Authors:Haonan Shi, Yubin Wang, De Cheng, Lingfeng He, Nannan Wang, Xinbo Gao
Abstract:
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.
Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Syahid Al Irfan, Hindriyanto Dwi Purnomo, Radius Tanone
Abstract:
This study presents CORE-ReID V2, an enhanced framework building upon CORE-ReID. The new framework extends its predecessor by addressing Unsupervised Domain Adaptation (UDA) challenges in Person ReID and Vehicle ReID, with further applicability to Object ReID. During pre-training, CycleGAN is employed to synthesize diverse data, bridging image characteristic gaps across different domains. In the fine-tuning, an advanced ensemble fusion mechanism, consisting of the Efficient Channel Attention Block (ECAB) and the Simplified Efficient Channel Attention Block (SECAB), enhances both local and global feature representations while reducing ambiguity in pseudo-labels for target samples. Experimental results on widely used UDA Person ReID and Vehicle ReID datasets demonstrate that the proposed framework outperforms state-of-the-art methods, achieving top performance in Mean Average Precision (mAP) and Rank-k Accuracy (Top-1, Top-5, Top-10). Moreover, the framework supports lightweight backbones such as ResNet18 and ResNet34, ensuring both scalability and efficiency. Our work not only pushes the boundaries of UDA-based Object ReID but also provides a solid foundation for further research and advancements in this domain. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID-V2.
Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Katsuyoshi Hotta
Abstract:
This study introduces a novel framework, "Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)", to address an Unsupervised Domain Adaptation (UDA) for Person Re-identification (ReID). The framework utilizes CycleGAN to generate diverse data that harmonizes differences in image characteristics from different camera sources in the pre-training stage. In the fine-tuning stage, based on a pair of teacher-student networks, the framework integrates multi-view features for multi-level clustering to derive diverse pseudo labels. A learnable Ensemble Fusion component that focuses on fine-grained local information within global features is introduced to enhance learning comprehensiveness and avoid ambiguity associated with multiple pseudo-labels. Experimental results on three common UDAs in Person ReID demonstrate significant performance gains over state-of-the-art approaches. Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature Normalization mitigate deviation effects and adaptive fusion of global and local features using the ResNet-based model, further strengthening the framework. The proposed framework ensures clarity in fusion features, avoids ambiguity, and achieves high ac-curacy in terms of Mean Average Precision, Top-1, Top-5, and Top-10, positioning it as an advanced and effective solution for the UDA in Person ReID. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID.
Authors:Weicheng Gao
Abstract:
This work is completed on a whim after discussions with my junior colleague. The motion direction angle affects the micro-Doppler spectrum width, thus determining the human motion direction can provide important prior information for downstream tasks such as gait recognition. However, Doppler-Time map (DTM)-based methods still have room for improvement in achieving feature augmentation and motion determination simultaneously. In response, a low-cost but accurate radar-based human motion direction determination (HMDD) method is explored in this paper. In detail, the radar-based human gait DTMs are first generated, and then the feature augmentation is achieved using feature linking model. Subsequently, the HMDD is implemented through a lightweight and fast Vision Transformer-Convolutional Neural Network hybrid model structure. The effectiveness of the proposed method is verified through open-source dataset. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Low-Cost-Accurate-Radar-Based-Human-Motion-Direction-Determination.
Authors:Huy Nguyen, Kien Nguyen, Akila Pemasiri, Akmal Jahan, Clinton Fookes, Sridha Sridharan
Abstract:
Person re-identification (Re-ID) across visible and infrared modalities is crucial for 24-hour surveillance systems, but existing datasets primarily focus on ground-level perspectives. While ground-based IR systems offer nighttime capabilities, they suffer from occlusions, limited coverage, and vulnerability to obstructions--problems that aerial perspectives uniquely solve. To address these limitations, we introduce AG-VPReID.VIR, the first aerial-ground cross-modality video-based person Re-ID dataset. This dataset captures 1,837 identities across 4,861 tracklets (124,855 frames) using both UAV-mounted and fixed CCTV cameras in RGB and infrared modalities. AG-VPReID.VIR presents unique challenges including cross-viewpoint variations, modality discrepancies, and temporal dynamics. Additionally, we propose TCC-VPReID, a novel three-stream architecture designed to address the joint challenges of cross-platform and cross-modality person Re-ID. Our approach bridges the domain gaps between aerial-ground perspectives and RGB-IR modalities, through style-robust feature learning, memory-based cross-view adaptation, and intermediary-guided temporal modeling. Experiments show that AG-VPReID.VIR presents distinctive challenges compared to existing datasets, with our TCC-VPReID framework achieving significant performance gains across multiple evaluation protocols. Dataset and code are available at https://github.com/agvpreid25/AG-VPReID.VIR.
