predictions and quantify predictive uncertainty, and an unknown detection module with distinct learning-based classifiers, implemented as a two-stage procedure, which leverages the estimated uncertainty to improve discrimination between known and unknown classes, thereby enhancing OSR performance. Experimental results on three public datasets show that the proposed framework achieves superior performance over existing OSR methods.
Authors:Haiyi Li, Qi Chen, Denis Kalkofen, Hsiang-Ting Chen
Title: OUGS: Active View Selection via Object-aware Uncertainty Estimation in 3DGS
Abstract:
Recent advances in 3D Gaussian Splatting (3DGS) have achieved state-of-the-art results for novel view synthesis. However, efficiently capturing high-fidelity reconstructions of specific objects within complex scenes remains a significant challenge. A key limitation of existing active reconstruction methods is their reliance on scene-level uncertainty metrics, which are often biased by irrelevant background clutter and lead to inefficient view selection for object-centric tasks. We present OUGS, a novel framework that addresses this challenge with a more principled, physically-grounded uncertainty formulation for 3DGS. Our core innovation is to derive uncertainty directly from the explicit physical parameters of the 3D Gaussian primitives (e.g., position, scale, rotation). By propagating the covariance of these parameters through the rendering Jacobian, we establish a highly interpretable uncertainty model. This foundation allows us to then seamlessly integrate semantic segmentation masks to produce a targeted, object-aware uncertainty score that effectively disentangles the object from its environment. This allows for a more effective active view selection strategy that prioritizes views critical to improving object fidelity. Experimental evaluations on public datasets demonstrate that our approach significantly improves the efficiency of the 3DGS reconstruction process and achieves higher quality for targeted objects compared to existing state-of-the-art methods, while also serving as a robust uncertainty estimator for the global scene.
Authors:Kevin Wang, Subre Abdoul Moktar, Jia Li, Kangshuo Li, Feng Chen
Title: Measuring Aleatoric and Epistemic Uncertainty in LLMs: Empirical Evaluation on ID and OOD QA Tasks
Abstract:
Large Language Models (LLMs) have become increasingly pervasive, finding applications across many industries and disciplines. Ensuring the trustworthiness of LLM outputs is paramount, where Uncertainty Estimation (UE) plays a key role. In this work, a comprehensive empirical study is conducted to examine the robustness and effectiveness of diverse UE measures regarding aleatoric and epistemic uncertainty in LLMs. It involves twelve different UE methods and four generation quality metrics including LLMScore from LLM criticizers to evaluate the uncertainty of LLM-generated answers in Question-Answering (QA) tasks on both in-distribution (ID) and out-of-distribution (OOD) datasets. Our analysis reveals that information-based methods, which leverage token and sequence probabilities, perform exceptionally well in ID settings due to their alignment with the model's understanding of the data. Conversely, density-based methods and the P(True) metric exhibit superior performance in OOD contexts, highlighting their effectiveness in capturing the model's epistemic uncertainty. Semantic consistency methods, which assess variability in generated answers, show reliable performance across different datasets and generation metrics. These methods generally perform well but may not be optimal for every situation.
Authors:Lukas Bierling, Davide Pasero, Jan-Henrik Bertrand, Kiki Van Gerwen
Title: DreamerV3-XP: Optimizing exploration through uncertainty estimation
Abstract:
We introduce DreamerV3-XP, an extension of DreamerV3 that improves exploration and learning efficiency. This includes (i) a prioritized replay buffer, scoring trajectories by return, reconstruction loss, and value error and (ii) an intrinsic reward based on disagreement over predicted environment rewards from an ensemble of world models. DreamerV3-XP is evaluated on a subset of Atari100k and DeepMind Control Visual Benchmark tasks, confirming the original DreamerV3 results and showing that our extensions lead to faster learning and lower dynamics model loss, particularly in sparse-reward settings.
Authors:Victoria J. Hodge, Colin Paterson, Ibrahim Habli
Title: Out-of-Distribution Detection for Safety Assurance of AI and Autonomous Systems
Abstract:
The operational capabilities and application domains of AI-enabled autonomous systems have expanded significantly in recent years due to advances in robotics and machine learning (ML). Demonstrating the safety of autonomous systems rigorously is critical for their responsible adoption but it is challenging as it requires robust methodologies that can handle novel and uncertain situations throughout the system lifecycle, including detecting out-of-distribution (OoD) data. Thus, OOD detection is receiving increased attention from the research, development and safety engineering communities. This comprehensive review analyses OOD detection techniques within the context of safety assurance for autonomous systems, in particular in safety-critical domains. We begin by defining the relevant concepts, investigating what causes OOD and exploring the factors which make the safety assurance of autonomous systems and OOD detection challenging. Our review identifies a range of techniques which can be used throughout the ML development lifecycle and we suggest areas within the lifecycle in which they may be used to support safety assurance arguments. We discuss a number of caveats that system and safety engineers must be aware of when integrating OOD detection into system lifecycles. We conclude by outlining the challenges and future work necessary for the safe development and operation of autonomous systems across a range of domains and applications.
Authors:Juntang Wang, Yihan Wang, Hao Wu, Dongmian Zou, Shixin Xu
Title: Brain-Inspired Perspective on Configurations: Unsupervised Similarity and Early Cognition
Abstract:
Infants discover categories, detect novelty, and adapt to new contexts without supervision -- a challenge for current machine learning. We present a brain-inspired perspective on configurations, a finite-resolution clustering framework that uses a single resolution parameter and attraction-repulsion dynamics to yield hierarchical organization, novelty sensitivity, and flexible adaptation. To evaluate these properties, we introduce mheatmap, which provides proportional heatmaps and a reassignment algorithm to fairly assess multi-resolution and dynamic behavior. Across datasets, configurations are competitive on standard clustering metrics, achieve 87% AUC in novelty detection, and show 35% better stability during dynamic category evolution. These results position configurations as a principled computational model of early cognitive categorization and a step toward brain-inspired AI.
Authors:Mouhyemen Khan, Tatsuya Ibuki, Abhijit Chatterjee
Title: Gaussian Process Implicit Surfaces as Control Barrier Functions for Safe Robot Navigation
Abstract:
Level set methods underpin modern safety techniques such as control barrier functions (CBFs), while also serving as implicit surface representations for geometric shapes via distance fields. Inspired by these two paradigms, we propose a unified framework where the implicit surface itself acts as a CBF. We leverage Gaussian process (GP) implicit surface (GPIS) to represent the safety boundaries, using safety samples which are derived from sensor measurements to condition the GP. The GP posterior mean defines the implicit safety surface (safety belief), while the posterior variance provides a robust safety margin. Although GPs have favorable properties such as uncertainty estimation and analytical tractability, they scale cubically with data. To alleviate this issue, we develop a sparse solution called sparse Gaussian CBFs. To the best of our knowledge, GPIS have not been explicitly used to synthesize CBFs. We validate the approach on collision avoidance tasks in two settings: a simulated 7-DOF manipulator operating around the Stanford bunny, and a quadrotor navigating in 3D around a physical chair. In both cases, Gaussian CBFs (with and without sparsity) enable safe interaction and collision-free execution of trajectories that would otherwise intersect the objects.
Authors:Sehar Zehra, Hassan Jamil Syed, Ummay Faseeha
Title: FedMon: Federated eBPF Monitoring for Distributed Anomaly Detection in Multi-Cluster Cloud Environments
Abstract:
Kubernetes multi-cluster deployments demand scalable and privacy-preserving anomaly detection. Existing eBPF-based monitors provide low-overhead system and network visibility but are limited to single clusters, while centralized approaches incur bandwidth, privacy, and heterogeneity challenges. We propose FedMon, a federated eBPF framework that unifies kernel-level telemetry with federated learning (FL) for cross-cluster anomaly detection. Lightweight eBPF agents capture syscalls and network events, extract local statistical and sequence features, and share only model updates with a global server. A hybrid detection engine combining Variational Autoencoders (VAEs) with Isolation Forests enables both temporal pattern modeling and outlier detection. Deployed across three Kubernetes clusters, FedMon achieves 94% precision, 91% recall, and an F1-score of 0.92, while cutting bandwidth usage by 60% relative to centralized baselines. Results demonstrate that FedMon enhances accuracy, scalability, and privacy, providing an effective defense for large-scale, multi-tenant cloud-native environments.
Authors:Kevin Raina, Tanya Schmah
Title: Out-of-Distribution Detection from Small Training Sets using Bayesian Neural Network Classifiers
Abstract:
Out-of-Distribution (OOD) detection is critical to AI reliability and safety, yet in many practical settings, only a limited amount of training data is available. Bayesian Neural Networks (BNNs) are a promising class of model on which to base OOD detection, because they explicitly represent epistemic (i.e. model) uncertainty. In the small training data regime, BNNs are especially valuable because they can incorporate prior model information. We introduce a new family of Bayesian posthoc OOD scores based on expected logit vectors, and compare 5 Bayesian and 4 deterministic posthoc OOD scores. Experiments on MNIST and CIFAR-10 In-Distributions, with 5000 training samples or less, show that the Bayesian methods outperform corresponding deterministic methods.
Authors:Ebenezer Awotoro, Chisom Ezekannagha, Florian Schwarz, Johannes Tauscher, Dominik Heider, Katharina Ladewig, Christel Le Bon, Karine Moncoq, Bruno Miroux, Georges Hattab
Title: MetaMP: Seamless Metadata Enrichment and AI Application Framework for Enhanced Membrane Protein Visualization and Analysis
Abstract:
Structural biology has made significant progress in determining membrane proteins, leading to a remarkable increase in the number of available structures in dedicated databases. The inherent complexity of membrane protein structures, coupled with challenges such as missing data, inconsistencies, and computational barriers from disparate sources, underscores the need for improved database integration. To address this gap, we present MetaMP, a framework that unifies membrane-protein databases within a web application and uses machine learning for classification. MetaMP improves data quality by enriching metadata, offering a user-friendly interface, and providing eight interactive views for streamlined exploration. MetaMP was effective across tasks of varying difficulty, demonstrating advantages across different levels without compromising speed or accuracy, according to user evaluations. Moreover, MetaMP supports essential functions such as structure classification and outlier detection. We present three practical applications of Artificial Intelligence (AI) in membrane protein research: predicting transmembrane segments, reconciling legacy databases, and classifying structures with explainable AI support. In a validation focused on statistics, MetaMP resolved 77% of data discrepancies and accurately predicted the class of newly identified membrane proteins 98% of the time and overtook expert curation. Altogether, MetaMP is a much-needed resource that harmonizes current knowledge and empowers AI-driven exploration of membrane-protein architecture.
Authors:Yadav Mahesh Lorik, Kaushik Sarveswaran, Nagaraj Sundaramahalingam, Aravindakumar Venugopalan
Title: THEMIS: Unlocking Pretrained Knowledge with Foundation Model Embeddings for Anomaly Detection in Time Series
Abstract:
Time series anomaly detection forms a very crucial area in several domains but poses substantial challenges. Due to time series data possessing seasonality, trends, noise, and evolving patterns (concept drift), it becomes very difficult to set a general notion of what constitutes normal behavior. Anomalies themselves could be varied, ranging from a single outlier to contextual or collective anomalies, and are normally very rare; hence, the dataset is largely imbalanced. Additional layers of complexities arise due to the problems of increased dimensionality of modern time series, real-time detection criteria, setting up appropriate detection thresholds, and arriving at results that are interpretable. To embrace these multifaceted challenges, very strong, flexible, and interpretable approaches are required. This paper presents THEMIS, a new framework for time series anomaly detection that exploits pretrained knowledge from foundation models. THEMIS extracts embeddings from the encoder of the Chronos time series foundation model and applies outlier detection techniques like Local Outlier Factor and Spectral Decomposition on the self-similarity matrix, to spot anomalies in the data. Our experiments show that this modular method achieves SOTA results on the MSL dataset and performs quite competitively on the SMAP and SWAT$^*$ datasets. Notably, THEMIS exceeds models trained specifically for anomaly detection, presenting hyperparameter robustness and interpretability by default. This paper advocates for pretrained representations from foundation models for performing efficient and adaptable anomaly detection for time series data.
Authors:Cornelius Schröder, Marius-Raphael Schlüter, Markus Lienkamp
Title: Calibrating the Full Predictive Class Distribution of 3D Object Detectors for Autonomous Driving
Abstract:
In autonomous systems, precise object detection and uncertainty estimation are critical for self-aware and safe operation. This work addresses confidence calibration for the classification task of 3D object detectors. We argue that it is necessary to regard the calibration of the full predictive confidence distribution over all classes and deduce a metric which captures the calibration of dominant and secondary class predictions. We propose two auxiliary regularizing loss terms which introduce either calibration of the dominant prediction or the full prediction vector as a training goal. We evaluate a range of post-hoc and train-time methods for CenterPoint, PillarNet and DSVT-Pillar and find that combining our loss term, which regularizes for calibration of the full class prediction, and isotonic regression lead to the best calibration of CenterPoint and PillarNet with respect to both dominant and secondary class predictions. We further find that DSVT-Pillar can not be jointly calibrated for dominant and secondary predictions using the same method.
Authors:Madhushan Ramalingam, Yaish Riaz, Priyanthi Rajamanoharan, Piyumi Dasanayaka
Title: Enhancing Safety in Diabetic Retinopathy Detection: Uncertainty-Aware Deep Learning Models with Rejection Capabilities
Abstract:
Diabetic retinopathy (DR) is a major cause of visual impairment, and effective treatment options depend heavily on timely and accurate diagnosis. Deep learning models have demonstrated great success identifying DR from retinal images. However, relying only on predictions made by models, without any indication of model confidence, creates uncertainty and poses significant risk in clinical settings. This paper investigates an alternative in uncertainty-aware deep learning models, including a rejection mechanism to reject low-confidence predictions, contextualized by deferred decision-making in clinical practice. The results show there is a trade-off between prediction coverage and coverage reliability. The Variational Bayesian model adopted a more conservative strategy when predicting DR, subsequently rejecting the uncertain predictions. The model is evaluated by means of important performance metrics such as Accuracy on accepted predictions, the proportion of accepted cases (coverage), the rejection-ratio, and Expected Calibration Error (ECE). The findings also demonstrate a clear trade-off between accuracy and caution, establishing that the use of uncertainty estimation and selective rejection improves the model's reliability in safety-critical diagnostic use cases.
Authors:Noah Broestl, Adel Nasser Abdalla, Rajprakash Bale, Hersh Gupta, Max Struever
Title: Methodological Framework for Quantifying Semantic Test Coverage in RAG Systems
Abstract:
Reliably determining the performance of Retrieval-Augmented Generation (RAG) systems depends on comprehensive test questions. While a proliferation of evaluation frameworks for LLM-powered applications exists, current practices lack a systematic method to ensure these test sets adequately cover the underlying knowledge base, leaving developers with significant blind spots. To address this, we present a novel, applied methodology to quantify the semantic coverage of RAG test questions against their underlying documents. Our approach leverages existing technologies, including vector embeddings and clustering algorithms, to create a practical framework for validating test comprehensiveness. Our methodology embeds document chunks and test questions into a unified vector space, enabling the calculation of multiple coverage metrics: basic proximity, content-weighted coverage, and multi-topic question coverage. Furthermore, we incorporate outlier detection to filter irrelevant questions, allowing for the refinement of test sets. Experimental evidence from two distinct use cases demonstrates that our framework effectively quantifies test coverage, identifies specific content areas with inadequate representation, and provides concrete recommendations for generating new, high-value test questions. This work provides RAG developers with essential tools to build more robust test suites, thereby improving system reliability and extending to applications such as identifying misaligned documents.
Authors:Saurav Jha, Stefan K. Ehrlich
Title: Lightweight Structured Multimodal Reasoning for Clinical Scene Understanding in Robotics
Abstract:
Healthcare robotics requires robust multimodal perception and reasoning to ensure safety in dynamic clinical environments. Current Vision-Language Models (VLMs) demonstrate strong general-purpose capabilities but remain limited in temporal reasoning, uncertainty estimation, and structured outputs needed for robotic planning. We present a lightweight agentic multimodal framework for video-based scene understanding. Combining the Qwen2.5-VL-3B-Instruct model with a SmolAgent-based orchestration layer, it supports chain-of-thought reasoning, speech-vision fusion, and dynamic tool invocation. The framework generates structured scene graphs and leverages a hybrid retrieval module for interpretable and adaptive reasoning. Evaluations on the Video-MME benchmark and a custom clinical dataset show competitive accuracy and improved robustness compared to state-of-the-art VLMs, demonstrating its potential for applications in robot-assisted surgery, patient monitoring, and decision support.
Authors:Obu-Amoah Ampomah, Edmund Agyemang, Kofi Acheampong, Louis Agyekum
Title: Enhancing Credit Default Prediction Using Boruta Feature Selection and DBSCAN Algorithm with Different Resampling Techniques
Abstract:
This study examines credit default prediction by comparing three techniques, namely SMOTE, SMOTE-Tomek, and ADASYN, that are commonly used to address the class imbalance problem in credit default situations. Recognizing that credit default datasets are typically skewed, with defaulters comprising a much smaller proportion than non-defaulters, we began our analysis by evaluating machine learning (ML) models on the imbalanced data without any resampling to establish baseline performance. These baseline results provide a reference point for understanding the impact of subsequent balancing methods. In addition to traditional classifiers such as Naive Bayes and K-Nearest Neighbors (KNN), our study also explores the suitability of advanced ensemble boosting algorithms, including Extreme Gradient Boosting (XGBoost), AdaBoost, Gradient Boosting Machines (GBM), and Light GBM for credit default prediction using Boruta feature selection and DBSCAN-based outlier detection, both before and after resampling. A real-world credit default data set sourced from the University of Cleveland ML Repository was used to build ML classifiers, and their performances were tested. The criteria chosen to measure model performance are the area under the receiver operating characteristic curve (ROC-AUC), area under the precision-recall curve (PR-AUC), G-mean, and F1-scores. The results from this empirical study indicate that the Boruta+DBSCAN+SMOTE-Tomek+GBM classifier outperformed the other ML models (F1-score: 82.56%, G-mean: 82.98%, ROC-AUC: 90.90%, PR-AUC: 91.85%) in a credit default context. The findings establish a foundation for future progress in creating more resilient and adaptive credit default systems, which will be essential as credit-based transactions continue to rise worldwide.
Authors:Sivan Sarafian, Yehudit Aperstein
Title: Improving Deep Tabular Learning
Abstract:
Tabular data remain a dominant form of real-world information but pose persistent challenges for deep learning due to heterogeneous feature types, lack of natural structure, and limited label-preserving augmentations. As a result, ensemble models based on decision trees continue to dominate benchmark leaderboards. In this work, we introduce RuleNet, a transformer-based architecture specifically designed for deep tabular learning. RuleNet incorporates learnable rule embeddings in a decoder, a piecewise linear quantile projection for numerical features, and feature masking ensembles for robustness and uncertainty estimation. Evaluated on eight benchmark datasets, RuleNet matches or surpasses state-of-the-art tree-based methods in most cases, while remaining computationally efficient, offering a practical neural alternative for tabular prediction tasks.
Authors:Tae-Wook Um, Ki-Hyeon Kim, Hyun-Duck Choi, Hyo-Sung Ahn
Title: UM-Depth : Uncertainty Masked Self-Supervised Monocular Depth Estimation with Visual Odometry
Abstract:
Monocular depth estimation has been increasingly adopted in robotics and autonomous driving for its ability to infer scene geometry from a single camera. In self-supervised monocular depth estimation frameworks, the network jointly generates and exploits depth and pose estimates during training, thereby eliminating the need for depth labels. However, these methods remain challenged by uncertainty in the input data, such as low-texture or dynamic regions, which can cause reduced depth accuracy. To address this, we introduce UM-Depth, a framework that combines motion- and uncertainty-aware refinement to enhance depth accuracy at dynamic object boundaries and in textureless regions. Specifically, we develop a teacherstudent training strategy that embeds uncertainty estimation into both the training pipeline and network architecture, thereby strengthening supervision where photometric signals are weak. Unlike prior motion-aware approaches that incur inference-time overhead and rely on additional labels or auxiliary networks for real-time generation, our method uses optical flow exclusively within the teacher network during training, which eliminating extra labeling demands and any runtime cost. Extensive experiments on the KITTI and Cityscapes datasets demonstrate the effectiveness of our uncertainty-aware refinement. Overall, UM-Depth achieves state-of-the-art results in both self-supervised depth and pose estimation on the KITTI datasets.
Authors:Tongfei Guo, Lili Su
Title: Dynamic Aware: Adaptive Multi-Mode Out-of-Distribution Detection for Trajectory Prediction in Autonomous Vehicles
Abstract:
Trajectory prediction is central to the safe and seamless operation of autonomous vehicles (AVs). In deployment, however, prediction models inevitably face distribution shifts between training data and real-world conditions, where rare or underrepresented traffic scenarios induce out-of-distribution (OOD) cases. While most prior OOD detection research in AVs has concentrated on computer vision tasks such as object detection and segmentation, trajectory-level OOD detection remains largely underexplored. A recent study formulated this problem as a quickest change detection (QCD) task, providing formal guarantees on the trade-off between detection delay and false alarms [1]. Building on this foundation, we propose a new framework that introduces adaptive mechanisms to achieve robust detection in complex driving environments. Empirical analysis across multiple real-world datasets reveals that prediction errors -- even on in-distribution samples -- exhibit mode-dependent distributions that evolve over time with dataset-specific dynamics. By explicitly modeling these error modes, our method achieves substantial improvements in both detection delay and false alarm rates. Comprehensive experiments on established trajectory prediction benchmarks show that our framework significantly outperforms prior UQ- and vision-based OOD approaches in both accuracy and computational efficiency, offering a practical path toward reliable, driving-aware autonomy.
Authors:Xuechen Liang, Xiaoxing He, Shengdao Wang, Jean-Philippe Montillet, Zhengkai Huang, Gaël Kermarrec, Shunqiang Hu, Yu Zhou, Jiahui Huang
Title: GTS_Forecaster: a novel deep learning based geodetic time series forecasting toolbox with python
Abstract:
Geodetic time series -- such as Global Navigation Satellite System (GNSS) positions, satellite altimetry-derived sea surface height (SSH), and tide gauge (TG) records -- is essential for monitoring surface deformation and sea level change. Accurate forecasts of these variables can enhance early warning systems and support hazard mitigation for earthquakes, landslides, coastal storm surge, and long-term sea level. However, the nonlinear, non-stationary, and incomplete nature of such variables presents significant challenges for classic models, which often fail to capture long-term dependencies and complex spatiotemporal dynamics. We introduce GTS Forecaster, an open-source Python package for geodetic time series forecasting. It integrates advanced deep learning models -- including kernel attention networks (KAN), graph neural network-based gated recurrent units (GNNGRU), and time-aware graph neural networks (TimeGNN) -- to effectively model nonlinear spatial-temporal patterns. The package also provides robust preprocessing tools, including outlier detection and a reinforcement learning-based gap-filling algorithm, the Kalman-TransFusion Interpolation Framework (KTIF). GTS Forecaster currently supports forecasting, visualization, and evaluation of GNSS, SSH, and TG datasets, and is adaptable to general time series applications. By combining cutting-edge models with an accessible interface, it facilitates the application of deep learning in geodetic forecasting tasks.
Authors:Dietmar Saupe, Tim Bleile
Title: Robustness and accuracy of mean opinion scores with hard and soft outlier detection
Abstract:
In subjective assessment of image and video quality, observers rate or compare selected stimuli. Before calculating the mean opinion scores (MOS) for these stimuli from the ratings, it is recommended to identify and deal with outliers that may have given unreliable ratings. Several methods are available for this purpose, some of which have been standardized. These methods are typically based on statistics and sometimes tested by introducing synthetic ratings from artificial outliers, such as random clickers. However, a reliable and comprehensive approach is lacking for comparative performance analysis of outlier detection methods. To fill this gap, this work proposes and applies an empirical worst-case analysis as a general solution. Our method involves evolutionary optimization of an adversarial black-box attack on outlier detection algorithms, where the adversary maximizes the distortion of scale values with respect to ground truth. We apply our analysis to several hard and soft outlier detection methods for absolute category ratings and show their differing performance in this stress test. In addition, we propose two new outlier detection methods with low complexity and excellent worst-case performance. Software for adversarial attacks and data analysis is available.
Authors:Jerry Li, Evangelos Papalexakis
Title: Beyond ROUGE: N-Gram Subspace Features for LLM Hallucination Detection
Abstract:
Large Language Models (LLMs) have demonstrated effectiveness across a wide variety of tasks involving natural language, however, a fundamental problem of hallucinations still plagues these models, limiting their trustworthiness in generating consistent, truthful information. Detecting hallucinations has quickly become an important topic, with various methods such as uncertainty estimation, LLM Judges, retrieval augmented generation (RAG), and consistency checks showing promise. Many of these methods build upon foundational metrics, such as ROUGE, BERTScore, or Perplexity, which often lack the semantic depth necessary to detect hallucinations effectively. In this work, we propose a novel approach inspired by ROUGE that constructs an N-Gram frequency tensor from LLM-generated text. This tensor captures richer semantic structure by encoding co-occurrence patterns, enabling better differentiation between factual and hallucinated content. We demonstrate this by applying tensor decomposition methods to extract singular values from each mode and use these as input features to train a multi-layer perceptron (MLP) binary classifier for hallucinations. Our method is evaluated on the HaluEval dataset and demonstrates significant improvements over traditional baselines, as well as competitive performance against state-of-the-art LLM judges.
Authors:Towhidul Islam, Md Sumon Ali
Title: Ensemble Learning for Healthcare: A Comparative Analysis of Hybrid Voting and Ensemble Stacking in Obesity Risk Prediction
Abstract:
Obesity is a critical global health issue driven by dietary, physiological, and environmental factors, and is strongly associated with chronic diseases such as diabetes, cardiovascular disorders, and cancer. Machine learning has emerged as a promising approach for early obesity risk prediction, yet a comparative evaluation of ensemble techniques -- particularly hybrid majority voting and ensemble stacking -- remains limited. This study aims to compare hybrid majority voting and ensemble stacking methods for obesity risk prediction, identifying which approach delivers higher accuracy and efficiency. The analysis seeks to highlight the complementary strengths of these ensemble techniques in guiding better predictive model selection for healthcare applications. Two datasets were utilized to evaluate three ensemble models: Majority Hard Voting, Weighted Hard Voting, and Stacking (with a Multi-Layer Perceptron as meta-classifier). A pool of nine Machine Learning (ML) algorithms, evaluated across a total of 50 hyperparameter configurations, was analyzed to identify the top three models to serve as base learners for the ensemble methods. Preprocessing steps involved dataset balancing, and outlier detection, and model performance was evaluated using Accuracy and F1-Score. On Dataset-1, weighted hard voting and stacking achieved nearly identical performance (Accuracy: 0.920304, F1: 0.920070), outperforming majority hard voting. On Dataset-2, stacking demonstrated superior results (Accuracy: 0.989837, F1: 0.989825) compared to majority hard voting (Accuracy: 0.981707, F1: 0.981675) and weighted hard voting, which showed the lowest performance. The findings confirm that ensemble stacking provides stronger predictive capability, particularly for complex data distributions, while hybrid majority voting remains a robust alternative.
Authors:Aishwarya Venkataramanan, Joachim Denzler
Title: Distance-informed Neural Processes
Abstract:
We propose the Distance-informed Neural Process (DNP), a novel variant of Neural Processes that improves uncertainty estimation by combining global and distance-aware local latent structures. Standard Neural Processes (NPs) often rely on a global latent variable and struggle with uncertainty calibration and capturing local data dependencies. DNP addresses these limitations by introducing a global latent variable to model task-level variations and a local latent variable to capture input similarity within a distance-preserving latent space. This is achieved through bi-Lipschitz regularization, which bounds distortions in input relationships and encourages the preservation of relative distances in the latent space. This modeling approach allows DNP to produce better-calibrated uncertainty estimates and more effectively distinguish in- from out-of-distribution data. Empirical results demonstrate that DNP achieves strong predictive performance and improved uncertainty calibration across regression and classification tasks.
Authors:Jiawei Li, Akshayaa Magesh, Venugopal V. Veeravalli
Title: Principled Detection of Hallucinations in Large Language Models via Multiple Testing
Abstract:
While Large Language Models (LLMs) have emerged as powerful foundational models to solve a variety of tasks, they have also been shown to be prone to hallucinations, i.e., generating responses that sound confident but are actually incorrect or even nonsensical. In this work, we formulate the problem of detecting hallucinations as a hypothesis testing problem and draw parallels to the problem of out-of-distribution detection in machine learning models. We propose a multiple-testing-inspired method to solve the hallucination detection problem, and provide extensive experimental results to validate the robustness of our approach against state-of-the-art methods.
Authors:Debao Huang, Rongjun Qin
Title: Uncertainty Quantification Framework for Aerial and UAV Photogrammetry through Error Propagation
Abstract:
Uncertainty quantification of the photogrammetry process is essential for providing per-point accuracy credentials of the point clouds. Unlike airborne LiDAR, which typically delivers consistent accuracy across various scenes, the accuracy of photogrammetric point clouds is highly scene-dependent, since it relies on algorithm-generated measurements (i.e., stereo or multi-view stereo). Generally, errors of the photogrammetric point clouds propagate through a two-step process: Structure-from-Motion (SfM) with Bundle adjustment (BA), followed by Multi-view Stereo (MVS). While uncertainty estimation in the SfM stage has been well studied using the first-order statistics of the reprojection error function, that in the MVS stage remains largely unsolved and non-standardized, primarily due to its non-differentiable and multi-modal nature (i.e., from pixel values to geometry). In this paper, we present an uncertainty quantification framework closing this gap by associating an error covariance matrix per point accounting for this two-step photogrammetry process. Specifically, to estimate the uncertainty in the MVS stage, we propose a novel, self-calibrating method by taking reliable n-view points (n>=6) per-view to regress the disparity uncertainty using highly relevant cues (such as matching cost values) from the MVS stage. Compared to existing approaches, our method uses self-contained, reliable 3D points extracted directly from the MVS process, with the benefit of being self-supervised and naturally adhering to error propagation path of the photogrammetry process, thereby providing a robust and certifiable uncertainty quantification across diverse scenes. We evaluate the framework using a variety of publicly available airborne and UAV imagery datasets. Results demonstrate that our method outperforms existing approaches by achieving high bounding rates without overestimating uncertainty.
Authors:Mohamad H. Danesh, Maxime Wabartha, Stanley Wu, Joelle Pineau, Hsiu-Chin Lin
Title: Safe Domain Randomization via Uncertainty-Aware Out-of-Distribution Detection and Policy Adaptation
Abstract:
Deploying reinforcement learning (RL) policies in real-world involves significant challenges, including distribution shifts, safety concerns, and the impracticality of direct interactions during policy refinement. Existing methods, such as domain randomization (DR) and off-dynamics RL, enhance policy robustness by direct interaction with the target domain, an inherently unsafe practice. We propose Uncertainty-Aware RL (UARL), a novel framework that prioritizes safety during training by addressing Out-Of-Distribution (OOD) detection and policy adaptation without requiring direct interactions in target domain. UARL employs an ensemble of critics to quantify policy uncertainty and incorporates progressive environmental randomization to prepare the policy for diverse real-world conditions. By iteratively refining over high-uncertainty regions of the state space in simulated environments, UARL enhances robust generalization to the target domain without explicitly training on it. We evaluate UARL on MuJoCo benchmarks and a quadrupedal robot, demonstrating its effectiveness in reliable OOD detection, improved performance, and enhanced sample efficiency compared to baselines.
Authors:Hao Xing, Kai Zhe Boey, Gordon Cheng
Title: Towards Open-World Human Action Segmentation Using Graph Convolutional Networks
Abstract:
Human-object interaction segmentation is a fundamental task of daily activity understanding, which plays a crucial role in applications such as assistive robotics, healthcare, and autonomous systems. Most existing learning-based methods excel in closed-world action segmentation, they struggle to generalize to open-world scenarios where novel actions emerge. Collecting exhaustive action categories for training is impractical due to the dynamic diversity of human activities, necessitating models that detect and segment out-of-distribution actions without manual annotation. To address this issue, we formally define the open-world action segmentation problem and propose a structured framework for detecting and segmenting unseen actions. Our framework introduces three key innovations: 1) an Enhanced Pyramid Graph Convolutional Network (EPGCN) with a novel decoder module for robust spatiotemporal feature upsampling. 2) Mixup-based training to synthesize out-of-distribution data, eliminating reliance on manual annotations. 3) A novel Temporal Clustering loss that groups in-distribution actions while distancing out-of-distribution samples. We evaluate our framework on two challenging human-object interaction recognition datasets: Bimanual Actions and 2 Hands and Object (H2O) datasets. Experimental results demonstrate significant improvements over state-of-the-art action segmentation models across multiple open-set evaluation metrics, achieving 16.9% and 34.6% relative gains in open-set segmentation (F1@50) and out-of-distribution detection performances (AUROC), respectively. Additionally, we conduct an in-depth ablation study to assess the impact of each proposed component, identifying the optimal framework configuration for open-world action segmentation.
Authors:Can Hakan Dağıdır, Mia Hubert, Peter J. Rousseeuw
Title: Kernel Outlier Detection
Abstract:
A new anomaly detection method called kernel outlier detection (KOD) is proposed. It is designed to address challenges of outlier detection in high-dimensional settings. The aim is to overcome limitations of existing methods, such as dependence on distributional assumptions or on hyperparameters that are hard to tune. KOD starts with a kernel transformation, followed by a projection pursuit approach. Its novelties include a new ensemble of directions to search over, and a new way to combine results of different direction types. This provides a flexible and lightweight approach for outlier detection. Our empirical evaluations illustrate the effectiveness of KOD on three small datasets with challenging structures, and on four large benchmark datasets.
Authors:Yuli Slavutsky, David M. Blei
Title: Quantifying Uncertainty in the Presence of Distribution Shifts
Abstract:
Neural networks make accurate predictions but often fail to provide reliable uncertainty estimates, especially under covariate distribution shifts between training and testing. To address this problem, we propose a Bayesian framework for uncertainty estimation that explicitly accounts for covariate shifts. While conventional approaches rely on fixed priors, the key idea of our method is an adaptive prior, conditioned on both training and new covariates. This prior naturally increases uncertainty for inputs that lie far from the training distribution in regions where predictive performance is likely to degrade. To efficiently approximate the resulting posterior predictive distribution, we employ amortized variational inference. Finally, we construct synthetic environments by drawing small bootstrap samples from the training data, simulating a range of plausible covariate shift using only the original dataset. We evaluate our method on both synthetic and real-world data. It yields substantially improved uncertainty estimates under distribution shifts.
Authors:Alexander Timans, Rajeev Verma, Eric Nalisnick, Christian A. Naesseth
Title: On Continuous Monitoring of Risk Violations under Unknown Shift
Abstract:
Machine learning systems deployed in the real world must operate under dynamic and often unpredictable distribution shifts. This challenges the validity of statistical safety assurances on the system's risk established beforehand. Common risk control frameworks rely on fixed assumptions and lack mechanisms to continuously monitor deployment reliability. In this work, we propose a general framework for the real-time monitoring of risk violations in evolving data streams. Leveraging the 'testing by betting' paradigm, we propose a sequential hypothesis testing procedure to detect violations of bounded risks associated with the model's decision-making mechanism, while ensuring control on the false alarm rate. Our method operates under minimal assumptions on the nature of encountered shifts, rendering it broadly applicable. We illustrate the effectiveness of our approach by monitoring risks in outlier detection and set prediction under a variety of shifts.
Authors:Jungeon Kim, Geonsoo Park, Seungyong Lee
Title: Multiview Geometric Regularization of Gaussian Splatting for Accurate Radiance Fields
Abstract:
Recent methods, such as 2D Gaussian Splatting and Gaussian Opacity Fields, have aimed to address the geometric inaccuracies of 3D Gaussian Splatting while retaining its superior rendering quality. However, these approaches still struggle to reconstruct smooth and reliable geometry, particularly in scenes with significant color variation across viewpoints, due to their per-point appearance modeling and single-view optimization constraints. In this paper, we propose an effective multiview geometric regularization strategy that integrates multiview stereo (MVS) depth, RGB, and normal constraints into Gaussian Splatting initialization and optimization. Our key insight is the complementary relationship between MVS-derived depth points and Gaussian Splatting-optimized positions: MVS robustly estimates geometry in regions of high color variation through local patch-based matching and epipolar constraints, whereas Gaussian Splatting provides more reliable and less noisy depth estimates near object boundaries and regions with lower color variation. To leverage this insight, we introduce a median depth-based multiview relative depth loss with uncertainty estimation, effectively integrating MVS depth information into Gaussian Splatting optimization. We also propose an MVS-guided Gaussian Splatting initialization to avoid Gaussians falling into suboptimal positions. Extensive experiments validate that our approach successfully combines these strengths, enhancing both geometric accuracy and rendering quality across diverse indoor and outdoor scenes.
Authors:Fred Xu, Thomas Markovich
Title: Uncertainty Estimation on Graphs with Structure Informed Stochastic Partial Differential Equations
Abstract:
Graph Neural Networks have achieved impressive results across diverse network modeling tasks, but accurately estimating uncertainty on graphs remains difficult, especially under distributional shifts. Unlike traditional uncertainty estimation, graph-based uncertainty must account for randomness arising from both the graph's structure and its label distribution, which adds complexity. In this paper, making an analogy between the evolution of a stochastic partial differential equation (SPDE) driven by Matern Gaussian Process and message passing using GNN layers, we present a principled way to design a novel message passing scheme that incorporates spatial-temporal noises motivated by the Gaussian Process approach to SPDE. Our method simultaneously captures uncertainty across space and time and allows explicit control over the covariance kernel smoothness, thereby enhancing uncertainty estimates on graphs with both low and high label informativeness. Our extensive experiments on Out-of-Distribution (OOD) detection on graph datasets with varying label informativeness demonstrate the soundness and superiority of our model to existing approaches.
Authors:Haripriya Harikumar, Santu Rana
Title: TRUST: Test-time Resource Utilization for Superior Trustworthiness
Abstract:
Standard uncertainty estimation techniques, such as dropout, often struggle to clearly distinguish reliable predictions from unreliable ones. We attribute this limitation to noisy classifier weights, which, while not impairing overall class-level predictions, render finer-level statistics less informative. To address this, we propose a novel test-time optimization method that accounts for the impact of such noise to produce more reliable confidence estimates. This score defines a monotonic subset-selection function, where population accuracy consistently increases as samples with lower scores are removed, and it demonstrates superior performance in standard risk-based metrics such as AUSE and AURC. Additionally, our method effectively identifies discrepancies between training and test distributions, reliably differentiates in-distribution from out-of-distribution samples, and elucidates key differences between CNN and ViT classifiers across various vision datasets.
Authors:P. Huijse, J. De Ridder, L. Eyer, L. Rimoldini, B. Holl, N. Chornay, J. Roquette, K. Nienartowicz, G. Jevardat de Fombelle, D. J. Fritzewski, A. Kemp, V. Vanlaer, M. Vanrespaille, H. Wang, M. I. Carnerero, C. M. Raiteri, G. Marton, M. Madarász, G. Clementini, P. Gavras, C. Aerts
Title: Learning novel representations of variable sources from multi-modal $\textit{Gaia}$ data via autoencoders
Abstract:
Gaia Data Release 3 (DR3) published for the first time epoch photometry, BP/RP (XP) low-resolution mean spectra, and supervised classification results for millions of variable sources. This extensive dataset offers a unique opportunity to study their variability by combining multiple Gaia data products. In preparation for DR4, we propose and evaluate a machine learning methodology capable of ingesting multiple Gaia data products to achieve an unsupervised classification of stellar and quasar variability. A dataset of 4 million Gaia DR3 sources is used to train three variational autoencoders (VAE), which are artificial neural networks (ANNs) designed for data compression and generation. One VAE is trained on Gaia XP low-resolution spectra, another on a novel approach based on the distribution of magnitude differences in the Gaia G band, and the third on folded Gaia G band light curves. Each Gaia source is compressed into 15 numbers, representing the coordinates in a 15-dimensional latent space generated by combining the outputs of these three models. The learned latent representation produced by the ANN effectively distinguishes between the main variability classes present in Gaia DR3, as demonstrated through both supervised and unsupervised classification analysis of the latent space. The results highlight a strong synergy between light curves and low-resolution spectral data, emphasising the benefits of combining the different Gaia data products. A two-dimensional projection of the latent variables reveals numerous overdensities, most of which strongly correlate with astrophysical properties, showing the potential of this latent space for astrophysical discovery. We show that the properties of our novel latent representation make it highly valuable for variability analysis tasks, including classification, clustering and outlier detection.
Authors:Mariia Seleznova, Hung-Hsu Chou, Claudio Mayrink Verdun, Gitta Kutyniok
Title: GradPCA: Leveraging NTK Alignment for Reliable Out-of-Distribution Detection
Abstract:
We introduce GradPCA, an Out-of-Distribution (OOD) detection method that exploits the low-rank structure of neural network gradients induced by Neural Tangent Kernel (NTK) alignment. GradPCA applies Principal Component Analysis (PCA) to gradient class-means, achieving more consistent performance than existing methods across standard image classification benchmarks. We provide a theoretical perspective on spectral OOD detection in neural networks to support GradPCA, highlighting feature-space properties that enable effective detection and naturally emerge from NTK alignment. Our analysis further reveals that feature quality -- particularly the use of pretrained versus non-pretrained representations -- plays a crucial role in determining which detectors will succeed. Extensive experiments validate the strong performance of GradPCA, and our theoretical framework offers guidance for designing more principled spectral OOD detectors.
Authors:Xinzhu Liang, Joseph M. Lukens, Sanjaya Lohani, Brian T. Kirby, Thomas A. Searles, Xin Qiu, Kody J. H. Law
Title: Scalable Bayesian Monte Carlo: fast uncertainty estimation beyond deep ensembles
Abstract:
This work introduces a new method designed for Bayesian deep learning called scalable Bayesian Monte Carlo (SBMC). The method is comprised of a model and an algorithm. The model interpolates between a point estimator and the posterior. The algorithm is a parallel implementation of sequential Monte Carlo sampler (SMC$_\parallel$) or Markov chain Monte Carlo (MCMC$_\parallel$). We collectively refer to these consistent (asymptotically unbiased) algorithms as Bayesian Monte Carlo (BMC), and any such algorithm can be used in our SBMC method. The utility of the method is demonstrated on practical examples: MNIST, CIFAR, IMDb. A systematic numerical study reveals that for the same wall-clock time as state-of-the-art (SOTA) methods like deep ensembles (DE), SBMC achieves comparable or better accuracy and substantially improved uncertainty quantification (UQ)--in particular, epistemic UQ. This is demonstrated on the downstream task of estimating the confidence in predictions, which can be used for reliability assessment or abstention decisions.
Authors:Yilin Dong, Tianyun Zhu, Xinde Li, Jean Dezert, Rigui Zhou, Changming Zhu, Lei Cao, Shuzhi Sam Ge
Title: Quantum Conflict Measurement in Decision Making for Out-of-Distribution Detection
Abstract:
Quantum Dempster-Shafer Theory (QDST) uses quantum interference effects to derive a quantum mass function (QMF) as a fuzzy metric type from information obtained from various data sources. In addition, QDST uses quantum parallel computing to speed up computation. Nevertheless, the effective management of conflicts between multiple QMFs in QDST is a challenging question. This work aims to address this problem by proposing a Quantum Conflict Indicator (QCI) that measures the conflict between two QMFs in decision-making. Then, the properties of the QCI are carefully investigated. The obtained results validate its compliance with desirable conflict measurement properties such as non-negativity, symmetry, boundedness, extreme consistency and insensitivity to refinement. We then apply the proposed QCI in conflict fusion methods and compare its performance with several commonly used fusion approaches. This comparison demonstrates the superiority of the QCI-based conflict fusion method. Moreover, the Class Description Domain Space (C-DDS) and its optimized version, C-DDS+ by utilizing the QCI-based fusion method, are proposed to address the Out-of-Distribution (OOD) detection task. The experimental results show that the proposed approach gives better OOD performance with respect to several state-of-the-art baseline OOD detection methods. Specifically, it achieves an average increase in Area Under the Receiver Operating Characteristic Curve (AUC) of 1.2% and a corresponding average decrease in False Positive Rate at 95% True Negative Rate (FPR95) of 5.4% compared to the optimal baseline method.
Authors:Daisuke Yamada, Harit Vishwakarma, Ramya Korlakai Vinayak
Title: Adaptive Scoring and Thresholding with Human Feedback for Robust Out-of-Distribution Detection
Abstract:
Machine Learning (ML) models are trained on in-distribution (ID) data but often encounter out-of-distribution (OOD) inputs during deployment -- posing serious risks in safety-critical domains. Recent works have focused on designing scoring functions to quantify OOD uncertainty, with score thresholds typically set based solely on ID data to achieve a target true positive rate (TPR), since OOD data is limited before deployment. However, these TPR-based thresholds leave false positive rates (FPR) uncontrolled, often resulting in high FPRs where OOD points are misclassified as ID. Moreover, fixed scoring functions and thresholds lack the adaptivity needed to handle newly observed, evolving OOD inputs, leading to sub-optimal performance. To address these challenges, we propose a human-in-the-loop framework that \emph{safely updates both scoring functions and thresholds on the fly} based on real-world OOD inputs. Our method maximizes TPR while strictly controlling FPR at all times, even as the system adapts over time. We provide theoretical guarantees for FPR control under stationary conditions and present extensive empirical evaluations on OpenOOD benchmarks to demonstrate that our approach outperforms existing methods by achieving higher TPRs while maintaining FPR control.
Authors:Sven Goblirsch, Benedikt Ruhland, Johannes Betz, Markus Lienkamp
Title: Bayesian Optimization-based Tire Parameter and Uncertainty Estimation for Real-World Data
Abstract:
This work presents a methodology to estimate tire parameters and their uncertainty using a Bayesian optimization approach. The literature mainly considers the estimation of tire parameters but lacks an evaluation of the parameter identification quality and the required slip ratios for an adequate model fit. Therefore, we examine the use of Stochastical Variational Inference as a methodology to estimate both - the parameters and their uncertainties. We evaluate the method compared to a state-of-the-art Nelder-Mead algorithm for theoretical and real-world application. The theoretical study considers parameter fitting at different slip ratios to evaluate the required excitation for an adequate fitting of each parameter. The results are compared to a sensitivity analysis for a Pacejka Magic Formula tire model. We show the application of the algorithm on real-world data acquired during the Abu Dhabi Autonomous Racing League and highlight the uncertainties in identifying the curvature and shape parameters due to insufficient excitation. The gathered insights can help assess the acquired data's limitations and instead utilize standardized parameters until higher slip ratios are captured. We show that our proposed method can be used to assess the mean values and the uncertainties of tire model parameters in real-world conditions and derive actions for the tire modeling based on our simulative study.
Authors:Dayananda Herurkar, Jörn Hees, Vesselin Tzvetkov, Andreas Dengel
Title: Tabular Data Adapters: Improving Outlier Detection for Unlabeled Private Data
Abstract:
The remarkable success of Deep Learning approaches is often based and demonstrated on large public datasets. However, when applying such approaches to internal, private datasets, one frequently faces challenges arising from structural differences in the datasets, domain shift, and the lack of labels. In this work, we introduce Tabular Data Adapters (TDA), a novel method for generating soft labels for unlabeled tabular data in outlier detection tasks. By identifying statistically similar public datasets and transforming private data (based on a shared autoencoder) into a format compatible with state-of-the-art public models, our approach enables the generation of weak labels. It thereby can help to mitigate the cold start problem of labeling by basing on existing outlier detection models for public datasets. In experiments on 50 tabular datasets across different domains, we demonstrate that our method is able to provide more accurate annotations than baseline approaches while reducing computational time. Our approach offers a scalable, efficient, and cost-effective solution, to bridge the gap between public research models and real-world industrial applications.
Authors:Jyri Maanpää, Julius Pesonen, Iaroslav Melekhov, Heikki Hyyti, Juha Hyyppä
Title: Road Grip Uncertainty Estimation Through Surface State Segmentation
Abstract:
Slippery road conditions pose significant challenges for autonomous driving. Beyond predicting road grip, it is crucial to estimate its uncertainty reliably to ensure safe vehicle control. In this work, we benchmark several uncertainty prediction methods to assess their effectiveness for grip uncertainty estimation. Additionally, we propose a novel approach that leverages road surface state segmentation to predict grip uncertainty. Our method estimates a pixel-wise grip probability distribution based on inferred road surface conditions. Experimental results indicate that the proposed approach enhances the robustness of grip uncertainty prediction.
Authors:Omini Rathore, Richard Paul, Abigail Morrison, Hanno Scharr, Elisabeth Pfaehler
Title: Efficient Epistemic Uncertainty Estimation in Cerebrovascular Segmentation
Abstract:
Brain vessel segmentation of MR scans is a critical step in the diagnosis of cerebrovascular diseases. Due to the fine vessel structure, manual vessel segmentation is time consuming. Therefore, automatic deep learning (DL) based segmentation techniques are intensively investigated. As conventional DL models yield a high complexity and lack an indication of decision reliability, they are often considered as not trustworthy. This work aims to increase trust in DL based models by incorporating epistemic uncertainty quantification into cerebrovascular segmentation models for the first time. By implementing an efficient ensemble model combining the advantages of Bayesian Approximation and Deep Ensembles, we aim to overcome the high computational costs of conventional probabilistic networks. Areas of high model uncertainty and erroneous predictions are aligned which demonstrates the effectiveness and reliability of the approach. We perform extensive experiments applying the ensemble model on out-of-distribution (OOD) data. We demonstrate that for OOD-images, the estimated uncertainty increases. Additionally, omitting highly uncertain areas improves the segmentation quality, both for in- and out-of-distribution data. The ensemble model explains its limitations in a reliable manner and can maintain trustworthiness also for OOD data and could be considered in clinical applications
Authors:Yang Liu, Xun Zhang, Jiale Du, Xinbo Gao, Jungong Han
Title: Extremely Simple Out-of-distribution Detection for Audio-visual Generalized Zero-shot Learning
Abstract:
Zero-shot Learning(ZSL) attains knowledge transfer from seen classes to unseen classes by exploring auxiliary category information, which is a promising yet difficult research topic. In this field, Audio-Visual Generalized Zero-Shot Learning~(AV-GZSL) has aroused researchers' great interest in which intricate relations within triple modalities~(audio, video, and natural language) render this task quite challenging but highly research-worthy. However, both existing embedding-based and generative-based AV-GZSL methods tend to suffer from domain shift problem a lot and we propose an extremely simple Out-of-distribution~(OOD) detection based AV-GZSL method~(EZ-AVOOD) to further mitigate bias problem by differentiating seen and unseen samples at the initial beginning. EZ-AVOOD accomplishes effective seen-unseen separation by exploiting the intrinsic discriminative information held in class-specific logits and class-agnostic feature subspace without training an extra OOD detector network. Followed by seen-unseen binary classification, we employ two expert models to classify seen samples and unseen samples separately. Compared to existing state-of-the-art methods, our model achieves superior ZSL and GZSL performances on three audio-visual datasets and becomes the new SOTA, which comprehensively demonstrates the effectiveness of the proposed EZ-AVOOD.
Authors:Minsu Kim, Seongmin Hong, RyeoWook Ko, Soongyu Choi, Hunjong Lee, Junsoo Kim, Joo-Young Kim, Jongse Park
Title: Oaken: Fast and Efficient LLM Serving with Online-Offline Hybrid KV Cache Quantization
Abstract:
Modern Large Language Model serving system batches multiple requests to achieve high throughput, while batching attention operations is challenging, rendering memory bandwidth a critical bottleneck. The community relies on high-end GPUs with multiple high-bandwidth memory channels. Unfortunately, HBM's high bandwidth often comes at the expense of limited memory capacity, which reduces core utilization and increases costs. Recent advancements enabling longer contexts for LLMs have substantially increased the key-value cache size, further intensifying the pressures on memory capacity. The literature has explored KV cache quantization techniques, which commonly use low bitwidth for most values, selectively using higher bitwidth for outlier values. While this approach helps achieve high accuracy and low bitwidth simultaneously, it comes with the limitation that cost for online outlier detection is excessively high, negating the advantages. We propose Oaken, an acceleration solution that achieves high accuracy and high performance simultaneously through co-designing algorithm and hardware. To effectively find a sweet spot in the accuracy-performance trade-off space of KV cache quantization, Oaken employs an online-offline hybrid approach, setting outlier thresholds offline, which are then used to determine the quantization scale online. To translate the proposed algorithmic technique into tangible performance gains, Oaken also comes with custom quantization engines and memory management units that can be integrated with any LLM accelerators. We built an Oaken accelerator on top of an LLM accelerator, LPU, and conducted a comprehensive evaluation. Our experiments show that for a batch size of 256, Oaken achieves up to 1.58x throughput improvement over NVIDIA A100 GPU, incurring a minimal accuracy loss of only 0.54\% on average, compared to state-of-the-art KV cache quantization techniques.
Authors:Sara Sangalli, Gary Sarwin, Ertunc Erdil, Alessandro Carretta, Victor Staartjes, Carlo Serra, Ender Konukoglu
Title: Conformal forecasting for surgical instrument trajectory
Abstract:
Forecasting surgical instrument trajectories and predicting the next surgical action recently started to attract attention from the research community. Both these tasks are crucial for automation and assistance in endoscopy surgery. Given the safety-critical nature of these tasks, reliable uncertainty quantification is essential. Conformal prediction is a fast-growing and widely recognized framework for uncertainty estimation in machine learning and computer vision, offering distribution-free, theoretically valid prediction intervals. In this work, we explore the application of standard conformal prediction and conformalized quantile regression to estimate uncertainty in forecasting surgical instrument motion, i.e., predicting direction and magnitude of surgical instruments' future motion. We analyze and compare their coverage and interval sizes, assessing the impact of multiple hypothesis testing and correction methods. Additionally, we show how these techniques can be employed to produce useful uncertainty heatmaps. To the best of our knowledge, this is the first study applying conformal prediction to surgical guidance, marking an initial step toward constructing principled prediction intervals with formal coverage guarantees in this domain.
Authors:Yanfu Yan, Viet Duong, Huajie Shao, Denys Poshyvanyk
Title: Towards More Trustworthy Deep Code Models by Enabling Out-of-Distribution Detection
Abstract:
Numerous machine learning (ML) models have been developed, including those for software engineering (SE) tasks, under the assumption that training and testing data come from the same distribution. However, training and testing distributions often differ, as training datasets rarely encompass the entire distribution, while testing distribution tends to shift over time. Hence, when confronted with out-of-distribution (OOD) instances that differ from the training data, a reliable and trustworthy SE ML model must be capable of detecting them to either abstain from making predictions, or potentially forward these OODs to appropriate models handling other categories or tasks. In this paper, we develop two types of SE-specific OOD detection models, unsupervised and weakly-supervised OOD detection for code. The unsupervised OOD detection approach is trained solely on in-distribution samples while the weakly-supervised approach utilizes a tiny number of OOD samples to further enhance the detection performance in various OOD scenarios. Extensive experimental results demonstrate that our proposed methods significantly outperform the baselines in detecting OOD samples from four different scenarios simultaneously and also positively impact a main code understanding task.
Authors:Eduardo Aguilar, Bogdan Raducanu, Petia Radeva
Title: Multi-label out-of-distribution detection via evidential learning
Abstract:
A crucial requirement for machine learning algorithms is not only to perform well, but also to show robustness and adaptability when encountering novel scenarios. One way to achieve these characteristics is to endow the deep learning models with the ability to detect out-of-distribution (OOD) data, i.e. data that belong to distributions different from the one used during their training. It is even a more complicated situation, when these data usually are multi-label. In this paper, we propose an approach based on evidential deep learning in order to meet these challenges applied to visual recognition problems. More concretely, we designed a CNN architecture that uses a Beta Evidential Neural Network to compute both the likelihood and the predictive uncertainty of the samples. Based on these results, we propose afterwards two new uncertainty-based scores for OOD data detection: (i) OOD - score Max, based on the maximum evidence; and (ii) OOD score - Sum, which considers the evidence from all outputs. Extensive experiments have been carried out to validate the proposed approach using three widely-used datasets: PASCAL-VOC, MS-COCO and NUS-WIDE, demonstrating its outperformance over several State-of-the-Art methods.
Authors:Ryo Moriai, Nakamasa Inoue, Masayuki Tanaka, Rei Kawakami, Satoshi Ikehata, Ikuro Sato
Title: Rectified Lagrangian for Out-of-Distribution Detection in Modern Hopfield Networks
Abstract:
Modern Hopfield networks (MHNs) have recently gained significant attention in the field of artificial intelligence because they can store and retrieve a large set of patterns with an exponentially large memory capacity. A MHN is generally a dynamical system defined with Lagrangians of memory and feature neurons, where memories associated with in-distribution (ID) samples are represented by attractors in the feature space. One major problem in existing MHNs lies in managing out-of-distribution (OOD) samples because it was originally assumed that all samples are ID samples. To address this, we propose the rectified Lagrangian (RegLag), a new Lagrangian for memory neurons that explicitly incorporates an attractor for OOD samples in the dynamical system of MHNs. RecLag creates a trivial point attractor for any interaction matrix, enabling OOD detection by identifying samples that fall into this attractor as OOD. The interaction matrix is optimized so that the probability densities can be estimated to identify ID/OOD. We demonstrate the effectiveness of RecLag-based MHNs compared to energy-based OOD detection methods, including those using state-of-the-art Hopfield energies, across nine image datasets.
Authors:Hannah Rosa Friesacher, Emma Svensson, Susanne Winiwarter, Lewis Mervin, Adam Arany, Ola Engkvist
Title: Temporal Distribution Shift in Real-World Pharmaceutical Data: Implications for Uncertainty Quantification in QSAR Models
Abstract:
The estimation of uncertainties associated with predictions from quantitative structure-activity relationship (QSAR) models can accelerate the drug discovery process by identifying promising experiments and allowing an efficient allocation of resources. Several computational tools exist that estimate the predictive uncertainty in machine learning models. However, deviations from the i.i.d. setting have been shown to impair the performance of these uncertainty quantification methods. We use a real-world pharmaceutical dataset to address the pressing need for a comprehensive, large-scale evaluation of uncertainty estimation methods in the context of realistic distribution shifts over time. We investigate the performance of several uncertainty estimation methods, including ensemble-based and Bayesian approaches. Furthermore, we use this real-world setting to systematically assess the distribution shifts in label and descriptor space and their impact on the capability of the uncertainty estimation methods. Our study reveals significant shifts over time in both label and descriptor space and a clear connection between the magnitude of the shift and the nature of the assay. Moreover, we show that pronounced distribution shifts impair the performance of popular uncertainty estimation methods used in QSAR models. This work highlights the challenges of identifying uncertainty quantification methods that remain reliable under distribution shifts introduced by real-world data.
Authors:Haque Ishfaq, Guangyuan Wang, Sami Nur Islam, Doina Precup
Title: Langevin Soft Actor-Critic: Efficient Exploration through Uncertainty-Driven Critic Learning
Abstract:
Existing actor-critic algorithms, which are popular for continuous control reinforcement learning (RL) tasks, suffer from poor sample efficiency due to lack of principled exploration mechanism within them. Motivated by the success of Thompson sampling for efficient exploration in RL, we propose a novel model-free RL algorithm, Langevin Soft Actor Critic (LSAC), which prioritizes enhancing critic learning through uncertainty estimation over policy optimization. LSAC employs three key innovations: approximate Thompson sampling through distributional Langevin Monte Carlo (LMC) based $Q$ updates, parallel tempering for exploring multiple modes of the posterior of the $Q$ function, and diffusion synthesized state-action samples regularized with $Q$ action gradients. Our extensive experiments demonstrate that LSAC outperforms or matches the performance of mainstream model-free RL algorithms for continuous control tasks. Notably, LSAC marks the first successful application of an LMC based Thompson sampling in continuous control tasks with continuous action spaces.
Authors:Denis Kleyko, Dmitri A. Rachkovskij
Title: On Design Choices in Similarity-Preserving Sparse Randomized Embeddings
Abstract:
Expand & Sparsify is a principle that is observed in anatomically similar neural circuits found in the mushroom body (insects) and the cerebellum (mammals). Sensory data are projected randomly to much higher-dimensionality (expand part) where only few the most strongly excited neurons are activated (sparsify part). This principle has been leveraged to design a FlyHash algorithm that forms similarity-preserving sparse embeddings, which have been found useful for such tasks as novelty detection, pattern recognition, and similarity search. Despite its simplicity, FlyHash has a number of design choices to be set such as preprocessing of the input data, choice of sparsifying activation function, and formation of the random projection matrix. In this paper, we explore the effect of these choices on the performance of similarity search with FlyHash embeddings. We find that the right combination of design choices can lead to drastic difference in the search performance.
Authors:Mohammadreza M. Kalan, Eitan J. Neugut, Samory Kpotufe
Title: Transfer Neyman-Pearson Algorithm for Outlier Detection
Abstract:
We consider the problem of transfer learning in outlier detection where target abnormal data is rare. While transfer learning has been considered extensively in traditional balanced classification, the problem of transfer in outlier detection and more generally in imbalanced classification settings has received less attention. We propose a general meta-algorithm which is shown theoretically to yield strong guarantees w.r.t. to a range of changes in abnormal distribution, and at the same time amenable to practical implementation. We then investigate different instantiations of this general meta-algorithm, e.g., based on multi-layer neural networks, and show empirically that they outperform natural extensions of transfer methods for traditional balanced classification settings (which are the only solutions available at the moment).
Authors:Haonan Xu, Yang Yang
Title: ITP: Instance-Aware Test Pruning for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for ensuring the reliable deployment of deep models in real-world scenarios. Recently, from the perspective of over-parameterization, a series of methods leveraging weight sparsification techniques have shown promising performance. These methods typically focus on selecting important parameters for in-distribution (ID) data to reduce the negative impact of redundant parameters on OOD detection. However, we empirically find that these selected parameters may behave overconfidently toward OOD data and hurt OOD detection. To address this issue, we propose a simple yet effective post-hoc method called Instance-aware Test Pruning (ITP), which performs OOD detection by considering both coarse-grained and fine-grained levels of parameter pruning. Specifically, ITP first estimates the class-specific parameter contribution distribution by exploring the ID data. By using the contribution distribution, ITP conducts coarse-grained pruning to eliminate redundant parameters. More importantly, ITP further adopts a fine-grained test pruning process based on the right-tailed Z-score test, which can adaptively remove instance-level overconfident parameters. Finally, ITP derives OOD scores from the pruned model to achieve more reliable predictions. Extensive experiments on widely adopted benchmarks verify the effectiveness of ITP, demonstrating its competitive performance.
Authors:Chen Zhou, Marlen Neubert, Yuri Koide, Yumeng Zhang, Van-Quan Vuong, Tobias Schlöder, Stefanie Dehnen, Pascal Friederich
Title: PAL -- Parallel active learning for machine-learned potentials
Abstract:
Constructing datasets representative of the target domain is essential for training effective machine learning models. Active learning (AL) is a promising method that iteratively extends training data to enhance model performance while minimizing data acquisition costs. However, current AL workflows often require human intervention and lack parallelism, leading to inefficiencies and underutilization of modern computational resources. In this work, we introduce PAL, an automated, modular, and parallel active learning library that integrates AL tasks and manages their execution and communication on shared- and distributed-memory systems using the Message Passing Interface (MPI). PAL provides users with the flexibility to design and customize all components of their active learning scenarios, including machine learning models with uncertainty estimation, oracles for ground truth labeling, and strategies for exploring the target space. We demonstrate that PAL significantly reduces computational overhead and improves scalability, achieving substantial speed-ups through asynchronous parallelization on CPU and GPU hardware. Applications of PAL to several real-world scenarios - including ground-state reactions in biomolecular systems, excited-state dynamics of molecules, simulations of inorganic clusters, and thermo-fluid dynamics - illustrate its effectiveness in accelerating the development of machine learning models. Our results show that PAL enables efficient utilization of high-performance computing resources in active learning workflows, fostering advancements in scientific research and engineering applications.
Authors:Julien Pallage, Bertrand Scherrer, Salma Naccache, Christophe Bélanger, Antoine Lesage-Landry
Title: Sliced-Wasserstein-based Anomaly Detection and Open Dataset for Localized Critical Peak Rebates
Abstract:
In this work, we present a new unsupervised anomaly (outlier) detection (AD) method using the sliced-Wasserstein metric. This filtering technique is conceptually interesting for MLOps pipelines deploying machine learning models in critical sectors, e.g., energy, as it offers a conservative data selection. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We demonstrate the capabilities of our method on synthetic datasets as well as standard AD datasets and use it in the making of a first benchmark for our open-source localized critical peak rebate dataset.
Authors:Jing Zhang, Linjiajie Fang, Kexin Shi, Wenjia Wang, Bing-Yi Jing
Title: Q-Distribution guided Q-learning for offline reinforcement learning: Uncertainty penalized Q-value via consistency model
Abstract:
``Distribution shift'' is the main obstacle to the success of offline reinforcement learning. A learning policy may take actions beyond the behavior policy's knowledge, referred to as Out-of-Distribution (OOD) actions. The Q-values for these OOD actions can be easily overestimated. As a result, the learning policy is biased by using incorrect Q-value estimates. One common approach to avoid Q-value overestimation is to make a pessimistic adjustment. Our key idea is to penalize the Q-values of OOD actions associated with high uncertainty. In this work, we propose Q-Distribution Guided Q-Learning (QDQ), which applies a pessimistic adjustment to Q-values in OOD regions based on uncertainty estimation. This uncertainty measure relies on the conditional Q-value distribution, learned through a high-fidelity and efficient consistency model. Additionally, to prevent overly conservative estimates, we introduce an uncertainty-aware optimization objective for updating the Q-value function. The proposed QDQ demonstrates solid theoretical guarantees for the accuracy of Q-value distribution learning and uncertainty measurement, as well as the performance of the learning policy. QDQ consistently shows strong performance on the D4RL benchmark and achieves significant improvements across many tasks.
Authors:Yonghang Zhou, Hongyi Zhu, Yidong Chai, Yuanchun Jiang, Yezheng Liu
Title: Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model
Abstract:
Web attacks are one of the major and most persistent forms of cyber threats, which bring huge costs and losses to web application-based businesses. Various detection methods, such as signature-based, machine learning-based, and deep learning-based, have been proposed to identify web attacks. However, these methods either (1) heavily rely on accurate and complete rule design and feature engineering, which may not adapt to fast-evolving attacks, or (2) fail to estimate model uncertainty, which is essential to the trustworthiness of the prediction made by the model. In this study, we proposed an Uncertainty-aware Ensemble Deep Kernel Learning (UEDKL) model to detect web attacks from HTTP request payload data with the model uncertainty captured from the perspective of both data distribution and model parameters. The proposed UEDKL utilizes a deep kernel learning model to distinguish normal HTTP requests from different types of web attacks with model uncertainty estimated from data distribution perspective. Multiple deep kernel learning models were trained as base learners to capture the model uncertainty from model parameters perspective. An attention-based ensemble learning approach was designed to effectively integrate base learners' predictions and model uncertainty. We also proposed a new metric named High Uncertainty Ratio-F Score Curve to evaluate model uncertainty estimation. Experiments on BDCI and SRBH datasets demonstrated that the proposed UEDKL framework yields significant improvement in both web attack detection performance and uncertainty estimation quality compared to benchmark models.
Authors:Luis Gustavo Gioacon Villani, Samuel da Silva, Americo Cunha, Michael D. Todd
Title: Damage detection in an uncertain nonlinear beam based on stochastic Volterra series: an experimental application
Abstract:
The damage detection problem becomes a more difficult task when the intrinsically nonlinear behavior of the structures and the natural data variation are considered in the analysis because both phenomena can be confused with damage if linear and deterministic approaches are implemented. Therefore, this work aims the experimental application of a stochastic version of the Volterra series combined with a novelty detection approach to detect damage in an initially nonlinear system taking into account the measured data variation, caused by the presence of uncertainties. The experimental setup is composed by a cantilever beam operating in a nonlinear regime of motion, even in the healthy condition, induced by the presence of a magnet near to the free extremity. The damage associated with mass changes in a bolted connection (nuts loosed) is detected based on the comparison between linear and nonlinear contributions of the stochastic Volterra kernels in the total response, estimated in the reference and damaged conditions. The experimental measurements were performed on different days to add natural variation to the data measured. The results obtained through the stochastic proposed approach are compared with those obtained by the deterministic version of the Volterra series, showing the advantage of the stochastic model use when we consider the experimental data variation with the capability to detect the presence of the damage with statistical confidence. Besides, the nonlinear metric used presented a higher sensitivity to the occurrence of the damage compared with the linear one, justifying the application of a nonlinear metric when the system exhibits intrinsically nonlinear behavior.
Authors:Daniel Flögel, Marcos Gómez Villafañe, Joshua Ransiek, Sören Hohmann
Title: Disentangling Uncertainty for Safe Social Navigation using Deep Reinforcement Learning
Abstract:
Autonomous mobile robots are increasingly used in pedestrian-rich environments where safe navigation and appropriate human interaction are crucial. While Deep Reinforcement Learning (DRL) enables socially integrated robot behavior, challenges persist in novel or perturbed scenarios to indicate when and why the policy is uncertain. Unknown uncertainty in decision-making can lead to collisions or human discomfort and is one reason why safe and risk-aware navigation is still an open problem. This work introduces a novel approach that integrates aleatoric, epistemic, and predictive uncertainty estimation into a DRL navigation framework for policy distribution uncertainty estimates. We, therefore, incorporate Observation-Dependent Variance (ODV) and dropout into the Proximal Policy Optimization (PPO) algorithm. For different types of perturbations, we compare the ability of deep ensembles and Monte-Carlo dropout (MC-dropout) to estimate the uncertainties of the policy. In uncertain decision-making situations, we propose to change the robot's social behavior to conservative collision avoidance. The results show improved training performance with ODV and dropout in PPO and reveal that the training scenario has an impact on the generalization. In addition, MC-dropout is more sensitive to perturbations and correlates the uncertainty type to the perturbation better. With the safe action selection, the robot can navigate in perturbed environments with fewer collisions.
Authors:Lars Böcking, Leopold Müller, Niklas Kühl
Title: Utilizing Data Fingerprints for Privacy-Preserving Algorithm Selection in Time Series Classification: Performance and Uncertainty Estimation on Unseen Datasets
Abstract:
The selection of algorithms is a crucial step in designing AI services for real-world time series classification use cases. Traditional methods such as neural architecture search, automated machine learning, combined algorithm selection, and hyperparameter optimizations are effective but require considerable computational resources and necessitate access to all data points to run their optimizations. In this work, we introduce a novel data fingerprint that describes any time series classification dataset in a privacy-preserving manner and provides insight into the algorithm selection problem without requiring training on the (unseen) dataset. By decomposing the multi-target regression problem, only our data fingerprints are used to estimate algorithm performance and uncertainty in a scalable and adaptable manner. Our approach is evaluated on the 112 University of California riverside benchmark datasets, demonstrating its effectiveness in predicting the performance of 35 state-of-the-art algorithms and providing valuable insights for effective algorithm selection in time series classification service systems, improving a naive baseline by 7.32% on average in estimating the mean performance and 15.81% in estimating the uncertainty.
Authors:Mulin Chen, Haojian Huang, Qiang Li
Title: Towards Robust Uncertainty-Aware Incomplete Multi-View Classification
Abstract:
Handling incomplete data in multi-view classification is challenging, especially when traditional imputation methods introduce biases that compromise uncertainty estimation. Existing Evidential Deep Learning (EDL) based approaches attempt to address these issues, but they often struggle with conflicting evidence due to the limitations of the Dempster-Shafer combination rule, leading to unreliable decisions. To address these challenges, we propose the Alternating Progressive Learning Network (APLN), specifically designed to enhance EDL-based methods in incomplete MVC scenarios. Our approach mitigates bias from corrupted observed data by first applying coarse imputation, followed by mapping the data to a latent space. In this latent space, we progressively learn an evidence distribution aligned with the target domain, incorporating uncertainty considerations through EDL. Additionally, we introduce a conflict-aware Dempster-Shafer combination rule (DSCR) to better handle conflicting evidence. By sampling from the learned distribution, we optimize the latent representations of missing views, reducing bias and enhancing decision-making robustness. Extensive experiments demonstrate that APLN, combined with DSCR, significantly outperforms traditional methods, particularly in environments characterized by high uncertainty and conflicting evidence, establishing it as a promising solution for incomplete multi-view classification.
Authors:Clemens Damke, Eyke Hüllermeier
Title: CUQ-GNN: Committee-based Graph Uncertainty Quantification using Posterior Networks
Abstract:
In this work, we study the influence of domain-specific characteristics when defining a meaningful notion of predictive uncertainty on graph data. Previously, the so-called Graph Posterior Network (GPN) model has been proposed to quantify uncertainty in node classification tasks. Given a graph, it uses Normalizing Flows (NFs) to estimate class densities for each node independently and converts those densities into Dirichlet pseudo-counts, which are then dispersed through the graph using the personalized Page-Rank algorithm. The architecture of GPNs is motivated by a set of three axioms on the properties of its uncertainty estimates. We show that those axioms are not always satisfied in practice and therefore propose the family of Committe-based Uncertainty Quantification Graph Neural Networks (CUQ-GNNs), which combine standard Graph Neural Networks with the NF-based uncertainty estimation of Posterior Networks (PostNets). This approach adapts more flexibly to domain-specific demands on the properties of uncertainty estimates. We compare CUQ-GNN against GPN and other uncertainty quantification approaches on common node classification benchmarks and show that it is effective at producing useful uncertainty estimates.
Authors:Tim Tomov, Dominik Fuchsgruber, Stephan Günnemann
Title: Task-Awareness Improves LLM Generations and Uncertainty
Abstract:
In many applications of LLMs, natural language responses often have an underlying structure such as representing discrete labels, numerical values, or graphs. Yet, existing decoding and uncertainty estimation methods operate only in language space and largely disregard structural information. We address this by modeling LLM outputs directly in a task-dependent latent structure. By equipping this structure with a dissimilarity measure, we can compute Bayes-optimal responses. These are not selected from sampled generations but are newly synthesized by combining individual responses in the latent space. Across different tasks, Bayes-optimal responses consistently outperform standard decoding methods like beam search. Moreover, quantifying uncertainty via the induced Bayesian risk captures variations in terms of the latent structure and improves alignment with output quality and correctness. Our decision-theoretic framework is applicable to any problem that admits a latent response structure and enables reliable task-aware LLM predictions.
Authors:Jie Li, Jing Li, Lu Lv, Zhanyu Ju, Fengkui Gong
Title: Cognitive Fusion of ZC Sequences and Time-Frequency Images for Out-of-Distribution Detection of Drone Signals
Abstract:
We propose a drone signal out-of-distribution detection (OODD) algorithm based on the cognitive fusion of Zadoff-Chu (ZC) sequences and time-frequency images (TFI). ZC sequences are identified by analyzing the communication protocols of DJI drones, while TFI capture the time-frequency characteristics of drone signals with unknown or non-standard communication protocols. Both modalities are used jointly to enable OODD in the drone remote identification (RID) task. Specifically, ZC sequence features and TFI features are generated from the received radio frequency signals, which are then processed through dedicated feature extraction module to enhance and align them. The resultant multi-modal features undergo multi-modal feature interaction, single-modal feature fusion, and multi-modal feature fusion to produce features that integrate and complement information across modalities. Discrimination scores are computed from the fused features along both spatial and channel dimensions to capture time-frequency characteristic differences dictated by the communication protocols, and these scores will be transformed into adaptive attention weights. The weighted features are then passed through a Softmax function to produce the signal classification results. Simulation results demonstrate that the proposed algorithm outperforms existing algorithms and achieves 1.7% and 7.5% improvements in RID and OODD metrics, respectively. The proposed algorithm also performs strong robustness under varying flight conditions and across different drone types.
Authors:Lorenzo Monti, Tatiana Muraveva, Brian Sheridan, Davide Massari, Alessia Garofalo, Gisella Clementini, Umberto Michelucci
Title: CLiMB: A Domain-Informed Novelty Detection Clustering Framework for Scientific Discovery
Abstract:
In data-driven scientific discovery, a challenge lies in classifying well-characterized phenomena while identifying novel anomalies. Current semi-supervised clustering algorithms do not always fully address this duality, often assuming that supervisory signals are globally representative. Consequently, methods often enforce rigid constraints that suppress unanticipated patterns or require a pre-specified number of clusters, rendering them ineffective for genuine novelty detection. To bridge this gap, we introduce CLiMB (CLustering in Multiphase Boundaries), a domain-informed framework decoupling the exploitation of prior knowledge from the exploration of unknown structures. Using a sequential two-phase approach, CLiMB first anchors known clusters using constrained partitioning, and subsequently applies density-based clustering to residual data to reveal arbitrary topologies. We demonstrate this framework on RR Lyrae stars data from the Gaia Data Release 3. CLiMB attains an Adjusted Rand Index of 0.829 with 90% seed coverage in recovering known Milky Way substructures, drastically outperforming heuristic and constraint-based baselines, which stagnate below 0.20. Furthermore, sensitivity analysis confirms CLiMB's superior data efficiency, showing monotonic improvement as knowledge increases. Finally, the framework successfully isolates three dynamical features (Shiva, Shakti, and the Galactic Disk) in the unlabelled field, validating its potential for scientific discovery.
Authors:David Hartmann, Lena Pohlmann, Lelia Hanslik, Noah Gießing, Bettina Berendt, Pieter Delobelle
Title: Audit Me If You Can: Query-Efficient Active Fairness Auditing of Black-Box LLMs
Abstract:
Large Language Models (LLMs) exhibit systematic biases across demographic groups. Auditing is proposed as an accountability tool for black-box LLM applications, but suffers from resource-intensive query access. We conceptualise auditing as uncertainty estimation over a target fairness metric and introduce BAFA, the Bounded Active Fairness Auditor for query-efficient auditing of black-box LLMs. BAFA maintains a version space of surrogate models consistent with queried scores and computes uncertainty intervals for fairness metrics (e.g., $Δ$ AUC) via constrained empirical risk minimisation. Active query selection narrows these intervals to reduce estimation error. We evaluate BAFA on two standard fairness dataset case studies: \textsc{CivilComments} and \textsc{Bias-in-Bios}, comparing against stratified sampling, power sampling, and ablations. BAFA achieves target error thresholds with up to 40$\times$ fewer queries than stratified sampling (e.g., 144 vs 5,956 queries at $\varepsilon=0.02$ for \textsc{CivilComments}) for tight thresholds, demonstrates substantially better performance over time, and shows lower variance across runs. These results suggest that active sampling can reduce resources needed for independent fairness auditing with LLMs, supporting continuous model evaluations.
Authors:Haizhou Yang, Jiyang Zhang, Brahmajee K. Nallamothu, Krishna Garikipati, C. Alberto Figueroa
Title: Assessing Coronary Microvascular Dysfunction using Angiography-based Data-driven Methods
Abstract:
Coronary microvascular dysfunction (CMD), characterized by impaired regulation of blood flow in the coronary microcirculation, plays a key role in the pathogenesis of ischemic heart disease and is increasingly recognized as a contributor to adverse cardiovascular outcomes. Despite its clinical importance, CMD remains underdiagnosed due to the reliance on invasive procedures such as pressure wire-based measurements of the index of microcirculatory resistance (IMR) and coronary flow reserve (CFR), which are costly, time-consuming, and carry procedural risks. To date, no study has sought to quantify CMD indices using data-driven approaches while leveraging the rich information contained in coronary angiograms. To address these limitations, this study proposes a novel data-driven framework for inference of CMD indices based on coronary angiography. A physiologically validated multi-physics model was used to generate synthetic datasets for data-driven model training, consisting of CMD indices and computational angiograms with corresponding contrast intensity profiles (CIPs). Two neural network architectures were developed: a single-input-channel encoder-MLP model for IMR prediction and a dual-input-channel encoder-MLP model for CFR prediction, both incorporating epistemic uncertainty estimation to quantify prediction confidence. Results demonstrate that the data-driven models achieve high predictive accuracy when evaluated against physics-based synthetic datasets, and that the uncertainty estimates are positively correlated with prediction errors. Furthermore, the utility of CIPs as informative surrogates for coronary physiology is demonstrated, underscoring the potential of the proposed framework to enable accurate, real-time, image-based CMD assessment using routine angiography without the need for more invasive approaches.
Authors:Baiyang Chen, Zhong Yuan, Dezhong Peng, Xiaoliang Chen, Hongmei Chen
Title: Consistency-guided semi-supervised outlier detection in heterogeneous data using fuzzy rough sets
Abstract:
Outlier detection aims to find samples that behave differently from the majority of the data. Semi-supervised detection methods can utilize the supervision of partial labels, thus reducing false positive rates. However, most of the current semi-supervised methods focus on numerical data and neglect the heterogeneity of data information. In this paper, we propose a consistency-guided outlier detection algorithm (COD) for heterogeneous data with the fuzzy rough set theory in a semi-supervised manner. First, a few labeled outliers are leveraged to construct label-informed fuzzy similarity relations. Next, the consistency of the fuzzy decision system is introduced to evaluate attributes' contributions to knowledge classification. Subsequently, we define the outlier factor based on the fuzzy similarity class and predict outliers by integrating the classification consistency and the outlier factor. The proposed algorithm is extensively evaluated on 15 freshly proposed datasets. Experimental results demonstrate that COD is better than or comparable with the leading outlier detectors. This manuscript is the accepted author version of a paper published by Elsevier. The final published version is available at https://doi.org/10.1016/j.asoc.2024.112070
Authors:Baiyang Chen, Zhong Yuan, Dezhong Peng, Hongmei Chen, Xiaomin Song, Huiming Zheng
Title: Label-Informed Outlier Detection Based on Granule Density
Abstract:
Outlier detection, crucial for identifying unusual patterns with significant implications across numerous applications, has drawn considerable research interest. Existing semi-supervised methods typically treat data as purely numerical and} in a deterministic manner, thereby neglecting the heterogeneity and uncertainty inherent in complex, real-world datasets. This paper introduces a label-informed outlier detection method for heterogeneous data based on Granular Computing and Fuzzy Sets, namely Granule Density-based Outlier Factor (GDOF). Specifically, GDOF first employs label-informed fuzzy granulation to effectively represent various data types and develops granule density for precise density estimation. Subsequently, granule densities from individual attributes are integrated for outlier scoring by assessing attribute relevance with a limited number of labeled outliers. Experimental results on various real-world datasets show that GDOF stands out in detecting outliers in heterogeneous data with a minimal number of labeled outliers. The integration of Fuzzy Sets and Granular Computing in GDOF offers a practical framework for outlier detection in complex and diverse data types. All relevant datasets and source codes are publicly available for further research. This is the author's accepted manuscript of a paper published in IEEE Transactions on Fuzzy Systems. The final version is available at https://doi.org/10.1109/TFUZZ.2024.3514853
Authors:Moritz Blumenthal, Tina Holliber, Jonathan I. Tamir, Martin Uecker
Title: Fast and Robust Diffusion Posterior Sampling for MR Image Reconstruction Using the Preconditioned Unadjusted Langevin Algorithm
Abstract:
Purpose: The Unadjusted Langevin Algorithm (ULA) in combination with diffusion models can generate high quality MRI reconstructions with uncertainty estimation from highly undersampled k-space data. However, sampling methods such as diffusion posterior sampling or likelihood annealing suffer from long reconstruction times and the need for parameter tuning. The purpose of this work is to develop a robust sampling algorithm with fast convergence. Theory and Methods: In the reverse diffusion process used for sampling the posterior, the exact likelihood is multiplied with the diffused prior at all noise scales. To overcome the issue of slow convergence, preconditioning is used. The method is trained on fastMRI data and tested on retrospectively undersampled brain data of a healthy volunteer. Results: For posterior sampling in Cartesian and non-Cartesian accelerated MRI the new approach outperforms annealed sampling in terms of reconstruction speed and sample quality. Conclusion: The proposed exact likelihood with preconditioning enables rapid and reliable posterior sampling across various MRI reconstruction tasks without the need for parameter tuning.
Authors:Minh Duc Vu, Mingshuo Liu, Doudou Zhou
Title: A Trainable Centrality Framework for Modern Data
Abstract:
Measuring how central or typical a data point is underpins robust estimation, ranking, and outlier detection, but classical depth notions become expensive and unstable in high dimensions and are hard to extend beyond Euclidean data. We introduce Fused Unified centrality Score Estimation (FUSE), a neural centrality framework that operates on top of arbitrary representations. FUSE combines a global head, trained from pairwise distance-based comparisons to learn an anchor-free centrality score, with a local head, trained by denoising score matching to approximate a smoothed log-density potential. A single parameter between 0 and 1 interpolates between these calibrated signals, yielding depth-like centrality from different views via one forward pass. Across synthetic distributions, real images, time series, and text data, and standard outlier detection benchmarks, FUSE recovers meaningful classical ordering, reveals multi-scale geometric structures, and attains competitive performance with strong classical baselines while remaining simple and efficient.
Authors:Dishanika Denipitiyage, Naveen Karunanayake, Suranga Seneviratne, Sanjay Chawla
Title: RankOOD -- Class Ranking-based Out-of-Distribution Detection
Abstract:
We propose RankOOD, a rank-based Out-of-Distribution (OOD) detection approach based on training a model with the Placket-Luce loss, which is now extensively used for preference alignment tasks in foundational models. Our approach is based on the insight that with a deep learning model trained using the Cross Entropy Loss, in-distribution (ID) class prediction induces a ranking pattern for each ID class prediction. The RankOOD framework formalizes the insight by first extracting a rank list for each class using an initial classifier and then uses another round of training with the Plackett-Luce loss, where the class rank, a fixed permutation for each class, is the predicted variable. An OOD example may get assigned with high probability to an ID example, but the probability of it respecting the ranking classification is likely to be small. RankOOD, achieves SOTA performance on the near-ODD TinyImageNet evaluation benchmark, reducing FPR95 by 4.3%.
Authors:Weijun Gao, Rundong He, Jinyang Dong, Yongshun Gong
Title: TSRE: Channel-Aware Typical Set Refinement for Out-of-Distribution Detection
Abstract:
Out-of-Distribution (OOD) detection is a critical capability for ensuring the safe deployment of machine learning models in open-world environments, where unexpected or anomalous inputs can compromise model reliability and performance. Activation-based methods play a fundamental role in OOD detection by mitigating anomalous activations and enhancing the separation between in-distribution (ID) and OOD data. However, existing methods apply activation rectification while often overlooking channel's intrinsic characteristics and distributional skewness, which results in inaccurate typical set estimation. This discrepancy can lead to the improper inclusion of anomalous activations across channels. To address this limitation, we propose a typical set refinement method based on discriminability and activity, which rectifies activations into a channel-aware typical set. Furthermore, we introduce a skewness-based refinement to mitigate distributional bias in typical set estimation. Finally, we leverage the rectified activations to compute the energy score for OOD detection. Experiments on the ImageNet-1K and CIFAR-100 benchmarks demonstrate that our method achieves state-of-the-art performance and generalizes effectively across backbones and score functions.
Authors:Muhammad Aslanimoghanloo, Ahmed ElGazzar, Marcel van Gerven
Title: Generative Modeling of Clinical Time Series via Latent Stochastic Differential Equations
Abstract:
Clinical time series data from electronic health records and medical registries offer unprecedented opportunities to understand patient trajectories and inform medical decision-making. However, leveraging such data presents significant challenges due to irregular sampling, complex latent physiology, and inherent uncertainties in both measurements and disease progression. To address these challenges, we propose a generative modeling framework based on latent neural stochastic differential equations (SDEs) that views clinical time series as discrete-time partial observations of an underlying controlled stochastic dynamical system. Our approach models latent dynamics via neural SDEs with modality-dependent emission models, while performing state estimation and parameter learning through variational inference. This formulation naturally handles irregularly sampled observations, learns complex non-linear interactions, and captures the stochasticity of disease progression and measurement noise within a unified scalable probabilistic framework. We validate the framework on two complementary tasks: (i) individual treatment effect estimation using a simulated pharmacokinetic-pharmacodynamic (PKPD) model of lung cancer, and (ii) probabilistic forecasting of physiological signals using real-world intensive care unit (ICU) data from 12,000 patients. Results show that our framework outperforms ordinary differential equation and long short-term memory baseline models in accuracy and uncertainty estimation. These results highlight its potential for enabling precise, uncertainty-aware predictions to support clinical decision-making.
Authors:Yuanchao Wang, Tian Qin, Eduardo Valle, Bruno Abrahao
Title: BootOOD: Self-Supervised Out-of-Distribution Detection via Synthetic Sample Exposure under Neural Collapse
Abstract:
Out-of-distribution (OOD) detection is critical for deploying image classifiers in safety-sensitive environments, yet existing detectors often struggle when OOD samples are semantically similar to the in-distribution (ID) classes. We present BootOOD, a fully self-supervised OOD detection framework that bootstraps exclusively from ID data and is explicitly designed to handle semantically challenging OOD samples. BootOOD synthesizes pseudo-OOD features through simple transformations of ID representations and leverages Neural Collapse (NC), where ID features cluster tightly around class means with consistent feature norms. Unlike prior approaches that aim to constrain OOD features into subspaces orthogonal to the collapsed ID means, BootOOD introduces a lightweight auxiliary head that performs radius-based classification on feature norms. This design decouples OOD detection from the primary classifier and imposes a relaxed requirement: OOD samples are learned to have smaller feature norms than ID features, which is easier to satisfy when ID and OOD are semantically close. Experiments on CIFAR-10, CIFAR-100, and ImageNet-200 show that BootOOD outperforms prior post-hoc methods, surpasses training-based methods without outlier exposure, and is competitive with state-of-the-art outlier-exposure approaches while maintaining or improving ID accuracy.
Authors:Gaoxiang Zhao, Ruina Qiu, Pengpeng Zhao, Rongjin Wang, Zhangang Lin, Xiaoqiang Wang
Title: Distillation-Accelerated Uncertainty Modeling for Multi-Objective RTA Interception
Abstract:
Real-Time Auction (RTA) Interception aims to filter out invalid or irrelevant traffic to enhance the integrity and reliability of downstream data. However, two key challenges remain: (i) the need for accurate estimation of traffic quality together with sufficiently high confidence in the model's predictions, typically addressed through uncertainty modeling, and (ii) the efficiency bottlenecks that such uncertainty modeling introduces in real-time applications due to repeated inference. To address these challenges, we propose DAUM, a joint modeling framework that integrates multi-objective learning with uncertainty modeling, yielding both traffic quality predictions and reliable confidence estimates. Building on DAUM, we further apply knowledge distillation to reduce the computational overhead of uncertainty modeling, while largely preserving predictive accuracy and retaining the benefits of uncertainty estimation. Experiments on the JD advertisement dataset demonstrate that DAUM consistently improves predictive performance, with the distilled model delivering a tenfold increase in inference speed.
Authors:Lianghong Chen, Dongkyu Eugene Kim, Mike Domaratzki, Pingzhao Hu
Title: Uncertainty-Aware Multi-Objective Reinforcement Learning-Guided Diffusion Models for 3D De Novo Molecular Design
Abstract:
Designing de novo 3D molecules with desirable properties remains a fundamental challenge in drug discovery and molecular engineering. While diffusion models have demonstrated remarkable capabilities in generating high-quality 3D molecular structures, they often struggle to effectively control complex multi-objective constraints critical for real-world applications. In this study, we propose an uncertainty-aware Reinforcement Learning (RL) framework to guide the optimization of 3D molecular diffusion models toward multiple property objectives while enhancing the overall quality of the generated molecules. Our method leverages surrogate models with predictive uncertainty estimation to dynamically shape reward functions, facilitating balance across multiple optimization objectives. We comprehensively evaluate our framework across three benchmark datasets and multiple diffusion model architectures, consistently outperforming baselines for molecular quality and property optimization. Additionally, Molecular Dynamics (MD) simulations and ADMET profiling of top generated candidates indicate promising drug-like behavior and binding stability, comparable to known Epidermal Growth Factor Receptor (EGFR) inhibitors. Our results demonstrate the strong potential of RL-guided generative diffusion models for advancing automated molecular design.