Authors:Xiao Wang, Qian Zhu, Shujuan Wu, Bo Jiang, Shiliang Zhang, Yaowei Wang, Yonghong Tian, Bin Luo
Abstract:
Recent researchers have proposed using event cameras for person re-identification (ReID) due to their promising performance and better balance in terms of privacy protection, event camera-based person ReID has attracted significant attention. Currently, mainstream event-based person ReID algorithms primarily focus on fusing visible light and event stream, as well as preserving privacy. Although significant progress has been made, these methods are typically trained and evaluated on small-scale or simulated event camera datasets, making it difficult to assess their real identification performance and generalization ability. To address the issue of data scarcity, this paper introduces a large-scale RGB-event based person ReID dataset, called EvReID. The dataset contains 118,988 image pairs and covers 1200 pedestrian identities, with data collected across multiple seasons, scenes, and lighting conditions. We also evaluate 15 state-of-the-art person ReID algorithms, laying a solid foundation for future research in terms of both data and benchmarking. Based on our newly constructed dataset, this paper further proposes a pedestrian attribute-guided contrastive learning framework to enhance feature learning for person re-identification, termed TriPro-ReID. This framework not only effectively explores the visual features from both RGB frames and event streams, but also fully utilizes pedestrian attributes as mid-level semantic features. Extensive experiments on the EvReID dataset and MARS datasets fully validated the effectiveness of our proposed RGB-Event person ReID framework. The benchmark dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID
Authors:Hankun Liu, Yujian Zhao, Guanglin Niu
Abstract:
Hard samples pose a significant challenge in person re-identification (ReID) tasks, particularly in clothing-changing person Re-ID (CC-ReID). Their inherent ambiguity or similarity, coupled with the lack of explicit definitions, makes them a fundamental bottleneck. These issues not only limit the design of targeted learning strategies but also diminish the model's robustness under clothing or viewpoint changes. In this paper, we propose a novel multimodal-guided Hard Sample Generation and Learning (HSGL) framework, which is the first effort to unify textual and visual modalities to explicitly define, generate, and optimize hard samples within a unified paradigm. HSGL comprises two core components: (1) Dual-Granularity Hard Sample Generation (DGHSG), which leverages multimodal cues to synthesize semantically consistent samples, including both coarse- and fine-grained hard positives and negatives for effectively increasing the hardness and diversity of the training data. (2) Hard Sample Adaptive Learning (HSAL), which introduces a hardness-aware optimization strategy that adjusts feature distances based on textual semantic labels, encouraging the separation of hard positives and drawing hard negatives closer in the embedding space to enhance the model's discriminative capability and robustness to hard samples. Extensive experiments on multiple CC-ReID benchmarks demonstrate the effectiveness of our approach and highlight the potential of multimodal-guided hard sample generation and learning for robust CC-ReID. Notably, HSAL significantly accelerates the convergence of the targeted learning procedure and achieves state-of-the-art performance on both PRCC and LTCC datasets. The code is available at https://github.com/undooo/TryHarder-ACMMM25.
Authors:Ayush Gupta, Siyuan Huang, Rama Chellappa
Abstract:
Gait is becoming popular as a method of person re-identification because of its ability to identify people at a distance. However, most current works in gait recognition do not address the practical problem of occlusions. Among those which do, some require paired tuples of occluded and holistic sequences, which are impractical to collect in the real world. Further, these approaches work on occlusions but fail to retain performance on holistic inputs. To address these challenges, we propose RG-Gait, a method for residual correction for occluded gait recognition with holistic retention. We model the problem as a residual learning task, conceptualizing the occluded gait signature as a residual deviation from the holistic gait representation. Our proposed network adaptively integrates the learned residual, significantly improving performance on occluded gait sequences without compromising the holistic recognition accuracy. We evaluate our approach on the challenging Gait3D, GREW and BRIAR datasets and show that learning the residual can be an effective technique to tackle occluded gait recognition with holistic retention. We release our code publicly at https://github.com/Ayush-00/rg-gait.