Authors:Akib Mohammed Khan, Bartosz Krawczyk
Title: Towards Adversarial Robustness and Uncertainty Quantification in DINOv2-based Few-Shot Anomaly Detection
Abstract:
Foundation models such as DINOv2 have shown strong performance in few-shot anomaly detection, yet two key questions remain unexamined: (i) how susceptible are these detectors to adversarial perturbations; and (ii) how well do their anomaly scores reflect calibrated uncertainty? Building on AnomalyDINO, a training-free deep nearest-neighbor detector over DINOv2 features, we present one of the first systematic studies of adversarial attacks and uncertainty estimation in this setting. To enable white-box gradient attacks while preserving test-time behavior, we attach a lightweight linear head to frozen DINOv2 features only for crafting perturbations. Using this heuristic, we evaluate the impact of FGSM across the MVTec-AD and VisA datasets and observe consistent drops in F1, AUROC, AP, and G-mean, indicating that imperceptible perturbations can flip nearest-neighbor relations in feature space to induce confident misclassification. Complementing robustness, we probe reliability and find that raw anomaly scores are poorly calibrated, revealing a gap between confidence and correctness that limits safety-critical use. As a simple, strong baseline toward trustworthiness, we apply post-hoc Platt scaling to the anomaly scores for uncertainty estimation. The resulting calibrated posteriors yield significantly higher predictive entropy on adversarially perturbed inputs than on clean ones, enabling a practical flagging mechanism for attack detection while reducing calibration error (ECE). Our findings surface concrete vulnerabilities in DINOv2-based few-shot anomaly detectors and establish an evaluation protocol and baseline for robust, uncertainty-aware anomaly detection. We argue that adversarial robustness and principled uncertainty quantification are not optional add-ons but essential capabilities if anomaly detection systems are to be trustworthy and ready for real-world deployment.
Authors:Athyrson Machado Ribeiro, Marcos Medeiros Raimundo
Title: Balancing Performance and Reject Inclusion: A Novel Confident Inlier Extrapolation Framework for Credit Scoring
Abstract:
Reject Inference (RI) methods aim to address sample bias by inferring missing repayment data for rejected credit applicants. Traditional approaches often assume that the behavior of rejected clients can be extrapolated from accepted clients, despite potential distributional differences between the two populations. To mitigate this blind extrapolation, we propose a novel Confident Inlier Extrapolation framework (CI-EX). CI-EX iteratively identifies the distribution of rejected client samples using an outlier detection model and assigns labels to rejected individuals closest to the distribution of the accepted population based on probabilities derived from a supervised classification model. The effectiveness of our proposed framework is validated through experiments on two large real-world credit datasets. Performance is evaluated using the Area Under the Curve (AUC) as well as RI-specific metrics such as Kickout and a novel metric introduced in this work, denoted as Area under the Kickout. Our findings reveal that RI methods, including the proposed framework, generally involve a trade-off between AUC and RI-specific metrics. However, the proposed CI-EX framework consistently outperforms existing RI models from the credit literature in terms of RI-specific metrics while maintaining competitive performance in AUC across most experiments.
Authors:Wissam Salhab, Darine Ameyed, Hamid Mcheick, Fehmi Jaafar
Title: Towards Robust Artificial Intelligence: Self-Supervised Learning Approach for Out-of-Distribution Detection
Abstract:
Robustness in AI systems refers to their ability to maintain reliable and accurate performance under various conditions, including out-of-distribution (OOD) samples, adversarial attacks, and environmental changes. This is crucial in safety-critical systems, such as autonomous vehicles, transportation, or healthcare, where malfunctions could have severe consequences. This paper proposes an approach to improve OOD detection without the need of labeled data, thereby increasing the AI systems' robustness. The proposed approach leverages the principles of self-supervised learning, allowing the model to learn useful representations from unlabeled data. Combined with graph-theoretical techniques, this enables the more efficient identification and categorization of OOD samples. Compared to existing state-of-the-art methods, this approach achieved an Area Under the Receiver Operating Characteristic Curve (AUROC) = 0.99.
Authors:Zheng Li, Yanming Guo, WenZhe Liu, Xueyi Zhang, Zhaoyun Ding, Long Xu, Mingrui Lao
Title: PAUL: Uncertainty-Guided Partition and Augmentation for Robust Cross-View Geo-Localization under Noisy Correspondence
Abstract:
Cross-view geo-localization is a critical task for UAV navigation, event detection, and aerial surveying, as it enables matching between drone-captured and satellite imagery. Most existing approaches embed multi-modal data into a joint feature space to maximize the similarity of paired images. However, these methods typically assume perfect alignment of image pairs during training, which rarely holds true in real-world scenarios. In practice, factors such as urban canyon effects, electromagnetic interference, and adverse weather frequently induce GPS drift, resulting in systematic alignment shifts where only partial correspondences exist between pairs. Despite its prevalence, this source of noisy correspondence has received limited attention in current research. In this paper, we formally introduce and address the Noisy Correspondence on Cross-View Geo-Localization (NC-CVGL) problem, aiming to bridge the gap between idealized benchmarks and practical applications. To this end, we propose PAUL (Partition and Augmentation by Uncertainty Learning), a novel framework that partitions and augments training data based on estimated data uncertainty through uncertainty-aware co-augmentation and evidential co-training. Specifically, PAUL selectively augments regions with high correspondence confidence and utilizes uncertainty estimation to refine feature learning, effectively suppressing noise from misaligned pairs. Distinct from traditional filtering or label correction, PAUL leverages both data uncertainty and loss discrepancy for targeted partitioning and augmentation, thus providing robust supervision for noisy samples. Comprehensive experiments validate the effectiveness of individual components in PAUL,which consistently achieves superior performance over other competitive noisy-correspondence-driven methods in various noise ratios.
Authors:Neo Christopher Chung, Jakub Binda
Title: Explain and Monitor Deep Learning Models for Computer Vision using Obz AI
Abstract:
Deep learning has transformed computer vision (CV), achieving outstanding performance in classification, segmentation, and related tasks. Such AI-based CV systems are becoming prevalent, with applications spanning from medical imaging to surveillance. State of the art models such as convolutional neural networks (CNNs) and vision transformers (ViTs) are often regarded as ``black boxes,'' offering limited transparency into their decision-making processes. Despite a recent advancement in explainable AI (XAI), explainability remains underutilized in practical CV deployments. A primary obstacle is the absence of integrated software solutions that connect XAI techniques with robust knowledge management and monitoring frameworks. To close this gap, we have developed Obz AI, a comprehensive software ecosystem designed to facilitate state-of-the-art explainability and observability for vision AI systems. Obz AI provides a seamless integration pipeline, from a Python client library to a full-stack analytics dashboard. With Obz AI, a machine learning engineer can easily incorporate advanced XAI methodologies, extract and analyze features for outlier detection, and continuously monitor AI models in real time. By making the decision-making mechanisms of deep models interpretable, Obz AI promotes observability and responsible deployment of computer vision systems.
Authors:Nooshin Bahador, Milad Lankarany
Title: Semi-Supervised Anomaly Detection Pipeline for SOZ Localization Using Ictal-Related Chirp
Abstract:
This study presents a quantitative framework for evaluating the spatial concordance between clinically defined seizure onset zones (SOZs) and statistically anomalous channels identified through time-frequency analysis of chirp events. The proposed pipeline employs a two-step methodology: (1) Unsupervised Outlier Detection, where Local Outlier Factor (LOF) analysis with adaptive neighborhood selection identifies anomalous channels based on spectro-temporal features of chirp (Onset frequency, offset frequency, and temporal duration); and (2) Spatial Correlation Analysis, which computes both exact co-occurrence metrics and weighted index similarity, incorporating hemispheric congruence and electrode proximity. Key findings demonstrate that the LOF-based approach (N neighbors=20, contamination=0.2) effectively detects outliers, with index matching (weighted by channel proximity) outperforming exact matching in SOZ localization. Performance metrics (precision, recall, F1) were highest for seizure-free patients (Index Precision mean: 0.903) and those with successful surgical outcomes (Index Precision mean: 0.865), whereas failure cases exhibited lower concordance (Index Precision mean: 0.460). The key takeaway is that chirp-based outlier detection, combined with weighted spatial metrics, provides a complementary method for SOZ localization, particularly in patients with successful surgical outcomes.
Authors:Jakub Binda, Valentina Paneta, Vasileios Eleftheriadis, Hongkyou Chung, Panagiotis Papadimitroulas, Neo Christopher Chung
Title: Safeguarding Generative AI Applications in Preclinical Imaging through Hybrid Anomaly Detection
Abstract:
Generative AI holds great potentials to automate and enhance data synthesis in nuclear medicine. However, the high-stakes nature of biomedical imaging necessitates robust mechanisms to detect and manage unexpected or erroneous model behavior. We introduce development and implementation of a hybrid anomaly detection framework to safeguard GenAI models in BIOEMTECH's eyes(TM) systems. Two applications are demonstrated: Pose2Xray, which generates synthetic X-rays from photographic mouse images, and DosimetrEYE, which estimates 3D radiation dose maps from 2D SPECT/CT scans. In both cases, our outlier detection (OD) enhances reliability, reduces manual oversight, and supports real-time quality control. This approach strengthens the industrial viability of GenAI in preclinical settings by increasing robustness, scalability, and regulatory compliance.
Authors:Tianyi Wang, Bingqian Dai, Kin Wong, Yaochen Li, Yang Cheng, Qingyuan Shu, Haoran He, Puyang Huang, Hanshen Huang, Kang L. Wang
Title: Spintronic Bayesian Hardware Driven by Stochastic Magnetic Domain Wall Dynamics
Abstract:
As artificial intelligence (AI) advances into diverse applications, ensuring reliability of AI models is increasingly critical. Conventional neural networks offer strong predictive capabilities but produce deterministic outputs without inherent uncertainty estimation, limiting their reliability in safety-critical domains. Probabilistic neural networks (PNNs), which introduce randomness, have emerged as a powerful approach for enabling intrinsic uncertainty quantification. However, traditional CMOS architectures are inherently designed for deterministic operation and actively suppress intrinsic randomness. This poses a fundamental challenge for implementing PNNs, as probabilistic processing introduces significant computational overhead. To address this challenge, we introduce a Magnetic Probabilistic Computing (MPC) platform-an energy-efficient, scalable hardware accelerator that leverages intrinsic magnetic stochasticity for uncertainty-aware computing. This physics-driven strategy utilizes spintronic systems based on magnetic domain walls (DWs) and their dynamics to establish a new paradigm of physical probabilistic computing for AI. The MPC platform integrates three key mechanisms: thermally induced DW stochasticity, voltage controlled magnetic anisotropy (VCMA), and tunneling magnetoresistance (TMR), enabling fully electrical and tunable probabilistic functionality at the device level. As a representative demonstration, we implement a Bayesian Neural Network (BNN) inference structure and validate its functionality on CIFAR-10 classification tasks. Compared to standard 28nm CMOS implementations, our approach achieves a seven orders of magnitude improvement in the overall figure of merit, with substantial gains in area efficiency, energy consumption, and speed. These results underscore the MPC platform's potential to enable reliable and trustworthy physical AI systems.
Authors:Felix Frohnert, Denny Lane B. Sombillo, Evert van Nieuwenburg, Patrick Emonts
Title: Learning Pole Structures of Hadronic States using Predictive Uncertainty Estimation
Abstract:
Matching theoretical predictions to experimental data remains a central challenge in hadron spectroscopy. In particular, the identification of new hadronic states is difficult, as exotic signals near threshold can arise from a variety of physical mechanisms. A key diagnostic in this context is the pole structure of the scattering amplitude, but different configurations can produce similar signatures. The mapping between pole configurations and line shapes is especially ambiguous near the mass threshold, where analytic control is limited. In this work, we introduce an uncertainty-aware machine learning approach for classifying pole structures in $S$-matrix elements. Our method is based on an ensemble of classifier chains that provide both epistemic and aleatoric uncertainty estimates. We apply a rejection criterion based on predictive uncertainty, achieving a validation accuracy of nearly $95\%$ while discarding only a small fraction of high-uncertainty predictions. Trained on synthetic data with known pole structures, the model generalizes to previously unseen experimental data, including enhancements associated with the $P_{c\bar{c}}(4312)^+$ state observed by LHCb. In this, we infer a four-pole structure, representing the presence of a genuine compact pentaquark in the presence of a higher channel virtual state pole with non-vanishing width. While evaluated on this particular state, our framework is broadly applicable to other candidate hadronic states and offers a scalable tool for pole structure inference in scattering amplitudes.
Authors:Astrid Franz, Frederik Hoppe, Marianne Michaelis, Udo Göbel
Title: Universal Embeddings of Tabular Data
Abstract:
Tabular data in relational databases represents a significant portion of industrial data. Hence, analyzing and interpreting tabular data is of utmost importance. Application tasks on tabular data are manifold and are often not specified when setting up an industrial database. To address this, we present a novel framework for generating universal, i.e., task-independent embeddings of tabular data for performing downstream tasks without predefined targets. Our method transforms tabular data into a graph structure, leverages Graph Auto-Encoders to create entity embeddings, which are subsequently aggregated to obtain embeddings for each table row, i.e., each data sample. This two-step approach has the advantage that unseen samples, consisting of similar entities, can be embedded without additional training. Downstream tasks such as regression, classification or outlier detection, can then be performed by applying a distance-based similarity measure in the embedding space. Experiments on real-world datasets demonstrate that our method achieves superior performance compared to existing universal tabular data embedding techniques.
Authors:Sree Bhargavi Balija, Amitash Nanda, Debashis Sahoo
Title: Decoding Federated Learning: The FedNAM+ Conformal Revolution
Abstract:
Federated learning has significantly advanced distributed training of machine learning models across decentralized data sources. However, existing frameworks often lack comprehensive solutions that combine uncertainty quantification, interpretability, and robustness. To address this, we propose FedNAM+, a federated learning framework that integrates Neural Additive Models (NAMs) with a novel conformal prediction method to enable interpretable and reliable uncertainty estimation. Our method introduces a dynamic level adjustment technique that utilizes gradient-based sensitivity maps to identify key input features influencing predictions. This facilitates both interpretability and pixel-wise uncertainty estimates. Unlike traditional interpretability methods such as LIME and SHAP, which do not provide confidence intervals, FedNAM+ offers visual insights into prediction reliability. We validate our approach through experiments on CT scan, MNIST, and CIFAR datasets, demonstrating high prediction accuracy with minimal loss (e.g., only 0.1% on MNIST), along with transparent uncertainty measures. Visual analysis highlights variable uncertainty intervals, revealing low-confidence regions where model performance can be improved with additional data. Compared to Monte Carlo Dropout, FedNAM+ delivers efficient and global uncertainty estimates with reduced computational overhead, making it particularly suitable for federated learning scenarios. Overall, FedNAM+ provides a robust, interpretable, and computationally efficient framework that enhances trust and transparency in decentralized predictive modeling.
Authors:Agnimitra Dasgupta, Javier Murgoitio-Esandi, Ali Fardisi, Assad A Oberai
Title: Time-dependent density estimation using binary classifiers
Abstract:
We propose a data-driven method to learn the time-dependent probability density of a multivariate stochastic process from sample paths, assuming that the initial probability density is known and can be evaluated. Our method uses a novel time-dependent binary classifier trained using a contrastive estimation-based objective that trains the classifier to discriminate between realizations of the stochastic process at two nearby time instants. Significantly, the proposed method explicitly models the time-dependent probability distribution, which means that it is possible to obtain the value of the probability density within the time horizon of interest. Additionally, the input before the final activation in the time-dependent classifier is a second-order approximation to the partial derivative, with respect to time, of the logarithm of the density. We apply the proposed approach to approximate the time-dependent probability density functions for systems driven by stochastic excitations. We also use the proposed approach to synthesize new samples of a random vector from a given set of its realizations. In such applications, we generate sample paths necessary for training using stochastic interpolants. Subsequently, new samples are generated using gradient-based Markov chain Monte Carlo methods because automatic differentiation can efficiently provide the necessary gradient. Further, we demonstrate the utility of an explicit approximation to the time-dependent probability density function through applications in unsupervised outlier detection. Through several numerical experiments, we show that the proposed method accurately reconstructs complex time-dependent, multi-modal, and near-degenerate densities, scales effectively to moderately high-dimensional problems, and reliably detects rare events among real-world data.
Authors:Yangrui Zhu, Junhua Bao, Yipan Wei, Yapeng Li, Bo Du
Title: Class Similarity-Based Multimodal Classification under Heterogeneous Category Sets
Abstract:
Existing multimodal methods typically assume that different modalities share the same category set. However, in real-world applications, the category distributions in multimodal data exhibit inconsistencies, which can hinder the model's ability to effectively utilize cross-modal information for recognizing all categories. In this work, we propose the practical setting termed Multi-Modal Heterogeneous Category-set Learning (MMHCL), where models are trained in heterogeneous category sets of multi-modal data and aim to recognize complete classes set of all modalities during test. To effectively address this task, we propose a Class Similarity-based Cross-modal Fusion model (CSCF). Specifically, CSCF aligns modality-specific features to a shared semantic space to enable knowledge transfer between seen and unseen classes. It then selects the most discriminative modality for decision fusion through uncertainty estimation. Finally, it integrates cross-modal information based on class similarity, where the auxiliary modality refines the prediction of the dominant one. Experimental results show that our method significantly outperforms existing state-of-the-art (SOTA) approaches on multiple benchmark datasets, effectively addressing the MMHCL task.
Authors:Morteza Rakhshaninejad, Mira Jurgens, Nicolas Dewolf, Willem Waegeman
Title: Conformal Prediction for Uncertainty Estimation in Drug-Target Interaction Prediction
Abstract:
Accurate drug-target interaction (DTI) prediction with machine learning models is essential for drug discovery. Such models should also provide a credible representation of their uncertainty, but applying classical marginal conformal prediction (CP) in DTI prediction often overlooks variability across drug and protein subgroups. In this work, we analyze three cluster-conditioned CP methods for DTI prediction, and compare them with marginal and group-conditioned CP. Clusterings are obtained via nonconformity scores, feature similarity, and nearest neighbors, respectively. Experiments on the KIBA dataset using four data-splitting strategies show that nonconformity-based clustering yields the tightest intervals and most reliable subgroup coverage, especially in random and fully unseen drug-protein splits. Group-conditioned CP works well when one entity is familiar, but residual-driven clustering provides robust uncertainty estimates even in sparse or novel scenarios. These results highlight the potential of cluster-based CP for improving DTI prediction under uncertainty.
Authors:Artem Zabolotnyi, Roman Makarov, Mile Mitrovic, Polina Proskura, Oleg Travkin, Roman Alferov, Alexey Zaytsev
Title: AdUE: Improving uncertainty estimation head for LoRA adapters in LLMs
Abstract:
Uncertainty estimation remains a critical challenge in adapting pre-trained language models to classification tasks, particularly under parameter-efficient fine-tuning approaches such as adapters. We introduce AdUE1, an efficient post-hoc uncertainty estimation (UE) method, to enhance softmax-based estimates. Our approach (1) uses a differentiable approximation of the maximum function and (2) applies additional regularization through L2-SP, anchoring the fine-tuned head weights and regularizing the model. Evaluations on five NLP classification datasets across four language models (RoBERTa, ELECTRA, LLaMA-2, Qwen) demonstrate that our method consistently outperforms established baselines such as Mahalanobis distance and softmax response. Our approach is lightweight (no base-model changes) and produces better-calibrated confidence.
Authors:Jiawen Xu, Odej Kao, Margret Keuper
Title: Informed Mixing -- Improving Open Set Recognition via Attribution-based Augmentation
Abstract:
Open set recognition (OSR) is devised to address the problem of detecting novel classes during model inference. Even in recent vision models, this remains an open issue which is receiving increasing attention. Thereby, a crucial challenge is to learn features that are relevant for unseen categories from given data, for which these features might not be discriminative. To facilitate this process and "optimize to learn" more diverse features, we propose GradMix, a data augmentation method that dynamically leverages gradient-based attribution maps of the model during training to mask out already learned concepts. Thus GradMix encourages the model to learn a more complete set of representative features from the same data source. Extensive experiments on open set recognition, close set classification, and out-of-distribution detection reveal that our method can often outperform the state-of-the-art. GradMix can further increase model robustness to corruptions as well as downstream classification performance for self-supervised learning, indicating its benefit for model generalization.
Authors:Sriram Mandalika, Harsha Vardhan, Athira Nambiar
Title: Replay to Remember (R2R): An Efficient Uncertainty-driven Unsupervised Continual Learning Framework Using Generative Replay
Abstract:
Continual Learning entails progressively acquiring knowledge from new data while retaining previously acquired knowledge, thereby mitigating ``Catastrophic Forgetting'' in neural networks. Our work presents a novel uncertainty-driven Unsupervised Continual Learning framework using Generative Replay, namely ``Replay to Remember (R2R)''. The proposed R2R architecture efficiently uses unlabelled and synthetic labelled data in a balanced proportion using a cluster-level uncertainty-driven feedback mechanism and a VLM-powered generative replay module. Unlike traditional memory-buffer methods that depend on pretrained models and pseudo-labels, our R2R framework operates without any prior training. It leverages visual features from unlabeled data and adapts continuously using clustering-based uncertainty estimation coupled with dynamic thresholding. Concurrently, a generative replay mechanism along with DeepSeek-R1 powered CLIP VLM produces labelled synthetic data representative of past experiences, resembling biological visual thinking that replays memory to remember and act in new, unseen tasks. Extensive experimental analyses are carried out in CIFAR-10, CIFAR-100, CINIC-10, SVHN and TinyImageNet datasets. Our proposed R2R approach improves knowledge retention, achieving a state-of-the-art performance of 98.13%, 73.06%, 93.41%, 95.18%, 59.74%, respectively, surpassing state-of-the-art performance by over 4.36%.
Authors:Matteo Ceschin, Leonardo Arrighi, Luca Longo, Sylvio Barbon Junior
Title: Extending Decision Predicate Graphs for Comprehensive Explanation of Isolation Forest
Abstract:
The need to explain predictive models is well-established in modern machine learning. However, beyond model interpretability, understanding pre-processing methods is equally essential. Understanding how data modifications impact model performance improvements and potential biases and promoting a reliable pipeline is mandatory for developing robust machine learning solutions. Isolation Forest (iForest) is a widely used technique for outlier detection that performs well. Its effectiveness increases with the number of tree-based learners. However, this also complicates the explanation of outlier selection and the decision boundaries for inliers. This research introduces a novel Explainable AI (XAI) method, tackling the problem of global explainability. In detail, it aims to offer a global explanation for outlier detection to address its opaque nature. Our approach is based on the Decision Predicate Graph (DPG), which clarifies the logic of ensemble methods and provides both insights and a graph-based metric to explain how samples are identified as outliers using the proposed Inlier-Outlier Propagation Score (IOP-Score). Our proposal enhances iForest's explainability and provides a comprehensive view of the decision-making process, detailing which features contribute to outlier identification and how the model utilizes them. This method advances the state-of-the-art by providing insights into decision boundaries and a comprehensive view of holistic feature usage in outlier identification. -- thus promoting a fully explainable machine learning pipeline.
Authors:Pavia Bera, Sanjukta Bhanja
Title: Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference
Abstract:
Modern neural network architectures have achieved remarkable accuracies but remain highly dependent on their training data, often lacking interpretability in their learned mappings. While effective on large datasets, they tend to overfit on smaller ones. Probabilistic neural networks, such as those utilizing variational inference, address this limitation by incorporating uncertainty estimation through weight distributions rather than point estimates. However, standard variational inference often relies on a single-density approximation, which can lead to poor posterior estimates and hinder model performance. We propose Boosted Bayesian Neural Networks (BBNN), a novel approach that enhances neural network weight distribution approximations using Boosting Variational Inference (BVI). By iteratively constructing a mixture of densities, BVI expands the approximating family, enabling a more expressive posterior that leads to improved generalization and uncertainty estimation. While this approach increases computational complexity, it significantly enhances accuracy an essential tradeoff, particularly in high-stakes applications such as medical diagnostics, where false negatives can have severe consequences. Our experimental results demonstrate that BBNN achieves ~5% higher accuracy compared to conventional neural networks while providing superior uncertainty quantification. This improvement highlights the effectiveness of leveraging a mixture-based variational family to better approximate the posterior distribution, ultimately advancing probabilistic deep learning.
Authors:Weipeng Huang, Qin Li, Yang Xiao, Cheng Qiao, Tie Cai, Junwei Liang, Neil J. Hurley, Guangyuan Piao
Title: Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts
Abstract:
Noise in data appears to be inevitable in most real-world machine learning applications and would cause severe overfitting problems. Not only can data features contain noise, but labels are also prone to be noisy due to human input. In this paper, rather than noisy label learning in multiclass classifications, we instead focus on the less explored area of noisy label learning for multilabel classifications. Specifically, we investigate the post-correction of predictions generated from classifiers learned with noisy labels. The reasons are two-fold. Firstly, this approach can directly work with the trained models to save computational resources. Secondly, it could be applied on top of other noisy label correction techniques to achieve further improvements. To handle this problem, we appeal to deep generative approaches that are possible for uncertainty estimation. Our model posits that label noise arises from a stochastic shift in the latent variable, providing a more robust and beneficial means for noisy learning. We develop both unsupervised and semi-supervised learning methods for our model. The extensive empirical study presents solid evidence to that our approach is able to consistently improve the independent models and performs better than a number of existing methods across various noisy label settings. Moreover, a comprehensive empirical analysis of the proposed method is carried out to validate its robustness, including sensitivity analysis and an ablation study, among other elements.
Authors:Jiang Shang, Yuanmeng Wu, Xiaoxiang Han, Xi Chen, Qi Zhang
Title: Evidential Calibrated Uncertainty-Guided Interactive Segmentation paradigm for Ultrasound Images
Abstract:
Accurate and robust ultrasound image segmentation is critical for computer-aided diagnostic systems. Nevertheless, the inherent challenges of ultrasound imaging, such as blurry boundaries and speckle noise, often cause traditional segmentation methods to struggle with performance. Despite recent advancements in universal image segmentation, such as the Segment Anything Model, existing interactive segmentation methods still suffer from inefficiency and lack of specialization. These methods rely heavily on extensive accurate manual or random sampling prompts for interaction, necessitating numerous prompts and iterations to reach satisfactory performance. In response to this challenge, we propose the Evidential Uncertainty-Guided Interactive Segmentation (EUGIS), an end-to-end, efficient tiered interactive segmentation paradigm based on evidential uncertainty estimation for ultrasound image segmentation. Specifically, EUGIS harnesses evidence-based uncertainty estimation, grounded in Dempster-Shafer theory and Subjective Logic, to gauge the level of uncertainty in the predictions of model for different regions. By prioritizing sampling the high-uncertainty region, our method can effectively simulate the interactive behavior of well-trained radiologists, enhancing the targeted of sampling while reducing the number of prompts and iterations required.Additionally, we propose a trainable calibration mechanism for uncertainty estimation, which can further optimize the boundary between certainty and uncertainty, thereby enhancing the confidence of uncertainty estimation.
Authors:Shijing Wang, Yaping Huang
Title: Suppressing Uncertainty in Gaze Estimation
Abstract:
Uncertainty in gaze estimation manifests in two aspects: 1) low-quality images caused by occlusion, blurriness, inconsistent eye movements, or even non-face images; 2) incorrect labels resulting from the misalignment between the labeled and actual gaze points during the annotation process. Allowing these uncertainties to participate in training hinders the improvement of gaze estimation. To tackle these challenges, in this paper, we propose an effective solution, named Suppressing Uncertainty in Gaze Estimation (SUGE), which introduces a novel triplet-label consistency measurement to estimate and reduce the uncertainties. Specifically, for each training sample, we propose to estimate a novel ``neighboring label'' calculated by a linearly weighted projection from the neighbors to capture the similarity relationship between image features and their corresponding labels, which can be incorporated with the predicted pseudo label and ground-truth label for uncertainty estimation. By modeling such triplet-label consistency, we can measure the qualities of both images and labels, and further largely reduce the negative effects of unqualified images and wrong labels through our designed sample weighting and label correction strategies. Experimental results on the gaze estimation benchmarks indicate that our proposed SUGE achieves state-of-the-art performance.
Authors:Eric Bigelow, Ari Holtzman, Hidenori Tanaka, Tomer Ullman
Title: Forking Paths in Neural Text Generation
Abstract:
Estimating uncertainty in Large Language Models (LLMs) is important for properly evaluating LLMs, and ensuring safety for users. However, prior approaches to uncertainty estimation focus on the final answer in generated text, ignoring intermediate steps that might dramatically impact the outcome. We hypothesize that there exist key forking tokens, such that re-sampling the system at those specific tokens, but not others, leads to very different outcomes. To test this empirically, we develop a novel approach to representing uncertainty dynamics across individual tokens of text generation, and applying statistical models to test our hypothesis. Our approach is highly flexible: it can be applied to any dataset and any LLM, without fine tuning or accessing model weights. We use our method to analyze LLM responses on 7 different tasks across 4 domains, spanning a wide range of typical use cases. We find many examples of forking tokens, including surprising ones such as punctuation marks, suggesting that LLMs are often just a single token away from saying something very different.
Authors:Luis A. Ortega, Simón Rodríguez-Santana, Daniel Hernández-Lobato
Title: Fixed-Mean Gaussian Processes for Post-hoc Bayesian Deep Learning
Abstract:
Recently, there has been an increasing interest in performing post-hoc uncertainty estimation about the predictions of pre-trained deep neural networks (DNNs). Given a pre-trained DNN via back-propagation, these methods enhance the original network by adding output confidence measures, such as error bars, without compromising its initial accuracy. In this context, we introduce a novel family of sparse variational Gaussian processes (GPs), where the posterior mean is fixed to any continuous function when using a universal kernel. Specifically, we fix the mean of this GP to the output of the pre-trained DNN, allowing our approach to effectively fit the GP's predictive variances to estimate the DNN prediction uncertainty. Our approach leverages variational inference (VI) for efficient stochastic optimization, with training costs that remain independent of the number of training points, scaling efficiently to large datasets such as ImageNet. The proposed method, called fixed mean GP (FMGP), is architecture-agnostic, relying solely on the pre-trained model's outputs to adjust the predictive variances. Experimental results demonstrate that FMGP improves both uncertainty estimation and computational efficiency when compared to state-of-the-art methods.
Authors:Saurav R. Pandey, Aaqib Saeed, Harlin Lee
Title: PedSleepMAE: Generative Model for Multimodal Pediatric Sleep Signals
Abstract:
Pediatric sleep is an important but often overlooked area in health informatics. We present PedSleepMAE, a generative model that fully leverages multimodal pediatric sleep signals including multichannel EEGs, respiratory signals, EOGs and EMG. This masked autoencoder-based model performs comparably to supervised learning models in sleep scoring and in the detection of apnea, hypopnea, EEG arousal and oxygen desaturation. Its embeddings are also shown to capture subtle differences in sleep signals coming from a rare genetic disorder. Furthermore, PedSleepMAE generates realistic signals that can be used for sleep segment retrieval, outlier detection, and missing channel imputation. This is the first general-purpose generative model trained on multiple types of pediatric sleep signals.
Authors:Rena Gao, Xuetong Wu, Siwen Luo, Caren Han, Feng Liu
Title: 'No' Matters: Out-of-Distribution Detection in Multimodality Long Dialogue
Abstract:
Out-of-distribution (OOD) detection in multimodal contexts is essential for identifying deviations in combined inputs from different modalities, particularly in applications like open-domain dialogue systems or real-life dialogue interactions. This paper aims to improve the user experience that involves multi-round long dialogues by efficiently detecting OOD dialogues and images. We introduce a novel scoring framework named Dialogue Image Aligning and Enhancing Framework (DIAEF) that integrates the visual language models with the novel proposed scores that detect OOD in two key scenarios (1) mismatches between the dialogue and image input pair and (2) input pairs with previously unseen labels. Our experimental results, derived from various benchmarks, demonstrate that integrating image and multi-round dialogue OOD detection is more effective with previously unseen labels than using either modality independently. In the presence of mismatched pairs, our proposed score effectively identifies these mismatches and demonstrates strong robustness in long dialogues. This approach enhances domain-aware, adaptive conversational agents and establishes baselines for future studies.
Authors:Clément Playout, Renaud Duval, Marie Carole Boucher, Farida Cheriet
Title: Multi-style conversion for semantic segmentation of lesions in fundus images by adversarial attacks
Abstract:
The diagnosis of diabetic retinopathy, which relies on fundus images, faces challenges in achieving transparency and interpretability when using a global classification approach. However, segmentation-based databases are significantly more expensive to acquire and combining them is often problematic. This paper introduces a novel method, termed adversarial style conversion, to address the lack of standardization in annotation styles across diverse databases. By training a single architecture on combined databases, the model spontaneously modifies its segmentation style depending on the input, demonstrating the ability to convert among different labeling styles. The proposed methodology adds a linear probe to detect dataset origin based on encoder features and employs adversarial attacks to condition the model's segmentation style. Results indicate significant qualitative and quantitative through dataset combination, offering avenues for improved model generalization, uncertainty estimation and continuous interpolation between annotation styles. Our approach enables training a segmentation model with diverse databases while controlling and leveraging annotation styles for improved retinopathy diagnosis.
Authors:Qihang Yang, Yang Zhao, Hong Cheng
Title: MMLF: Multi-modal Multi-class Late Fusion for Object Detection with Uncertainty Estimation
Abstract:
Autonomous driving necessitates advanced object detection techniques that integrate information from multiple modalities to overcome the limitations associated with single-modal approaches. The challenges of aligning diverse data in early fusion and the complexities, along with overfitting issues introduced by deep fusion, underscore the efficacy of late fusion at the decision level. Late fusion ensures seamless integration without altering the original detector's network structure. This paper introduces a pioneering Multi-modal Multi-class Late Fusion method, designed for late fusion to enable multi-class detection. Fusion experiments conducted on the KITTI validation and official test datasets illustrate substantial performance improvements, presenting our model as a versatile solution for multi-modal object detection in autonomous driving. Moreover, our approach incorporates uncertainty analysis into the classification fusion process, rendering our model more transparent and trustworthy and providing more reliable insights into category predictions.
Authors:Gleb Radchenko, Victoria Andrea Fill
Title: Edge AI Collaborative Learning: Bayesian Approaches to Uncertainty Estimation
Abstract:
Recent advancements in edge computing have significantly enhanced the AI capabilities of Internet of Things (IoT) devices. However, these advancements introduce new challenges in knowledge exchange and resource management, particularly addressing the spatiotemporal data locality in edge computing environments. This study examines algorithms and methods for deploying distributed machine learning within autonomous, network-capable, AI-enabled edge devices. We focus on determining confidence levels in learning outcomes considering the spatial variability of data encountered by independent agents. Using collaborative mapping as a case study, we explore the application of the Distributed Neural Network Optimization (DiNNO) algorithm extended with Bayesian neural networks (BNNs) for uncertainty estimation. We implement a 3D environment simulation using the Webots platform to simulate collaborative mapping tasks, decouple the DiNNO algorithm into independent processes for asynchronous network communication in distributed learning, and integrate distributed uncertainty estimation using BNNs. Our experiments demonstrate that BNNs can effectively support uncertainty estimation in a distributed learning context, with precise tuning of learning hyperparameters crucial for effective uncertainty assessment. Notably, applying Kullback-Leibler divergence for parameter regularization resulted in a 12-30% reduction in validation loss during distributed BNN training compared to other regularization strategies.
Authors:Niklas Erdmann, Lars Ø. Bentsen, Roy Stenbro, Heine N. Riise, Narada Warakagoda, Paal Engelstad
Title: Deep and Probabilistic Solar Irradiance Forecast at the Arctic Circle
Abstract:
Solar irradiance forecasts can be dynamic and unreliable due to changing weather conditions. Near the Arctic circle, this also translates into a distinct set of further challenges. This work is forecasting solar irradiance with Norwegian data using variations of Long-Short-Term Memory units (LSTMs). In order to gain more trustworthiness of results, the probabilistic approaches Quantile Regression (QR) and Maximum Likelihood (MLE) are optimized on top of the LSTMs, providing measures of uncertainty for the results. MLE is further extended by using a Johnson's SU distribution, a Johnson's SB distribution, and a Weibull distribution in addition to a normal Gaussian to model parameters. Contrary to a Gaussian, Weibull, Johnson's SU and Johnson's SB can return skewed distributions, enabling it to fit the non-normal solar irradiance distribution more optimally. The LSTMs are compared against each other, a simple Multi-layer Perceptron (MLP), and a smart-persistence estimator. The proposed LSTMs are found to be more accurate than smart persistence and the MLP for a multi-horizon, day-ahead (36 hours) forecast. The deterministic LSTM showed better root mean squared error (RMSE), but worse mean absolute error (MAE) than a MLE with Johnson's SB distribution. Probabilistic uncertainty estimation is shown to fit relatively well across the distribution of observed irradiance. While QR shows better uncertainty estimation calibration, MLE with Johnson's SB, Johnson's SU, or Gaussian show better performance in the other metrics employed. Optimizing and comparing the models against each other reveals a seemingly inherent trade-off between point-prediction and uncertainty estimation calibration.
Authors:Chuanhao Sun, Thanos Triantafyllou, Anthos Makris, Maja Drmač, Kai Xu, Luo Mai, Mahesh K. Marina
Title: PH-Dropout: Practical Epistemic Uncertainty Quantification for View Synthesis
Abstract:
View synthesis using Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) has demonstrated impressive fidelity in rendering real-world scenarios. However, practical methods for accurate and efficient epistemic Uncertainty Quantification (UQ) in view synthesis are lacking. Existing approaches for NeRF either introduce significant computational overhead (e.g., ``10x increase in training time" or ``10x repeated training") or are limited to specific uncertainty conditions or models. Notably, GS models lack any systematic approach for comprehensive epistemic UQ. This capability is crucial for improving the robustness and scalability of neural view synthesis, enabling active model updates, error estimation, and scalable ensemble modeling based on uncertainty. In this paper, we revisit NeRF and GS-based methods from a function approximation perspective, identifying key differences and connections in 3D representation learning. Building on these insights, we introduce PH-Dropout (Post hoc Dropout), the first real-time and accurate method for epistemic uncertainty estimation that operates directly on pre-trained NeRF and GS models. Extensive evaluations validate our theoretical findings and demonstrate the effectiveness of PH-Dropout.
Authors:Hugo Gobato Souto, Francisco Louzada Neto
Title: Advancing Causal Inference: A Nonparametric Approach to ATE and CATE Estimation with Continuous Treatments
Abstract:
This paper introduces a generalized ps-BART model for the estimation of Average Treatment Effect (ATE) and Conditional Average Treatment Effect (CATE) in continuous treatments, addressing limitations of the Bayesian Causal Forest (BCF) model. The ps-BART model's nonparametric nature allows for flexibility in capturing nonlinear relationships between treatment and outcome variables. Across three distinct sets of Data Generating Processes (DGPs), the ps-BART model consistently outperforms the BCF model, particularly in highly nonlinear settings. The ps-BART model's robustness in uncertainty estimation and accuracy in both point-wise and probabilistic estimation demonstrate its utility for real-world applications. This research fills a crucial gap in causal inference literature, providing a tool better suited for nonlinear treatment-outcome relationships and opening avenues for further exploration in the domain of continuous treatment effect estimation.
Authors:Alice Williams, Boris Kovalerchuk
Title: Synthetic Data Generation and Automated Multidimensional Data Labeling for AI/ML in General and Circular Coordinates
Abstract:
Insufficient amounts of available training data is a critical challenge for both development and deployment of artificial intelligence and machine learning (AI/ML) models. This paper proposes a unified approach to both synthetic data generation (SDG) and automated data labeling (ADL) with a unified SDG-ADL algorithm. SDG-ADL uses multidimensional (n-D) representations of data visualized losslessly with General Line Coordinates (GLCs), relying on reversible GLC properties to visualize n-D data in multiple GLCs. This paper demonstrates use of the new Circular Coordinates in Static and Dynamic forms, used with Parallel Coordinates and Shifted Paired Coordinates, since each GLC exemplifies unique data properties, such as interattribute n-D distributions and outlier detection. The approach is interactively implemented in computer software with the Dynamic Coordinates Visualization system (DCVis). Results with real data are demonstrated in case studies, evaluating impact on classifiers.
Authors:Aurora Pia Ghiardelli, Guangzhi Tang, Tao Sun
Title: Reliable Brain Tumor Segmentation Based on Spiking Neural Networks with Efficient Training
Abstract:
We propose a reliable and energy-efficient framework for 3D brain tumor segmentation using spiking neural networks (SNNs). A multi-view ensemble of sagittal, coronal, and axial SNN models provides voxel-wise uncertainty estimation and enhances segmentation robustness. To address the high computational cost in training SNN models for semantic image segmentation, we employ Forward Propagation Through Time (FPTT), which maintains temporal learning efficiency with significantly reduced computational cost. Experiments on the Multimodal Brain Tumor Segmentation Challenges (BraTS 2017 and BraTS 2023) demonstrate competitive accuracy, well-calibrated uncertainty, and an 87% reduction in FLOPs, underscoring the potential of SNNs for reliable, low-power medical IoT and Point-of-Care systems.
Authors:Lukas Weidener, Marko Brkić, Mihailo Jovanović, Ritvik Singh, Chiara Baccin, Emre Ulgac, Alex Dobrin, Aakaash Meduri
Title: Rethinking the AI Scientist: Interactive Multi-Agent Workflows for Scientific Discovery
Abstract:
Artificial intelligence systems for scientific discovery have demonstrated remarkable potential, yet existing approaches remain largely proprietary and operate in batch-processing modes requiring hours per research cycle, precluding real-time researcher guidance. This paper introduces Deep Research, a multi-agent system enabling interactive scientific investigation with turnaround times measured in minutes. The architecture comprises specialized agents for planning, data analysis, literature search, and novelty detection, unified through a persistent world state that maintains context across iterative research cycles. Two operational modes support different workflows: semi-autonomous mode with selective human checkpoints, and fully autonomous mode for extended investigations. Evaluation on the BixBench computational biology benchmark demonstrated state-of-the-art performance, achieving 48.8% accuracy on open response and 64.4% on multiple-choice evaluation, exceeding existing baselines by 14 to 26 percentage points. Analysis of architectural constraints, including open access literature limitations and challenges inherent to automated novelty assessment, informs practical deployment considerations for AI-assisted scientific workflows.
Authors:Minseo Kang, Seunghwan Park, Dongha Kim
Title: Memorize Early, Then Query: Inlier-Memorization-Guided Active Outlier Detection
Abstract:
Outlier detection (OD) aims to identify abnormal instances, known as outliers or anomalies, by learning typical patterns of normal data, or inliers. Performing OD under an unsupervised regime-without any information about anomalous instances in the training data-is challenging. A recently observed phenomenon, known as the inlier-memorization (IM) effect, where deep generative models (DGMs) tend to memorize inlier patterns during early training, provides a promising signal for distinguishing outliers. However, existing unsupervised approaches that rely solely on the IM effect still struggle when inliers and outliers are not well-separated or when outliers form dense clusters. To address these limitations, we incorporate active learning to selectively acquire informative labels, and propose IMBoost, a novel framework that explicitly reinforces the IM effect to improve outlier detection. Our method consists of two stages: 1) a warm-up phase that induces and promotes the IM effect, and 2) a polarization phase in which actively queried samples are used to maximize the discrepancy between inlier and outlier scores. In particular, we propose a novel query strategy and tailored loss function in the polarization phase to effectively identify informative samples and fully leverage the limited labeling budget. We provide a theoretical analysis showing that the IMBoost consistently decreases inlier risk while increasing outlier risk throughout training, thereby amplifying their separation. Extensive experiments on diverse benchmark datasets demonstrate that IMBoost not only significantly outperforms state-of-the-art active OD methods but also requires substantially less computational cost.
Authors:Gerhard Krumpl, Henning Avenhaus, Horst Possegger
Title: One Model, Many Behaviors: Training-Induced Effects on Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for deploying robust and reliable machine-learning systems in open-world settings. Despite steady advances in OOD detectors, their interplay with modern training pipelines that maximize in-distribution (ID) accuracy and generalization remains under-explored. We investigate this link through a comprehensive empirical study. Fixing the architecture to the widely adopted ResNet-50, we benchmark 21 post-hoc, state-of-the-art OOD detection methods across 56 ImageNet-trained models obtained via diverse training strategies and evaluate them on eight OOD test sets. Contrary to the common assumption that higher ID accuracy implies better OOD detection performance, we uncover a non-monotonic relationship: OOD performance initially improves with accuracy but declines once advanced training recipes push accuracy beyond the baseline. Moreover, we observe a strong interdependence between training strategy, detector choice, and resulting OOD performance, indicating that no single method is universally optimal.
Authors:Yue Chang, Rufeng Chen, Zhaofan Zhang, Yi Chen, Sihong Xie
Title: RAG-3DSG: Enhancing 3D Scene Graphs with Re-Shot Guided Retrieval-Augmented Generation
Abstract:
Open-vocabulary 3D Scene Graph (3DSG) generation can enhance various downstream tasks in robotics, such as manipulation and navigation, by leveraging structured semantic representations. A 3DSG is constructed from multiple images of a scene, where objects are represented as nodes and relationships as edges. However, existing works for open-vocabulary 3DSG generation suffer from both low object-level recognition accuracy and speed, mainly due to constrained viewpoints, occlusions, and redundant surface density. To address these challenges, we propose RAG-3DSG to mitigate aggregation noise through re-shot guided uncertainty estimation and support object-level Retrieval-Augmented Generation (RAG) via reliable low-uncertainty objects. Furthermore, we propose a dynamic downsample-mapping strategy to accelerate cross-image object aggregation with adaptive granularity. Experiments on Replica dataset demonstrate that RAG-3DSG significantly improves node captioning accuracy in 3DSG generation while reducing the mapping time by two-thirds compared to the vanilla version.
Authors:Or Bachar, Or Levi, Sardhendu Mishra, Adi Levi, Manpreet Singh Minhas, Justin Miller, Omer Ben-Porat, Eilon Sheetrit, Jonathan Morra
Title: LLM Performance Predictors: Learning When to Escalate in Hybrid Human-AI Moderation Systems
Abstract:
As LLMs are increasingly integrated into human-in-the-loop content moderation systems, a central challenge is deciding when their outputs can be trusted versus when escalation for human review is preferable. We propose a novel framework for supervised LLM uncertainty quantification, learning a dedicated meta-model based on LLM Performance Predictors (LPPs) derived from LLM outputs: log-probabilities, entropy, and novel uncertainty attribution indicators. We demonstrate that our method enables cost-aware selective classification in real-world human-AI workflows: escalating high-risk cases while automating the rest. Experiments across state-of-the-art LLMs, including both off-the-shelf (Gemini, GPT) and open-source (Llama, Qwen), on multimodal and multilingual moderation tasks, show significant improvements over existing uncertainty estimators in accuracy-cost trade-offs. Beyond uncertainty estimation, the LPPs enhance explainability by providing new insights into failure conditions (e.g., ambiguous content vs. under-specified policy). This work establishes a principled framework for uncertainty-aware, scalable, and responsible human-AI moderation workflows.
Authors:Joe Suk, Samory Kpotufe
Title: An Efficient Variant of One-Class SVM with Lifelong Online Learning Guarantees
Abstract:
We study outlier (a.k.a., anomaly) detection for single-pass non-stationary streaming data. In the well-studied offline or batch outlier detection problem, traditional methods such as kernel One-Class SVM (OCSVM) are both computationally heavy and prone to large false-negative (Type II) errors under non-stationarity. To remedy this, we introduce SONAR, an efficient SGD-based OCSVM solver with strongly convex regularization. We show novel theoretical guarantees on the Type I/II errors of SONAR, superior to those known for OCSVM, and further prove that SONAR ensures favorable lifelong learning guarantees under benign distribution shifts. In the more challenging problem of adversarial non-stationary data, we show that SONAR can be used within an ensemble method and equipped with changepoint detection to achieve adaptive guarantees, ensuring small Type I/II errors on each phase of data. We validate our theoretical findings on synthetic and real-world datasets.
Authors:Madhav Gupta, Vishak Prasad C, Ganesh Ramakrishnan
Title: Uncertainty-Aware Subset Selection for Robust Visual Explainability under Distribution Shifts
Abstract:
Subset selection-based methods are widely used to explain deep vision models: they attribute predictions by highlighting the most influential image regions and support object-level explanations. While these methods perform well in in-distribution (ID) settings, their behavior under out-of-distribution (OOD) conditions remains poorly understood. Through extensive experiments across multiple ID-OOD sets, we find that reliability of the existing subset based methods degrades markedly, yielding redundant, unstable, and uncertainty-sensitive explanations. To address these shortcomings, we introduce a framework that combines submodular subset selection with layer-wise, gradient-based uncertainty estimation to improve robustness and fidelity without requiring additional training or auxiliary models. Our approach estimates uncertainty via adaptive weight perturbations and uses these estimates to guide submodular optimization, ensuring diverse and informative subset selection. Empirical evaluations show that, beyond mitigating the weaknesses of existing methods under OOD scenarios, our framework also yields improvements in ID settings. These findings highlight limitations of current subset-based approaches and demonstrate how uncertainty-driven optimization can enhance attribution and object-level interpretability, paving the way for more transparent and trustworthy AI in real-world vision applications.
Authors:Gabriel Aguirre, Simay Atasoy Bingöl, Heiko Hamann, Jonas Kuckling
Title: Bayesian Decentralized Decision-making for Multi-Robot Systems: Sample-efficient Estimation of Event Rates
Abstract:
Effective collective decision-making in swarm robotics often requires balancing exploration, communication and individual uncertainty estimation, especially in hazardous environments where direct measurements are limited or costly. We propose a decentralized Bayesian framework that enables a swarm of simple robots to identify the safer of two areas, each characterized by an unknown rate of hazardous events governed by a Poisson process. Robots employ a conjugate prior to gradually predict the times between events and derive confidence estimates to adapt their behavior. Our simulation results show that the robot swarm consistently chooses the correct area while reducing exposure to hazardous events by being sample-efficient. Compared to baseline heuristics, our proposed approach shows better performance in terms of safety and speed of convergence. The proposed scenario has potential to extend the current set of benchmarks in collective decision-making and our method has applications in adaptive risk-aware sampling and exploration in hazardous, dynamic environments.
Authors:Ali Amirahmadi, Gökçe Geylan, Leonardo De Maria, Farzaneh Etminani, Mattias Ohlsson, Alessandro Tibo
Title: A decoupled alignment kernel for peptide membrane permeability predictions
Abstract:
Cyclic peptides are promising modalities for targeting intracellular sites; however, cell-membrane permeability remains a key bottleneck, exacerbated by limited public data and the need for well-calibrated uncertainty. Instead of relying on data-eager complex deep learning architecture, we propose a monomer-aware decoupled global alignment kernel (MD-GAK), which couples chemically meaningful residue-residue similarity with sequence alignment while decoupling local matches from gap penalties. MD-GAK is a relatively simple kernel. To further demonstrate the robustness of our framework, we also introduce a variant, PMD-GAK, which incorporates a triangular positional prior. As we will show in the experimental section, PMD-GAK can offer additional advantages over MD-GAK, particularly in reducing calibration errors. Since our focus is on uncertainty estimation, we use Gaussian Processes as the predictive model, as both MD-GAK and PMD-GAK can be directly applied within this framework. We demonstrate the effectiveness of our methods through an extensive set of experiments, comparing our fully reproducible approach against state-of-the-art models, and show that it outperforms them across all metrics.
Authors:Matthijs van der Lende, Juan Cardenas-Cartagena
Title: Deep Gaussian Process Proximal Policy Optimization
Abstract:
Uncertainty estimation for Reinforcement Learning (RL) is a critical component in control tasks where agents must balance safe exploration and efficient learning. While deep neural networks have enabled breakthroughs in RL, they often lack calibrated uncertainty estimates. We introduce Deep Gaussian Process Proximal Policy Optimization (GPPO), a scalable, model-free actor-critic algorithm that leverages Deep Gaussian Processes (DGPs) to approximate both the policy and value function. GPPO maintains competitive performance with respect to Proximal Policy Optimization on standard high-dimensional continuous control benchmarks while providing well-calibrated uncertainty estimates that can inform safer and more effective exploration.
Authors:Tomas Javurek, Michal Gregor, Sebastian Kula, Marian Simko
Title: DelTriC: A Novel Clustering Method with Accurate Outlier
Abstract:
The paper introduces DelTriC (Delaunay Triangulation Clustering), a clustering algorithm which integrates PCA/UMAP-based projection, Delaunay triangulation, and a novel back-projection mechanism to form clusters in the original high-dimensional space. DelTriC decouples neighborhood construction from decision-making by first triangulating in a low-dimensional proxy to index local adjacency, and then back-projecting to the original space to perform robust edge pruning, merging, and anomaly detection. DelTriC can outperform traditional methods such as k-means, DBSCAN, and HDBSCAN in many scenarios; it is both scalable and accurate, and it also significantly improves outlier detection.
Authors:Yukun Du, Haiyue Yu, Xiaotong Xie, Yan Zheng, Lixin Zhan, Yudong Du, Chongshuang Hu, Boxuan Wang, Jiang Jiang
Title: Meta-Black-Box Optimization with Bi-Space Landscape Analysis and Dual-Control Mechanism for SAEA
Abstract:
Surrogate-Assisted Evolutionary Algorithms (SAEAs) are widely used for expensive Black-Box Optimization. However, their reliance on rigid, manually designed components such as infill criteria and evolutionary strategies during the search process limits their flexibility across tasks. To address these limitations, we propose Dual-Control Bi-Space Surrogate-Assisted Evolutionary Algorithm (DB-SAEA), a Meta-Black-Box Optimization (MetaBBO) framework tailored for multi-objective problems. DB-SAEA learns a meta-policy that jointly regulates candidate generation and infill criterion selection, enabling dual control. The bi-space Exploratory Landscape Analysis (ELA) module in DB-SAEA adopts an attention-based architecture to capture optimization states from both true and surrogate evaluation spaces, while ensuring scalability across problem dimensions, population sizes, and objectives. Additionally, we integrate TabPFN as the surrogate model for accurate and efficient prediction with uncertainty estimation. The framework is trained via reinforcement learning, leveraging parallel sampling and centralized training to enhance efficiency and transferability across tasks. Experimental results demonstrate that DB-SAEA not only outperforms state-of-the-art baselines across diverse benchmarks, but also exhibits strong zero-shot transfer to unseen tasks with higher-dimensional settings. This work introduces the first MetaBBO framework with dual-level control over SAEAs and a bi-space ELA that captures surrogate model information.
Authors:Hilaf Hasson, Ruocheng Guo
Title: Node-Level Uncertainty Estimation in LLM-Generated SQL
Abstract:
We present a practical framework for detecting errors in LLM-generated SQL by estimating uncertainty at the level of individual nodes in the query's abstract syntax tree (AST). Our approach proceeds in two stages. First, we introduce a semantically aware labeling algorithm that, given a generated SQL and a gold reference, assigns node-level correctness without over-penalizing structural containers or alias variation. Second, we represent each node with a rich set of schema-aware and lexical features - capturing identifier validity, alias resolution, type compatibility, ambiguity in scope, and typo signals - and train a supervised classifier to predict per-node error probabilities. We interpret these probabilities as calibrated uncertainty, enabling fine-grained diagnostics that pinpoint exactly where a query is likely to be wrong. Across multiple databases and datasets, our method substantially outperforms token log-probabilities: average AUC improves by +27.44% while maintaining robustness under cross-database evaluation. Beyond serving as an accuracy signal, node-level uncertainty supports targeted repair, human-in-the-loop review, and downstream selective execution. Together, these results establish node-centric, semantically grounded uncertainty estimation as a strong and interpretable alternative to aggregate sequence level confidence measures.
Authors:C. César Claros Olivares, Austin J. Brockmeier
Title: A Systematic Analysis of Out-of-Distribution Detection Under Representation and Training Paradigm Shifts
Abstract:
We present a systematic comparison of out-of-distribution (OOD) detection methods across CLIP-stratified regimes using AURC and AUGRC as primary metrics. Experiments cover two representation paradigms: CNNs trained from scratch and a fine-tuned Vision Transformer (ViT), evaluated on CIFAR-10/100, SuperCIFAR-100, and TinyImageNet. Using a multiple-comparison-controlled, rank-based pipeline (Friedman test with Conover-Holm post-hoc) and Bron-Kerbosch cliques, we find that the learned feature space largely determines OOD efficacy. For both CNNs and ViTs, probabilistic scores (e.g., MSR, GEN) dominate misclassification (ID) detection. Under stronger shifts, geometry-aware scores (e.g., NNGuide, fDBD, CTM) prevail on CNNs, whereas on ViTs GradNorm and KPCA Reconstruction Error remain consistently competitive. We further show a class-count-dependent trade-off for Monte-Carlo Dropout (MCD) and that a simple PCA projection improves several detectors. These results support a representation-centric view of OOD detection and provide statistically grounded guidance for method selection under distribution shift.
Authors:Florian Ebmeier, Nicole Ludwig, Jannik Thuemmel, Georg Martius, Volker H. Franz
Title: Fault Detection in Solar Thermal Systems using Probabilistic Reconstructions
Abstract:
Solar thermal systems (STS) present a promising avenue for low-carbon heat generation, with a well-running system providing heat at minimal cost and carbon emissions. However, STS can exhibit faults due to improper installation, maintenance, or operation, often resulting in a substantial reduction in efficiency or even damage to the system. As monitoring at the individual level is economically prohibitive for small-scale systems, automated monitoring and fault detection should be used to address such issues. Recent advances in data-driven anomaly detection, particularly in time series analysis, offer a cost-effective solution by leveraging existing sensors to identify abnormal system states. Here, we propose a probabilistic reconstruction-based framework for anomaly detection. We evaluate our method on the publicly available PaSTS dataset of operational domestic STS, which features real-world complexities and diverse fault types. Our experiments show that reconstruction-based methods can detect faults in domestic STS both qualitatively and quantitatively, while generalizing to previously unseen systems. We also demonstrate that our model outperforms both simple and more complex deep learning baselines. Additionally, we show that heteroscedastic uncertainty estimation is essential to fault detection performance. Finally, we discuss the engineering overhead required to unlock these improvements and make a case for simple deep learning models.
Authors:Niclas Flehmig, Mary Ann Lundteigen, Shen Yin
Title: Perspectives on a Reliability Monitoring Framework for Agentic AI Systems
Abstract:
The implementation of agentic AI systems has the potential of providing more helpful AI systems in a variety of applications. These systems work autonomously towards a defined goal with reduced external control. Despite their potential, one of their flaws is the insufficient reliability which makes them especially unsuitable for high-risk domains such as healthcare or process industry. Unreliable systems pose a risk in terms of unexpected behavior during operation and mitigation techniques are needed. In this work, we derive the main reliability challenges of agentic AI systems during operation based on their characteristics. We draw the connection to traditional AI systems and formulate a fundamental reliability challenge during operation which is inherent to traditional and agentic AI systems. As our main contribution, we propose a two-layered reliability monitoring framework for agentic AI systems which consists of a out-of-distribution detection layer for novel inputs and AI transparency layer to reveal internal operations. This two-layered monitoring approach gives a human operator the decision support which is needed to decide whether an output is potential unreliable or not and intervene. This framework provides a foundation for developing mitigation techniques to reduce risk stemming from uncertain reliability during operation.
Authors:Mohammad Hossein Jafari Naeimi, Ali Norouzi, Athena Abdi
Title: GRAD: Real-Time Gated Recurrent Anomaly Detection in Autonomous Vehicle Sensors Using Reinforced EMA and Multi-Stage Sliding Window Techniques
Abstract:
This paper introduces GRAD, a real-time anomaly detection method for autonomous vehicle sensors that integrates statistical analysis and deep learning to ensure the reliability of sensor data. The proposed approach combines the Reinforced Exponential Moving Average (REMA), which adapts smoothing factors and thresholding for outlier detection, with the Multi-Stage Sliding Window (MS-SW) technique for capturing both short- and long-term patterns. These features are processed using a lightweight Gated Recurrent Unit (GRU) model, which detects and classifies anomalies based on bias types, while a recovery module restores damaged sensor data to ensure continuous system operation. GRAD has a lightweight architecture consisting of two layers of GRU with a limited number of neurons that make it appropriate for real-time applications while maintaining high detection accuracy. The GRAD framework achieved remarkable performance in anomaly detection and classification. The model demonstrated an overall F1-score of 97.6% for abnormal data and 99.4% for normal data, signifying its high accuracy in distinguishing between normal and anomalous sensor data. Regarding the anomaly classification, GRAD successfully categorized different anomaly types with high precision, enabling the recovery module to accurately restore damaged sensor data. Relative to analogous studies, GRAD surpasses current models by attaining a balance between elevated detection accuracy and diminished computational expense. These results demonstrate GRAD's potential as a reliable and efficient solution for real-time anomaly detection in autonomous vehicle systems, guaranteeing safe vehicle operation with minimal computational overhead.
Authors:Christian Hobelsberger, Theresa Winner, Andreas Nawroth, Oliver Mitevski, Anna-Carolina Haensch
Title: Systematic Evaluation of Uncertainty Estimation Methods in Large Language Models
Abstract:
Large language models (LLMs) produce outputs with varying levels of uncertainty, and, just as often, varying levels of correctness; making their practical reliability far from guaranteed. To quantify this uncertainty, we systematically evaluate four approaches for confidence estimation in LLM outputs: VCE, MSP, Sample Consistency, and CoCoA (Vashurin et al., 2025). For the evaluation of the approaches, we conduct experiments on four question-answering tasks using a state-of-the-art open-source LLM. Our results show that each uncertainty metric captures a different facet of model confidence and that the hybrid CoCoA approach yields the best reliability overall, improving both calibration and discrimination of correct answers. We discuss the trade-offs of each method and provide recommendations for selecting uncertainty measures in LLM applications.
Authors:Joonas Järve, Karl Kaspar Haavel, Meelis Kull
Title: Probability Density from Latent Diffusion Models for Out-of-Distribution Detection
Abstract:
Despite rapid advances in AI, safety remains the main bottleneck to deploying machine-learning systems. A critical safety component is out-of-distribution detection: given an input, decide whether it comes from the same distribution as the training data. In generative models, the most natural OOD score is the data likelihood. Actually, under the assumption of uniformly distributed OOD data, the likelihood is even the optimal OOD detector, as we show in this work. However, earlier work reported that likelihood often fails in practice, raising doubts about its usefulness. We explore whether, in practice, the representation space also suffers from the inability to learn good density estimation for OOD detection, or if it is merely a problem of the pixel space typically used in generative models. To test this, we trained a Variational Diffusion Model not on images, but on the representation space of a pre-trained ResNet-18 to assess the performance of our likelihood-based detector in comparison to state-of-the-art methods from the OpenOOD suite.
Authors:Rachel Ma, Jingyi Qu, Andreea Bobu, Dylan Hadfield-Menell
Title: Open-Universe Assistance Games
Abstract:
Embodied AI agents must infer and act in an interpretable way on diverse human goals and preferences that are not predefined. To formalize this setting, we introduce Open-Universe Assistance Games (OU-AGs), a framework where the agent must reason over an unbounded and evolving space of possible goals. In this context, we introduce GOOD (GOals from Open-ended Dialogue), a data-efficient, online method that extracts goals in the form of natural language during an interaction with a human, and infers a distribution over natural language goals. GOOD prompts an LLM to simulate users with different complex intents, using its responses to perform probabilistic inference over candidate goals. This approach enables rich goal representations and uncertainty estimation without requiring large offline datasets. We evaluate GOOD in a text-based grocery shopping domain and in a text-operated simulated household robotics environment (AI2Thor), using synthetic user profiles. Our method outperforms a baseline without explicit goal tracking, as confirmed by both LLM-based and human evaluations.
Authors:Eric Jing, Abdeslam Boularias
Title: Bounding Distributional Shifts in World Modeling through Novelty Detection
Abstract:
Recent work on visual world models shows significant promise in latent state dynamics obtained from pre-trained image backbones. However, most of the current approaches are sensitive to training quality, requiring near-complete coverage of the action and state space during training to prevent divergence during inference. To make a model-based planning algorithm more robust to the quality of the learned world model, we propose in this work to use a variational autoencoder as a novelty detector to ensure that proposed action trajectories during planning do not cause the learned model to deviate from the training data distribution. To evaluate the effectiveness of this approach, a series of experiments in challenging simulated robot environments was carried out, with the proposed method incorporated into a model-predictive control policy loop extending the DINO-WM architecture. The results clearly show that the proposed method improves over state-of-the-art solutions in terms of data efficiency.
Authors:Athmanarayanan Lakshmi Narayanan, Amrutha Machireddy, Ranganath Krishnan
Title: Optimizing Active Learning in Vision-Language Models via Parameter-Efficient Uncertainty Calibration
Abstract:
Active Learning (AL) has emerged as a powerful approach for minimizing labeling costs by selectively sampling the most informative data for neural network model development. Effective AL for large-scale vision-language models necessitates addressing challenges in uncertainty estimation and efficient sampling given the vast number of parameters involved. In this work, we introduce a novel parameter-efficient learning methodology that incorporates uncertainty calibration loss within the AL framework. We propose a differentiable loss function that promotes uncertainty calibration for effectively selecting fewer and most informative data samples for fine-tuning. Through extensive experiments across several datasets and vision backbones, we demonstrate that our solution can match and exceed the performance of complex feature-based sampling techniques while being computationally very efficient. Additionally, we investigate the efficacy of Prompt learning versus Low-rank adaptation (LoRA) in sample selection, providing a detailed comparative analysis of these methods in the context of efficient AL.
Authors:JinYoung Kim, DaeUng Jo, Kimin Yun, Jeonghyo Song, Youngjoon Yoo
Title: Distributional Uncertainty for Out-of-Distribution Detection
Abstract:
Estimating uncertainty from deep neural networks is a widely used approach for detecting out-of-distribution (OoD) samples, which typically exhibit high predictive uncertainty. However, conventional methods such as Monte Carlo (MC) Dropout often focus solely on either model or data uncertainty, failing to align with the semantic objective of OoD detection. To address this, we propose the Free-Energy Posterior Network, a novel framework that jointly models distributional uncertainty and identifying OoD and misclassified regions using free energy. Our method introduces two key contributions: (1) a free-energy-based density estimator parameterized by a Beta distribution, which enables fine-grained uncertainty estimation near ambiguous or unseen regions; and (2) a loss integrated within a posterior network, allowing direct uncertainty estimation from learned parameters without requiring stochastic sampling. By integrating our approach with the residual prediction branch (RPL) framework, the proposed method goes beyond post-hoc energy thresholding and enables the network to learn OoD regions by leveraging the variance of the Beta distribution, resulting in a semantically meaningful and computationally efficient solution for uncertainty-aware segmentation. We validate the effectiveness of our method on challenging real-world benchmarks, including Fishyscapes, RoadAnomaly, and Segment-Me-If-You-Can.
Authors:Hui Xiang, Jinqiao Shi, Ting Zhang, Xiaojie Zhao, Yong Liu, Yong Ma
Title: PromptAL: Sample-Aware Dynamic Soft Prompts for Few-Shot Active Learning
Abstract:
Active learning (AL) aims to optimize model training and reduce annotation costs by selecting the most informative samples for labeling. Typically, AL methods rely on the empirical distribution of labeled data to define the decision boundary and perform uncertainty or diversity estimation, subsequently identifying potential high-quality samples. In few-shot scenarios, the empirical distribution often diverges significantly from the target distribution, causing the decision boundary to shift away from its optimal position. However, existing methods overlook the role of unlabeled samples in enhancing the empirical distribution to better align with the target distribution, resulting in a suboptimal decision boundary and the selection of samples that inadequately represent the target distribution. To address this, we propose a hybrid AL framework, termed \textbf{PromptAL} (Sample-Aware Dynamic Soft \textbf{Prompts} for Few-Shot \textbf{A}ctive \textbf{L}earning). This framework accounts for the contribution of each unlabeled data point in aligning the current empirical distribution with the target distribution, thereby optimizing the decision boundary. Specifically, PromptAL first leverages unlabeled data to construct sample-aware dynamic soft prompts that adjust the model's predictive distribution and decision boundary. Subsequently, based on the adjusted decision boundary, it integrates uncertainty estimation with both global and local diversity to select high-quality samples that more accurately represent the target distribution. Experimental results on six in-domain and three out-of-domain datasets show that PromptAL achieves superior performance over nine baselines. Our codebase is openly accessible.
Authors:Julio Garrido, Javier Vales, Diego Silva-Muñiz, Enrique Riveiro, Pablo López-Matencio, Josué Rivera-Andrade
Title: Adaptive Gaussian Mixture Models-based Anomaly Detection for under-constrained Cable-Driven Parallel Robots
Abstract:
Cable-Driven Parallel Robots (CDPRs) are increasingly used for load manipulation tasks involving predefined toolpaths with intermediate stops. At each stop, where the platform maintains a fixed pose and the motors keep the cables under tension, the system must evaluate whether it is safe to proceed by detecting anomalies that could compromise performance (e.g., wind gusts or cable impacts). This paper investigates whether anomalies can be detected using only motor torque data, without additional sensors. It introduces an adaptive, unsupervised outlier detection algorithm based on Gaussian Mixture Models (GMMs) to identify anomalies from torque signals. The method starts with a brief calibration period, just a few seconds, during which a GMM is fit on known anomaly-free data. Real-time torque measurements are then evaluated using Mahalanobis distance from the GMM, with statistically derived thresholds triggering anomaly flags. Model parameters are periodically updated using the latest segments identified as anomaly-free to adapt to changing conditions. Validation includes 14 long-duration test sessions simulating varied wind intensities. The proposed method achieves a 100% true positive rate and 95.4% average true negative rate, with 1-second detection latency. Comparative evaluation against power threshold and non-adaptive GMM methods indicates higher robustness to drift and environmental variation.
Authors:Dazhi Fu, Jicong Fan
Title: UniOD: A Universal Model for Outlier Detection across Diverse Domains
Abstract:
Outlier detection (OD) seeks to distinguish inliers and outliers in completely unlabeled datasets and plays a vital role in science and engineering. Most existing OD methods require troublesome dataset-specific hyperparameter tuning and costly model training before they can be deployed to identify outliers. In this work, we propose UniOD, a universal OD framework that leverages labeled datasets to train a single model capable of detecting outliers of datasets from diverse domains. Specifically, UniOD converts each dataset into multiple graphs, produces consistent node features, and frames outlier detection as a node-classification task, and is able to generalize to unseen domains. As a result, UniOD avoids effort on model selection and hyperparameter tuning, reduces computational cost, and effectively utilizes the knowledge from historical datasets, which improves the convenience and accuracy in real applications. We evaluate UniOD on 15 benchmark OD datasets against 15 state-of-the-art baselines, demonstrating its effectiveness.
Authors:Álvaro Zaera, Diana Nicoleta Popa, Ivan Sekulic, Paolo Rosso
Title: Efficient Out-of-Scope Detection in Dialogue Systems via Uncertainty-Driven LLM Routing
Abstract:
Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS), as it ensures robustness to unseen and ambiguous queries. In this work, we propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection. The first step applies uncertainty estimation to the output of an in-scope intent detection classifier, which is currently deployed in a real-world TODS handling tens of thousands of user interactions daily. The second step then leverages an emerging LLM-based approach, where a fine-tuned LLM is triggered to make a final decision on instances with high uncertainty. Unlike prior approaches, our method effectively balances computational efficiency and performance, combining traditional approaches with LLMs and yielding state-of-the-art results on key OOS detection benchmarks, including real-world OOS data acquired from a deployed TODS.
Authors:Jonas Chris Ferrao, Dickson Dias, Pranav Naik, Glory D'Cruz, Anish Naik, Siya Khandeparkar, Manisha Gokuldas Fal Dessai
Title: Template-Fitting Meets Deep Learning: Redshift Estimation Using Physics-Guided Neural Networks
Abstract:
Accurate photometric redshift estimation is critical for observational cosmology, especially in large-scale surveys where spectroscopic measurements are impractical. Traditional approaches include template fitting and machine learning, each with distinct strengths and limitations. We present a hybrid method that integrates template fitting with deep learning using physics-guided neural networks. By embedding spectral energy distribution templates into the network architecture, our model encodes physical priors into the training process. The system employs a multimodal design, incorporating cross-attention mechanisms to fuse photometric and image data, along with Bayesian layers for uncertainty estimation. We evaluate our model on the publicly available PREML dataset, which includes approximately 400,000 galaxies from the Hyper Suprime-Cam PDR3 release, with 5-band photometry, multi-band imaging, and spectroscopic redshifts. Our approach achieves an RMS error of 0.0507, a 3-sigma catastrophic outlier rate of 0.13%, and a bias of 0.0028. The model satisfies two of the three LSST photometric redshift requirements for redshifts below 3. These results highlight the potential of combining physically motivated templates with data-driven models for robust redshift estimation in upcoming cosmological surveys.
Authors:Tingting Zhou, Feng Zhang, Haoyang Fu, Baoxiang Pan, Renhe Zhang, Feng Lu, Zhixin Yang
Title: Lighting the Night with Generative Artificial Intelligence
Abstract:
The visible light reflectance data from geostationary satellites is crucial for meteorological observations and plays an important role in weather monitoring and forecasting. However, due to the lack of visible light at night, it is impossible to conduct continuous all-day weather observations using visible light reflectance data. This study pioneers the use of generative diffusion models to address this limitation. Based on the multi-band thermal infrared brightness temperature data from the Advanced Geostationary Radiation Imager (AGRI) onboard the Fengyun-4B (FY4B) geostationary satellite, we developed a high-precision visible light reflectance generative model, called Reflectance Diffusion (RefDiff), which enables 0.47~μ\mathrm{m}, 0.65~μ\mathrm{m}, and 0.825~μ\mathrm{m} bands visible light reflectance generation at night. Compared to the classical models, RefDiff not only significantly improves accuracy through ensemble averaging but also provides uncertainty estimation. Specifically, the SSIM index of RefDiff can reach 0.90, with particularly significant improvements in areas with complex cloud structures and thick clouds. The model's nighttime generation capability was validated using VIIRS nighttime product, demonstrating comparable performance to its daytime counterpart. In summary, this research has made substantial progress in the ability to generate visible light reflectance at night, with the potential to expand the application of nighttime visible light data.
Authors:Weiming Mai, Jie Gao, Oded Cats
Title: Learning Personalized Utility Functions for Drivers in Ride-hailing Systems Using Ensemble Hypernetworks
Abstract:
In ride-hailing systems, drivers decide whether to accept or reject ride requests based on factors such as order characteristics, traffic conditions, and personal preferences. Accurately predicting these decisions is essential for improving the efficiency and reliability of these systems. Traditional models, such as the Random Utility Maximization (RUM) approach, typically predict drivers' decisions by assuming linear correlations among attributes. However, these models often fall short because they fail to account for non-linear interactions between attributes and do not cater to the unique, personalized preferences of individual drivers. In this paper, we develop a method for learning personalized utility functions using hypernetwork and ensemble learning. Hypernetworks dynamically generate weights for a linear utility function based on trip request data and driver profiles, capturing the non-linear relationships. An ensemble of hypernetworks trained on different data segments further improve model adaptability and generalization by introducing controlled randomness, thereby reducing over-fitting. We validate the performance of our ensemble hypernetworks model in terms of prediction accuracy and uncertainty estimation in a real-world dataset. The results demonstrate that our approach not only accurately predicts each driver's utility but also effectively balances the needs for explainability and uncertainty quantification. Additionally, our model serves as a powerful tool for revealing the personalized preferences of different drivers, clearly illustrating which attributes largely impact their rider acceptance decisions.
Authors:Franco Matzkin, Agostina Larrazabal, Diego H Milone, Jose Dolz, Enzo Ferrante
Title: Towards Reliable WMH Segmentation under Domain Shift: An Application Study using Maximum Entropy Regularization to Improve Uncertainty Estimation
Abstract:
Accurate segmentation of white matter hyperintensities (WMH) is crucial for clinical decision-making, particularly in the context of multiple sclerosis. However, domain shifts, such as variations in MRI machine types or acquisition parameters, pose significant challenges to model calibration and uncertainty estimation. This study investigates the impact of domain shift on WMH segmentation by proposing maximum-entropy regularization techniques to enhance model calibration and uncertainty estimation, with the purpose of identifying errors post-deployment using predictive uncertainty as a proxy measure that does not require ground-truth labels. To do this, we conducted experiments using a U-Net architecture to evaluate these regularization schemes on two publicly available datasets, assessing performance with the Dice coefficient, expected calibration error, and entropy-based uncertainty estimates. Our results show that entropy-based uncertainty estimates can anticipate segmentation errors, and that maximum-entropy regularization further strengthens the correlation between uncertainty and segmentation performance while also improving model calibration under domain shift.
Authors:Sudeepta Mondal, Zhuolin Jiang, Ganesh Sundaramoorthi
Title: A Variational Information Theoretic Approach to Out-of-Distribution Detection
Abstract:
We present a theory for the construction of out-of-distribution (OOD) detection features for neural networks. We introduce random features for OOD through a novel information-theoretic loss functional consisting of two terms, the first based on the KL divergence separates resulting in-distribution (ID) and OOD feature distributions and the second term is the Information Bottleneck, which favors compressed features that retain the OOD information. We formulate a variational procedure to optimize the loss and obtain OOD features. Based on assumptions on OOD distributions, one can recover properties of existing OOD features, i.e., shaping functions. Furthermore, we show that our theory can predict a new shaping function that out-performs existing ones on OOD benchmarks. Our theory provides a general framework for constructing a variety of new features with clear explainability.
Authors:Alberto Testoni, Iacer Calixto
Title: Mind the Gap: Benchmarking LLM Uncertainty, Discrimination, and Calibration in Specialty-Aware Clinical QA
Abstract:
Reliable uncertainty quantification (UQ) is essential when employing large language models (LLMs) in high-risk domains such as clinical question answering (QA). In this work, we evaluate uncertainty estimation methods for clinical QA focusing, for the first time, on eleven clinical specialties and six question types, and across ten open-source LLMs (general-purpose, biomedical, and reasoning models). We analyze score-based UQ methods, present a case study introducing a novel lightweight method based on behavioral features derived from reasoning-oriented models, and examine conformal prediction as a complementary set-based approach. Our findings reveal that uncertainty reliability is not a monolithic property, but one that depends on clinical specialty and question type due to shifts in calibration and discrimination. Our results highlight the need to select or ensemble models based on their distinct, complementary strengths and clinical use.
Authors:Rodrigo Carrasco-Davis, Sebastian Lee, Claudia Clopath, Will Dabney
Title: Uncertainty Prioritized Experience Replay
Abstract:
Prioritized experience replay, which improves sample efficiency by selecting relevant transitions to update parameter estimates, is a crucial component of contemporary value-based deep reinforcement learning models. Typically, transitions are prioritized based on their temporal difference error. However, this approach is prone to favoring noisy transitions, even when the value estimation closely approximates the target mean. This phenomenon resembles the noisy TV problem postulated in the exploration literature, in which exploration-guided agents get stuck by mistaking noise for novelty. To mitigate the disruptive effects of noise in value estimation, we propose using epistemic uncertainty estimation to guide the prioritization of transitions from the replay buffer. Epistemic uncertainty quantifies the uncertainty that can be reduced by learning, hence reducing transitions sampled from the buffer generated by unpredictable random processes. We first illustrate the benefits of epistemic uncertainty prioritized replay in two tabular toy models: a simple multi-arm bandit task, and a noisy gridworld. Subsequently, we evaluate our prioritization scheme on the Atari suite, outperforming quantile regression deep Q-learning benchmarks; thus forging a path for the use of uncertainty prioritized replay in reinforcement learning agents.
Authors:Wanshan Cui, Yejin Jeong, Inwook Song, Gyuri Kim, Minsang Kwon, Donghun Lee
Title: Re-experiment Smart: a Novel Method to Enhance Data-driven Prediction of Mechanical Properties of Epoxy Polymers
Abstract:
Accurate prediction of polymer material properties through data-driven approaches greatly accelerates novel material development by reducing redundant experiments and trial-and-error processes. However, inevitable outliers in empirical measurements can severely skew machine learning results, leading to erroneous prediction models and suboptimal material designs. To address this limitation, we propose a novel approach to enhance dataset quality efficiently by integrating multi-algorithm outlier detection with selective re-experimentation of unreliable outlier cases. To validate the empirical effectiveness of the approach, we systematically construct a new dataset containing 701 measurements of three key mechanical properties: glass transition temperature ($T_g$), tan $δ$ peak, and crosslinking density ($v_{c}$). To demonstrate its general applicability, we report the performance improvements across multiple machine learning models, including Elastic Net, SVR, Random Forest, and TPOT, to predict the three key properties. Our method reliably reduces prediction error (RMSE) and significantly improves accuracy with minimal additional experimental work, requiring only about 5% of the dataset to be re-measured. These findings highlight the importance of data quality enhancement in achieving reliable machine learning applications in polymer science and present a scalable strategy for improving predictive reliability in materials science.
Authors:Jakub Podolak, Rajeev Verma
Title: Read Your Own Mind: Reasoning Helps Surface Self-Confidence Signals in LLMs
Abstract:
We study the source of uncertainty in DeepSeek R1-32B by analyzing its self-reported verbal confidence on question answering (QA) tasks. In the default answer-then-confidence setting, the model is regularly over-confident, whereas semantic entropy - obtained by sampling many responses - remains reliable. We hypothesize that this is because of semantic entropy's larger test-time compute, which lets us explore the model's predictive distribution. We show that granting DeepSeek the budget to explore its distribution by forcing a long chain-of-thought before the final answer greatly improves its verbal score effectiveness, even on simple fact-retrieval questions that normally require no reasoning. Furthermore, a separate reader model that sees only the chain can reconstruct very similar confidences, indicating the verbal score might be merely a statistic of the alternatives surfaced during reasoning. Our analysis concludes that reliable uncertainty estimation requires explicit exploration of the generative space, and self-reported confidence is trustworthy only after such exploration.
Authors:Huaiyuan Zhang, Hang Chen, Yu Cheng, Shunyi Wu, Linghao Sun, Linao Han, Zeyu Shi, Lei Qi
Title: SuperAD: A Training-free Anomaly Classification and Segmentation Method for CVPR 2025 VAND 3.0 Workshop Challenge Track 1: Adapt & Detect
Abstract:
In this technical report, we present our solution to the CVPR 2025 Visual Anomaly and Novelty Detection (VAND) 3.0 Workshop Challenge Track 1: Adapt & Detect: Robust Anomaly Detection in Real-World Applications. In real-world industrial anomaly detection, it is crucial to accurately identify anomalies with physical complexity, such as transparent or reflective surfaces, occlusions, and low-contrast contaminations. The recently proposed MVTec AD 2 dataset significantly narrows the gap between publicly available benchmarks and anomalies found in real-world industrial environments. To address the challenges posed by this dataset--such as complex and varying lighting conditions and real anomalies with large scale differences--we propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD. Our method carefully selects a small number of normal reference images and constructs a memory bank by leveraging the strong representational power of DINOv2. Anomalies are then segmented by performing nearest neighbor matching between test image features and the memory bank. Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.
Authors:Zhiyi Zhou, Dongzhuo Liu, Songtao Guo, Yuanyuan Yang
Title: Robust Indoor Localization via Conformal Methods and Variational Bayesian Adaptive Filtering
Abstract:
Indoor localization is critical for IoT applications, yet challenges such as non-Gaussian noise, environmental interference, and measurement outliers hinder the robustness of traditional methods. Existing approaches, including Kalman filtering and its variants, often rely on Gaussian assumptions or static thresholds, limiting adaptability in dynamic environments. This paper proposes a hierarchical robust framework integrating Variational Bayesian (VB) parameter learning, Huber M-estimation, and Conformal Outlier Detection (COD) to address these limitations. First, VB inference jointly estimates state and noise parameters, adapting to time-varying uncertainties. Second, Huber-based robust filtering suppresses mild outliers while preserving Gaussian efficiency. Third, COD provides statistical guarantees for outlier detection via dynamically calibrated thresholds, ensuring a user-controlled false alarm rate. Theoretically, we prove the Semi-positive Definiteness of Huber-based Kalman filtering covariance and the coverage of sliding window conformal prediction. Experiments on geomagnetic fingerprint datasets demonstrate significant improvements: fingerprint matching accuracy increases from 81.25% to 93.75%, and positioning errors decrease from 0.62-6.87 m to 0.03-0.35 m. Comparative studies further validate the framework's robustness, showing consistent performance gains under non-Gaussian noise and outlier conditions.
Authors:Yangyang Qu, Dazhi Fu, Jicong Fan
Title: Subject Information Extraction for Novelty Detection with Domain Shifts
Abstract:
Unsupervised novelty detection (UND), aimed at identifying novel samples, is essential in fields like medical diagnosis, cybersecurity, and industrial quality control. Most existing UND methods assume that the training data and testing normal data originate from the same domain and only consider the distribution variation between training data and testing data. However, in real scenarios, it is common for normal testing and training data to originate from different domains, a challenge known as domain shift. The discrepancies between training and testing data often lead to incorrect classification of normal data as novel by existing methods. A typical situation is that testing normal data and training data describe the same subject, yet they differ in the background conditions. To address this problem, we introduce a novel method that separates subject information from background variation encapsulating the domain information to enhance detection performance under domain shifts. The proposed method minimizes the mutual information between the representations of the subject and background while modelling the background variation using a deep Gaussian mixture model, where the novelty detection is conducted on the subject representations solely and hence is not affected by the variation of domains. Extensive experiments demonstrate that our model generalizes effectively to unseen domains and significantly outperforms baseline methods, especially under substantial domain shifts between training and testing data.
Authors:Sonia Laguna, Lin Zhang, Can Deniz Bezek, Monika Farkas, Dieter Schweizer, Rahel A. Kubik-Huch, Orcun Goksel
Title: Uncertainty Estimation for Trust Attribution to Speed-of-Sound Reconstruction with Variational Networks
Abstract:
Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with Variational Networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions. We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference. We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS~4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%. A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.
Authors:Michal Tešnar, Bilal Wehbe, Matias Valdenegro-Toro
Title: Modeling of AUV Dynamics with Limited Resources: Efficient Online Learning Using Uncertainty
Abstract:
Machine learning proves effective in constructing dynamics models from data, especially for underwater vehicles. Continuous refinement of these models using incoming data streams, however, often requires storage of an overwhelming amount of redundant data. This work investigates the use of uncertainty in the selection of data points to rehearse in online learning when storage capacity is constrained. The models are learned using an ensemble of multilayer perceptrons as they perform well at predicting epistemic uncertainty. We present three novel approaches: the Threshold method, which excludes samples with uncertainty below a specified threshold, the Greedy method, designed to maximize uncertainty among the stored points, and Threshold-Greedy, which combines the previous two approaches. The methods are assessed on data collected by an underwater vehicle Dagon. Comparison with baselines reveals that the Threshold exhibits enhanced stability throughout the learning process and also yields a model with the least cumulative testing loss. We also conducted detailed analyses on the impact of model parameters and storage size on the performance of the models, as well as a comparison of three different uncertainty estimation methods.
Authors:Jeonghyeon Kim, Sangheum Hwang
Title: Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations
Abstract:
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of naïve fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
Authors:Fabian Denoodt, José Oramas
Title: Efficient Post-Hoc Uncertainty Calibration via Variance-Based Smoothing
Abstract:
Since state-of-the-art uncertainty estimation methods are often computationally demanding, we investigate whether incorporating prior information can improve uncertainty estimates in conventional deep neural networks. Our focus is on machine learning tasks where meaningful predictions can be made from sub-parts of the input. For example, in speaker classification, the speech waveform can be divided into sequential patches, each containing information about the same speaker. We observe that the variance between sub-predictions serves as a reliable proxy for uncertainty in such settings. Our proposed variance-based scaling framework produces competitive uncertainty estimates in classification while being less computationally demanding and allowing for integration as a post-hoc calibration tool. This approach also leads to a simple extension of deep ensembles, improving the expressiveness of their predicted distributions.
Authors:Jutika Borah, Hidam Kumarjit Singh
Title: DCAT: Dual Cross-Attention Fusion for Disease Classification in Radiological Images with Uncertainty Estimation
Abstract:
Accurate and reliable image classification is crucial in radiology, where diagnostic decisions significantly impact patient outcomes. Conventional deep learning models tend to produce overconfident predictions despite underlying uncertainties, potentially leading to misdiagnoses. Attention mechanisms have emerged as powerful tools in deep learning, enabling models to focus on relevant parts of the input data. Combined with feature fusion, they can be effective in addressing uncertainty challenges. Cross-attention has become increasingly important in medical image analysis for capturing dependencies across features and modalities. This paper proposes a novel dual cross-attention fusion model for medical image analysis by addressing key challenges in feature integration and interpretability. Our approach introduces a bidirectional cross-attention mechanism with refined channel and spatial attention that dynamically fuses feature maps from EfficientNetB4 and ResNet34 leveraging multi-network contextual dependencies. The refined features through channel and spatial attention highlights discriminative patterns crucial for accurate classification. The proposed model achieved AUC of 99.75%, 100%, 99.93% and 98.69% and AUPR of 99.81%, 100%, 99.97%, and 96.36% on Covid-19, Tuberculosis, Pneumonia Chest X-ray images and Retinal OCT images respectively. The entropy values and several high uncertain samples give an interpretable visualization from the model enhancing transparency. By combining multi-scale feature extraction, bidirectional attention and uncertainty estimation, our proposed model strongly impacts medical image analysis.
Authors:Sebastian Chwilczyński, Dariusz Brzezinski
Title: Random Similarity Isolation Forests
Abstract:
With predictive models becoming prevalent, companies are expanding the types of data they gather. As a result, the collected datasets consist not only of simple numerical features but also more complex objects such as time series, images, or graphs. Such multi-modal data have the potential to improve performance in predictive tasks like outlier detection, where the goal is to identify objects deviating from the main data distribution. However, current outlier detection algorithms are dedicated to individual types of data. Consequently, working with mixed types of data requires either fusing multiple data-specific models or transforming all of the representations into a single format, both of which can hinder predictive performance. In this paper, we propose a multi-modal outlier detection algorithm called Random Similarity Isolation Forest. Our method combines the notions of isolation and similarity-based projection to handle datasets with mixtures of features of arbitrary data types. Experiments performed on 47 benchmark datasets demonstrate that Random Similarity Isolation Forest outperforms five state-of-the-art competitors. Our study shows that the use of multiple modalities can indeed improve the detection of anomalies and highlights the need for new outlier detection benchmarks tailored for multi-modal algorithms.
Authors:Nicola Cecere, Andrea Bacciu, Ignacio Fernández Tobías, Amin Mantrach
Title: Monte Carlo Temperature: a robust sampling strategy for LLM's uncertainty quantification methods
Abstract:
Uncertainty quantification (UQ) in Large Language Models (LLMs) is essential for their safe and reliable deployment, particularly in critical applications where incorrect outputs can have serious consequences. Current UQ methods typically rely on querying the model multiple times using non-zero temperature sampling to generate diverse outputs for uncertainty estimation. However, the impact of selecting a given temperature parameter is understudied, and our analysis reveals that temperature plays a fundamental role in the quality of uncertainty estimates. The conventional approach of identifying optimal temperature values requires expensive hyperparameter optimization (HPO) that must be repeated for each new model-dataset combination. We propose Monte Carlo Temperature (MCT), a robust sampling strategy that eliminates the need for temperature calibration. Our analysis reveals that: 1) MCT provides more robust uncertainty estimates across a wide range of temperatures, 2) MCT improves the performance of UQ methods by replacing fixed-temperature strategies that do not rely on HPO, and 3) MCT achieves statistical parity with oracle temperatures, which represent the ideal outcome of a well-tuned but computationally expensive HPO process. These findings demonstrate that effective UQ can be achieved without the computational burden of temperature parameter calibration.
Authors:Simon Schmitt, John Shawe-Taylor, Hado van Hasselt
Title: General Uncertainty Estimation with Delta Variances
Abstract:
Decision makers may suffer from uncertainty induced by limited data. This may be mitigated by accounting for epistemic uncertainty, which is however challenging to estimate efficiently for large neural networks. To this extent we investigate Delta Variances, a family of algorithms for epistemic uncertainty quantification, that is computationally efficient and convenient to implement. It can be applied to neural networks and more general functions composed of neural networks. As an example we consider a weather simulator with a neural-network-based step function inside -- here Delta Variances empirically obtain competitive results at the cost of a single gradient computation. The approach is convenient as it requires no changes to the neural network architecture or training procedure. We discuss multiple ways to derive Delta Variances theoretically noting that special cases recover popular techniques and present a unified perspective on multiple related methods. Finally we observe that this general perspective gives rise to a natural extension and empirically show its benefit.
Authors:Arindam Sharma, Cristina David
Title: Assessing Correctness in LLM-Based Code Generation via Uncertainty Estimation
Abstract:
In this work, we explore uncertainty estimation as a proxy for correctness in LLM-generated code. To this end, we adapt two state-of-the-art techniques from natural language generation -- one based on entropy and another on mutual information -- to the domain of code generation. Given the distinct semantic properties of code, we introduce modifications, including a semantic equivalence check based on symbolic execution. Our findings indicate a strong correlation between the uncertainty computed through these techniques and correctness, highlighting the potential of uncertainty estimation for quality assessment. Additionally, we propose a simplified version of the entropy-based method that assumes a uniform distribution over the LLM's responses, demonstrating comparable effectiveness. Using these techniques, we develop an abstention policy that prevents the model from making predictions when uncertainty is high, reducing incorrect outputs to near zero. Our evaluation on the LiveCodeBench shows that our approach significantly outperforms a baseline relying solely on LLM-reported log-probabilities.
Authors:Huiqun Huang, Cong Chen, Jean-Philippe Monteuuis, Jonathan Petit, Fei Miao
Title: Uncertainty Quantification for Collaborative Object Detection Under Adversarial Attacks
Abstract:
Collaborative Object Detection (COD) and collaborative perception can integrate data or features from various entities, and improve object detection accuracy compared with individual perception. However, adversarial attacks pose a potential threat to the deep learning COD models, and introduce high output uncertainty. With unknown attack models, it becomes even more challenging to improve COD resiliency and quantify the output uncertainty for highly dynamic perception scenes such as autonomous vehicles. In this study, we propose the Trusted Uncertainty Quantification in Collaborative Perception framework (TUQCP). TUQCP leverages both adversarial training and uncertainty quantification techniques to enhance the adversarial robustness of existing COD models. More specifically, TUQCP first adds perturbations to the shared information of randomly selected agents during object detection collaboration by adversarial training. TUQCP then alleviates the impacts of adversarial attacks by providing output uncertainty estimation through learning-based module and uncertainty calibration through conformal prediction. Our framework works for early and intermediate collaboration COD models and single-agent object detection models. We evaluate TUQCP on V2X-Sim, a comprehensive collaborative perception dataset for autonomous driving, and demonstrate a 80.41% improvement in object detection accuracy compared to the baselines under the same adversarial attacks. TUQCP demonstrates the importance of uncertainty quantification to COD under adversarial attacks.
Authors:Hengzhuang Li, Teng Zhang
Title: Outlier Synthesis via Hamiltonian Monte Carlo for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for developing trustworthy and reliable machine learning systems. Recent advances in training with auxiliary OOD data demonstrate efficacy in enhancing detection capabilities. Nonetheless, these methods heavily rely on acquiring a large pool of high-quality natural outliers. Some prior methods try to alleviate this problem by synthesizing virtual outliers but suffer from either poor quality or high cost due to the monotonous sampling strategy and the heavy-parameterized generative models. In this paper, we overcome all these problems by proposing the Hamiltonian Monte Carlo Outlier Synthesis (HamOS) framework, which views the synthesis process as sampling from Markov chains. Based solely on the in-distribution data, the Markov chains can extensively traverse the feature space and generate diverse and representative outliers, hence exposing the model to miscellaneous potential OOD scenarios. The Hamiltonian Monte Carlo with sampling acceptance rate almost close to 1 also makes our framework enjoy great efficiency. By empirically competing with SOTA baselines on both standard and large-scale benchmarks, we verify the efficacy and efficiency of our proposed HamOS.
Authors:Zephan M. Enciso, Boyang Cheng, Likai Pei, Jianbo Liu, Steven Davis, Michael Niemier, Ningyuan Cao
Title: A 65 nm Bayesian Neural Network Accelerator with 360 fJ/Sample In-Word GRNG for AI Uncertainty Estimation
Abstract:
Uncertainty estimation is an indispensable capability for AI-enabled, safety-critical applications, e.g. autonomous vehicles or medical diagnosis. Bayesian neural networks (BNNs) use Bayesian statistics to provide both classification predictions and uncertainty estimation, but they suffer from high computational overhead associated with random number generation and repeated sample iterations. Furthermore, BNNs are not immediately amenable to acceleration through compute-in-memory architectures due to the frequent memory writes necessary after each RNG operation. To address these challenges, we present an ASIC that integrates 360 fJ/Sample Gaussian RNG directly into the SRAM memory words. This integration reduces RNG overhead and enables fully-parallel compute-in-memory operations for BNNs. The prototype chip achieves 5.12 GSa/s RNG throughput and 102 GOp/s neural network throughput while occupying 0.45 mm2, bringing AI uncertainty estimation to edge computation.
Authors:Rui Hu, Luc, Chen, Yiwei Wang
Title: An Efficient Outlier Detection Algorithm for Data Streaming
Abstract:
The nature of modern data is increasingly real-time, making outlier detection crucial in any data-related field, such as finance for fraud detection and healthcare for monitoring patient vitals. Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data due to the need for extensive recalculations with each new data point, limiting their application in real-time environments. While the Incremental LOF (ILOF) algorithm has been developed to tackle the challenges of online anomaly detection, it remains computationally expensive when processing large streams of data points, and its detection performance may degrade after a certain threshold of points have streamed in. In this paper, we propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm. The EILOF algorithm only computes the LOF scores of new points without altering the LOF scores of existing data points. Although exact LOF scores have not yet been computed for the existing points in the new algorithm, datasets often contain noise, and minor deviations in LOF score calculations do not necessarily degrade detection performance. In fact, such deviations can sometimes enhance outlier detection. We systematically tested this approach on both simulated and real-world datasets, demonstrating that EILOF outperforms ILOF as the volume of streaming data increases across various scenarios. The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases compared to the ILOF algorithm.
Authors:Yang Chen, Chih-Li Sung, Arpan Kusari, Xiaoyang Song, Wenbo Sun
Title: Uncertainty-Aware Out-of-Distribution Detection with Gaussian Processes
Abstract:
Deep neural networks (DNNs) are often constructed under the closed-world assumption, which may fail to generalize to the out-of-distribution (OOD) data. This leads to DNNs producing overconfident wrong predictions and can result in disastrous consequences in safety-critical applications. Existing OOD detection methods mainly rely on curating a set of OOD data for model training or hyper-parameter tuning to distinguish OOD data from training data (also known as in-distribution data or InD data). However, OOD samples are not always available during the training phase in real-world applications, hindering the OOD detection accuracy. To overcome this limitation, we propose a Gaussian-process-based OOD detection method to establish a decision boundary based on InD data only. The basic idea is to perform uncertainty quantification of the unconstrained softmax scores of a DNN via a multi-class Gaussian process (GP), and then define a score function to separate InD and potential OOD data based on their fundamental differences in the posterior predictive distribution from the GP. Two case studies on conventional image classification datasets and real-world image datasets are conducted to demonstrate that the proposed method outperforms the state-of-the-art OOD detection methods when OOD samples are not observed in the training phase.
Authors:Yufei Wu, Stefan Radev, Francis Tuerlinckx
Title: Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models
Abstract:
Contaminant observations and outliers often cause problems when estimating the parameters of cognitive models, which are statistical models representing cognitive processes. In this study, we test and improve the robustness of parameter estimation using amortized Bayesian inference (ABI) with neural networks. To this end, we conduct systematic analyses on a toy example and analyze both synthetic and real data using a popular cognitive model, the Drift Diffusion Models (DDM). First, we study the sensitivity of ABI to contaminants with tools from robust statistics: the empirical influence function and the breakdown point. Next, we propose a data augmentation or noise injection approach that incorporates a contamination distribution into the data-generating process during training. We examine several candidate distributions and evaluate their performance and cost in terms of accuracy and efficiency loss relative to a standard estimator. Introducing contaminants from a Cauchy distribution during training considerably increases the robustness of the neural density estimator as measured by bounded influence functions and a much higher breakdown point. Overall, the proposed method is straightforward and practical to implement and has a broad applicability in fields where outlier detection or removal is challenging.
Authors:Elhoucine Elfatimi, Pratik Shah
Title: Uncertainty Quantified Deep Learning and Regression Analysis Framework for Image Segmentation of Skin Cancer Lesions
Abstract:
Deep learning models (DLMs) frequently achieve accurate segmentation and classification of tumors from medical images. However, DLMs lacking feedback on their image segmentation mechanisms, such as Dice coefficients and confidence in their performance, face challenges when processing previously unseen images in real-world clinical settings. Uncertainty estimates to identify DLM predictions at the cellular or single-pixel level that require clinician review can enhance trust. However, their deployment requires significant computational resources. This study reports two DLMs, one trained from scratch and another based on transfer learning, with Monte Carlo dropout or Bayes-by-backprop uncertainty estimations to segment lesions from the publicly available The International Skin Imaging Collaboration-19 dermoscopy image database with cancerous lesions. A novel approach to compute pixel-by-pixel uncertainty estimations of DLM segmentation performance in multiple clinical regions from a single dermoscopy image with corresponding Dice scores is reported for the first time. Image-level uncertainty maps demonstrated correspondence between imperfect DLM segmentation and high uncertainty levels in specific skin tissue regions, with or without lesions. Four new linear regression models that can predict the Dice performance of DLM segmentation using constants and uncertainty measures, either individually or in combination from lesions, tissue structures, and non-tissue pixel regions critical for clinical diagnosis and prognostication in skin images (Spearman's correlation, p < 0.05), are reported for the first time for low-compute uncertainty estimation workflows.
Authors:Qi Li, Shuliang Wang
Title: Detecting outliers by clustering algorithms
Abstract:
Clustering and outlier detection are two important tasks in data mining. Outliers frequently interfere with clustering algorithms to determine the similarity between objects, resulting in unreliable clustering results. Currently, only a few clustering algorithms (e.g., DBSCAN) have the ability to detect outliers to eliminate interference. For other clustering algorithms, it is tedious to introduce another outlier detection task to eliminate outliers before each clustering process. Obviously, how to equip more clustering algorithms with outlier detection ability is very meaningful. Although a common strategy allows clustering algorithms to detect outliers based on the distance between objects and clusters, it is contradictory to improving the performance of clustering algorithms on the datasets with outliers. In this paper, we propose a novel outlier detection approach, called ODAR, for clustering. ODAR maps outliers and normal objects into two separated clusters by feature transformation. As a result, any clustering algorithm can detect outliers by identifying clusters. Experiments show that ODAR is robust to diverse datasets. Compared with baseline methods, the clustering algorithms achieve the best on 7 out of 10 datasets with the help of ODAR, with at least 5% improvement in accuracy.
Authors:Ankita Samaddar, Nicholas Potteiger, Xenofon Koutsoukos
Title: Out-of-Distribution Detection for Neurosymbolic Autonomous Cyber Agents
Abstract:
Autonomous agents for cyber applications take advantage of modern defense techniques by adopting intelligent agents with conventional and learning-enabled components. These intelligent agents are trained via reinforcement learning (RL) algorithms, and can learn, adapt to, reason about and deploy security rules to defend networked computer systems while maintaining critical operational workflows. However, the knowledge available during training about the state of the operational network and its environment may be limited. The agents should be trustworthy so that they can reliably detect situations they cannot handle, and hand them over to cyber experts. In this work, we develop an out-of-distribution (OOD) Monitoring algorithm that uses a Probabilistic Neural Network (PNN) to detect anomalous or OOD situations of RL-based agents with discrete states and discrete actions. To demonstrate the effectiveness of the proposed approach, we integrate the OOD monitoring algorithm with a neurosymbolic autonomous cyber agent that uses behavior trees with learning-enabled components. We evaluate the proposed approach in a simulated cyber environment under different adversarial strategies. Experimental results over a large number of episodes illustrate the overall efficiency of our proposed approach.
Authors:Tao Sun, Sander Bohté
Title: Average-Over-Time Spiking Neural Networks for Uncertainty Estimation in Regression
Abstract:
Uncertainty estimation is a standard tool to quantify the reliability of modern deep learning models, and crucial for many real-world applications. However, efficient uncertainty estimation methods for spiking neural networks, particularly for regression models, have been lacking. Here, we introduce two methods that adapt the Average-Over-Time Spiking Neural Network (AOT-SNN) framework to regression tasks, enhancing uncertainty estimation in event-driven models. The first method uses the heteroscedastic Gaussian approach, where SNNs predict both the mean and variance at each time step, thereby generating a conditional probability distribution of the target variable. The second method leverages the Regression-as-Classification (RAC) approach, reformulating regression as a classification problem to facilitate uncertainty estimation. We evaluate our approaches on both a toy dataset and several benchmark datasets, demonstrating that the proposed AOT-SNN models achieve performance comparable to or better than state-of-the-art deep neural network methods, particularly in uncertainty estimation. Our findings highlight the potential of SNNs for uncertainty estimation in regression tasks, providing an efficient and biologically inspired alternative for applications requiring both accuracy and energy efficiency.
Authors:M. M. A. Valiuddin, R. J. G. van Sloun, C. G. A. Viviers, P. H. N. de With, F. van der Sommen
Title: A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Abstract:
Advances in architectural design, data availability, and compute have driven remarkable progress in semantic segmentation. Yet, these models often rely on relaxed Bayesian assumptions, omitting critical uncertainty information needed for robust decision-making. The resulting reliance on point estimates has fueled interest in probabilistic segmentation, but the literature remains fragmented. In response, this review consolidates and contextualizes foundational concepts in uncertainty modeling, including the non-trivial task of distinguishing between epistemic and aleatoric uncertainty and examining their roles across four key downstream segmentation tasks, highlighting Active Learning as particularly promising. By unifying theory, terminology, and applications, we provide a coherent foundation for researchers and identify critical challenges, such as strong assumptions in spatial aggregation, lack of standardized benchmarks, and pitfalls in current uncertainty quantification methods. We identify trends such as the adoption of contemporary generative models, driven by advances in the broader field of generative modeling, with segmentation-specific innovation primarily in the conditioning mechanisms. Moreover, we observe growing interest in distribution- and sampling-free approaches to uncertainty estimation. We further propose directions for advancing uncertainty-aware segmentation in deep learning, including pragmatic strategies for disentangling different sources of uncertainty, novel uncertainty modeling approaches and improved Transformer-based backbones. In this way, we aim to support the development of more reliable, efficient, and interpretable segmentation models that effectively incorporate uncertainty into real-world applications.
Authors:Alisa Sheinkman, Sara Wade
Title: Variational Bayesian Bow tie Neural Networks with Shrinkage
Abstract:
Despite the dominant role of deep models in machine learning, limitations persist, including overconfident predictions, susceptibility to adversarial attacks, and underestimation of variability in predictions. The Bayesian paradigm provides a natural framework to overcome such issues and has become the gold standard for uncertainty estimation with deep models, also providing improved accuracy and a framework for tuning critical hyperparameters. However, exact Bayesian inference is challenging, typically involving variational algorithms that impose strong independence and distributional assumptions. Moreover, existing methods are sensitive to the architectural choice of the network. We address these issues by focusing on a stochastic relaxation of the standard feed-forward rectified neural network and using sparsity-promoting priors on the weights of the neural network for increased robustness to architectural design. Thanks to Polya-Gamma data augmentation tricks, which render a conditionally linear and Gaussian model, we derive a fast, approximate variational inference algorithm that avoids distributional assumptions and independence across layers. Suitable strategies to further improve scalability and account for multimodality are considered.
Authors:Weijie Chen, Alan McMillan
Title: SASWISE-UE: Segmentation and Synthesis with Interpretable Scalable Ensembles for Uncertainty Estimation
Abstract:
This paper introduces an efficient sub-model ensemble framework aimed at enhancing the interpretability of medical deep learning models, thus increasing their clinical applicability. By generating uncertainty maps, this framework enables end-users to evaluate the reliability of model outputs. We developed a strategy to develop diverse models from a single well-trained checkpoint, facilitating the training of a model family. This involves producing multiple outputs from a single input, fusing them into a final output, and estimating uncertainty based on output disagreements. Implemented using U-Net and UNETR models for segmentation and synthesis tasks, this approach was tested on CT body segmentation and MR-CT synthesis datasets. It achieved a mean Dice coefficient of 0.814 in segmentation and a Mean Absolute Error of 88.17 HU in synthesis, improved from 89.43 HU by pruning. Additionally, the framework was evaluated under corruption and undersampling, maintaining correlation between uncertainty and error, which highlights its robustness. These results suggest that the proposed approach not only maintains the performance of well-trained models but also enhances interpretability through effective uncertainty estimation, applicable to both convolutional and transformer models in a range of imaging tasks.
Authors:David Smerkous, Qinxun Bai, Fuxin Li
Title: Enhancing Diversity in Bayesian Deep Learning via Hyperspherical Energy Minimization of CKA
Abstract:
Particle-based Bayesian deep learning often requires a similarity metric to compare two networks. However, naive similarity metrics lack permutation invariance and are inappropriate for comparing networks. Centered Kernel Alignment (CKA) on feature kernels has been proposed to compare deep networks but has not been used as an optimization objective in Bayesian deep learning. In this paper, we explore the use of CKA in Bayesian deep learning to generate diverse ensembles and hypernetworks that output a network posterior. Noting that CKA projects kernels onto a unit hypersphere and that directly optimizing the CKA objective leads to diminishing gradients when two networks are very similar. We propose adopting the approach of hyperspherical energy (HE) on top of CKA kernels to address this drawback and improve training stability. Additionally, by leveraging CKA-based feature kernels, we derive feature repulsive terms applied to synthetically generated outlier examples. Experiments on both diverse ensembles and hypernetworks show that our approach significantly outperforms baselines in terms of uncertainty quantification in both synthetic and realistic outlier detection tasks.
Authors:Benjamin Schiffer, Lucas Janson
Title: Foundations of Safe Online Reinforcement Learning in the Linear Quadratic Regulator: Generalized Baselines
Abstract:
Many practical applications of online reinforcement learning require the satisfaction of safety constraints while learning about the unknown environment. In this work, we establish theoretical foundations for reinforcement learning with safety constraints by studying the canonical problem of Linear Quadratic Regulator learning with unknown dynamics, but with the additional constraint that the position must stay within a safe region for the entire trajectory with high probability. Our primary contribution is a general framework for studying stronger baselines of nonlinear controllers that are better suited for constrained problems than linear controllers. Due to the difficulty of analyzing non-linear controllers in a constrained problem, we focus on 1-dimensional state- and action- spaces, however we also discuss how we expect the high-level takeaways can generalize to higher dimensions. Using our framework, we show that for \emph{any} non-linear baseline satisfying natural assumptions, $\tilde{O}_T(\sqrt{T})$-regret is possible when the noise distribution has sufficiently large support, and $\tilde{O}_T(T^{2/3})$-regret is possible for \emph{any} subgaussian noise distribution. In proving these results, we introduce a new uncertainty estimation bound for nonlinear controls which shows that enforcing safety in the presence of sufficient noise can provide ``free exploration'' that compensates for the added cost of uncertainty in safety-constrained control.
Authors:Juyeon Heo, Miao Xiong, Christina Heinze-Deml, Jaya Narain
Title: Do LLMs estimate uncertainty well in instruction-following?
Abstract:
Large language models (LLMs) could be valuable personal AI agents across various domains, provided they can precisely follow user instructions. However, recent studies have shown significant limitations in LLMs' instruction-following capabilities, raising concerns about their reliability in high-stakes applications. Accurately estimating LLMs' uncertainty in adhering to instructions is critical to mitigating deployment risks. We present, to our knowledge, the first systematic evaluation of the uncertainty estimation abilities of LLMs in the context of instruction-following. Our study identifies key challenges with existing instruction-following benchmarks, where multiple factors are entangled with uncertainty stems from instruction-following, complicating the isolation and comparison across methods and models. To address these issues, we introduce a controlled evaluation setup with two benchmark versions of data, enabling a comprehensive comparison of uncertainty estimation methods under various conditions. Our findings show that existing uncertainty methods struggle, particularly when models make subtle errors in instruction following. While internal model states provide some improvement, they remain inadequate in more complex scenarios. The insights from our controlled evaluation setups provide a crucial understanding of LLMs' limitations and potential for uncertainty estimation in instruction-following tasks, paving the way for more trustworthy AI agents.
Authors:Daniele Malpetti, Laura Azzimonti
Title: Global Outlier Detection in a Federated Learning Setting with Isolation Forest
Abstract:
We present a novel strategy for detecting global outliers in a federated learning setting, targeting in particular cross-silo scenarios. Our approach involves the use of two servers and the transmission of masked local data from clients to one of the servers. The masking of the data prevents the disclosure of sensitive information while still permitting the identification of outliers. Moreover, to further safeguard privacy, a permutation mechanism is implemented so that the server does not know which client owns any masked data point. The server performs outlier detection on the masked data, using either Isolation Forest or its extended version, and then communicates outlier information back to the clients, allowing them to identify and remove outliers in their local datasets before starting any subsequent federated model training. This approach provides comparable results to a centralized execution of Isolation Forest algorithms on plain data.
Authors:Simone Fassio, Simone Monaco, Daniele Apiletti
Title: Deep Probability Segmentation: Are segmentation models probability estimators?
Abstract:
Deep learning has revolutionized various fields by enabling highly accurate predictions and estimates. One important application is probabilistic prediction, where models estimate the probability of events rather than deterministic outcomes. This approach is particularly relevant and, therefore, still unexplored for segmentation tasks where each pixel in an image needs to be classified. Conventional models often overlook the probabilistic nature of labels, but accurate uncertainty estimation is crucial for improving the reliability and applicability of models. In this study, we applied Calibrated Probability Estimation (CaPE) to segmentation tasks to evaluate its impact on model calibration. Our results indicate that while CaPE improves calibration, its effect is less pronounced compared to classification tasks, suggesting that segmentation models can inherently provide better probability estimates. We also investigated the influence of dataset size and bin optimization on the effectiveness of calibration. Our results emphasize the expressive power of segmentation models as probability estimators and incorporate probabilistic reasoning, which is crucial for applications requiring precise uncertainty quantification.
Authors:Andrija Djurisic, Rosanne Liu, Mladen Nikolic
Title: Logit Scaling for Out-of-Distribution Detection
Abstract:
The safe deployment of machine learning and AI models in open-world settings hinges critically on the ability to detect out-of-distribution (OOD) data accurately, data samples that contrast vastly from what the model was trained with. Current approaches to OOD detection often require further training the model, and/or statistics about the training data which may no longer be accessible. Additionally, many existing OOD detection methods struggle to maintain performance when transferred across different architectures. Our research tackles these issues by proposing a simple, post-hoc method that does not require access to the training data distribution, keeps a trained network intact, and holds strong performance across a variety of architectures. Our method, Logit Scaling (LTS), as the name suggests, simply scales the logits in a manner that effectively distinguishes between in-distribution (ID) and OOD samples. We tested our method on benchmarks across various scales, including CIFAR-10, CIFAR-100, ImageNet and OpenOOD. The experiments cover 3 ID and 14 OOD datasets, as well as 9 model architectures. Overall, we demonstrate state-of-the-art performance, robustness and adaptability across different architectures, paving the way towards a universally applicable solution for advanced OOD detection.
Authors:Luis A. Ortega, Simón Rodríguez-Santana, Daniel Hernández-Lobato
Title: Scalable Linearized Laplace Approximation via Surrogate Neural Kernel
Abstract:
We introduce a scalable method to approximate the kernel of the Linearized Laplace Approximation (LLA). For this, we use a surrogate deep neural network (DNN) that learns a compact feature representation whose inner product replicates the Neural Tangent Kernel (NTK). This avoids the need to compute large Jacobians. Training relies solely on efficient Jacobian-vector products, allowing to compute predictive uncertainty on large-scale pre-trained DNNs. Experimental results show similar or improved uncertainty estimation and calibration compared to existing LLA approximations. Notwithstanding, biasing the learned kernel significantly enhances out-of-distribution detection. This remarks the benefits of the proposed method for finding better kernels than the NTK in the context of LLA to compute prediction uncertainty given a pre-trained DNN.
Authors:Morten Blørstad, Herman Jangsett Mostein, Nello Blaser, Pekka Parviainen
Title: Evaluating Prediction Uncertainty Estimates from BatchEnsemble
Abstract:
Deep learning models struggle with uncertainty estimation. Many approaches are either computationally infeasible or underestimate uncertainty. We investigate \textit{BatchEnsemble} as a general and scalable method for uncertainty estimation across both tabular and time series tasks. To extend BatchEnsemble to sequential modeling, we introduce GRUBE, a novel BatchEnsemble GRU cell. We compare the BatchEnsemble to Monte Carlo dropout and deep ensemble models. Our results show that BatchEnsemble matches the uncertainty estimation performance of deep ensembles, and clearly outperforms Monte Carlo dropout. GRUBE achieves similar or better performance in both prediction and uncertainty estimation. These findings show that BatchEnsemble and GRUBE achieve similar performance with fewer parameters and reduced training and inference time compared to traditional ensembles.
Authors:Rongkun Cui, Nana Zhang, Kun Zhu, Qi Zhang
Title: Bridging Cognitive Neuroscience and Graph Intelligence: Hippocampus-Inspired Multi-View Hypergraph Learning for Web Finance Fraud
Abstract:
Online financial services constitute an essential component of contemporary web ecosystems, yet their openness introduces substantial exposure to fraud that harms vulnerable users and weakens trust in digital finance. Such threats have become a significant web harm that erodes societal fairness and affects the well being of online communities. However, existing detection methods based on graph neural networks (GNNs) struggle with two persistent challenges: (1) fraud camouflage, where malicious transactions mimic benign behaviors to evade detection, and (2) long-tailed data distributions, which obscure rare but critical fraudulent cases. To fill these gaps, we propose HIMVH, a Hippocampus-Inspired Multi-View Hypergraph learning model for web finance fraud detection. Specifically, drawing inspiration from the scene conflict monitoring role of the hippocampus, we design a cross-view inconsistency perception module that captures subtle discrepancies and behavioral heterogeneity across multiple transaction views. This module enables the model to identify subtle cross-view conflicts for detecting online camouflaged fraudulent behaviors. Furthermore, inspired by the match-mismatch novelty detection mechanism of the CA1 region, we introduce a novelty-aware hypergraph learning module that measures feature deviations from neighborhood expectations and adaptively reweights messages, thereby enhancing sensitivity to online rare fraud patterns in the long-tailed settings. Extensive experiments on six web-based financial fraud datasets demonstrate that HIMVH achieves 6.42\% improvement in AUC, 9.74\% in F1 and 39.14\% in AP on average over 15 SOTA models.
Authors:Ahmad Pesaranghader, Erin Li
Title: Hallucination Detection and Mitigation in Large Language Models
Abstract:
Large Language Models (LLMs) and Large Reasoning Models (LRMs) offer transformative potential for high-stakes domains like finance and law, but their tendency to hallucinate, generating factually incorrect or unsupported content, poses a critical reliability risk. This paper introduces a comprehensive operational framework for hallucination management, built on a continuous improvement cycle driven by root cause awareness. We categorize hallucination sources into model, data, and context-related factors, allowing targeted interventions over generic fixes. The framework integrates multi-faceted detection methods (e.g., uncertainty estimation, reasoning consistency) with stratified mitigation strategies (e.g., knowledge grounding, confidence calibration). We demonstrate its application through a tiered architecture and a financial data extraction case study, where model, context, and data tiers form a closed feedback loop for progressive reliability enhancement. This approach provides a systematic, scalable methodology for building trustworthy generative AI systems in regulated environments.
Authors:Haotian Deng, Chris Farber, Jiyoon Lee, David Tang
Title: Rubric-Conditioned LLM Grading: Alignment, Uncertainty, and Robustness
Abstract:
Automated short-answer grading (ASAG) remains a challenging task due to the linguistic variability of student responses and the need for nuanced, rubric-aligned partial credit. While Large Language Models (LLMs) offer a promising solution, their reliability as automated judges in rubric-based settings requires rigorous assessment. In this paper, we systematically evaluate the performance of LLM-judges for rubric-based short-answer grading. We investigate three key aspects: the alignment of LLM grading with expert judgment across varying rubric complexities, the trade-off between uncertainty and accuracy facilitated by a consensus-based deferral mechanism, and the model's robustness under random input perturbations and adversarial attacks. Using the SciEntsBank benchmark and Qwen 2.5-72B, we find that alignment is strong for binary tasks but degrades with increased rubric granularity. Our "Trust Curve" analysis demonstrates a clear trade-off where filtering low-confidence predictions improves accuracy on the remaining subset. Additionally, robustness experiments reveal that while the model is resilient to prompt injection, it is sensitive to synonym substitutions. Our work provides critical insights into the capabilities and limitations of rubric-conditioned LLM judges, highlighting the importance of uncertainty estimation and robustness testing for reliable deployment.
Authors:Sören Schleibaum, Anton Frederik Thielmann, Julian Teusch, Benjamin Säfken, Jörg P. Müller
Title: EviNAM: Intelligibility and Uncertainty via Evidential Neural Additive Models
Abstract:
Intelligibility and accurate uncertainty estimation are crucial for reliable decision-making. In this paper, we propose EviNAM, an extension of evidential learning that integrates the interpretability of Neural Additive Models (NAMs) with principled uncertainty estimation. Unlike standard Bayesian neural networks and previous evidential methods, EviNAM enables, in a single pass, both the estimation of the aleatoric and epistemic uncertainty as well as explicit feature contributions. Experiments on synthetic and real data demonstrate that EviNAM matches state-of-the-art predictive performance. While we focus on regression, our method extends naturally to classification and generalized additive models, offering a path toward more intelligible and trustworthy predictions.
Authors:Andrea Thomas Nava, Lijo Johny, Fabio Azzalini, Johannes Schneider, Arianna Casanova
Title: Enhanced Data-Driven Product Development via Gradient Based Optimization and Conformalized Monte Carlo Dropout Uncertainty Estimation
Abstract:
Data-Driven Product Development (DDPD) leverages data to learn the relationship between product design specifications and resulting properties. To discover improved designs, we train a neural network on past experiments and apply Projected Gradient Descent to identify optimal input features that maximize performance. Since many products require simultaneous optimization of multiple correlated properties, our framework employs joint neural networks to capture interdependencies among targets. Furthermore, we integrate uncertainty estimation via \emph{Conformalised Monte Carlo Dropout} (ConfMC), a novel method combining Nested Conformal Prediction with Monte Carlo dropout to provide model-agnostic, finite-sample coverage guarantees under data exchangeability. Extensive experiments on five real-world datasets show that our method matches state-of-the-art performance while offering adaptive, non-uniform prediction intervals and eliminating the need for retraining when adjusting coverage levels.
Authors:Shize Liang, Hongzhi Wang
Title: Neural Probe-Based Hallucination Detection for Large Language Models
Abstract:
Large language models(LLMs) excel at text generation and knowledge question-answering tasks, but they are prone to generating hallucinated content, severely limiting their application in high-risk domains. Current hallucination detection methods based on uncertainty estimation and external knowledge retrieval suffer from the limitation that they still produce erroneous content at high confidence levels and rely heavily on retrieval efficiency and knowledge coverage. In contrast, probe methods that leverage the model's hidden-layer states offer real-time and lightweight advantages. However, traditional linear probes struggle to capture nonlinear structures in deep semantic spaces.To overcome these limitations, we propose a neural network-based framework for token-level hallucination detection. By freezing language model parameters, we employ lightweight MLP probes to perform nonlinear modeling of high-level hidden states. A multi-objective joint loss function is designed to enhance detection stability and semantic disambiguity. Additionally, we establish a layer position-probe performance response model, using Bayesian optimization to automatically search for optimal probe insertion layers and achieve superior training results.Experimental results on LongFact, HealthBench, and TriviaQA demonstrate that MLP probes significantly outperform state-of-the-art methods in accuracy, recall, and detection capability under low false-positive conditions.
Authors:Songze Huo, Xiao-Ming Cao
Title: Accelerating High-Throughput Catalyst Screening by Direct Generation of Equilibrium Adsorption Structures
Abstract:
The adsorption energy serves as a crucial descriptor for the large-scale screening of catalysts. Nevertheless, the limited distribution of training data for the extensively utilised machine learning interatomic potential (MLIP), predominantly sourced from near-equilibrium structures, results in unreliable adsorption structures and consequent adsorption energy predictions. In this context, we present DBCata, a deep generative model that integrates a periodic Brownian-bridge framework with an equivariant graph neural network to establish a low-dimensional transition manifold between unrelaxed and DFT-relaxed structures, without requiring explicit energy or force information. Upon training, DBCata effectively generates high-fidelity adsorption geometries, achieving an interatomic distance mean absolute error (DMAE) of 0.035 \textÅ on the Catalysis-Hub dataset, which is nearly three times superior to that of the current state-of-the-art machine learning potential models. Moreover, the corresponding DFT accuracy can be improved within 0.1 eV in 94\% of instances by identifying and refining anomalous predictions through a hybrid chemical-heuristic and self-supervised outlier detection approach. We demonstrate that the remarkable performance of DBCata facilitates accelerated high-throughput computational screening for efficient alloy catalysts in the oxygen reduction reaction, highlighting the potential of DBCata as a powerful tool for catalyst design and optimisation.
Authors:Aslak Djupskås, Alexander Johannes Stasik, Signe Riemer-Sørensen
Title: Unreliable Uncertainty Estimates with Monte Carlo Dropout
Abstract:
Reliable uncertainty estimation is crucial for machine learning models, especially in safety-critical domains. While exact Bayesian inference offers a principled approach, it is often computationally infeasible for deep neural networks. Monte Carlo dropout (MCD) was proposed as an efficient approximation to Bayesian inference in deep learning by applying neuron dropout at inference time \citep{gal2016dropout}. Hence, the method generates multiple sub-models yielding a distribution of predictions to estimate uncertainty. We empirically investigate its ability to capture true uncertainty and compare to Gaussian Processes (GP) and Bayesian Neural Networks (BNN). We find that MCD struggles to accurately reflect the underlying true uncertainty, particularly failing to capture increased uncertainty in extrapolation and interpolation regions as observed in Bayesian models. The findings suggest that uncertainty estimates from MCD, as implemented and evaluated in these experiments, is not as reliable as those from traditional Bayesian approaches for capturing epistemic and aleatoric uncertainty.
Authors:Elias Hossain, Umesh Biswas, Charan Gudla, Sai Phani Parsa
Title: Learning Robust Representations for Malicious Content Detection via Contrastive Sampling and Uncertainty Estimation
Abstract:
We propose the Uncertainty Contrastive Framework (UCF), a Positive-Unlabeled (PU) representation learning framework that integrates uncertainty-aware contrastive loss, adaptive temperature scaling, and a self-attention-guided LSTM encoder to improve classification under noisy and imbalanced conditions. UCF dynamically adjusts contrastive weighting based on sample confidence, stabilizes training using positive anchors, and adapts temperature parameters to batch-level variability. Applied to malicious content classification, UCF-generated embeddings enable multiple traditional classifiers to achieve more than 93.38% accuracy, precision above 0.93, and near-perfect recall, with minimal false negatives and competitive ROC-AUC scores. Visual analyses confirm clear separation between positive and unlabeled instances, highlighting the framework's ability to produce calibrated, discriminative embeddings. These results position UCF as a robust and scalable solution for PU learning in high-stakes domains such as cybersecurity and biomedical text mining.
Authors:Aditi Naiknaware, Sanchit Singh, Hajar Homayouni, Salimeh Sekeh
Title: Temp-SCONE: A Novel Out-of-Distribution Detection and Domain Generalization Framework for Wild Data with Temporal Shift
Abstract:
Open-world learning (OWL) requires models that can adapt to evolving environments while reliably detecting out-of-distribution (OOD) inputs. Existing approaches, such as SCONE, achieve robustness to covariate and semantic shifts but assume static environments, leading to degraded performance in dynamic domains. In this paper, we propose Temp-SCONE, a temporally consistent extension of SCONE designed to handle temporal shifts in dynamic environments. Temp-SCONE introduces a confidence-driven regularization loss based on Average Thresholded Confidence (ATC), penalizing instability in predictions across time steps while preserving SCONE's energy-margin separation. Experiments on dynamic datasets demonstrate that Temp-SCONE significantly improves robustness under temporal drift, yielding higher corrupted-data accuracy and more reliable OOD detection compared to SCONE. On distinct datasets without temporal continuity, Temp-SCONE maintains comparable performance, highlighting the importance and limitations of temporal regularization. Our theoretical insights on temporal stability and generalization error further establish Temp-SCONE as a step toward reliable OWL in evolving dynamic environments.
Authors:Varun Kumar Dasoju, Qingsu Cheng, Zeyun Yu
Title: Breast Cell Segmentation Under Extreme Data Constraints: Quantum Enhancement Meets Adaptive Loss Stabilization
Abstract:
Annotating medical images demands significant time and expertise, often requiring pathologists to invest hundreds of hours in labeling mammary epithelial nuclei datasets. We address this critical challenge by achieving 95.5% Dice score using just 599 training images for breast cell segmentation, where just 4% of pixels represent breast tissue and 60% of images contain no breast regions. Our framework uses quantum-inspired edge enhancement via multi-scale Gabor filters creating a fourth input channel, enhancing boundary detection where inter-annotator variations reach +/- 3 pixels. We present a stabilized multi-component loss function that integrates adaptive Dice loss with boundary-aware terms and automatic positive weighting to effectively address severe class imbalance, where mammary epithelial cell regions comprise only 0.1%-20% of the total image area. Additionally, a complexity-based weighted sampling strategy is introduced to prioritize the challenging mammary epithelial cell regions. The model employs an EfficientNet-B7/UNet++ architecture with a 4-to-3 channel projection, enabling the use of pretrained weights despite limited medical imaging data. Finally, robust validation is achieved through exponential moving averaging and statistical outlier detection, ensuring reliable performance estimates on a small validation set (129 images). Our framework achieves a Dice score of 95.5% +/- 0.3% and an IoU of 91.2% +/- 0.4%. Notably, quantum-based enhancement contributes to a 2.1% improvement in boundary accuracy, while weighted sampling increases small lesion detection by 3.8%. By achieving groundbreaking performance with limited annotations, our approach significantly reduces the medical expert time required for dataset creation, addressing a fundamental bottleneck in clinical perception AI development.
Authors:Feyza Eksen, Stefan Oehmcke, Stefan Lüdtke
Title: Where to Measure: Epistemic Uncertainty-Based Sensor Placement with ConvCNPs
Abstract:
Accurate sensor placement is critical for modeling spatio-temporal systems such as environmental and climate processes. Neural Processes (NPs), particularly Convolutional Conditional Neural Processes (ConvCNPs), provide scalable probabilistic models with uncertainty estimates, making them well-suited for data-driven sensor placement. However, existing approaches rely on total predictive uncertainty, which conflates epistemic and aleatoric components, that may lead to suboptimal sensor selection in ambiguous regions. To address this, we propose expected reduction in epistemic uncertainty as a new acquisition function for sensor placement. To enable this, we extend ConvCNPs with a Mixture Density Networks (MDNs) output head for epistemic uncertainty estimation. Preliminary results suggest that epistemic uncertainty driven sensor placement more effectively reduces model error than approaches based on overall uncertainty.
Authors:Simon Püttmann, Jonathan Jair Sànchez Contreras, Lennart Kowitz, Peter Lampen, Saumya Gupta, Davide Panzeri, Nina Hagemann, Qiaojie Xiong, Dirk M. Hermann, Cao Chen, Jianxu Chen
Title: Bridging 3D Deep Learning and Curation for Analysis and High-Quality Segmentation in Practice
Abstract:
Accurate 3D microscopy image segmentation is critical for quantitative bioimage analysis but even state-of-the-art foundation models yield error-prone results. Therefore, manual curation is still widely used for either preparing high-quality training data or fixing errors before analysis. We present VessQC, an open-source tool for uncertainty-guided curation of large 3D microscopy segmentations. By integrating uncertainty maps, VessQC directs user attention to regions most likely containing biologically meaningful errors. In a preliminary user study uncertainty-guided correction significantly improved error detection recall from 67% to 94.0% (p=0.007) without a significant increase in total curation time. VessQC thus enables efficient, human-in-the-loop refinement of volumetric segmentations and bridges a key gap in real-world applications between uncertainty estimation and practical human-computer interaction. The software is freely available at github.com/MMV-Lab/VessQC.
Authors:Zarin Tahia Hossain, Mostafa Milani
Title: Beyond Accuracy: An Empirical Study of Uncertainty Estimation in Imputation
Abstract:
Handling missing data is a central challenge in data-driven analysis. Modern imputation methods not only aim for accurate reconstruction but also differ in how they represent and quantify uncertainty. Yet, the reliability and calibration of these uncertainty estimates remain poorly understood. This paper presents a systematic empirical study of uncertainty in imputation, comparing representative methods from three major families: statistical (MICE, SoftImpute), distribution alignment (OT-Impute), and deep generative (GAIN, MIWAE, TabCSDI). Experiments span multiple datasets, missingness mechanisms (MCAR, MAR, MNAR), and missingness rates. Uncertainty is estimated through three complementary routes: multi-run variability, conditional sampling, and predictive-distribution modeling, and evaluated using calibration curves and the Expected Calibration Error (ECE). Results show that accuracy and calibration are often misaligned: models with high reconstruction accuracy do not necessarily yield reliable uncertainty. We analyze method-specific trade-offs among accuracy, calibration, and runtime, identify stable configurations, and offer guidelines for selecting uncertainty-aware imputers in data cleaning and downstream machine learning pipelines.
Authors:Mariana M Garcez Duarte, Mahmoud Sakr
Title: An experimental study of existing tools for outlier detection and cleaning in trajectories
Abstract:
Outlier detection and cleaning are essential steps in data preprocessing to ensure the integrity and validity of data analyses. This paper focuses on outlier points within individual trajectories, i.e., points that deviate significantly inside a single trajectory. We experiment with ten open-source libraries to comprehensively evaluate available tools, comparing their efficiency and accuracy in identifying and cleaning outliers. This experiment considers the libraries as they are offered to end users, with real-world applicability. We compare existing outlier detection libraries, introduce a method for establishing ground-truth, and aim to guide users in choosing the most appropriate tool for their specific outlier detection needs. Furthermore, we survey the state-of-the-art algorithms for outlier detection and classify them into five types: Statistic-based methods, Sliding window algorithms, Clustering-based methods, Graph-based methods, and Heuristic-based methods. Our research provides insights into these libraries' performance and contributes to developing data preprocessing and outlier detection methodologies.
Authors:Y. A. Rouzoumka, E. Terreaux, C. Morisseau, J. -P. Ovarlez, C. Ren
Title: Latent-space metrics for Complex-Valued VAE out-of-distribution detection under radar clutter
Abstract:
We investigate complex-valued Variational AutoEncoders (CVAE) for radar Out-Of-Distribution (OOD) detection in complex radar environments. We proposed several detection metrics: the reconstruction error of CVAE (CVAE-MSE), the latent-based scores (Mahalanobis, Kullback-Leibler divergence (KLD)), and compared their performance against the classical ANMF-Tyler detector (ANMF-FP). The performance of all these detectors is analyzed on synthetic and experimental radar data, showing the advantages and the weaknesses of each detector.
Authors:Sing-Yuan Yeh, Chun-Hao Yang
Title: Uncertainty of Network Topology with Applications to Out-of-Distribution Detection
Abstract:
Persistent homology (PH) is a crucial concept in computational topology, providing a multiscale topological description of a space. It is particularly significant in topological data analysis, which aims to make statistical inference from a topological perspective. In this work, we introduce a new topological summary for Bayesian neural networks, termed the predictive topological uncertainty (pTU). The proposed pTU measures the uncertainty in the interaction between the model and the inputs. It provides insights from the model perspective: if two samples interact with a model in a similar way, then they are considered identically distributed. We also show that the pTU is insensitive to the model architecture. As an application, pTU is used to solve the out-of-distribution (OOD) detection problem, which is critical to ensure model reliability. Failure to detect OOD input can lead to incorrect and unreliable predictions. To address this issue, we propose a significance test for OOD based on the pTU, providing a statistical framework for this issue. The effectiveness of the framework is validated through various experiments, in terms of its statistical power, sensitivity, and robustness.
Authors:Roman Kinakh, Gonzalo R. Ríos-Muñoz, Arrate Muñoz-Barrutia
Title: Multimodal Posterior Sampling-based Uncertainty in PD-L1 Segmentation from H&E Images
Abstract:
Accurate assessment of PD-L1 expression is critical for guiding immunotherapy, yet current immunohistochemistry (IHC) based methods are resource-intensive. We present nnUNet-B: a Bayesian segmentation framework that infers PD-L1 expression directly from H&E-stained histology images using Multimodal Posterior Sampling (MPS). Built upon nnUNet-v2, our method samples diverse model checkpoints during cyclic training to approximate the posterior, enabling both accurate segmentation and epistemic uncertainty estimation via entropy and standard deviation. Evaluated on a dataset of lung squamous cell carcinoma, our approach achieves competitive performance against established baselines with mean Dice Score and mean IoU of 0.805 and 0.709, respectively, while providing pixel-wise uncertainty maps. Uncertainty estimates show strong correlation with segmentation error, though calibration remains imperfect. These results suggest that uncertainty-aware H&E-based PD-L1 prediction is a promising step toward scalable, interpretable biomarker assessment in clinical workflows.
Authors:Viola Rädle, Tilman Hartwig, Benjamin Oesen, Emily Alice Kröger, Julius Vogt, Eike Gericke, Martin Baron
Title: GAMMA_FLOW: Guided Analysis of Multi-label spectra by MAtrix Factorization for Lightweight Operational Workflows
Abstract:
GAMMA_FLOW is an open-source Python package for real-time analysis of spectral data. It supports classification, denoising, decomposition, and outlier detection of both single- and multi-component spectra. Instead of relying on large, computationally intensive models, it employs a supervised approach to non-negative matrix factorization (NMF) for dimensionality reduction. This ensures a fast, efficient, and adaptable analysis while reducing computational costs. gamma_flow achieves classification accuracies above 90% and enables reliable automated spectral interpretation. Originally developed for gamma-ray spectra, it is applicable to any type of one-dimensional spectral data. As an open and flexible alternative to proprietary software, it supports various applications in research and industry.
Authors:Federico Pirola, Fabio Stella, Marco Grzegorczyk
Title: LUME-DBN: Full Bayesian Learning of DBNs from Incomplete data in Intensive Care
Abstract:
Dynamic Bayesian networks (DBNs) are increasingly used in healthcare due to their ability to model complex temporal relationships in patient data while maintaining interpretability, an essential feature for clinical decision-making. However, existing approaches to handling missing data in longitudinal clinical datasets are largely derived from static Bayesian networks literature, failing to properly account for the temporal nature of the data. This gap limits the ability to quantify uncertainty over time, which is particularly critical in settings such as intensive care, where understanding the temporal dynamics is fundamental for model trustworthiness and applicability across diverse patient groups. Despite the potential of DBNs, a full Bayesian framework that integrates missing data handling remains underdeveloped. In this work, we propose a novel Gibbs sampling-based method for learning DBNs from incomplete data. Our method treats each missing value as an unknown parameter following a Gaussian distribution. At each iteration, the unobserved values are sampled from their full conditional distributions, allowing for principled imputation and uncertainty estimation. We evaluate our method on both simulated datasets and real-world intensive care data from critically ill patients. Compared to standard model-agnostic techniques such as MICE, our Bayesian approach demonstrates superior reconstruction accuracy and convergence properties. These results highlight the clinical relevance of incorporating full Bayesian inference in temporal models, providing more reliable imputations and offering deeper insight into model behavior. Our approach supports safer and more informed clinical decision-making, particularly in settings where missing data are frequent and potentially impactful.
Authors:Zhexiao Huang, Weihao He, Shutao Deng, Junzhe Chen, Chao Yuan, Hongxin Wang, Changsheng Zhou
Title: Perturbations in the Orthogonal Complement Subspace for Efficient Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is essential for deploying deep learning models in open-world environments. Existing approaches, such as energy-based scoring and gradient-projection methods, typically rely on high-dimensional representations to separate in-distribution (ID) and OOD samples. We introduce P-OCS (Perturbations in the Orthogonal Complement Subspace), a lightweight and theoretically grounded method that operates in the orthogonal complement of the principal subspace defined by ID features. P-OCS applies a single projected perturbation restricted to this complementary subspace, enhancing subtle ID-OOD distinctions while preserving the geometry of ID representations. We show that a one-step update is sufficient in the small-perturbation regime and provide convergence guarantees for the resulting detection score. Experiments across multiple architectures and datasets demonstrate that P-OCS achieves state-of-the-art OOD detection with negligible computational cost and without requiring model retraining, access to OOD data, or changes to model architecture.
Authors:Kévin Ducharlet, Louise Travé-Massuyès, Jean-Bernard Lasserre, Marie-Véronique Le Lann, Youssef Miloudi
Title: Leveraging the Christoffel Function for Outlier Detection in Data Streams
Abstract:
Outlier detection holds significant importance in the realm of data mining, particularly with the growing pervasiveness of data acquisition methods. The ability to identify outliers in data streams is essential for maintaining data quality and detecting faults. However, dealing with data streams presents challenges due to the non-stationary nature of distributions and the ever-increasing data volume. While numerous methods have been proposed to tackle this challenge, a common drawback is the lack of straightforward parameterization in many of them. This article introduces two novel methods: DyCF and DyCG. DyCF leverages the Christoffel function from the theory of approximation and orthogonal polynomials. Conversely, DyCG capitalizes on the growth properties of the Christoffel function, eliminating the need for tuning parameters. Both approaches are firmly rooted in a well-defined algebraic framework, meeting crucial demands for data stream processing, with a specific focus on addressing low-dimensional aspects and maintaining data history without memory cost. A comprehensive comparison between DyCF, DyCG, and state-of-the-art methods is presented, using both synthetic and real industrial data streams. The results show that DyCF outperforms fine-tuning methods, offering superior performance in terms of execution time and memory usage. DyCG performs less well, but has the considerable advantage of requiring no tuning at all.
Authors:Andrei-Stefan Bulzan, Cosmin Cernazanu-Glavan
Title: Towards Open World Detection: A Survey
Abstract:
For decades, Computer Vision has aimed at enabling machines to perceive the external world. Initial limitations led to the development of highly specialized niches. As success in each task accrued and research progressed, increasingly complex perception tasks emerged. This survey charts the convergence of these tasks and, in doing so, introduces Open World Detection (OWD), an umbrella term we propose to unify class-agnostic and generally applicable detection models in the vision domain. We start from the history of foundational vision subdomains and cover key concepts, methodologies and datasets making up today's state-of-the-art landscape. This traverses topics starting from early saliency detection, foreground/background separation, out of distribution detection and leading up to open world object detection, zero-shot detection and Vision Large Language Models (VLLMs). We explore the overlap between these subdomains, their increasing convergence, and their potential to unify into a singular domain in the future, perception.
Authors:Nitish Kumar Mahala, Muzammil Khan, Pushpendra Kumar
Title: Reliable Smoke Detection via Optical Flow-Guided Feature Fusion and Transformer-Based Uncertainty Modeling
Abstract:
Fire outbreaks pose critical threats to human life and infrastructure, necessitating high-fidelity early-warning systems that detect combustion precursors such as smoke. However, smoke plumes exhibit complex spatiotemporal dynamics influenced by illumination variability, flow kinematics, and environmental noise, undermining the reliability of traditional detectors. To address these challenges without the logistical complexity of multi-sensor arrays, we propose an information-fusion framework by integrating smoke feature representations extracted from monocular imagery. Specifically, a Two-Phase Uncertainty-Aware Shifted Windows Transformer for robust and reliable smoke detection, leveraging a novel smoke segmentation dataset, constructed via optical flow-based motion encoding, is proposed. The optical flow estimation is performed with a four-color-theorem-inspired dual-phase level-set fractional-order variational model, which preserves motion discontinuities. The resulting color-encoded optical flow maps are fused with appearance cues via a Gaussian Mixture Model to generate binary segmentation masks of the smoke regions. These fused representations are fed into the novel Shifted-Windows Transformer, which is augmented with a multi-scale uncertainty estimation head and trained under a two-phase learning regimen. First learning phase optimizes smoke detection accuracy, while during the second phase, the model learns to estimate plausibility confidence in its predictions by jointly modeling aleatoric and epistemic uncertainties. Extensive experiments using multiple evaluation metrics and comparative analysis with state-of-the-art approaches demonstrate superior generalization and robustness, offering a reliable solution for early fire detection in surveillance, industrial safety, and autonomous monitoring applications.
Authors:Diego Correa da Silva, Denis Robson Dantas Boaventura, Mayki dos Santos Oliveira, Eduardo Ferreira da Silva, Joel Machado Pires, Frederico Araújo Durão
Title: Understanding Distribution Structure on Calibrated Recommendation Systems
Abstract:
Traditional recommender systems aim to generate a recommendation list comprising the most relevant or similar items to the user's profile. These approaches can create recommendation lists that omit item genres from the less prominent areas of a user's profile, thereby undermining the user's experience. To solve this problem, the calibrated recommendation system provides a guarantee of including less representative areas in the recommended list. The calibrated context works with three distributions. The first is from the user's profile, the second is from the candidate items, and the last is from the recommendation list. These distributions are G-dimensional, where G is the total number of genres in the system. This high dimensionality requires a different evaluation method, considering that traditional recommenders operate in a one-dimensional data space. In this sense, we implement fifteen models that help to understand how these distributions are structured. We evaluate the users' patterns in three datasets from the movie domain. The results indicate that the models of outlier detection provide a better understanding of the structures. The calibrated system creates recommendation lists that act similarly to traditional recommendation lists, allowing users to change their groups of preferences to the same degree.
Authors:Aurora Grefsrud, Nello Blaser, Trygve Buanes
Title: Calibrated and uncertain? Evaluating uncertainty estimates in binary classification models
Abstract:
Rigorous statistical methods, including parameter estimation with accompanying uncertainties, underpin the validity of scientific discovery, especially in the natural sciences. With increasingly complex data models such as deep learning techniques, uncertainty quantification has become exceedingly difficult and a plethora of techniques have been proposed. In this case study, we use the unifying framework of approximate Bayesian inference combined with empirical tests on carefully created synthetic classification datasets to investigate qualitative properties of six different probabilistic machine learning algorithms for class probability and uncertainty estimation: (i) a neural network ensemble, (ii) neural network ensemble with conflictual loss, (iii) evidential deep learning, (iv) a single neural network with Monte Carlo Dropout, (v) Gaussian process classification and (vi) a Dirichlet process mixture model. We check if the algorithms produce uncertainty estimates which reflect commonly desired properties, such as being well calibrated and exhibiting an increase in uncertainty for out-of-distribution data points. Our results indicate that all algorithms are well calibrated, but none of the deep learning based algorithms provide uncertainties that consistently reflect lack of experimental evidence for out-of-distribution data points. We hope our study may serve as a clarifying example for researchers developing new methods of uncertainty estimation for scientific data-driven modeling.
Authors:Prathamesh Devadiga, Yashmitha Shailesh
Title: RegimeNAS: Regime-Aware Differentiable Architecture Search With Theoretical Guarantees for Financial Trading
Abstract:
We introduce RegimeNAS, a novel differentiable architecture search framework specifically designed to enhance cryptocurrency trading performance by explicitly integrating market regime awareness. Addressing the limitations of static deep learning models in highly dynamic financial environments, RegimeNAS features three core innovations: (1) a theoretically grounded Bayesian search space optimizing architectures with provable convergence properties; (2) specialized, dynamically activated neural modules (Volatility, Trend, and Range blocks) tailored for distinct market conditions; and (3) a multi-objective loss function incorporating market-specific penalties (e.g., volatility matching, transition smoothness) alongside mathematically enforced Lipschitz stability constraints. Regime identification leverages multi-head attention across multiple timeframes for improved accuracy and uncertainty estimation. Rigorous empirical evaluation on extensive real-world cryptocurrency data demonstrates that RegimeNAS significantly outperforms state-of-the-art benchmarks, achieving an 80.3% Mean Absolute Error reduction compared to the best traditional recurrent baseline and converging substantially faster (9 vs. 50+ epochs). Ablation studies and regime-specific analysis confirm the critical contribution of each component, particularly the regime-aware adaptation mechanism. This work underscores the imperative of embedding domain-specific knowledge, such as market regimes, directly within the NAS process to develop robust and adaptive models for challenging financial applications.
Authors:Maria Stoica, Francesco Leofante, Alessio Lomuscio
Title: Out-of-Distribution Detection using Counterfactual Distance
Abstract:
Accurate and explainable out-of-distribution (OOD) detection is required to use machine learning systems safely. Previous work has shown that feature distance to decision boundaries can be used to identify OOD data effectively. In this paper, we build on this intuition and propose a post-hoc OOD detection method that, given an input, calculates the distance to decision boundaries by leveraging counterfactual explanations. Since computing explanations can be expensive for large architectures, we also propose strategies to improve scalability by computing counterfactuals directly in embedding space. Crucially, as the method employs counterfactual explanations, we can seamlessly use them to help interpret the results of our detector. We show that our method is in line with the state of the art on CIFAR-10, achieving 93.50% AUROC and 25.80% FPR95. Our method outperforms these methods on CIFAR-100 with 97.05% AUROC and 13.79% FPR95 and on ImageNet-200 with 92.55% AUROC and 33.55% FPR95 across four OOD datasets
Authors:Wei Li, Zixin Wang, Qizheng Sun, Qixiang Gao, Fenglei Yang
Title: EnergyPatchTST: Multi-scale Time Series Transformers with Uncertainty Estimation for Energy Forecasting
Abstract:
Accurate and reliable energy time series prediction is of great significance for power generation planning and allocation. At present, deep learning time series prediction has become the mainstream method. However, the multi-scale time dynamics and the irregularity of real data lead to the limitations of the existing methods. Therefore, we propose EnergyPatchTST, which is an extension of the Patch Time Series Transformer specially designed for energy forecasting. The main innovations of our method are as follows: (1) multi-scale feature extraction mechanism to capture patterns with different time resolutions; (2) probability prediction framework to estimate uncertainty through Monte Carlo elimination; (3) integration path of future known variables (such as temperature and wind conditions); And (4) Pre-training and Fine-tuning examples to enhance the performance of limited energy data sets. A series of experiments on common energy data sets show that EnergyPatchTST is superior to other commonly used methods, the prediction error is reduced by 7-12%, and reliable uncertainty estimation is provided, which provides an important reference for time series prediction in the energy field.
Authors:Fei Shuang, Zixiong Wei, Kai Liu, Wei Gao, Poulumi Dey
Title: Model Accuracy and Data Heterogeneity Shape Uncertainty Quantification in Machine Learning Interatomic Potentials
Abstract:
Machine learning interatomic potentials (MLIPs) enable accurate atomistic modelling, but reliable uncertainty quantification (UQ) remains elusive. In this study, we investigate two UQ strategies, ensemble learning and D-optimality, within the atomic cluster expansion framework. It is revealed that higher model accuracy strengthens the correlation between predicted uncertainties and actual errors and improves novelty detection, with D-optimality yielding more conservative estimates. Both methods deliver well calibrated uncertainties on homogeneous training sets, yet they underpredict errors and exhibit reduced novelty sensitivity on heterogeneous datasets. To address this limitation, we introduce clustering-enhanced local D-optimality, which partitions configuration space into clusters during training and applies D-optimality within each cluster. This approach substantially improves the detection of novel atomic environments in heterogeneous datasets. Our findings clarify the roles of model fidelity and data heterogeneity in UQ performance and provide a practical route to robust active learning and adaptive sampling strategies for MLIP development.
Authors:Lakshmana Sri Harsha Nemani, P. K. Srijith, Tomasz Kuśmierczyk
Title: Efficient Uncertainty in LLMs through Evidential Knowledge Distillation
Abstract:
Accurate uncertainty quantification remains a key challenge for standard LLMs, prompting the adoption of Bayesian and ensemble-based methods. However, such methods typically necessitate computationally expensive sampling, involving multiple forward passes to effectively estimate predictive uncertainty. In this paper, we introduce a novel approach enabling efficient and effective uncertainty estimation in LLMs without sacrificing performance. Specifically, we distill uncertainty-aware teacher models - originally requiring multiple forward passes - into compact student models sharing the same architecture but fine-tuned using Low-Rank Adaptation (LoRA). We compare two distinct distillation strategies: one in which the student employs traditional softmax-based outputs, and another in which the student leverages Dirichlet-distributed outputs to explicitly model epistemic uncertainty via evidential learning. Empirical evaluations on classification datasets demonstrate that such students can achieve comparable or superior predictive and uncertainty quantification performance relative to their teacher models, while critically requiring only a single forward pass. To our knowledge, this is the first demonstration that immediate and robust uncertainty quantification can be achieved in LLMs through evidential distillation.
Authors:Md Min-Ha-Zul Abedin, Tazqia Mehrub
Title: Evaluating Ensemble and Deep Learning Models for Static Malware Detection with Dimensionality Reduction Using the EMBER Dataset
Abstract:
This study investigates the effectiveness of several machine learning algorithms for static malware detection using the EMBER dataset, which contains feature representations of Portable Executable (PE) files. We evaluate eight classification models: LightGBM, XGBoost, CatBoost, Random Forest, Extra Trees, HistGradientBoosting, k-Nearest Neighbors (KNN), and TabNet, under three preprocessing settings: original feature space, Principal Component Analysis (PCA), and Linear Discriminant Analysis (LDA). The models are assessed on accuracy, precision, recall, F1 score, and AUC to examine both predictive performance and robustness. Ensemble methods, especially LightGBM and XGBoost, show the best overall performance across all configurations, with minimal sensitivity to PCA and consistent generalization. LDA improves KNN performance but significantly reduces accuracy for boosting models. TabNet, while promising in theory, underperformed under feature reduction, likely due to architectural sensitivity to input structure. The analysis is supported by detailed exploratory data analysis (EDA), including mutual information ranking, PCA or t-SNE visualizations, and outlier detection using Isolation Forest and Local Outlier Factor (LOF), which confirm the discriminatory capacity of key features in the EMBER dataset. The results suggest that boosting models remain the most reliable choice for high-dimensional static malware detection, and that dimensionality reduction should be applied selectively based on model type. This work provides a benchmark for comparing classification models and preprocessing strategies in malware detection tasks and contributes insights that can guide future system development and real-world deployment.
Authors:Minsuh Joo, Hyunsoo Cho
Title: Cleanse: Uncertainty Estimation Approach Using Clustering-based Semantic Consistency in LLMs
Abstract:
Despite the outstanding performance of large language models (LLMs) across various NLP tasks, hallucinations in LLMs--where LLMs generate inaccurate responses--remains as a critical problem as it can be directly connected to a crisis of building safe and reliable LLMs. Uncertainty estimation is primarily used to measure hallucination levels in LLM responses so that correct and incorrect answers can be distinguished clearly. This study proposes an effective uncertainty estimation approach, \textbf{Cl}ust\textbf{e}ring-based sem\textbf{an}tic con\textbf{s}ist\textbf{e}ncy (\textbf{Cleanse}). Cleanse quantifies the uncertainty with the proportion of the intra-cluster consistency in the total consistency between LLM hidden embeddings which contain adequate semantic information of generations, by employing clustering. The effectiveness of Cleanse for detecting hallucination is validated using four off-the-shelf models, LLaMA-7B, LLaMA-13B, LLaMA2-7B and Mistral-7B and two question-answering benchmarks, SQuAD and CoQA.
Authors:Usayd Shahul, J. Harshan
Title: FORTA: Byzantine-Resilient FL Aggregation via DFT-Guided Krum
Abstract:
Secure federated learning enables collaborative model training across decentralized users while preserving data privacy. A key component is secure aggregation, which keeps individual updates hidden from both the server and users, while also defending against Byzantine users who corrupt the aggregation. To this end, Jinhyun So et al. recently developed a Byzantine-resilient secure aggregation scheme using a secret-sharing strategy over finite-field arithmetic. However, such an approach can suffer from numerical errors and overflows when applied to real-valued model updates, motivating the need for secure aggregation methods that operate directly over the real domain. We propose FORTA, a Byzantine-resilient secure aggregation framework that operates entirely in the real domain. FORTA leverages Discrete Fourier Transform (DFT) codes for privacy and employs Krum-based outlier detection for robustness. While DFT decoder is error-free under infinite precision, finite precision introduces numerical perturbations that can distort distance estimates and allow malicious updates to evade detection. To address this, FORTA refines Krum using feedback from DFT decoder, improving the selection of trustworthy updates. Theoretical analysis and experiments show that our modification of Krum offers improved robustness and more accurate aggregation than standard Krum.
Authors:Víctor Blanco, Inmaculada Espejo, Raúl Páez, Antonio M. Rodríguez-Chía
Title: A Mathematical Optimization Approach to Multisphere Support Vector Data Description
Abstract:
We present a novel mathematical optimization framework for outlier detection in multimodal datasets, extending Support Vector Data Description approaches. We provide a primal formulation, in the shape of a Mixed Integer Second Order Cone model, that constructs Euclidean hyperspheres to identify anomalous observations. Building on this, we develop a dual model that enables the application of the kernel trick, thus allowing for the detection of outliers within complex, non-linear data structures. An extensive computational study demonstrates the effectiveness of our exact method, showing clear advantages over existing heuristic techniques in terms of accuracy and robustness.
Authors:Yang Yang, Xiaolu Zhou, Bosong Ding, Miao Xin
Title: Uncertainty-aware Reward Design Process
Abstract:
Designing effective reward functions is a cornerstone of reinforcement learning (RL), yet it remains a challenging process due to the inefficiencies and inconsistencies inherent in conventional reward engineering methodologies. Recent advances have explored leveraging large language models (LLMs) to automate reward function design. However, their suboptimal performance in numerical optimization often yields unsatisfactory reward quality, while the evolutionary search paradigm demonstrates inefficient utilization of simulation resources, resulting in prohibitively lengthy design cycles with disproportionate computational overhead. To address these challenges, we propose the Uncertainty-aware Reward Design Process (URDP), a novel framework that integrates large language models to streamline reward function design and evaluation in RL environments. URDP quantifies candidate reward function uncertainty based on self-consistency analysis, enabling simulation-free identification of ineffective reward components while discovering novel reward components. Furthermore, we introduce uncertainty-aware Bayesian optimization (UABO), which incorporates uncertainty estimation to significantly enhance hyperparameter configuration efficiency. Finally, we construct a bi-level optimization architecture by decoupling the reward component optimization and the hyperparameter tuning. URDP orchestrates synergistic collaboration between the reward logic reasoning of the LLMs and the numerical optimization strengths of the Bayesian Optimization. We conduct a comprehensive evaluation of URDP across 35 diverse tasks spanning three benchmark environments. Our experimental results demonstrate that URDP not only generates higher-quality reward functions but also achieves significant improvements in the efficiency of automated reward design compared to existing approaches.
Authors:Hikaru Shijo, Yutaka Yoshihama, Kenichi Yadani, Norifumi Murata
Title: Out-of-Distribution Detection with Adaptive Top-K Logits Integration
Abstract:
Neural networks often make overconfident predictions from out-of-distribution (OOD) samples. Detection of OOD data is therefore crucial to improve the safety of machine learning. The simplest and most powerful method for OOD detection is MaxLogit, which uses the model's maximum logit to provide an OOD score. We have discovered that, in addition to the maximum logit, some other logits are also useful for OOD detection. Based on this finding, we propose a new method called ATLI (Adaptive Top-k Logits Integration), which adaptively determines effective top-k logits that are specific to each model and combines the maximum logit with the other top-k logits. In this study we evaluate our proposed method using ImageNet-1K benchmark. Extensive experiments showed our proposed method to reduce the false positive rate (FPR95) by 6.73% compared to the MaxLogit approach, and decreased FPR95 by an additional 2.67% compared to other state-of-the-art methods.
Authors:Mohamed Elbasheer, Adewale Akinfaderin
Title: User-Based Sequential Modeling with Transformer Encoders for Insider Threat Detection
Abstract:
Insider threat detection presents unique challenges due to the authorized status of malicious actors and the subtlety of anomalous behaviors. Existing machine learning methods often treat user activity as isolated events, thereby failing to leverage sequential dependencies in user behavior. In this study, we propose a User-Based Sequencing (UBS) methodology, transforming the CERT insider threat dataset into structured temporal sequences suitable for deep sequential modeling. We deploy a Transformer Encoder architecture to model benign user activity and employ its reconstruction errors as anomaly scores. These scores are subsequently evaluated using three unsupervised outlier detection algorithms: One-Class SVM (OCSVM), Local Outlier Factor (LOF), and Isolation Forest (iForest). Across four rigorously designed test sets, including combinations of multiple CERT dataset releases, our UBS-Transformer pipeline consistently achieves state-of-the-art performance - notably 96.61% accuracy, 99.43% recall, 96.38% F1-score, 95.00% AUROC, and exceptionally low false negative (0.0057) and false positive (0.0571) rates. Comparative analyses demonstrate that our approach substantially outperforms tabular and conventional autoencoder baselines, underscoring the efficacy of sequential user modeling and advanced anomaly detection in the insider threat domain.
Authors:Miguel N. Font, José L. Jorro-Aragoneses, Carlos M. Alaíz
Title: A Framework for Uncertainty Quantification Based on Nearest Neighbors Across Layers
Abstract:
Neural Networks have high accuracy in solving problems where it is difficult to detect patterns or create a logical model. However, these algorithms sometimes return wrong solutions, which become problematic in high-risk domains like medical diagnosis or autonomous driving. One strategy to detect and mitigate these errors is the measurement of the uncertainty over neural network decisions. In this paper, we present a novel post-hoc framework for measuring the uncertainty of a decision based on retrieved training cases that have a similar activation vector to the query for each layer. Based on these retrieved cases, we propose two new metrics: Decision Change and Layer Uncertainty, which capture changes in nearest-neighbor class distributions across layers. We evaluated our approach in a classification model for two datasets: CIFAR-10 and MNIST. The results show that these metrics enhance uncertainty estimation, especially in challenging classification tasks, outperforming softmax-based confidence.
Authors:Hendrik Mehrtens, Tabea Bucher, Titus J. Brinker
Title: Pitfalls of Conformal Predictions for Medical Image Classification
Abstract:
Reliable uncertainty estimation is one of the major challenges for medical classification tasks. While many approaches have been proposed, recently the statistical framework of conformal predictions has gained a lot of attention, due to its ability to provide provable calibration guarantees. Nonetheless, the application of conformal predictions in safety-critical areas such as medicine comes with pitfalls, limitations and assumptions that practitioners need to be aware of. We demonstrate through examples from dermatology and histopathology that conformal predictions are unreliable under distributional shifts in input and label variables. Additionally, conformal predictions should not be used for selecting predictions to improve accuracy and are not reliable for subsets of the data, such as individual classes or patient attributes. Moreover, in classification settings with a small number of classes, which are common in medical image classification tasks, conformal predictions have limited practical value.
Authors:Qiyuan Wu, Mark Campbell
Title: Semantic and Feature Guided Uncertainty Quantification of Visual Localization for Autonomous Vehicles
Abstract:
The uncertainty quantification of sensor measurements coupled with deep learning networks is crucial for many robotics systems, especially for safety-critical applications such as self-driving cars. This paper develops an uncertainty quantification approach in the context of visual localization for autonomous driving, where locations are selected based on images. Key to our approach is to learn the measurement uncertainty using light-weight sensor error model, which maps both image feature and semantic information to 2-dimensional error distribution. Our approach enables uncertainty estimation conditioned on the specific context of the matched image pair, implicitly capturing other critical, unannotated factors (e.g., city vs highway, dynamic vs static scenes, winter vs summer) in a latent manner. We demonstrate the accuracy of our uncertainty prediction framework using the Ithaca365 dataset, which includes variations in lighting and weather (sunny, night, snowy). Both the uncertainty quantification of the sensor+network is evaluated, along with Bayesian localization filters using unique sensor gating method. Results show that the measurement error does not follow a Gaussian distribution with poor weather and lighting conditions, and is better predicted by our Gaussian Mixture model.
Authors:Conrad Orglmeister, Erik Bochinski, Volker Eiselein, Elvira Fleig
Title: Enclosing Prototypical Variational Autoencoder for Explainable Out-of-Distribution Detection
Abstract:
Understanding the decision-making and trusting the reliability of Deep Machine Learning Models is crucial for adopting such methods to safety-relevant applications. We extend self-explainable Prototypical Variational models with autoencoder-based out-of-distribution (OOD) detection: A Variational Autoencoder is applied to learn a meaningful latent space which can be used for distance-based classification, likelihood estimation for OOD detection, and reconstruction. The In-Distribution (ID) region is defined by a Gaussian mixture distribution with learned prototypes representing the center of each mode. Furthermore, a novel restriction loss is introduced that promotes a compact ID region in the latent space without collapsing it into single points. The reconstructive capabilities of the Autoencoder ensure the explainability of the prototypes and the ID region of the classifier, further aiding the discrimination of OOD samples. Extensive evaluations on common OOD detection benchmarks as well as a large-scale dataset from a real-world railway application demonstrate the usefulness of the approach, outperforming previous methods.
Authors:Konstantin Kirchheim, Frank Ortmeier
Title: Improving Out-of-Distribution Detection with Markov Logic Networks
Abstract:
Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models operating in open-world scenarios. Current OOD detectors mainly rely on statistical models to identify unusual patterns in the latent representations of a deep neural network. This work proposes to augment existing OOD detectors with probabilistic reasoning, utilizing Markov logic networks (MLNs). MLNs connect first-order logic with probabilistic reasoning to assign probabilities to inputs based on weighted logical constraints defined over human-understandable concepts, which offers improved explainability. Through extensive experiments on multiple datasets, we demonstrate that MLNs can significantly enhance the performance of a wide range of existing OOD detectors while maintaining computational efficiency. Furthermore, we introduce a simple algorithm for learning logical constraints for OOD detection from a dataset and showcase its effectiveness.
Authors:Leonardo Martins Bianco, Christine Keribin, Zacharie Naulet
Title: SubSearch: Robust Estimation and Outlier Detection for Stochastic Block Models via Subgraph Search
Abstract:
Community detection is a fundamental task in graph analysis, with methods often relying on fitting models like the Stochastic Block Model (SBM) to observed networks. While many algorithms can accurately estimate SBM parameters when the input graph is a perfect sample from the model, real-world graphs rarely conform to such idealized assumptions. Therefore, robust algorithms are crucial-ones that can recover model parameters even when the data deviates from the assumed distribution. In this work, we propose SubSearch, an algorithm for robustly estimating SBM parameters by exploring the space of subgraphs in search of one that closely aligns with the model's assumptions. Our approach also functions as an outlier detection method, properly identifying nodes responsible for the graph's deviation from the model and going beyond simple techniques like pruning high-degree nodes. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our method.
Authors:Taeho Jo, Eun Hye Lee, Alzheimer's Disease Sequencing Project
Title: Uncertainty-Aware Genomic Classification of Alzheimer's Disease: A Transformer-Based Ensemble Approach with Monte Carlo Dropout
Abstract:
INTRODUCTION: Alzheimer's disease (AD) is genetically complex, complicating robust classification from genomic data. METHODS: We developed a transformer-based ensemble model (TrUE-Net) using Monte Carlo Dropout for uncertainty estimation in AD classification from whole-genome sequencing (WGS). We combined a transformer that preserves single-nucleotide polymorphism (SNP) sequence structure with a concurrent random forest using flattened genotypes. An uncertainty threshold separated samples into an uncertain (high-variance) group and a more certain (low-variance) group. RESULTS: We analyzed 1050 individuals, holding out half for testing. Overall accuracy and area under the receiver operating characteristic (ROC) curve (AUC) were 0.6514 and 0.6636, respectively. Excluding the uncertain group improved accuracy from 0.6263 to 0.7287 (10.24% increase) and F1 from 0.5843 to 0.8205 (23.62% increase). DISCUSSION: Monte Carlo Dropout-driven uncertainty helps identify ambiguous cases that may require further clinical evaluation, thus improving reliability in AD genomic classification.
Authors:Shenkai Zhao, Xinao Zhang, Lipeng Pan, Xiaobin Xu, Danilo Pelusi
Title: Evidential Deep Active Learning for Semi-Supervised Classification
Abstract:
Semi-supervised classification based on active learning has made significant progress, but the existing methods often ignore the uncertainty estimation (or reliability) of the prediction results during the learning process, which makes it questionable whether the selected samples can effectively update the model. Hence, this paper proposes an evidential deep active learning approach for semi-supervised classification (EDALSSC). EDALSSC builds a semi-supervised learning framework to simultaneously quantify the uncertainty estimation of labeled and unlabeled data during the learning process. The uncertainty estimation of the former is associated with evidential deep learning, while that of the latter is modeled by combining ignorance information and conflict information of the evidence from the perspective of the T-conorm operator. Furthermore, this article constructs a heuristic method to dynamically balance the influence of evidence and the number of classes on uncertainty estimation to ensure that it does not produce counter-intuitive results in EDALSSC. For the sample selection strategy, EDALSSC selects the sample with the greatest uncertainty estimation that is calculated in the form of a sum when the training loss increases in the latter half of the learning process. Experimental results demonstrate that EDALSSC outperforms existing semi-supervised and supervised active learning approaches on image classification datasets.
Authors:Eirini Panteli, Paulo E. Santos, Nabil Humphrey
Title: AquaSignal: An Integrated Framework for Robust Underwater Acoustic Analysis
Abstract:
This paper presents AquaSignal, a modular and scalable pipeline for preprocessing, denoising, classification, and novelty detection of underwater acoustic signals. Designed to operate effectively in noisy and dynamic marine environments, AquaSignal integrates state-of-the-art deep learning architectures to enhance the reliability and accuracy of acoustic signal analysis. The system is evaluated on a combined dataset from the Deepship and Ocean Networks Canada (ONC) benchmarks, providing a diverse set of real-world underwater scenarios. AquaSignal employs a U-Net architecture for denoising, a ResNet18 convolutional neural network for classifying known acoustic events, and an AutoEncoder-based model for unsupervised detection of novel or anomalous signals. To our knowledge, this is the first comprehensive study to apply and evaluate this combination of techniques on maritime vessel acoustic data. Experimental results show that AquaSignal improves signal clarity and task performance, achieving 71% classification accuracy and 91% accuracy in novelty detection. Despite slightly lower classification performance compared to some state-of-the-art models, differences in data partitioning strategies limit direct comparisons. Overall, AquaSignal demonstrates strong potential for real-time underwater acoustic monitoring in scientific, environmental, and maritime domains.
Authors:Prakash Palanivelu Rajmohan, Fred Roosta
Title: Importance Sampling for Nonlinear Models
Abstract:
While norm-based and leverage-score-based methods have been extensively studied for identifying "important" data points in linear models, analogous tools for nonlinear models remain significantly underdeveloped. By introducing the concept of the adjoint operator of a nonlinear map, we address this gap and generalize norm-based and leverage-score-based importance sampling to nonlinear settings. We demonstrate that sampling based on these generalized notions of norm and leverage scores provides approximation guarantees for the underlying nonlinear mapping, similar to linear subspace embeddings. As direct applications, these nonlinear scores not only reduce the computational complexity of training nonlinear models by enabling efficient sampling over large datasets but also offer a novel mechanism for model explainability and outlier detection. Our contributions are supported by both theoretical analyses and experimental results across a variety of supervised learning scenarios.
Authors:Xi Wang, Eric Nalisnick
Title: Are vision language models robust to uncertain inputs?
Abstract:
Robustness against uncertain and ambiguous inputs is a critical challenge for deep learning models. While recent advancements in large scale vision language models (VLMs, e.g. GPT4o) might suggest that increasing model and training dataset size would mitigate this issue, our empirical evaluation shows a more complicated picture. Testing models using two classic uncertainty quantification tasks, anomaly detection and classification under inherently ambiguous conditions, we find that newer and larger VLMs indeed exhibit improved robustness compared to earlier models, but still suffer from a tendency to strictly follow instructions, often causing them to hallucinate confident responses even when faced with unclear or anomalous inputs. Remarkably, for natural images such as ImageNet, this limitation can be overcome without pipeline modifications: simply prompting models to abstain from uncertain predictions enables significant reliability gains, achieving near-perfect robustness in several settings. However, for domain-specific tasks such as galaxy morphology classification, a lack of specialized knowledge prevents reliable uncertainty estimation. Finally, we propose a novel mechanism based on caption diversity to reveal a model's internal uncertainty, enabling practitioners to predict when models will successfully abstain without relying on labeled data.
Authors:Kaustabha Ray, Nelson Mimura Gonzalez, Bruno Wassermann, Rachel Tzoref-Brill, Dean H. Lorenz
Title: Statistical Modeling and Uncertainty Estimation of LLM Inference Systems
Abstract:
Large Language Model (LLM) inference systems present significant challenges in statistical performance characterization due to dynamic workload variations, diverse hardware architectures, and complex interactions between model size, batch processing, and throughput requirements. Accurate statistical characterization enables better workload scheduling, adaptive resource provisioning, and cost-aware inference optimization, making it crucial for improving efficiency in large-scale AI deployments. Traditional analytical models provide explainability but cannot cover the vast diversity of real-world workloads, making it impossible to benchmark every scenario in advance. Machine learning (ML) approaches effectively predict performance for non-benchmarked cases but struggle when extrapolating beyond their observed training space. To address these limitations for LLM inference systems, we propose an Analytical with Learning Augmentation (ALA) framework that bridges analytical modeling with \ml for robust statistical prediction and uncertainty estimation in LLM inference workloads. Our method employs an analytical throughput model with parameters estimated for benchmarked workloads, then extends to unobserved configurations using \ml predictions. We enhance this with simulated annealing to exploit subsets of the workload data point combinations and develop an error predictor. Finally, we quantify uncertainty based on vector space similarity between new and observed workloads to ensure robust generalization. Through extensive experimentation on diverse LLM inference workloads, we demonstrate that our framework achieves low median errors while maintaining adaptability to new inference scenarios.
Authors:Jeremie Blanchard, Lisa Casino, Jordan Gierschendorf
Title: NeurIPS 2024 Ariel Data Challenge: Characterisation of Exoplanetary Atmospheres Using a Data-Centric Approach
Abstract:
The characterization of exoplanetary atmospheres through spectral analysis is a complex challenge. The NeurIPS 2024 Ariel Data Challenge, in collaboration with the European Space Agency's (ESA) Ariel mission, provided an opportunity to explore machine learning techniques for extracting atmospheric compositions from simulated spectral data. In this work, we focus on a data-centric business approach, prioritizing generalization over competition-specific optimization. We briefly outline multiple experimental axes, including feature extraction, signal transformation, and heteroskedastic uncertainty modeling. Our experiments demonstrate that uncertainty estimation plays a crucial role in the Gaussian Log-Likelihood (GLL) score, impacting performance by several percentage points. Despite improving the GLL score by 11%, our results highlight the inherent limitations of tabular modeling and feature engineering for this task, as well as the constraints of a business-driven approach within a Kaggle-style competition framework. Our findings emphasize the trade-offs between model simplicity, interpretability, and generalization in astrophysical data analysis.
Authors:Adam Ulrich, Jan Krňávek, Roman Šenkeřík, Zuzana Komínková Oplatková, Radek Vala
Title: Isolation Forest in Novelty Detection Scenario
Abstract:
Data mining offers a diverse toolbox for extracting meaningful structures from complex datasets, with anomaly detection emerging as a critical subfield particularly in the context of streaming or real-time data. Within anomaly detection, novelty detection focuses on identifying previously unseen patterns after training solely on regular data. While classic algorithms such as One-Class SVM or Local Outlier Factor (LOF) have been widely applied, they often lack interpretability and scalability. In this work, we explore the Half-Space Tree (HST) algorithm, originally proposed for streaming anomaly detection, and propose a novel theoretical modification to adapt it specifically for novelty detection tasks. Our approach is grounded in the idea that anomalies i.e., novelties tend to appear in the higher leaves of the tree, which are less frequently visited by regular instances. We analytically demonstrate the effectiveness of this approach using probabilistic analysis, expected depth (EXD) calculations, and combinatorial reasoning. A comparative analysis of expected depths between our modified HST and the original Isolation Forest highlights that novelty points are significantly more isolated in our approach. This supports the hypothesis that HSTs, with appropriate structural adaptation, can serve as interpretable and efficient novelty detectors. The paper contributes a theoretical foundation and supporting analysis for this adaptation, setting the stage for further application and experimentation.
Authors:Pablo Flores, Olga Graf, Pavlos Protopapas, Karim Pichara
Title: Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
Abstract:
Physics-Informed Neural Networks (PINNs) have been widely used to obtain solutions to various physical phenomena modeled as Differential Equations. As PINNs are not naturally equipped with mechanisms for Uncertainty Quantification, some work has been done to quantify the different uncertainties that arise when dealing with PINNs. In this paper, we use a two-step procedure to train Bayesian Neural Networks that provide uncertainties over the solutions to differential equation systems provided by PINNs. We use available error bounds over PINNs to formulate a heteroscedastic variance that improves the uncertainty estimation. Furthermore, we solve forward problems and utilize the obtained uncertainties when doing parameter estimation in inverse problems in cosmology.
Authors:Yashat Tavakoli, Amilcar Soares, Lourdes Pena
Title: A Novel Multilevel Taxonomical Approach for Describing High-Dimensional Unlabeled Movement Data
Abstract:
Movement data is prevalent across various applications and scientific fields, often characterized by its massive scale and complexity. Exploratory Data Analysis (EDA) plays a crucial role in summarizing and describing such data, enabling researchers to generate insights and support scientific hypotheses. Despite its importance, traditional EDA practices face limitations when applied to high-dimensional, unlabeled movement data. The complexity and multi-faceted nature of this type of data require more advanced methods that go beyond the capabilities of current EDA techniques. This study addresses the gap in current EDA practices by proposing a novel approach that leverages movement variable taxonomies and outlier detection. We hypothesize that organizing movement features into a taxonomy, and applying anomaly detection to combinations of taxonomic nodes, can reveal meaningful patterns and lead to more interpretable descriptions of the data. To test this hypothesis, we introduce TUMD, a new method that integrates movement taxonomies with outlier detection to enhance data analysis and interpretation. TUMD was evaluated across four diverse datasets of moving objects using fixed parameter values. Its effectiveness was assessed through two passes: the first pass categorized the majority of movement patterns as Kinematic, Geometric, or Hybrid for all datasets, while the second pass refined these behaviors into more specific categories such as Speed, Acceleration, or Indentation. TUMD met the effectiveness criteria in three datasets, demonstrating its ability to describe and refine movement behaviors. The results confirmed our hypothesis, showing that the combination of movement taxonomies and anomaly detection successfully uncovers meaningful and interpretable patterns within high-dimensional, unlabeled movement data.
Authors:Walid Rehamnia, Alexandra Getmanskaya, Evgeniy Vasilyev, Vadim Turlapov
Title: TUMLS: Trustful Fully Unsupervised Multi-Level Segmentation for Whole Slide Images of Histology
Abstract:
Digital pathology, augmented by artificial intelligence (AI), holds significant promise for improving the workflow of pathologists. However, challenges such as the labor-intensive annotation of whole slide images (WSIs), high computational demands, and trust concerns arising from the absence of uncertainty estimation in predictions hinder the practical application of current AI methodologies in histopathology. To address these issues, we present a novel trustful fully unsupervised multi-level segmentation methodology (TUMLS) for WSIs. TUMLS adopts an autoencoder (AE) as a feature extractor to identify the different tissue types within low-resolution training data. It selects representative patches from each identified group based on an uncertainty measure and then does unsupervised nuclei segmentation in their respective higher-resolution space without using any ML algorithms. Crucially, this solution integrates seamlessly into clinicians workflows, transforming the examination of a whole WSI into a review of concise, interpretable cross-level insights. This integration significantly enhances and accelerates the workflow while ensuring transparency. We evaluated our approach using the UPENN-GBM dataset, where the AE achieved a mean squared error (MSE) of 0.0016. Additionally, nucleus segmentation is assessed on the MoNuSeg dataset, outperforming all unsupervised approaches with an F1 score of 77.46% and a Jaccard score of 63.35%. These results demonstrate the efficacy of TUMLS in advancing the field of digital pathology.
Authors:Chenyu Han, Corentin Dumery
Title: View-Dependent Uncertainty Estimation of 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has become increasingly popular in 3D scene reconstruction for its high visual accuracy. However, uncertainty estimation of 3DGS scenes remains underexplored and is crucial to downstream tasks such as asset extraction and scene completion. Since the appearance of 3D gaussians is view-dependent, the color of a gaussian can thus be certain from an angle and uncertain from another. We thus propose to model uncertainty in 3DGS as an additional view-dependent per-gaussian feature that can be modeled with spherical harmonics. This simple yet effective modeling is easily interpretable and can be integrated into the traditional 3DGS pipeline. It is also significantly faster than ensemble methods while maintaining high accuracy, as demonstrated in our experiments.
Authors:Mohammed Attaoui, Fabrizio Pastore
Title: GAN-enhanced Simulation-driven DNN Testing in Absence of Ground Truth
Abstract:
The generation of synthetic inputs via simulators driven by search algorithms is essential for cost-effective testing of Deep Neural Network (DNN) components for safety-critical systems. However, in many applications, simulators are unable to produce the ground-truth data needed for automated test oracles and to guide the search process. To tackle this issue, we propose an approach for the generation of inputs for computer vision DNNs that integrates a generative network to ensure simulator fidelity and employs heuristic-based search fitnesses that leverage transformation consistency, noise resistance, surprise adequacy, and uncertainty estimation. We compare the performance of our fitnesses with that of a traditional fitness function leveraging ground truth; further, we assess how the integration of a GAN not leveraging the ground truth impacts on test and retraining effectiveness. Our results suggest that leveraging transformation consistency is the best option to generate inputs for both DNN testing and retraining; it maximizes input diversity, spots the inputs leading to worse DNN performance, and leads to best DNN performance after retraining. Besides enabling simulator-based testing in the absence of ground truth, our findings pave the way for testing solutions that replace costly simulators with diffusion and large language models, which might be more affordable than simulators, but cannot generate ground-truth data.
Authors:Danil Kuzin, Olga Isupova, Steven Reece, Brooke D Simmons
Title: Improving Deep Ensembles by Estimating Confusion Matrices
Abstract:
Ensembling in deep learning improves accuracy and calibration over single networks. The traditional aggregation approach, ensemble averaging, treats all individual networks equally by averaging their outputs. Inspired by crowdsourcing we propose an aggregation method called soft Dawid Skene for deep ensembles that estimates confusion matrices of ensemble members and weighs them according to their inferred performance. Soft Dawid Skene aggregates soft labels in contrast to hard labels often used in crowdsourcing. We empirically show the superiority of soft Dawid Skene in accuracy, calibration and out of distribution detection in comparison to ensemble averaging in extensive experiments.
Authors:Prasenjit Dey, Srujana Merugu, Sivaramakrishnan Kaveri
Title: Uncertainty-Aware Fusion: An Ensemble Framework for Mitigating Hallucinations in Large Language Models
Abstract:
Large Language Models (LLMs) are known to hallucinate and generate non-factual outputs which can undermine user trust. Traditional methods to directly mitigate hallucinations, such as representation editing and contrastive decoding, often require additional training data and involve high implementation complexity. While ensemble-based approaches harness multiple LLMs to tap into the "wisdom of crowds", these methods overlook uncertainties in individual model responses. Recent studies reveal that uncertainty estimation can enable LLMs to self-assess the likelihood of generating hallucinations. In this work, we focus on factoid question answering (QA) and observe that LLMs accuracy and self-assessment capabilities vary widely with different models excelling in different scenarios. Leveraging this insight, we propose Uncertainty-Aware Fusion (UAF), an ensemble framework to reduces hallucinations by strategically combining multiple LLM based on their accuracy and self-assessment abilities. Empirical results on several public benchmark datasets show that UAF outperforms state-of-the-art hallucination mitigation methods by $8\%$ in factual accuracy, while either narrowing or surpassing the performance gap with GPT-4.
Authors:B. Sun, P. Liò
Title: EU-Nets: Enhanced, Explainable and Parsimonious U-Nets
Abstract:
In this study, we propose MHEX+, a framework adaptable to any U-Net architecture. Built upon MHEX+, we introduce novel U-Net variants, EU-Nets, which enhance explainability and uncertainty estimation, addressing the limitations of traditional U-Net models while improving performance and stability. A key innovation is the Equivalent Convolutional Kernel, which unifies consecutive convolutional layers, boosting interpretability. For uncertainty estimation, we propose the collaboration gradient approach, measuring gradient consistency across decoder layers. Notably, EU-Nets achieve an average accuracy improvement of 1.389\% and a variance reduction of 0.83\% across all networks and datasets in our experiments, requiring fewer than 0.1M parameters.
Authors:Aditi De, NeuroBits Labs
Title: ZIA: A Theoretical Framework for Zero-Input AI
Abstract:
Zero-Input AI (ZIA) introduces a novel framework for human-computer interaction by enabling proactive intent prediction without explicit user commands. It integrates gaze tracking, bio-signals (EEG, heart rate), and contextual data (time, location, usage history) into a multi-modal model for real-time inference, targeting <100 ms latency. The proposed architecture employs a transformer-based model with cross-modal attention, variational Bayesian inference for uncertainty estimation, and reinforcement learning for adaptive optimization. To support deployment on edge devices (CPUs, TPUs, NPUs), ZIA utilizes quantization, weight pruning, and linear attention to reduce complexity from quadratic to linear with sequence length. Theoretical analysis establishes an information-theoretic bound on prediction error and demonstrates how multi-modal fusion improves accuracy over single-modal approaches. Expected performance suggests 85-90% accuracy with EEG integration and 60-100 ms inference latency. ZIA provides a scalable, privacy-preserving framework for accessibility, healthcare, and consumer applications, advancing AI toward anticipatory intelligence.
Authors:Aram Ebtekar, Yuhao Wang, Dominik Janzing
Title: Toward Universal Laws of Outlier Propagation
Abstract:
When a variety of anomalous features motivate flagging different samples as outliers, Algorithmic Information Theory (AIT) offers a principled way to unify them in terms of a sample's randomness deficiency. Subject to the algorithmic Markov condition on a causal Bayesian network, we show that the randomness deficiency of a joint sample decomposes into a sum of randomness deficiencies at each causal mechanism. Consequently, anomalous observations can be attributed to their root causes, i.e., the mechanisms that behaved anomalously. As an extension of Levin's law of randomness conservation, we show that weak outliers cannot cause strong ones. We show how these information theoretic laws clarify our understanding of outlier detection and attribution, in the context of more specialized outlier scores from prior literature.
Authors:Costin F. Ciusdel, Alex Serban, Tiziano Passerini
Title: ConceptVAE: Self-Supervised Fine-Grained Concept Disentanglement from 2D Echocardiographies
Abstract:
While traditional self-supervised learning methods improve performance and robustness across various medical tasks, they rely on single-vector embeddings that may not capture fine-grained concepts such as anatomical structures or organs. The ability to identify such concepts and their characteristics without supervision has the potential to improve pre-training methods, and enable novel applications such as fine-grained image retrieval and concept-based outlier detection. In this paper, we introduce ConceptVAE, a novel pre-training framework that detects and disentangles fine-grained concepts from their style characteristics in a self-supervised manner. We present a suite of loss terms and model architecture primitives designed to discretise input data into a preset number of concepts along with their local style. We validate ConceptVAE both qualitatively and quantitatively, demonstrating its ability to detect fine-grained anatomical structures such as blood pools and septum walls from 2D cardiac echocardiographies. Quantitatively, ConceptVAE outperforms traditional self-supervised methods in tasks such as region-based instance retrieval, semantic segmentation, out-of-distribution detection, and object detection. Additionally, we explore the generation of in-distribution synthetic data that maintains the same concepts as the training data but with distinct styles, highlighting its potential for more calibrated data generation. Overall, our study introduces and validates a promising new pre-training technique based on concept-style disentanglement, opening multiple avenues for developing models for medical image analysis that are more interpretable and explainable than black-box approaches.
Authors:Edward T. Reehorst, Philip Schniter
Title: Score Combining for Contrastive OOD Detection
Abstract:
In out-of-distribution (OOD) detection, one is asked to classify whether a test sample comes from a known inlier distribution or not. We focus on the case where the inlier distribution is defined by a training dataset and there exists no additional knowledge about the novelties that one is likely to encounter. This problem is also referred to as novelty detection, one-class classification, and unsupervised anomaly detection. The current literature suggests that contrastive learning techniques are state-of-the-art for OOD detection. We aim to improve on those techniques by combining/ensembling their scores using the framework of null hypothesis testing and, in particular, a novel generalized likelihood ratio test (GLRT). We demonstrate that our proposed GLRT-based technique outperforms the state-of-the-art CSI and SupCSI techniques from Tack et al. 2020 in dataset-vs-dataset experiments with CIFAR-10, SVHN, LSUN, ImageNet, and CIFAR-100, as well as leave-one-class-out experiments with CIFAR-10. We also demonstrate that our GLRT outperforms the score-combining methods of Fisher, Bonferroni, Simes, Benjamini-Hochwald, and Stouffer in our application.
Authors:Maxime Di Folco, Gabriel Bernardino, Patrick Clarysse, Nicolas Duchateau
Title: High-dimensional multimodal uncertainty estimation by manifold alignment:Application to 3D right ventricular strain computations
Abstract:
Confidence in the results is a key ingredient to improve the adoption of machine learning methods by clinicians. Uncertainties on the results have been considered in the literature, but mostly those originating from the learning and processing methods. Uncertainty on the data is hardly challenged, as a single sample is often considered representative enough of each subject included in the analysis. In this paper, we propose a representation learning strategy to estimate local uncertainties on a physiological descriptor (here, myocardial deformation) previously obtained from medical images by different definitions or computations. We first use manifold alignment to match the latent representations associated to different high-dimensional input descriptors. Then, we formulate plausible distributions of latent uncertainties, and finally exploit them to reconstruct uncertainties on the input high-dimensional descriptors. We demonstrate its relevance for the quantification of myocardial deformation (strain) from 3D echocardiographic image sequences of the right ventricle, for which a lack of consensus exists in its definition and which directional component to use. We used a database of 100 control subjects with right ventricle overload, for which different types of strain are available at each point of the right ventricle endocardial surface mesh. Our approach quantifies local uncertainties on myocardial deformation from different descriptors defining this physiological concept. Such uncertainties cannot be directly estimated by local statistics on such descriptors, potentially of heterogeneous types. Beyond this controlled illustrative application, our methodology has the potential to be generalized to many other population analyses considering heterogeneous high-dimensional descriptors.
Authors:F. S. Pezzicoli, V. Ros, F. P. Landes, M. Baity-Jesi
Title: Class Imbalance in Anomaly Detection: Learning from an Exactly Solvable Model
Abstract:
Class imbalance (CI) is a longstanding problem in machine learning, slowing down training and reducing performances. Although empirical remedies exist, it is often unclear which ones work best and when, due to the lack of an overarching theory. We address a common case of imbalance, that of anomaly (or outlier) detection. We provide a theoretical framework to analyze, interpret and address CI. It is based on an exact solution of the teacher-student perceptron model, through replica theory. Within this framework, one can distinguish several sources of CI: either intrinsic, train or test imbalance. Our analysis reveals that the optimal train imbalance is generally different from 50%, with a non trivial dependence on the intrinsic imbalance, the abundance of data and on the noise in the learning. Moreover, there is a crossover between a small noise training regime where results are independent of the noise level to a high noise regime where performances quickly degrade with noise. Our results challenge some of the conventional wisdom on CI and offer practical guidelines to address it.
Authors:Rohit Mapakshi, Sayma Akther, Mark Stamp
Title: Temporal Analysis of Adversarial Attacks in Federated Learning
Abstract:
In this paper, we experimentally analyze the robustness of selected Federated Learning (FL) systems in the presence of adversarial clients. We find that temporal attacks significantly affect model performance in the FL models tested, especially when the adversaries are active throughout or during the later rounds. We consider a variety of classic learning models, including Multinominal Logistic Regression (MLR), Random Forest, XGBoost, Support Vector Classifier (SVC), as well as various Neural Network models including Multilayer Perceptron (MLP), Convolution Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Our results highlight the effectiveness of temporal attacks and the need to develop strategies to make the FL process more robust against such attacks. We also briefly consider the effectiveness of defense mechanisms, including outlier detection in the aggregation algorithm.
Authors:Konrad Sundsgaard, Kutay Bölat, Guangya Yang
Title: Data Enrichment Opportunities for Distribution Grid Cable Networks using Variational Autoencoders
Abstract:
Electricity distribution cable networks suffer from incomplete and unbalanced data, hindering the effectiveness of machine learning models for predictive maintenance and reliability evaluation. Features such as the installation date of the cables are frequently missing. To address data scarcity, this study investigates the application of Variational Autoencoders (VAEs) for data enrichment, synthetic data generation, imbalanced data handling, and outlier detection. Based on a proof-of-concept case study for Denmark, targeting the imputation of missing age information in cable network asset registers, the analysis underlines the potential of generative models to support data-driven maintenance. However, the study also highlights several areas for improvement, including enhanced feature importance analysis, incorporating network characteristics and external features, and handling biases in missing data. Future initiatives should expand the application of VAEs by incorporating semi-supervised learning, advanced sampling techniques, and additional distribution grid elements, including low-voltage networks, into the analysis.
Authors:Fuhang Liang, Rucong Xu, Deng Lin
Title: AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks
Abstract:
Current deep regression models usually learn in a point-wise way that treats each sample as an independent input, neglecting the relative ordering among different data. Consequently, the regression model could neglect the data's interrelationships, potentially resulting in suboptimal performance. Moreover, the existence of aleatoric uncertainty in the training data may drive the model to capture non-generalizable patterns, contributing to increased overfitting. To address these issues, we propose a novel adaptive pairwise learning framework for regression tasks (AdaPRL) which leverages the relative differences between data points and integrates with deep probabilistic models to quantify the uncertainty associated with the predictions. Additionally, we adapt AdaPRL for applications in multi-task learning and multivariate time series forecasting. Extensive experiments with several real-world regression datasets including recommendation systems, age prediction, time series forecasting, natural language understanding, finance, and industry datasets show that AdaPRL is compatible with different backbone networks in various tasks and achieves state-of-the-art performance on the vast majority of tasks without extra inference cost, highlighting its notable potential including enhancing prediction accuracy and ranking ability, increasing generalization capability, improving robustness to noisy data, improving resilience to reduced data, and enhancing interpretability. Experiments also show that AdaPRL can be seamlessly incorporated into recently proposed regression frameworks to gain performance improvement.
Authors:Pei-Kang Lee, Jun-Cheng Chen, Ja-Ling Wu
Title: Harnessing Large Language and Vision-Language Models for Robust Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection has seen significant advancements with zero-shot approaches by leveraging the powerful Vision-Language Models (VLMs) such as CLIP. However, prior research works have predominantly focused on enhancing Far-OOD performance, while potentially compromising Near-OOD efficacy, as observed from our pilot study. To address this issue, we propose a novel strategy to enhance zero-shot OOD detection performances for both Far-OOD and Near-OOD scenarios by innovatively harnessing Large Language Models (LLMs) and VLMs. Our approach first exploit an LLM to generate superclasses of the ID labels and their corresponding background descriptions followed by feature extraction using CLIP. We then isolate the core semantic features for ID data by subtracting background features from the superclass features. The refined representation facilitates the selection of more appropriate negative labels for OOD data from a comprehensive candidate label set of WordNet, thereby enhancing the performance of zero-shot OOD detection in both scenarios. Furthermore, we introduce novel few-shot prompt tuning and visual prompt tuning to adapt the proposed framework to better align with the target distribution. Experimental results demonstrate that the proposed approach consistently outperforms current state-of-the-art methods across multiple benchmarks, with an improvement of up to 2.9% in AUROC and a reduction of up to 12.6% in FPR95. Additionally, our method exhibits superior robustness against covariate shift across different domains, further highlighting its effectiveness in real-world scenarios.
Authors:Louis L Chen, Roberto Szechtman, Matan Seri
Title: On the Adversarial Robustness of Benjamini Hochberg
Abstract:
The Benjamini-Hochberg (BH) procedure is widely used to control the false detection rate (FDR) in multiple testing. Applications of this control abound in drug discovery, forensics, anomaly detection, and, in particular, machine learning, ranging from nonparametric outlier detection to out-of-distribution detection and one-class classification methods. Considering this control could be relied upon in critical safety/security contexts, we investigate its adversarial robustness. More precisely, we study under what conditions BH does and does not exhibit adversarial robustness, we present a class of simple and easily implementable adversarial test-perturbation algorithms, and we perform computational experiments. With our algorithms, we demonstrate that there are conditions under which BH's control can be significantly broken with relatively few (even just one) test score perturbation(s), and provide non-asymptotic guarantees on the expected adversarial-adjustment to FDR. Our technical analysis involves a combinatorial reframing of the BH procedure as a ``balls into bins'' process, and drawing a connection to generalized ballot problems to facilitate an information-theoretic approach for deriving non-asymptotic lower bounds.
Authors:ZeinabSadat Taghavi, Hossein Mirzaei
Title: Backdooring Outlier Detection Methods: A Novel Attack Approach
Abstract:
There have been several efforts in backdoor attacks, but these have primarily focused on the closed-set performance of classifiers (i.e., classification). This has left a gap in addressing the threat to classifiers' open-set performance, referred to as outlier detection in the literature. Reliable outlier detection is crucial for deploying classifiers in critical real-world applications such as autonomous driving and medical image analysis. First, we show that existing backdoor attacks fall short in affecting the open-set performance of classifiers, as they have been specifically designed to confuse intra-closed-set decision boundaries. In contrast, an effective backdoor attack for outlier detection needs to confuse the decision boundary between the closed and open sets. Motivated by this, in this study, we propose BATOD, a novel Backdoor Attack targeting the Outlier Detection task. Specifically, we design two categories of triggers to shift inlier samples to outliers and vice versa. We evaluate BATOD using various real-world datasets and demonstrate its superior ability to degrade the open-set performance of classifiers compared to previous attacks, both before and after applying defenses.
Authors:Arnav Kharbanda, Advait Chandorkar
Title: Divergent Ensemble Networks: Enhancing Uncertainty Estimation with Shared Representations and Independent Branching
Abstract:
Ensemble learning has proven effective in improving predictive performance and estimating uncertainty in neural networks. However, conventional ensemble methods often suffer from redundant parameter usage and computational inefficiencies due to entirely independent network training. To address these challenges, we propose the Divergent Ensemble Network (DEN), a novel architecture that combines shared representation learning with independent branching. DEN employs a shared input layer to capture common features across all branches, followed by divergent, independently trainable layers that form an ensemble. This shared-to-branching structure reduces parameter redundancy while maintaining ensemble diversity, enabling efficient and scalable learning.
Authors:Michele De Vita, Vasileios Belagiannis
Title: Diffusion Model Guided Sampling with Pixel-Wise Aleatoric Uncertainty Estimation
Abstract:
Despite the remarkable progress in generative modelling, current diffusion models lack a quantitative approach to assess image quality. To address this limitation, we propose to estimate the pixel-wise aleatoric uncertainty during the sampling phase of diffusion models and utilise the uncertainty to improve the sample generation quality. The uncertainty is computed as the variance of the denoising scores with a perturbation scheme that is specifically designed for diffusion models. We then show that the aleatoric uncertainty estimates are related to the second-order derivative of the diffusion noise distribution. We evaluate our uncertainty estimation algorithm and the uncertainty-guided sampling on the ImageNet and CIFAR-10 datasets. In our comparisons with the related work, we demonstrate promising results in filtering out low quality samples. Furthermore, we show that our guided approach leads to better sample generation in terms of FID scores.
Authors:Somjit Nath, Yik Chau Lui, Siqi Liu
Title: Unsupervised Event Outlier Detection in Continuous Time
Abstract:
Event sequence data record the occurrences of events in continuous time. Event sequence forecasting based on temporal point processes (TPPs) has been extensively studied, but outlier or anomaly detection, especially without any supervision from humans, is still underexplored. In this work, we develop, to the best our knowledge, the first unsupervised outlier detection approach to detecting abnormal events. Our novel unsupervised outlier detection framework is based on ideas from generative adversarial networks (GANs) and reinforcement learning (RL). We train a 'generator' that corrects outliers in the data with a 'discriminator' that learns to discriminate the corrected data from the real data, which may contain outliers. A key insight is that if the generator made a mistake in the correction, it would generate anomalies that are different from the anomalies in the real data, so it serves as data augmentation for the discriminator learning. Different from typical GAN-based outlier detection approaches, our method employs the generator to detect outliers in an online manner. The experimental results show that our method can detect event outliers more accurately than the state-of-the-art approaches.
Authors:Xinzhe Cao, Yadong Xu, Xiaofeng Yang
Title: Customer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout
Abstract:
Accurately predicting customer Lifetime Value (LTV) is crucial for companies to optimize their revenue strategies. Traditional deep learning models for LTV prediction are effective but typically provide only point estimates and fail to capture model uncertainty in modeling user behaviors. To address this limitation, we propose a novel approach that enhances the architecture of purely neural network models by incorporating the Monte Carlo Dropout (MCD) framework. We benchmarked the proposed method using data from one of the most downloaded mobile games in the world, and demonstrated a substantial improvement in predictive Top 5\% Mean Absolute Percentage Error compared to existing state-of-the-art methods. Additionally, our approach provides confidence metric as an extra dimension for performance evaluation across various neural network models, facilitating more informed business decisions.
Authors:Maryam Shoaeinaeini, Brent Harrison
Title: Guiding Reinforcement Learning Using Uncertainty-Aware Large Language Models
Abstract:
Human guidance in reinforcement learning (RL) is often impractical for large-scale applications due to high costs and time constraints. Large Language Models (LLMs) offer a promising alternative to mitigate RL sample inefficiency and potentially replace human trainers. However, applying LLMs as RL trainers is challenging due to their overconfidence and less reliable solutions in sequential tasks. We address this limitation by introducing a calibrated guidance system that uses Monte Carlo Dropout to enhance LLM advice reliability by assessing prediction variances from multiple forward passes. Additionally, we develop a novel RL policy shaping method based on dynamic model average entropy to adjust the LLM's influence on RL policies according to guidance uncertainty. This approach ensures robust RL training by relying on reliable LLM guidance. To validate our contributions, we conduct extensive experiments in a Minigrid environment with three goals in varying environment sizes. The results showcase superior model performance compared to uncalibrated LLMs, unguided RL, and calibrated LLMs with different shaping policies. Moreover, we analyze various uncertainty estimation methods, demonstrating the effectiveness of average entropy in reflecting higher uncertainty in incorrect guidance. These findings highlight the persistent overconfidence in fine-tuned LLMs and underscore the importance of effective calibration in sequential decision-making problems.
Authors:Richard Kurle, Alexej Klushyn, Ralf Herbrich
Title: BALI: Learning Neural Networks via Bayesian Layerwise Inference
Abstract:
We introduce a new method for learning Bayesian neural networks, treating them as a stack of multivariate Bayesian linear regression models. The main idea is to infer the layerwise posterior exactly if we know the target outputs of each layer. We define these pseudo-targets as the layer outputs from the forward pass, updated by the backpropagated gradients of the objective function. The resulting layerwise posterior is a matrix-normal distribution with a Kronecker-factorized covariance matrix, which can be efficiently inverted. Our method extends to the stochastic mini-batch setting using an exponential moving average over natural-parameter terms, thus gradually forgetting older data. The method converges in few iterations and performs as well as or better than leading Bayesian neural network methods on various regression, classification, and out-of-distribution detection benchmarks.
Authors:Kushankur Ghosh, Murilo Coelho Naldi, Jörg Sander, Euijin Choo
Title: Unsupervised Parameter-free Outlier Detection using HDBSCAN* Outlier Profiles
Abstract:
In machine learning and data mining, outliers are data points that significantly differ from the dataset and often introduce irrelevant information that can induce bias in its statistics and models. Therefore, unsupervised methods are crucial to detect outliers if there is limited or no information about them. Global-Local Outlier Scores based on Hierarchies (GLOSH) is an unsupervised outlier detection method within HDBSCAN*, a state-of-the-art hierarchical clustering method. GLOSH estimates outlier scores for each data point by comparing its density to the highest density of the region they reside in the HDBSCAN* hierarchy. GLOSH may be sensitive to HDBSCAN*'s minpts parameter that influences density estimation. With limited knowledge about the data, choosing an appropriate minpts value beforehand is challenging as one or some minpts values may better represent the underlying cluster structure than others. Additionally, in the process of searching for ``potential outliers'', one has to define the number of outliers n a dataset has, which may be impractical and is often unknown. In this paper, we propose an unsupervised strategy to find the ``best'' minpts value, leveraging the range of GLOSH scores across minpts values to identify the value for which GLOSH scores can best identify outliers from the rest of the dataset. Moreover, we propose an unsupervised strategy to estimate a threshold for classifying points into inliers and (potential) outliers without the need to pre-define any value. Our experiments show that our strategies can automatically find the minpts value and threshold that yield the best or near best outlier detection results using GLOSH.
Authors:Irum Mehboob, Li Sun, Alireza Astegarpanah, Rustam Stolkin
Title: Self-supervised cross-modality learning for uncertainty-aware object detection and recognition in applications which lack pre-labelled training data
Abstract:
This paper shows how an uncertainty-aware, deep neural network can be trained to detect, recognise and localise objects in 2D RGB images, in applications lacking annotated train-ng datasets. We propose a self-supervising teacher-student pipeline, in which a relatively simple teacher classifier, trained with only a few labelled 2D thumbnails, automatically processes a larger body of unlabelled RGB-D data to teach a student network based on a modified YOLOv3 architecture. Firstly, 3D object detection with back projection is used to automatically extract and teach 2D detection and localisation information to the student network. Secondly, a weakly supervised 2D thumbnail classifier, with minimal training on a small number of hand-labelled images, is used to teach object category recognition. Thirdly, we use a Gaussian Process GP to encode and teach a robust uncertainty estimation functionality, so that the student can output confidence scores with each categorization. The resulting student significantly outperforms the same YOLO architecture trained directly on the same amount of labelled data. Our GP-based approach yields robust and meaningful uncertainty estimations for complex industrial object classifications. The end-to-end network is also capable of real-time processing, needed for robotics applications. Our method can be applied to many important industrial tasks, where labelled datasets are typically unavailable. In this paper, we demonstrate an example of detection, localisation, and object category recognition of nuclear mixed-waste materials in highly cluttered and unstructured scenes. This is critical for robotic sorting and handling of legacy nuclear waste, which poses complex environmental remediation challenges in many nuclearised nations.
Authors:Yashvir S. Grewal, Edwin V. Bonilla, Thang D. Bui
Title: Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings
Abstract:
Accurately quantifying uncertainty in large language models (LLMs) is crucial for their reliable deployment, especially in high-stakes applications. Current state-of-the-art methods for measuring semantic uncertainty in LLMs rely on strict bidirectional entailment criteria between multiple generated responses and also depend on sequence likelihoods. While effective, these approaches often overestimate uncertainty due to their sensitivity to minor wording differences, additional correct information, and non-important words in the sequence. We propose a novel approach that leverages semantic embeddings to achieve smoother and more robust estimation of semantic uncertainty in LLMs. By capturing semantic similarities without depending on sequence likelihoods, our method inherently reduces any biases introduced by irrelevant words in the answers. Furthermore, we introduce an amortised version of our approach by explicitly modelling semantics as latent variables in a joint probabilistic model. This allows for uncertainty estimation in the embedding space with a single forward pass, significantly reducing computational overhead compared to existing multi-pass methods. Experiments across multiple question-answering datasets and frontier LLMs demonstrate that our embedding-based methods provide more accurate and nuanced uncertainty quantification than traditional approaches.
Authors:Seunghyeon Shin, Seokjin Lee
Title: Representational learning for an anomalous sound detection system with source separation model
Abstract:
The detection of anomalous sounds in machinery operation presents a significant challenge due to the difficulty in generalizing anomalous acoustic patterns. This task is typically approached as an unsupervised learning or novelty detection problem, given the complexities associated with the acquisition of comprehensive anomalous acoustic data. Conventional methodologies for training anomalous sound detection systems primarily employ auto-encoder architectures or representational learning with auxiliary tasks. However, both approaches have inherent limitations. Auto-encoder structures are constrained to utilizing only the target machine's operational sounds, while training with auxiliary tasks, although capable of incorporating diverse acoustic inputs, may yield representations that lack correlation with the characteristic acoustic signatures of anomalous conditions. We propose a training method based on the source separation model (CMGAN) that aims to isolate non-target machine sounds from a mixture of target and non-target class acoustic signals. This approach enables the effective utilization of diverse machine sounds and facilitates the training of complex neural network architectures with limited sample sizes. Our experimental results demonstrate that the proposed method yields better performance compared to both conventional auto-encoder training approaches and source separation techniques that focus on isolating target machine signals. Moreover, our experimental results demonstrate that the proposed method exhibits the potential for enhanced representation learning as the quantity of non-target data increases, even while maintaining a constant volume of target class data.
Authors:Pau Ferrer-Cid, Jose M. Barcelo-Ordinas, Jorge Garcia-Vidal
Title: A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
Abstract:
The development of Internet of Things (IoT) technologies has led to the widespread adoption of monitoring networks for a wide variety of applications, such as smart cities, environmental monitoring, and precision agriculture. A major research focus in recent years has been the development of graph-based techniques to improve the quality of data from sensor networks, a key aspect for the use of sensed data in decision-making processes, digital twins, and other applications. Emphasis has been placed on the development of machine learning and signal processing techniques over graphs, taking advantage of the benefits provided by the use of structured data through a graph topology. Many technologies such as the graph signal processing (GSP) or the successful graph neural networks (GNNs) have been used for data quality enhancement tasks. In this survey, we focus on graph-based models for data quality control in monitoring sensor networks. Furthermore, we delve into the technical details that are commonly leveraged for providing powerful graph-based solutions for data quality tasks in sensor networks, including missing value imputation, outlier detection, or virtual sensing. To conclude, we have identified future trends and challenges such as graph-based models for digital twins or model transferability and generalization.
Authors:K. Darshana Abeyrathna, Sara El Mekkaoui, Andreas Hafver, Christian Agrell
Title: The Probabilistic Tsetlin Machine: A Novel Approach to Uncertainty Quantification
Abstract:
Tsetlin Machines (TMs) have emerged as a compelling alternative to conventional deep learning methods, offering notable advantages such as smaller memory footprint, faster inference, fault-tolerant properties, and interpretability. Although various adaptations of TMs have expanded their applicability across diverse domains, a fundamental gap remains in understanding how TMs quantify uncertainty in their predictions. In response, this paper introduces the Probabilistic Tsetlin Machine (PTM) framework, aimed at providing a robust, reliable, and interpretable approach for uncertainty quantification. Unlike the original TM, the PTM learns the probability of staying on each state of each Tsetlin Automaton (TA) across all clauses. These probabilities are updated using the feedback tables that are part of the TM framework: Type I and Type II feedback. During inference, TAs decide their actions by sampling states based on learned probability distributions, akin to Bayesian neural networks when generating weight values. In our experimental analysis, we first illustrate the spread of the probabilities across TA states for the noisy-XOR dataset. Then we evaluate the PTM alongside benchmark models using both simulated and real-world datasets. The experiments on the simulated dataset reveal the PTM's effectiveness in uncertainty quantification, particularly in delineating decision boundaries and identifying regions of high uncertainty. Moreover, when applied to multiclass classification tasks using the Iris dataset, the PTM demonstrates competitive performance in terms of predictive entropy and expected calibration error, showcasing its potential as a reliable tool for uncertainty estimation. Our findings underscore the importance of selecting appropriate models for accurate uncertainty quantification in predictive tasks, with the PTM offering a particularly interpretable and effective solution.
Authors:M. V. Kornilov, V. S. Korolev, K. L. Malanchev, A. D. Lavrukhina, E. Russeil, T. A. Semenikhin, E. Gangler, E. E. O. Ishida, M. V. Pruzhinskaya, A. A. Volnova, S. Sreejith
Title: Coniferest: a complete active anomaly detection framework
Abstract:
We present coniferest, an open source generic purpose active anomaly detection framework written in Python. The package design and implemented algorithms are described. Currently, static outlier detection analysis is supported via the Isolation forest algorithm. Moreover, Active Anomaly Discovery (AAD) and Pineforest algorithms are available to tackle active anomaly detection problems. The algorithms and package performance are evaluated on a series of synthetic datasets. We also describe a few success cases which resulted from applying the package to real astronomical data in active anomaly detection tasks within the SNAD project.
Authors:Ng Wen Zheng Terence, Chen Jianda
Title: Dual Action Policy for Robust Sim-to-Real Reinforcement Learning
Abstract:
This paper presents Dual Action Policy (DAP), a novel approach to address the dynamics mismatch inherent in the sim-to-real gap of reinforcement learning. DAP uses a single policy to predict two sets of actions: one for maximizing task rewards in simulation and another specifically for domain adaptation via reward adjustments. This decoupling makes it easier to maximize the overall reward in the source domain during training. Additionally, DAP incorporates uncertainty-based exploration during training to enhance agent robustness. Experimental results demonstrate DAP's effectiveness in bridging the sim-to-real gap, outperforming baselines on challenging tasks in simulation, and further improvement is achieved by incorporating uncertainty estimation.
Authors:Daniel Salnikov, Kevin Michalewicz, Dan Leonte
Title: Lifted Coefficient of Determination: Fast model-free prediction intervals and likelihood-free model comparison
Abstract:
We propose the $\textit{lifted linear model}$, and derive model-free prediction intervals that become tighter as the correlation between predictions and observations increases. These intervals motivate the $\textit{Lifted Coefficient of Determination}$, a model comparison criterion for arbitrary loss functions in prediction-based settings, e.g., regression, classification or counts. We extend the prediction intervals to more general error distributions, and propose a fast model-free outlier detection algorithm for regression. Finally, we illustrate the framework via numerical experiments.
Authors:Hanieh Shojaei, Qianqian Zou, Max Mehltretter
Title: Uncertainty Estimation and Out-of-Distribution Detection for LiDAR Scene Semantic Segmentation
Abstract:
Safe navigation in new environments requires autonomous vehicles and robots to accurately interpret their surroundings, relying on LiDAR scene segmentation, out-of-distribution (OOD) obstacle detection, and uncertainty computation. We propose a method to distinguish in-distribution (ID) from OOD samples and quantify both epistemic and aleatoric uncertainties using the feature space of a single deterministic model. After training a semantic segmentation network, a Gaussian Mixture Model (GMM) is fitted to its feature space. OOD samples are detected by checking if their squared Mahalanobis distances to each Gaussian component conform to a chi-squared distribution, eliminating the need for an additional OOD training set. Given that the estimated mean and covariance matrix of a multivariate Gaussian distribution follow Gaussian and Inverse-Wishart distributions, multiple GMMs are generated by sampling from these distributions to assess epistemic uncertainty through classification variability. Aleatoric uncertainty is derived from the entropy of responsibility values within Gaussian components. Comparing our method with deep ensembles and logit-sampling for uncertainty computation demonstrates its superior performance in real-world applications for quantifying epistemic and aleatoric uncertainty, as well as detecting OOD samples. While deep ensembles miss some highly uncertain samples, our method successfully detects them and assigns high epistemic uncertainty.
Authors:Giovanni Messuti, ortensia Amoroso, Ferdinando Napolitano, Mariarosaria Falanga, Paolo Capuano, Silvia Scarpetta
Title: Uncertainty estimation via ensembles of deep learning models and dropout layers for seismic traces
Abstract:
Deep learning models have demonstrated remarkable success in various fields, including seismology. However, one major challenge in deep learning is the presence of mislabeled examples. Additionally, accurately estimating model uncertainty is another challenge in machine learning. In this study, we develop Convolutional Neural Networks (CNNs) to classify seismic waveforms based on first-motion polarity. We trained multiple CNN models with different settings. We also constructed ensembles of networks to estimate uncertainty. The results showed that each training setting achieved satisfactory performances, with the ensemble method outperforming individual networks in uncertainty estimation. We observe that the uncertainty estimation ability of the ensembles of networks can be enhanced using dropout layers. In addition, comparisons among different training settings revealed that the use of dropout improved the robustness of networks to mislabeled examples.
Authors:Marvin Tom Teichmann, Manasi Datar, Lisa Kratzke, Fernando Vega, Florin C. Ghesu
Title: Towards Integrating Epistemic Uncertainty Estimation into the Radiotherapy Workflow
Abstract:
The precision of contouring target structures and organs-at-risk (OAR) in radiotherapy planning is crucial for ensuring treatment efficacy and patient safety. Recent advancements in deep learning (DL) have significantly improved OAR contouring performance, yet the reliability of these models, especially in the presence of out-of-distribution (OOD) scenarios, remains a concern in clinical settings. This application study explores the integration of epistemic uncertainty estimation within the OAR contouring workflow to enable OOD detection in clinically relevant scenarios, using specifically compiled data. Furthermore, we introduce an advanced statistical method for OOD detection to enhance the methodological framework of uncertainty estimation. Our empirical evaluation demonstrates that epistemic uncertainty estimation is effective in identifying instances where model predictions are unreliable and may require an expert review. Notably, our approach achieves an AUC-ROC of 0.95 for OOD detection, with a specificity of 0.95 and a sensitivity of 0.92 for implant cases, underscoring its efficacy. This study addresses significant gaps in the current research landscape, such as the lack of ground truth for uncertainty estimation and limited empirical evaluations. Additionally, it provides a clinically relevant application of epistemic uncertainty estimation in an FDA-approved and widely used clinical solution for OAR segmentation from Varian, a Siemens Healthineers company, highlighting its practical benefits.
Authors:Javad Ghorbanian, Nicholas Casaprima, Audrey Olivier
Title: Empowering Bayesian Neural Networks with Functional Priors through Anchored Ensembling for Mechanics Surrogate Modeling Applications
Abstract:
In recent years, neural networks (NNs) have become increasingly popular for surrogate modeling tasks in mechanics and materials modeling applications. While traditional NNs are deterministic functions that rely solely on data to learn the input--output mapping, casting NN training within a Bayesian framework allows to quantify uncertainties, in particular epistemic uncertainties that arise from lack of training data, and to integrate a priori knowledge via the Bayesian prior. However, the high dimensionality and non-physicality of the NN parameter space, and the complex relationship between parameters (NN weights) and predicted outputs, renders both prior design and posterior inference challenging. In this work we present a novel BNN training scheme based on anchored ensembling that can integrate a priori information available in the function space, from e.g. low-fidelity models. The anchoring scheme makes use of low-rank correlations between NN parameters, learnt from pre-training to realizations of the functional prior. We also perform a study to demonstrate how correlations between NN weights, which are often neglected in existing BNN implementations, is critical to appropriately transfer knowledge between the function-space and parameter-space priors. Performance of our novel BNN algorithm is first studied on a small 1D example to illustrate the algorithm's behavior in both interpolation and extrapolation settings. Then, a thorough assessment is performed on a multi--input--output materials surrogate modeling example, where we demonstrate the algorithm's capabilities both in terms of accuracy and quality of the uncertainty estimation, for both in-distribution and out-of-distribution data.
Authors:Gabriel Y. Arteaga, Thomas B. Schön, Nicolas Pielawski
Title: Hallucination Detection in LLMs: Fast and Memory-Efficient Fine-Tuned Models
Abstract:
Uncertainty estimation is a necessary component when implementing AI in high-risk settings, such as autonomous cars, medicine, or insurances. Large Language Models (LLMs) have seen a surge in popularity in recent years, but they are subject to hallucinations, which may cause serious harm in high-risk settings. Despite their success, LLMs are expensive to train and run: they need a large amount of computations and memory, preventing the use of ensembling methods in practice. In this work, we present a novel method that allows for fast and memory-friendly training of LLM ensembles. We show that the resulting ensembles can detect hallucinations and are a viable approach in practice as only one GPU is needed for training and inference.
Authors:Petter Uvdal, Mohsen Mirkhalaf
Title: Test-time data augmentation: improving predictions of recurrent neural network models of composites
Abstract:
Recurrent Neural Networks (RNNs) have emerged as an interesting alternative to conventional material modeling approaches, particularly for nonlinear path dependent materials. Remarkable computational enhancements are obtained using RNNs compared to classical approaches such as the computational homogenization method. However, RNN predictive errors accumulate, leading to issues when predicting temporal dependencies in time series data. This study aims to address and mitigate inaccuracies induced by neural networks in predicting path dependent plastic deformations of short fiber reinforced composite materials. We propose using an approach of Test Time data Augmentation (TTA), which, to the best of the authors knowledge, is previously untested in the context of RNNs. The method is based on augmenting the input test data using random rotations and subsequently rotating back the predicted output signal. By aggregating the back rotated predictions, a more accurate prediction compared to individual predictions is obtained. Our analysis also demonstrates improved shape consistency between the prediction and the target pseudo time signal. Additionally, this method provides an uncertainty estimation which correlates with the absolute prediction error. The TTA approach is reproducible with different randomly generated data augmentations, establishing a promising framework for optimizing predictions of deep learning models. We believe there are broader implications of the proposed method for various fields reliant on accurate predictive data driven modeling.
Authors:Priyanka Chudasama, Anil Surisetty, Aakarsh Malhotra, Alok Singh
Title: DNN-GDITD: Out-of-distribution detection via Deep Neural Network based Gaussian Descriptor for Imbalanced Tabular Data
Abstract:
Classification tasks present challenges due to class imbalances and evolving data distributions. Addressing these issues requires a robust method to handle imbalances while effectively detecting out-of-distribution (OOD) samples not encountered during training. This study introduces a novel OOD detection algorithm designed for tabular datasets, titled Deep Neural Network-based Gaussian Descriptor for Imbalanced Tabular Data (DNN-GDITD). The DNN-GDITD algorithm can be placed on top of any DNN to facilitate better classification of imbalanced data and OOD detection using spherical decision boundaries. Using a combination of Push, Score-based, and focal losses, DNN-GDITD assigns confidence scores to test data points, categorizing them as known classes or as an OOD sample. Extensive experimentation on tabular datasets demonstrates the effectiveness of DNN-GDITD compared to three OOD algorithms. Evaluation encompasses imbalanced and balanced scenarios on diverse tabular datasets, including a synthetic financial dispute dataset and publicly available tabular datasets like Gas Sensor, Drive Diagnosis, and MNIST, showcasing DNN-GDITD's versatility.
Authors:Waldyn G. Martinez
Title: VSCOUT: A Hybrid Variational Autoencoder Approach to Outlier Detection in High-Dimensional Retrospective Monitoring
Abstract:
Modern industrial and service processes generate high-dimensional, non-Gaussian, and contamination-prone data that challenge the foundational assumptions of classical Statistical Process Control (SPC). Heavy tails, multimodality, nonlinear dependencies, and sparse special-cause observations can distort baseline estimation, mask true anomalies, and prevent reliable identification of an in-control (IC) reference set. To address these challenges, we introduce VSCOUT, a distribution-free framework designed specifically for retrospective (Phase I) monitoring in high-dimensional settings. VSCOUT combines an Automatic Relevance Determination Variational Autoencoder (ARD-VAE) architecture with ensemble-based latent outlier filtering and changepoint detection. The ARD prior isolates the most informative latent dimensions, while the ensemble and changepoint filters identify pointwise and structural contamination within the determined latent space. A second-stage retraining step removes flagged observations and re-estimates the latent structure using only the retained inliers, mitigating masking and stabilizing the IC latent manifold. This two-stage refinement produces a clean and reliable IC baseline suitable for subsequent Phase II deployment. Extensive experiments across benchmark datasets demonstrate that VSCOUT achieves superior sensitivity to special-cause structure while maintaining controlled false alarms, outperforming classical SPC procedures, robust estimators, and modern machine-learning baselines. Its scalability, distributional flexibility, and resilience to complex contamination patterns position VSCOUT as a practical and effective method for retrospective modeling and anomaly detection in AI-enabled environments.
Authors:Yiyao Yang
Title: Beyond Predictive Uncertainty: Reliable Representation Learning with Structural Constraints
Abstract:
Uncertainty estimation in machine learning has traditionally focused on the prediction stage, aiming to quantify confidence in model outputs while treating learned representations as deterministic and reliable by default. In this work, we challenge this implicit assumption and argue that reliability should be regarded as a first-class property of learned representations themselves. We propose a principled framework for reliable representation learning that explicitly models representation-level uncertainty and leverages structural constraints as inductive biases to regularize the space of feasible representations. Our approach introduces uncertainty-aware regularization directly in the representation space, encouraging representations that are not only predictive but also stable, well-calibrated, and robust to noise and structural perturbations. Structural constraints, such as sparsity, relational structure, or feature-group dependencies, are incorporated to define meaningful geometry and reduce spurious variability in learned representations, without assuming fully correct or noise-free structure. Importantly, the proposed framework is independent of specific model architectures and can be integrated with a wide range of representation learning methods.
Authors:Yongchao Huang
Title: VJEPA: Variational Joint Embedding Predictive Architectures as Probabilistic World Models
Abstract:
Joint Embedding Predictive Architectures (JEPA) offer a scalable paradigm for self-supervised learning by predicting latent representations rather than reconstructing high-entropy observations. However, existing formulations rely on \textit{deterministic} regression objectives, which mask probabilistic semantics and limit its applicability in stochastic control. In this work, we introduce \emph{Variational JEPA (VJEPA)}, a \textit{probabilistic} generalization that learns a predictive distribution over future latent states via a variational objective. We show that VJEPA unifies representation learning with Predictive State Representations (PSRs) and Bayesian filtering, establishing that sequential modeling does not require autoregressive observation likelihoods. Theoretically, we prove that VJEPA representations can serve as sufficient information states for optimal control without pixel reconstruction, while providing formal guarantees for collapse avoidance. We further propose \emph{Bayesian JEPA (BJEPA)}, an extension that factorizes the predictive belief into a learned dynamics expert and a modular prior expert, enabling zero-shot task transfer and constraint (e.g. goal, physics) satisfaction via a Product of Experts. Empirically, through a noisy environment experiment, we demonstrate that VJEPA and BJEPA successfully filter out high-variance nuisance distractors that cause representation collapse in generative baselines. By enabling principled uncertainty estimation (e.g. constructing credible intervals via sampling) while remaining likelihood-free regarding observations, VJEPA provides a foundational framework for scalable, robust, uncertainty-aware planning in high-dimensional, noisy environments.
Authors:Md Rashadul Islam
Title: An Explainable Agentic AI Framework for Uncertainty-Aware and Abstention-Enabled Acute Ischemic Stroke Imaging Decisions
Abstract:
Artificial intelligence models have shown strong potential in acute ischemic stroke imaging, particularly for lesion detection and segmentation using computed tomography and magnetic resonance imaging. However, most existing approaches operate as black box predictors, producing deterministic outputs without explicit uncertainty awareness or structured mechanisms to abstain under ambiguous conditions. This limitation raises serious safety and trust concerns in high risk emergency radiology settings. In this paper, we propose an explainable agentic AI framework for uncertainty aware and abstention enabled decision support in acute ischemic stroke imaging. The framework follows a modular agentic pipeline in which a perception agent performs lesion aware image analysis, an uncertainty estimation agent computes slice level predictive reliability, and a decision agent determines whether to issue a prediction or abstain based on predefined uncertainty thresholds. Unlike prior stroke imaging systems that primarily focus on improving segmentation or classification accuracy, the proposed framework explicitly prioritizes clinical safety, transparency, and clinician aligned decision behavior. Qualitative and case based analyses across representative stroke imaging scenarios demonstrate that uncertainty driven abstention naturally emerges in diagnostically ambiguous regions and low information slices. The framework further integrates visual explanation mechanisms to support both predictive and abstention decisions, addressing a key limitation of existing uncertainty aware medical imaging systems. Rather than introducing a new performance benchmark, this work presents agentic control, uncertainty awareness, and selective abstention as essential design principles for developing safe and trustworthy medical imaging AI systems.
Authors:Olaf Yunus Laitinen Imanov
Title: Uncertainty-Calibrated Explainable AI for Fetal Ultrasound Plane Classification
Abstract:
Fetal ultrasound standard-plane classification underpins reliable prenatal biometry and anomaly screening, yet real-world deployment is limited by domain shift, image noise, and poor calibration of predicted probabilities. This paper presents a practical framework for uncertainty-calibrated explainable AI in fetal plane classification. We synthesize uncertainty estimation methods (Monte Carlo dropout, deep ensembles, evidential learning, and conformal prediction) with post-hoc and uncertainty-aware explanations (Grad-CAM variants, LIME-style local surrogates, and uncertainty-weighted multi-resolution activation maps), and we map these components to a clinician-facing workflow. Using FETAL_PLANES_DB as a reference benchmark, we define a reporting protocol that couples accuracy with calibration and selective prediction, including expected calibration error, Brier score, coverage-risk curves, and structured error analysis with explanations. We also discuss integration points for quality control and human-in-the-loop review, where uncertainty flags trigger re-acquisition or expert confirmation. The goal is a reproducible, clinically aligned blueprint for building fetal ultrasound classifiers whose confidence and explanations remain trustworthy under noisy acquisition conditions.
Authors:Zhongyang Shen
Title: Outlier Detection Using Vector Cosine Similarity by Adding a Dimension
Abstract:
We propose a new outlier detection method for multi-dimensional data. The method detects outliers based on vector cosine similarity, using a new dataset constructed by adding a dimension with zero values to the original data. When a point in the new dataset is selected as the measured point, an observation point is created as the origin, differing only in the new dimension by having a non-zero value compared to the measured point. Vectors are then formed from the observation point to the measured point and to other points in the dataset. By comparing the cosine similarities of these vectors, abnormal data can be identified. An optimized implementation (MDOD) is available on PyPI: https://pypi.org/project/mdod/.
Authors:Teja Chinthala
Title: Bidirectional RAG: Safe Self-Improving Retrieval-Augmented Generation Through Multi-Stage Validation
Abstract:
Retrieval-Augmented Generation RAG systems enhance large language models by grounding responses in external knowledge bases, but conventional RAG architectures operate with static corpora that cannot evolve from user interactions. We introduce Bidirectional RAG, a novel RAG architecture that enables safe corpus expansion through validated write back of high quality generated responses. Our system employs a multi stage acceptance layer combining grounding verification (NLI based entailment, attribution checking, and novelty detection to prevent hallucination pollution while enabling knowledge accumulation. Across four datasets Natural Questions, TriviaQA, HotpotQA, Stack Overflow with three random seeds 12 experiments per system, Bidirectional RAG achieves 40.58% average coverage nearly doubling Standard RAG 20.33% while adding 72% fewer documents than naive write back 140 vs 500. Our work demonstrates that self improving RAG is feasible and safe when governed by rigorous validation, offering a practical path toward RAG systems that learn from deployment.
Authors:Jahidul Arafat
Title: How Deep Does Your Dependency Tree Go? An Empirical Study of Dependency Amplification Across 10 Package Ecosystems
Abstract:
Modern software development relies on package ecosystems where a single declared dependency can pull in many additional transitive packages. This dependency amplification, defined as the ratio of transitive to direct dependencies, has major implications for software supply chain security, yet amplification patterns across ecosystems have not been compared at scale. We present an empirical study of 500 projects across ten major ecosystems, including Maven Central for Java, npm Registry for JavaScript, crates io for Rust, PyPI for Python, NuGet Gallery for dot NET, RubyGems for Ruby, Go Modules for Go, Packagist for PHP, CocoaPods for Swift and Objective C, and Pub for Dart. Our analysis shows that Maven exhibits mean amplification of 24.70 times, compared to 4.48 times for Go Modules, 4.32 times for npm, and 0.32 times for CocoaPods. We find significant differences with large effect sizes in 22 of 45 pairwise comparisons, challenging the assumption that npm has the highest amplification due to its many small purpose packages. We observe that 28 percent of Maven projects exceed 10 times amplification, indicating a systematic pattern rather than isolated outliers, compared to 14 percent for RubyGems, 12 percent for npm, and zero percent for Cargo, PyPI, Packagist, CocoaPods, and Pub. We attribute these differences to ecosystem design choices such as dependency resolution behavior, standard library completeness, and platform constraints. Our findings suggest adopting ecosystem specific security strategies, including systematic auditing for Maven environments, targeted outlier detection for npm and RubyGems, and continuation of current practices for ecosystems with controlled amplification. We provide a full replication package with data and analysis scripts.
Authors:Y. Sungtaek Ju
Title: Uncertainty Quantification for Scientific Machine Learning using Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KAN)
Abstract:
Kolmogorov-Arnold Networks have emerged as interpretable alternatives to traditional multi-layer perceptrons. However, standard implementations lack principled uncertainty quantification capabilities essential for many scientific applications. We present a framework integrating sparse variational Gaussian process inference with the Kolmogorov-Arnold topology, enabling scalable Bayesian inference with computational complexity quasi-linear in sample size. Through analytic moment matching, we propagate uncertainty through deep additive structures while maintaining interpretability. We use three example studies to demonstrate the framework's ability to distinguish aleatoric from epistemic uncertainty: calibration of heteroscedastic measurement noise in fluid flow reconstruction, quantification of prediction confidence degradation in multi-step forecasting of advection-diffusion dynamics, and out-of-distribution detection in convolutional autoencoders. These results suggest Sparse Variational Gaussian Process Kolmogorov-Arnold Networks (SVGP KANs) is a promising architecture for uncertainty-aware learning in scientific machine learning.
Authors:Hyo-Jeong Jang
Title: Uncertainty-Resilient Multimodal Learning via Consistency-Guided Cross-Modal Transfer
Abstract:
Multimodal learning systems often face substantial uncertainty due to noisy data, low-quality labels, and heterogeneous modality characteristics. These issues become especially critical in human-computer interaction settings, where data quality, semantic reliability, and annotation consistency vary across users and recording conditions. This thesis tackles these challenges by exploring uncertainty-resilient multimodal learning through consistency-guided cross-modal transfer. The central idea is to use cross-modal semantic consistency as a basis for robust representation learning. By projecting heterogeneous modalities into a shared latent space, the proposed framework mitigates modality gaps and uncovers structural relations that support uncertainty estimation and stable feature learning. Building on this foundation, the thesis investigates strategies to enhance semantic robustness, improve data efficiency, and reduce the impact of noise and imperfect supervision without relying on large, high-quality annotations. Experiments on multimodal affect-recognition benchmarks demonstrate that consistency-guided cross-modal transfer significantly improves model stability, discriminative ability, and robustness to noisy or incomplete supervision. Latent space analyses further show that the framework captures reliable cross-modal structure even under challenging conditions. Overall, this thesis offers a unified perspective on resilient multimodal learning by integrating uncertainty modeling, semantic alignment, and data-efficient supervision, providing practical insights for developing reliable and adaptive brain-computer interface systems.
Authors:Moses Kiprono
Title: Mathematical Analysis of Hallucination Dynamics in Large Language Models: Uncertainty Quantification, Advanced Decoding, and Principled Mitigation
Abstract:
Large Language Models (LLMs) are powerful linguistic engines but remain susceptible to hallucinations: plausible-sounding outputs that are factually incorrect or unsupported. In this work, we present a mathematically grounded framework to understand, measure, and mitigate these hallucinations. Drawing on probabilistic modeling, information theory, trigonometric signal analysis, and Bayesian uncertainty estimation, we analyze how errors compound autoregressively, propose refined uncertainty metrics, including semantic and phase-aware variants, and develop principled mitigation strategies such as contrastive decoding, retrieval-augmented grounding, factual alignment, and abstention. This unified lens connects recent advances in calibration, retrieval, and alignment to support safer and more reliable LLMs.
Authors:Jophy Lin
Title: Selective Diabetic Retinopathy Screening with Accuracy-Weighted Deep Ensembles and Entropy-Guided Abstention
Abstract:
Diabetic retinopathy (DR), a microvascular complication of diabetes and a leading cause of preventable blindness, is projected to affect more than 130 million individuals worldwide by 2030. Early identification is essential to reduce irreversible vision loss, yet current diagnostic workflows rely on methods such as fundus photography and expert review, which remain costly and resource-intensive. This, combined with DR's asymptomatic nature, results in its underdiagnosis rate of approximately 25 percent. Although convolutional neural networks (CNNs) have demonstrated strong performance in medical imaging tasks, limited interpretability and the absence of uncertainty quantification restrict clinical reliability. Therefore, in this study, a deep ensemble learning framework integrated with uncertainty estimation is introduced to improve robustness, transparency, and scalability in DR detection. The ensemble incorporates seven CNN architectures-ResNet-50, DenseNet-121, MobileNetV3 (Small and Large), and EfficientNet (B0, B2, B3)- whose outputs are fused through an accuracy-weighted majority voting strategy. A probability-weighted entropy metric quantifies prediction uncertainty, enabling low-confidence samples to be excluded or flagged for additional review. Training and validation on 35,000 EyePACS retinal fundus images produced an unfiltered accuracy of 93.70 percent (F1 = 0.9376). Uncertainty-filtering later was conducted to remove unconfident samples, resulting in maximum-accuracy of 99.44 percent (F1 = 0.9932). The framework shows that uncertainty-aware, accuracy-weighted ensembling improves reliability without hindering performance. With confidence-calibrated outputs and a tunable accuracy-coverage trade-off, it offers a generalizable paradigm for deploying trustworthy AI diagnostics in high-risk care.
Authors:Akira Tamamori
Title: Localized Kernel Projection Outlyingness: A Two-Stage Approach for Multi-Modal Outlier Detection
Abstract:
This paper presents Two-Stage LKPLO, a novel multi-stage outlier detection framework that overcomes the coexisting limitations of conventional projection-based methods: their reliance on a fixed statistical metric and their assumption of a single data structure. Our framework uniquely synthesizes three key concepts: (1) a generalized loss-based outlyingness measure (PLO) that replaces the fixed metric with flexible, adaptive loss functions like our proposed SVM-like loss; (2) a global kernel PCA stage to linearize non-linear data structures; and (3) a subsequent local clustering stage to handle multi-modal distributions. Comprehensive 5-fold cross-validation experiments on 10 benchmark datasets, with automated hyperparameter optimization, demonstrate that Two-Stage LKPLO achieves state-of-the-art performance. It significantly outperforms strong baselines on datasets with challenging structures where existing methods fail, most notably on multi-cluster data (Optdigits) and complex, high-dimensional data (Arrhythmia). Furthermore, an ablation study empirically confirms that the synergistic combination of both the kernelization and localization stages is indispensable for its superior performance. This work contributes a powerful new tool for a significant class of outlier detection problems and underscores the importance of hybrid, multi-stage architectures.
Authors:Lin Wang
Title: Information Theory in Open-world Machine Learning Foundations, Frameworks, and Future Direction
Abstract:
Open world Machine Learning (OWML) aims to develop intelligent systems capable of recognizing known categories, rejecting unknown samples, and continually learning from novel information. Despite significant progress in open set recognition, novelty detection, and continual learning, the field still lacks a unified theoretical foundation that can quantify uncertainty, characterize information transfer, and explain learning adaptability in dynamic, nonstationary environments. This paper presents a comprehensive review of information theoretic approaches in open world machine learning, emphasizing how core concepts such as entropy, mutual information, and Kullback Leibler divergence provide a mathematical language for describing knowledge acquisition, uncertainty suppression, and risk control under open world conditions. We synthesize recent studies into three major research axes: information theoretic open set recognition enabling safe rejection of unknowns, information driven novelty discovery guiding new concept formation, and information retentive continual learning ensuring stable long term adaptation. Furthermore, we discuss theoretical connections between information theory and provable learning frameworks, including PAC Bayes bounds, open-space risk theory, and causal information flow, to establish a pathway toward provable and trustworthy open world intelligence. Finally, the review identifies key open problems and future research directions, such as the quantification of information risk, development of dynamic mutual information bounds, multimodal information fusion, and integration of information theory with causal reasoning and world model learning.
Authors:Xiuyi Fan
Title: Position Paper: Integrating Explainability and Uncertainty Estimation in Medical AI
Abstract:
Uncertainty is a fundamental challenge in medical practice, but current medical AI systems fail to explicitly quantify or communicate uncertainty in a way that aligns with clinical reasoning. Existing XAI works focus on interpreting model predictions but do not capture the confidence or reliability of these predictions. Conversely, uncertainty estimation (UE) techniques provide confidence measures but lack intuitive explanations. The disconnect between these two areas limits AI adoption in medicine. To address this gap, we propose Explainable Uncertainty Estimation (XUE) that integrates explainability with uncertainty quantification to enhance trust and usability in medical AI. We systematically map medical uncertainty to AI uncertainty concepts and identify key challenges in implementing XUE. We outline technical directions for advancing XUE, including multimodal uncertainty quantification, model-agnostic visualization techniques, and uncertainty-aware decision support systems. Lastly, we propose guiding principles to ensure effective XUE realisation. Our analysis highlights the need for AI systems that not only generate reliable predictions but also articulate confidence levels in a clinically meaningful way. This work contributes to the development of trustworthy medical AI by bridging explainability and uncertainty, paving the way for AI systems that are aligned with real-world clinical complexities.
Authors:Madhushan Ramalingam
Title: Uncertainty-Aware Tabular Prediction: Evaluating VBLL-Enhanced TabPFN in Safety-Critical Medical Data
Abstract:
Predictive models are being increasingly used across a wide range of domains, including safety-critical applications such as medical diagnosis and criminal justice. Reliable uncertainty estimation is a crucial task in such settings. Tabular Prior-data Fitted Network (TabPFN) is a recently proposed machine learning foundation model for tabular dataset, which uses a generative transformer architecture. Variational Bayesian Last Layers (VBLL) is a state-of-the-art lightweight variational formulation that effectively improves uncertainty estimation with minimal computational overhead. In this work we aim to evaluate the performance of VBLL integrated with the recently proposed TabPFN in uncertainty calibration. Our experiments, conducted on three benchmark medical tabular datasets, compare the performance of the original TabPFN and the VBLL-integrated version. Contrary to expectations, we observed that original TabPFN consistently outperforms VBLL integrated TabPFN in uncertainty calibration across all datasets.
Authors:Aivin V. Solatorio
Title: Proof-Carrying Numbers (PCN): A Protocol for Trustworthy Numeric Answers from LLMs via Claim Verification
Abstract:
Large Language Models (LLMs) as stochastic systems may generate numbers that deviate from available data, a failure known as \emph{numeric hallucination}. Existing safeguards -- retrieval-augmented generation, citations, and uncertainty estimation -- improve transparency but cannot guarantee fidelity: fabricated or misquoted values may still be displayed as if correct. We propose \textbf{Proof-Carrying Numbers (PCN)}, a presentation-layer protocol that enforces numeric fidelity through mechanical verification. Under PCN, numeric spans are emitted as \emph{claim-bound tokens} tied to structured claims, and a verifier checks each token under a declared policy (e.g., exact equality, rounding, aliases, or tolerance with qualifiers). Crucially, PCN places verification in the \emph{renderer}, not the model: only claim-checked numbers are marked as verified, and all others default to unverified. This separation prevents spoofing and guarantees fail-closed behavior. We formalize PCN and prove soundness, completeness under honest tokens, fail-closed behavior, and monotonicity under policy refinement. PCN is lightweight and model-agnostic, integrates seamlessly into existing applications, and can be extended with cryptographic commitments. By enforcing verification as a mandatory step before display, PCN establishes a simple contract for numerically sensitive settings: \emph{trust is earned only by proof}, while the absence of a mark communicates uncertainty.
Authors:Lucas Rakotoarivony
Title: Multi-Method Ensemble for Out-of-Distribution Detection
Abstract:
Detecting out-of-distribution (OOD) samples is essential for neural networks operating in open-world settings, particularly in safety-critical applications. Existing methods have improved OOD detection by leveraging two main techniques: feature truncation, which increases the separation between in-distribution (ID) and OOD samples, and scoring functions, which assign scores to distinguish between ID and OOD data. However, most approaches either focus on a single family of techniques or evaluate their effectiveness on a specific type of OOD dataset, overlooking the potential of combining multiple existing solutions. Motivated by this observation, we theoretically and empirically demonstrate that state-of-the-art feature truncation and scoring functions can be effectively combined. Moreover, we show that aggregating multiple scoring functions enhances robustness against various types of OOD samples. Based on these insights, we propose the Multi-Method Ensemble (MME) score, which unifies state-of-the-art OOD detectors into a single, more effective scoring function. Extensive experiments on both large-scale and small-scale benchmarks, covering near-OOD and far-OOD scenarios, show that MME significantly outperforms recent state-of-the-art methods across all benchmarks. Notably, using the BiT model, our method achieves an average FPR95 of 27.57% on the challenging ImageNet-1K benchmark, improving performance by 6% over the best existing baseline.
Authors:Sebastian G. Gruber
Title: A Novel Framework for Uncertainty Quantification via Proper Scores for Classification and Beyond
Abstract:
In this PhD thesis, we propose a novel framework for uncertainty quantification in machine learning, which is based on proper scores. Uncertainty quantification is an important cornerstone for trustworthy and reliable machine learning applications in practice. Usually, approaches to uncertainty quantification are problem-specific, and solutions and insights cannot be readily transferred from one task to another. Proper scores are loss functions minimized by predicting the target distribution. Due to their very general definition, proper scores apply to regression, classification, or even generative modeling tasks. We contribute several theoretical results, that connect epistemic uncertainty, aleatoric uncertainty, and model calibration with proper scores, resulting in a general and widely applicable framework. We achieve this by introducing a general bias-variance decomposition for strictly proper scores via functional Bregman divergences. Specifically, we use the kernel score, a kernel-based proper score, for evaluating sample-based generative models in various domains, like image, audio, and natural language generation. This includes a novel approach for uncertainty estimation of large language models, which outperforms state-of-the-art baselines. Further, we generalize the calibration-sharpness decomposition beyond classification, which motivates the definition of proper calibration errors. We then introduce a novel estimator for proper calibration errors in classification, and a novel risk-based approach to compare different estimators for squared calibration errors. Last, we offer a decomposition of the kernel spherical score, another kernel-based proper score, allowing a more fine-grained and interpretable evaluation of generative image models.
Authors:Carlos Stein Brito
Title: Twin-Boot: Uncertainty-Aware Optimization via Online Two-Sample Bootstrapping
Abstract:
Standard gradient descent methods yield point estimates with no measure of confidence. This limitation is acute in overparameterized and low-data regimes, where models have many parameters relative to available data and can easily overfit. Bootstrapping is a classical statistical framework for uncertainty estimation based on resampling, but naively applying it to deep learning is impractical: it requires training many replicas, produces post-hoc estimates that cannot guide learning, and implicitly assumes comparable optima across runs - an assumption that fails in non-convex landscapes. We introduce Twin-Bootstrap Gradient Descent (Twin-Boot), a resampling-based training procedure that integrates uncertainty estimation into optimization. Two identical models are trained in parallel on independent bootstrap samples, and a periodic mean-reset keeps both trajectories in the same basin so that their divergence reflects local (within-basin) uncertainty. During training, we use this estimate to sample weights in an adaptive, data-driven way, providing regularization that favors flatter solutions. In deep neural networks and complex high-dimensional inverse problems, the approach improves calibration and generalization and yields interpretable uncertainty maps.
Authors:Carlos Celemin
Title: Bayesian Optimization-based Search for Agent Control in Automated Game Testing
Abstract:
This work introduces an automated testing approach that employs agents controlling game characters to detect potential bugs within a game level. Harnessing the power of Bayesian Optimization (BO) to execute sample-efficient search, the method determines the next sampling point by analyzing the data collected so far and calculates the data point that will maximize information acquisition. To support the BO process, we introduce a game testing-specific model built on top of a grid map, that features the smoothness and uncertainty estimation required by BO, however and most importantly, it does not suffer the scalability issues that traditional models carry. The experiments demonstrate that the approach significantly improves map coverage capabilities in both time efficiency and exploration distribution.
Authors:John D. Mayfield
Title: Frequency-Domain Analysis of Time-Dependent Multiomic Data in Progressive Neurodegenerative Diseases: A Proposed Quantum-Classical Hybrid Approach with Quaternionic Extensions
Abstract:
Progressive neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), exhibit complex, nonlinear trajectories that challenge deterministic modeling. Traditional time-domain analyses of multiomic and neuroimaging data often fail to capture hidden oscillatory patterns, limiting predictive accuracy. We propose a theoretical mathematical framework that transforms time-series data into frequency or s-domain using Fourier and Laplace transforms, models neuronal dynamics via Hamiltonian formulations, and employs quantum-classical hybrid computing with variational quantum eigensolvers (VQE) for enhanced pattern detection. This theoretical construct serves as a foundation for future empirical works in quantum-enhanced analysis of neurodegenerative diseases. We extend this to quaternionic representations with three imaginary axes ($i, j, k$) to model multistate Hamiltonians in multifaceted disorders, drawing from quantum neuromorphic computing to capture entangled neural dynamics \citep{Pehle2020, Emani2019}. This approach leverages quantum advantages in handling high-dimensional amplitude-phase data, enabling outlier detection and frequency signature analysis. Potential clinical applications include identifying high-risk patients with rapid progression or therapy resistance using s-domain biomarkers, supported by quantum machine learning (QML) precedents achieving up to 99.89% accuracy in Alzheimer's classification \citep{Belay2024, Bhowmik2025}. This framework aims to lay the groundwork for redefining precision medicine for neurodegenerative diseases through future validations.
Authors:Stephan Rabanser
Title: Uncertainty-Driven Reliability: Selective Prediction and Trustworthy Deployment in Modern Machine Learning
Abstract:
Machine learning (ML) systems are increasingly deployed in high-stakes domains where reliability is paramount. This thesis investigates how uncertainty estimation can enhance the safety and trustworthiness of ML, focusing on selective prediction -- where models abstain when confidence is low. We first show that a model's training trajectory contains rich uncertainty signals that can be exploited without altering its architecture or loss. By ensembling predictions from intermediate checkpoints, we propose a lightweight, post-hoc abstention method that works across tasks, avoids the cost of deep ensembles, and achieves state-of-the-art selective prediction performance. Crucially, this approach is fully compatible with differential privacy (DP), allowing us to study how privacy noise affects uncertainty quality. We find that while many methods degrade under DP, our trajectory-based approach remains robust, and we introduce a framework for isolating the privacy-uncertainty trade-off. Next, we then develop a finite-sample decomposition of the selective classification gap -- the deviation from the oracle accuracy-coverage curve -- identifying five interpretable error sources and clarifying which interventions can close the gap. This explains why calibration alone cannot fix ranking errors, motivating methods that improve uncertainty ordering. Finally, we show that uncertainty signals can be adversarially manipulated to hide errors or deny service while maintaining high accuracy, and we design defenses combining calibration audits with verifiable inference. Together, these contributions advance reliable ML by improving, evaluating, and safeguarding uncertainty estimation, enabling models that not only make accurate predictions -- but also know when to say "I do not know".
Authors:Ahmet Gökhan Poyraz
Title: Outlier Detection Algorithm for Circle Fitting
Abstract:
Circle fitting methods are extensively utilized in various industries, particularly in quality control processes and design applications. The effectiveness of these algorithms can be significantly compromised when the point sets to be predicted are noisy. To mitigate this issue, outlier detection and removal algorithms are often applied before the circle fitting procedure. This study introduces the Polar Coordinate-Based Outlier Detection (PCOD) algorithm, which can be effectively employed in circle fitting applications. In the proposed approach, the point set is first transformed into polar coordinates, followed by the calculation of both local and global standard deviations. Outliers are then identified by comparing local mean values with the global standard deviation. The practicality and efficiency of the proposed method are demonstrated by focusing on the high-precision diameter measurement of industrial washer parts. Images from a machine vision system are processed through preprocessing steps, including sub-pixel edge detection. The resulting sub-pixel edge points are then cleaned using the proposed outlier detection and removal algorithm, after which circle fitting is performed. A comparison is made using ten different circle fitting algorithms and five distinct outlier detection methods. The results indicate that the proposed method outperforms the other approaches, delivering the best performance in terms of accuracy within the dataset, thereby demonstrating its potential for enhancing circle fitting applications in industrial environments.
Authors:Esmail Gumaan
Title: Theoretical Foundations and Mitigation of Hallucination in Large Language Models
Abstract:
Hallucination in Large Language Models (LLMs) refers to the generation of content that is not faithful to the input or the real-world facts. This paper provides a rigorous treatment of hallucination in LLMs, including formal definitions and theoretical analyses. We distinguish between intrinsic and extrinsic hallucinations, and define a \textit{hallucination risk} for models. We derive bounds on this risk using learning-theoretic frameworks (PAC-Bayes and Rademacher complexity). We then survey detection strategies for hallucinations, such as token-level uncertainty estimation, confidence calibration, and attention alignment checks. On the mitigation side, we discuss approaches including retrieval-augmented generation, hallucination-aware fine-tuning, logit calibration, and the incorporation of fact-verification modules. We propose a unified detection and mitigation workflow, illustrated with a diagram, to integrate these strategies. Finally, we outline evaluation protocols for hallucination, recommending datasets, metrics, and experimental setups to quantify and reduce hallucinations. Our work lays a theoretical foundation and practical guidelines for addressing the crucial challenge of hallucination in LLMs.
Authors:Marcello D'Orazio
Title: An empirical comparison of some outlier detection methods with longitudinal data
Abstract:
This note investigates the problem of detecting outliers in longitudinal data. It compares well-known methods used in official statistics with proposals from the fields of data mining and machine learning that are based on the distance between observations or binary partitioning trees. This is achieved by applying the methods to panel survey data related to different types of statistical units. Traditional methods are quite simple, enabling the direct identification of potential outliers, but they require specific assumptions. In contrast, recent methods provide only a score whose magnitude is directly related to the likelihood of an outlier being present. All the methods require the user to set a number of tuning parameters. However, the most recent methods are more flexible and sometimes more effective than traditional methods. In addition, these methods can be applied to multidimensional data.
Authors:Ivan Letteri
Title: A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books
Abstract:
The detection of outliers within cryptocurrency limit order books (LOBs) is of paramount importance for comprehending market dynamics, particularly in highly volatile and nascent regulatory environments. This study conducts a comprehensive comparative analysis of robust statistical methods and advanced machine learning techniques for real-time anomaly identification in cryptocurrency LOBs. Within a unified testing environment, named AITA Order Book Signal (AITA-OBS), we evaluate the efficacy of thirteen diverse models to identify which approaches are most suitable for detecting potentially manipulative trading behaviours. An empirical evaluation, conducted via backtesting on a dataset of 26,204 records from a major exchange, demonstrates that the top-performing model, Empirical Covariance (EC), achieves a 6.70% gain, significantly outperforming a standard Buy-and-Hold benchmark. These findings underscore the effectiveness of outlier-driven strategies and provide insights into the trade-offs between model complexity, trade frequency, and performance. This study contributes to the growing corpus of research on cryptocurrency market microstructure by furnishing a rigorous benchmark of anomaly detection models and highlighting their potential for augmenting algorithmic trading and risk management.
Authors:Rushil Desai
Title: BayesSDF: Surface-Based Laplacian Uncertainty Estimation for 3D Geometry with Neural Signed Distance Fields
Abstract:
Accurate surface estimation is critical for downstream tasks in scientific simulation, and quantifying uncertainty in implicit neural 3D representations still remains a substantial challenge due to computational inefficiencies, scalability issues, and geometric inconsistencies. However, current neural implicit surface models do not offer a principled way to quantify uncertainty, limiting their reliability in real-world applications. Inspired by recent probabilistic rendering approaches, we introduce BayesSDF, a novel probabilistic framework for uncertainty estimation in neural implicit 3D representations. Unlike radiance-based models such as Neural Radiance Fields (NeRF) or 3D Gaussian Splatting, Signed Distance Functions (SDFs) provide continuous, differentiable surface representations, making them especially well-suited for uncertainty-aware modeling. BayesSDF applies a Laplace approximation over SDF weights and derives Hessian-based metrics to estimate local geometric instability. We empirically demonstrate that these uncertainty estimates correlate strongly with surface reconstruction error across both synthetic and real-world benchmarks. By enabling surface-aware uncertainty quantification, BayesSDF lays the groundwork for more robust, interpretable, and actionable 3D perception systems.
Authors:Cooper Doyle
Title: Low-rank variational dropout: Uncertainty and rank selection in adapters
Abstract:
Parameter-efficient fine-tuning (PEFT) methods such as LoRA adapt large language models by inserting low-rank adapters, but they leave open two key questions: how to give the adapted model calibrated uncertainty, and how to choose the adapter rank. Existing approaches to uncertainty are typically post-hoc, while rank selection is manual and task-specific. BayesLoRA revisits variational dropout in the LoRA setting and shows that the natural unit of stochasticity is not individual weights but entire ranks of the adapter. By placing rank-wise variational distributions over adapter components, BayesLoRA defines a posterior that (i) yields calibrated predictions through adapter-only Monte Carlo sampling and (ii) prunes redundant ranks automatically via an ARD-style KL term. Theoretical analysis shows that this rank-parameterized posterior localizes uncertainty to the adapted subspace and explains amplification under distribution shift. Empirically, BayesLoRA improves calibration while at the same time producing lighter, faster adapters, removing the need to tune ranks by hand. This dual role of uncertainty estimation and uncertainty-driven pruning suggests BayesLoRA may offer a practical default for reliable and efficient PEFT.
Authors:Abdullah Burkan Bereketoglu
Title: Hybrid Meta-Learning Framework for Anomaly Forecasting in Nonlinear Dynamical Systems via Physics-Inspired Simulation and Deep Ensembles
Abstract:
We propose a hybrid meta-learning framework for forecasting and anomaly detection in nonlinear dynamical systems characterized by nonstationary and stochastic behavior. The approach integrates a physics-inspired simulator that captures nonlinear growth-relaxation dynamics with random perturbations, representative of many complex physical, industrial, and cyber-physical systems. We use CNN-LSTM architectures for spatio-temporal feature extraction, Variational Autoencoders (VAE) for unsupervised anomaly scoring, and Isolation Forests for residual-based outlier detection in addition to a Dual-Stage Attention Recurrent Neural Network (DA-RNN) for one-step forecasting on top of the generated simulation data. To create composite anomaly forecasts, these models are combined using a meta-learner that combines forecasting outputs, reconstruction errors, and residual scores. The hybrid ensemble performs better than standalone models in anomaly localization, generalization, and robustness to nonlinear deviations, according to simulation-based experiments. The framework provides a broad, data-driven approach to early defect identification and predictive monitoring in nonlinear systems, which may be applied to a variety of scenarios where complete physical models might not be accessible.
Authors:Samuel T. M. Ball
Title: Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis
Abstract:
Optical Coherence Tomography (OCT) provides valuable insights in ophthalmology, cardiology, and neurology due to high-resolution, cross-sectional images of the retina. One critical task for ophthalmologists using OCT is delineation of retinal layers within scans. This process is time-consuming and prone to human bias, affecting the accuracy and reliability of diagnoses. Previous efforts to automate delineation using deep learning face challenges in uptake from clinicians and statisticians due to the absence of uncertainty estimation, leading to "confidently wrong" models via hallucinations. In this study, we address these challenges by applying Bayesian convolutional neural networks (BCNNs) to segment an openly available OCT imaging dataset containing 35 human retina OCTs split between healthy controls and patients with multiple sclerosis. Our findings demonstrate that Bayesian models can be used to provide uncertainty maps of the segmentation, which can further be used to identify highly uncertain samples that exhibit recording artefacts such as noise or miscalibration at inference time. Our method also allows for uncertainty-estimation for important secondary measurements such as layer thicknesses, that are medically relevant for patients. We show that these features come in addition to greater performance compared to similar work over all delineations; with an overall Dice score of 95.65%. Our work brings greater clinical applicability, statistical robustness, and performance to retinal OCT segmentation.
Authors:Lei Wang
Title: SEReDeEP: Hallucination Detection in Retrieval-Augmented Models via Semantic Entropy and Context-Parameter Fusion
Abstract:
Retrieval-Augmented Generation (RAG) models frequently encounter hallucination phenomena when integrating external information with internal parametric knowledge. Empirical studies demonstrate that the disequilibrium between external contextual information and internal parametric knowledge constitutes a primary factor in hallucination generation. Existing hallucination detection methodologies predominantly emphasize either the external or internal mechanism in isolation, thereby overlooking their synergistic effects. The recently proposed ReDeEP framework decouples these dual mechanisms, identifying two critical contributors to hallucinations: excessive reliance on parametric knowledge encoded in feed-forward networks (FFN) and insufficient utilization of external information by attention mechanisms (particularly copy heads). ReDeEP quantitatively assesses these factors to detect hallucinations and dynamically modulates the contributions of FFNs and copy heads to attenuate their occurrence. Nevertheless, ReDeEP and numerous other hallucination detection approaches have been employed at logit-level uncertainty estimation or language-level self-consistency evaluation, inadequately address the semantic dimensions of model responses, resulting in inconsistent hallucination assessments in RAG implementations. Building upon ReDeEP's foundation, this paper introduces SEReDeEP, which enhances computational processes through semantic entropy captured via trained linear probes, thereby achieving hallucination assessments that more accurately reflect ground truth evaluations.
Authors:Bruce Collins
Title: Unsupervised outlier detection to improve bird audio dataset labels
Abstract:
The Xeno-Canto bird audio repository is an invaluable resource for those interested in vocalizations and other sounds made by birds around the world. This is particularly the case for machine learning researchers attempting to improve on the bird species recognition accuracy of classification models. However, the task of extracting labeled datasets from the recordings found in this crowd-sourced repository faces several challenges. One challenge of particular significance to machine learning practitioners is that one bird species label is applied to each audio recording, but frequently other sounds are also captured including other bird species, other animal sounds, anthropogenic and other ambient sounds. These non-target bird species sounds can result in dataset labeling discrepancies referred to as label noise. In this work we present a cleaning process consisting of audio preprocessing followed by dimensionality reduction and unsupervised outlier detection (UOD) to reduce the label noise in a dataset derived from Xeno-Canto recordings. We investigate three neural network dimensionality reduction techniques: two flavors of convolutional autoencoders and variational deep embedding (VaDE (Jiang, 2017)). While both methods show some degree of effectiveness at detecting outliers for most bird species datasets, we found significant variation in the performance of the methods from one species to the next. We believe that the results of this investigation demonstrate that the application of our cleaning process can meaningfully reduce the label noise of bird species datasets derived from Xeno-Canto audio repository but results vary across species.
Authors:Dip Roy
Title: Bayesian Autoencoder for Medical Anomaly Detection: Uncertainty-Aware Approach for Brain 2 MRI Analysis
Abstract:
In medical imaging, anomaly detection is a vital element of healthcare diagnostics, especially for neurological conditions which can be life-threatening. Conventional deterministic methods often fall short when it comes to capturing the inherent uncertainty of anomaly detection tasks. This paper introduces a Bayesian Variational Autoencoder (VAE) equipped with multi-head attention mechanisms for detecting anomalies in brain magnetic resonance imaging (MRI). For the purpose of improving anomaly detection performance, we incorporate both epistemic and aleatoric uncertainty estimation through Bayesian inference. The model was tested on the BraTS2020 dataset, and the findings were a 0.83 ROC AUC and a 0.83 PR AUC. The data in our paper suggests that modeling uncertainty is an essential component of anomaly detection, enhancing both performance and interpretability and providing confidence estimates, as well as anomaly predictions, for clinicians to leverage in making medical decisions.
Authors:Jose Marie Antonio Minoza
Title: Learning Enhanced Structural Representations with Block-Based Uncertainties for Ocean Floor Mapping
Abstract:
Accurate ocean modeling and coastal hazard prediction depend on high-resolution bathymetric data; yet, current worldwide datasets are too coarse for exact numerical simulations. While recent deep learning advances have improved earth observation data resolution, existing methods struggle with the unique challenges of producing detailed ocean floor maps, especially in maintaining physical structure consistency and quantifying uncertainties. This work presents a novel uncertainty-aware mechanism using spatial blocks to efficiently capture local bathymetric complexity based on block-based conformal prediction. Using the Vector Quantized Variational Autoencoder (VQ-VAE) architecture, the integration of this uncertainty quantification framework yields spatially adaptive confidence estimates while preserving topographical features via discrete latent representations. With smaller uncertainty widths in well-characterized areas and appropriately larger bounds in areas of complex seafloor structures, the block-based design adapts uncertainty estimates to local bathymetric complexity. Compared to conventional techniques, experimental results over several ocean regions show notable increases in both reconstruction quality and uncertainty estimation reliability. This framework increases the reliability of bathymetric reconstructions by preserving structural integrity while offering spatially adaptive uncertainty estimates, so opening the path for more solid climate modeling and coastal hazard assessment.
Authors:Aidan Tiruvan
Title: Robust Randomized Low-Rank Approximation with Row-Wise Outlier Detection
Abstract:
Robust low-rank approximation under row-wise adversarial corruption can be achieved with a single pass, randomized procedure that detects and removes outlier rows by thresholding their projected norms. We propose a scalable, non-iterative algorithm that efficiently recovers the underlying low-rank structure in the presence of row-wise adversarial corruption. By first compressing the data with a Johnson Lindenstrauss projection, our approach preserves the geometry of clean rows while dramatically reducing dimensionality. Robust statistical techniques based on the median and median absolute deviation then enable precise identification and removal of outlier rows with abnormally high norms. The subsequent rank-k approximation achieves near-optimal error bounds with a one pass procedure that scales linearly with the number of observations. Empirical results confirm that combining random sketches with robust statistics yields efficient, accurate decompositions even in the presence of large fractions of corrupted rows.
Authors:Sergio Torres Aguilar
Title: TRIDIS: A Comprehensive Medieval and Early Modern Corpus for HTR and NER
Abstract:
This paper introduces TRIDIS (Tria Digita Scribunt), an open-source corpus of medieval and early modern manuscripts. TRIDIS aggregates multiple legacy collections (all published under open licenses) and incorporates large metadata descriptions. While prior publications referenced some portions of this corpus, here we provide a unified overview with a stronger focus on its constitution. We describe (i) the narrative, chronological, and editorial background of each major sub-corpus, (ii) its semi-diplomatic transcription rules (expansion, normalization, punctuation), (iii) a strategy for challenging out-of-domain test splits driven by outlier detection in a joint embedding space, and (iv) preliminary baseline experiments using TrOCR and MiniCPM2.5 comparing random and outlier-based test partitions. Overall, TRIDIS is designed to stimulate joint robust Handwritten Text Recognition (HTR) and Named Entity Recognition (NER) research across medieval and early modern textual heritage.
Authors:Farhad Pourkamali-Anaraki
Title: Probabilistic Neural Networks (PNNs) with t-Distributed Outputs: Adaptive Prediction Intervals Beyond Gaussian Assumptions
Abstract:
Traditional neural network regression models provide only point estimates, failing to capture predictive uncertainty. Probabilistic neural networks (PNNs) address this limitation by producing output distributions, enabling the construction of prediction intervals. However, the common assumption of Gaussian output distributions often results in overly wide intervals, particularly in the presence of outliers or deviations from normality. To enhance the adaptability of PNNs, we propose t-Distributed Neural Networks (TDistNNs), which generate t-distributed outputs, parameterized by location, scale, and degrees of freedom. The degrees of freedom parameter allows TDistNNs to model heavy-tailed predictive distributions, improving robustness to non-Gaussian data and enabling more adaptive uncertainty quantification. We develop a novel loss function tailored for the t-distribution and derive efficient gradient computations for seamless integration into deep learning frameworks. Empirical evaluations on synthetic and real-world data demonstrate that TDistNNs improve the balance between coverage and interval width. Notably, for identical architectures, TDistNNs consistently produce narrower prediction intervals than Gaussian-based PNNs while maintaining proper coverage. This work contributes a flexible framework for uncertainty estimation in neural networks tasked with regression, particularly suited to settings involving complex output distributions.
Authors:Kevin Raina
Title: Logit Disagreement: OoD Detection with Bayesian Neural Networks
Abstract:
Bayesian neural networks (BNNs), which estimate the full posterior distribution over model parameters, are well-known for their role in uncertainty quantification and its promising application in out-of-distribution detection (OoD). Amongst other uncertainty measures, BNNs provide a state-of-the art estimation of predictive entropy (total uncertainty) which can be decomposed as the sum of mutual information and expected entropy. In the context of OoD detection the estimation of predictive uncertainty in the form of the predictive entropy score confounds aleatoric and epistemic uncertainty, the latter being hypothesized to be high for OoD points. Despite these justifications, the mutual information score has been shown to perform worse than predictive entropy. Taking inspiration from Bayesian variational autoencoder (BVAE) literature, this work proposes to measure the disagreement between a corrected version of the pre-softmax quantities, otherwise known as logits, as an estimate of epistemic uncertainty for Bayesian NNs under mean field variational inference. The three proposed epistemic uncertainty scores demonstrate marked improvements over mutual information on a range of OoD experiments, with equal performance otherwise. Moreover, the epistemic uncertainty scores perform on par with the Bayesian benchmark predictive entropy on a range of MNIST and CIFAR10 experiments.
Authors:Keon Vin Park
Title: Towards a Foundation Model for Physics-Informed Neural Networks: Multi-PDE Learning with Active Sampling
Abstract:
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs) by embedding physical laws into neural network training. However, traditional PINN models are typically designed for single PDEs, limiting their generalizability across different physical systems. In this work, we explore the potential of a foundation PINN model capable of solving multiple PDEs within a unified architecture. We investigate the efficacy of a single PINN framework trained on four distinct PDEs-the Simple Harmonic Oscillator (SHO), the 1D Heat Equation, the 1D Wave Equation, and the 2D Laplace Equation, demonstrating its ability to learn diverse physical dynamics. To enhance sample efficiency, we incorporate Active Learning (AL) using Monte Carlo (MC) Dropout-based uncertainty estimation, selecting the most informative training samples iteratively. We evaluate different active learning strategies, comparing models trained on 10%, 20%, 30%, 40%, and 50% of the full dataset, and analyze their impact on solution accuracy. Our results indicate that targeted uncertainty sampling significantly improves performance with fewer training samples, leading to efficient learning across multiple PDEs. This work highlights the feasibility of a generalizable PINN-based foundation model, capable of adapting to different physics-based problems without redesigning network architectures. Our findings suggest that multi-PDE PINNs with active learning can serve as an effective approach for reducing computational costs while maintaining high accuracy in physics-based deep learning applications.
Authors:Qi Li
Title: Feature Explosion: a generic optimization strategy for outlier detection algorithms
Abstract:
Outlier detection tasks aim at discovering potential issues or opportunities and are widely used in cybersecurity, financial security, industrial inspection, etc. To date, thousands of outlier detection algorithms have been proposed. Clearly, in real-world scenarios, such a large number of algorithms is unnecessary. In other words, a large number of outlier detection algorithms are redundant. We believe the root cause of this redundancy lies in the current highly customized (i.e., non-generic) optimization strategies. Specifically, when researchers seek to improve the performance of existing outlier detection algorithms, they have to design separate optimized versions tailored to the principles of each algorithm, leading to an ever-growing number of outlier detection algorithms. To address this issue, in this paper, we introduce the explosion from physics into the outlier detection task and propose a generic optimization strategy based on feature explosion, called OSD (Optimization Strategy for outlier Detection algorithms). In the future, when improving the performance of existing outlier detection algorithms, it will be sufficient to invoke the OSD plugin without the need to design customized optimized versions for them. We compared the performances of 14 outlier detection algorithms on 24 datasets before and after invoking the OSD plugin. The experimental results show that the performances of all outlier detection algorithms are improved on almost all datasets. In terms of average accuracy, OSD make these outlier detection algorithms improve by 15% (AUC), 63.7% (AP).
Authors:Koby Bibas
Title: Quantifying the Prediction Uncertainty of Machine Learning Models for Individual Data
Abstract:
Machine learning models have exhibited exceptional results in various domains. The most prevalent approach for learning is the empirical risk minimizer (ERM), which adapts the model's weights to reduce the loss on a training set and subsequently leverages these weights to predict the label for new test data. Nonetheless, ERM makes the assumption that the test distribution is similar to the training distribution, which may not always hold in real-world situations. In contrast, the predictive normalized maximum likelihood (pNML) was proposed as a min-max solution for the individual setting where no assumptions are made on the distribution of the tested input. This study investigates pNML's learnability for linear regression and neural networks, and demonstrates that pNML can improve the performance and robustness of these models on various tasks. Moreover, the pNML provides an accurate confidence measure for its output, showcasing state-of-the-art results for out-of-distribution detection, resistance to adversarial attacks, and active learning.
Authors:Harsh Kumar
Title: Using Images to Find Context-Independent Word Representations in Vector Space
Abstract:
Many methods have been proposed to find vector representation for words, but most rely on capturing context from the text to find semantic relationships between these vectors. We propose a novel method of using dictionary meanings and image depictions to find word vectors independent of any context. We use auto-encoder on the word images to find meaningful representations and use them to calculate the word vectors. We finally evaluate our method on word similarity, concept categorization and outlier detection tasks. Our method performs comparably to context-based methods while taking much less training time.
Authors:Haoming Li
Title: Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction
Abstract:
In this paper, we present a novel trajectory prediction model for autonomous driving, combining a Characterized Diffusion Module and a Spatial-Temporal Interaction Network to address the challenges posed by dynamic and heterogeneous traffic environments. Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions. Through extensive experimentation on public datasets such as NGSIM, HighD, and MoCAD, our model significantly outperforms existing state-of-the-art methods. We demonstrate its ability to capture the underlying spatial-temporal dynamics of traffic scenarios and improve prediction precision, especially in complex environments. The proposed model showcases strong potential for application in real-world autonomous driving systems.
Authors:Mahamudul Hasan
Title: ECORS: An Ensembled Clustering Approach to Eradicate The Local And Global Outlier In Collaborative Filtering Recommender System
Abstract:
Recommender systems are designed to suggest items based on user preferences, helping users navigate the vast amount of information available on the internet. Given the overwhelming content, outlier detection has emerged as a key research area in recommender systems. It involves identifying unusual or suspicious patterns in user behavior. However, existing studies in this field face several challenges, including the limited universality of algorithms, difficulties in selecting users, and a lack of optimization. In this paper, we propose an approach that addresses these challenges by employing various clustering algorithms. Specifically, we utilize a user-user matrix-based clustering technique to detect outliers. By constructing a user-user matrix, we can identify suspicious users in the system. Both local and global outliers are detected to ensure comprehensive analysis. Our experimental results demonstrate that this approach significantly improves the accuracy of outlier detection in recommender systems.
Authors:Geonuk Kim
Title: Cycle-Consistency Uncertainty Estimation for Visual Prompting based One-Shot Defect Segmentation
Abstract:
Industrial defect detection traditionally relies on supervised learning models trained on fixed datasets of known defect types. While effective within a closed set, these models struggle with new, unseen defects, necessitating frequent re-labeling and re-training. Recent advances in visual prompting offer a solution by allowing models to adaptively infer novel categories based on provided visual cues. However, a prevalent issue in these methods is the over-confdence problem, where models can mis-classify unknown objects as known objects with high certainty. To addresssing the fundamental concerns about the adaptability, we propose a solution to estimate uncertainty of the visual prompting process by cycle-consistency. We designed to check whether it can accurately restore the original prompt from its predictions. To quantify this, we measure the mean Intersection over Union (mIoU) between the restored prompt mask and the originally provided prompt mask. Without using complex designs or ensemble methods with multiple networks, our approach achieved a yield rate of 0.9175 in the VISION24 one-shot industrial challenge.
Authors:Andreas Kirsch
Title: (Implicit) Ensembles of Ensembles: Epistemic Uncertainty Collapse in Large Models
Abstract:
Epistemic uncertainty is crucial for safety-critical applications and data acquisition tasks. Yet, we find an important phenomenon in deep learning models: an epistemic uncertainty collapse as model complexity increases, challenging the assumption that larger models invariably offer better uncertainty quantification. We introduce implicit ensembling as a possible explanation for this phenomenon. To investigate this hypothesis, we provide theoretical analysis and experiments that demonstrate uncertainty collapse in explicit ensembles of ensembles and show experimental evidence of similar collapse in wider models across various architectures, from simple MLPs to state-of-the-art vision models including ResNets and Vision Transformers. We further develop implicit ensemble extraction techniques to decompose larger models into diverse sub-models, showing we can thus recover epistemic uncertainty. We explore the implications of these findings for uncertainty estimation.
Authors:Michael Morris
Title: Forecasting infectious disease prevalence with associated uncertainty using neural networks
Abstract:
Infectious diseases pose significant human and economic burdens. Accurately forecasting disease incidence can enable public health agencies to respond effectively to existing or emerging diseases. Despite progress in the field, developing accurate forecasting models remains a significant challenge. This thesis proposes two methodological frameworks using neural networks (NNs) with associated uncertainty estimates - a critical component limiting the application of NNs to epidemic forecasting thus far. We develop our frameworks by forecasting influenza-like illness (ILI) in the United States. Our first proposed method uses Web search activity data in conjunction with historical ILI rates as observations for training NN architectures. Our models incorporate Bayesian layers to produce uncertainty intervals, positioning themselves as legitimate alternatives to more conventional approaches. The best performing architecture: iterative recurrent neural network (IRNN), reduces mean absolute error by 10.3% and improves Skill by 17.1% on average in forecasting tasks across four flu seasons compared to the state-of-the-art. We build on this method by introducing IRNNs, an architecture which changes the sampling procedure in the IRNN to improve the uncertainty estimation. Our second framework uses neural ordinary differential equations to bridge the gap between mechanistic compartmental models and NNs; benefiting from the physical constraints that compartmental models provide. We evaluate eight neural ODE models utilising a mixture of ILI rates and Web search activity data to provide forecasts. These are compared with the IRNN and IRNN0 - the IRNN using only ILI rates. Models trained without Web search activity data outperform the IRNN0 by 16% in terms of Skill. Future work should focus on more effectively using neural ODEs with Web search data to compete with the best performing IRNN.