Authors:Priyank Pathak, Yogesh S. Rawat
Abstract:
Clothes-Changing Re-Identification (CC-ReID) aims to recognize individuals across different locations and times, irrespective of clothing. Existing methods often rely on additional models or annotations to learn robust, clothing-invariant features, making them resource-intensive. In contrast, we explore the use of color - specifically foreground and background colors - as a lightweight, annotation-free proxy for mitigating appearance bias in ReID models. We propose Colors See, Colors Ignore (CSCI), an RGB-only method that leverages color information directly from raw images or video frames. CSCI efficiently captures color-related appearance bias ('Color See') while disentangling it from identity-relevant ReID features ('Color Ignore'). To achieve this, we introduce S2A self-attention, a novel self-attention to prevent information leak between color and identity cues within the feature space. Our analysis shows a strong correspondence between learned color embeddings and clothing attributes, validating color as an effective proxy when explicit clothing labels are unavailable. We demonstrate the effectiveness of CSCI on both image and video ReID with extensive experiments on four CC-ReID datasets. We improve the baseline by Top-1 2.9% on LTCC and 5.0% on PRCC for image-based ReID, and 1.0% on CCVID and 2.5% on MeVID for video-based ReID without relying on additional supervision. Our results highlight the potential of color as a cost-effective solution for addressing appearance bias in CC-ReID. Github: https://github.com/ppriyank/ICCV-CSCI-Person-ReID.
Authors:Kunlun Xu, Fan Zhuo, Jiangmeng Li, Xu Zou, Jiahuan Zhou
Abstract:
Current lifelong person re-identification (LReID) methods predominantly rely on fully labeled data streams. However, in real-world scenarios where annotation resources are limited, a vast amount of unlabeled data coexists with scarce labeled samples, leading to the Semi-Supervised LReID (Semi-LReID) problem where LReID methods suffer severe performance degradation. Existing LReID methods, even when combined with semi-supervised strategies, suffer from limited long-term adaptation performance due to struggling with the noisy knowledge occurring during unlabeled data utilization. In this paper, we pioneer the investigation of Semi-LReID, introducing a novel Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation framework (SPRED). Our key innovation lies in establishing a self-reinforcing cycle between dynamic prototype-guided pseudo-label generation and new-old knowledge collaborative purification to enhance the utilization of unlabeled data. Specifically, learnable identity prototypes are introduced to dynamically capture the identity distributions and generate high-quality pseudo-labels. Then, the dual-knowledge cooperation scheme integrates current model specialization and historical model generalization, refining noisy pseudo-labels. Through this cyclic design, reliable pseudo-labels are progressively mined to improve current-stage learning and ensure positive knowledge propagation over long-term learning. Experiments on the established Semi-LReID benchmarks show that our SPRED achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/ICCV2025-SPRED
Authors:Robert Aufschläger, Youssef Shoeb, Azarm Nowzad, Michael Heigl, Fabian Bally, Martin Schramm
Abstract:
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
Authors:Hyeonseo Lee, Juhyun Park, Jihyong Oh, Chanho Eom
Abstract:
Person Re-identification (ReID) aims to retrieve images of the same individual captured across non-overlapping camera views, making it a critical component of intelligent surveillance systems. Traditional ReID methods assume that the training and test domains share similar characteristics and primarily focus on learning discriminative features within a given domain. However, they often fail to generalize to unseen domains due to domain shifts caused by variations in viewpoint, background, and lighting conditions. To address this issue, Domain-Adaptive ReID (DA-ReID) methods have been proposed. These approaches incorporate unlabeled target domain data during training and improve performance by aligning feature distributions between source and target domains. Domain-Generalizable ReID (DG-ReID) tackles a more realistic and challenging setting by aiming to learn domain-invariant features without relying on any target domain data. Recent methods have explored various strategies to enhance generalization across diverse environments, but the field remains relatively underexplored. In this paper, we present a comprehensive survey of DG-ReID. We first review the architectural components of DG-ReID including the overall setting, commonly used backbone networks and multi-source input configurations. Then, we categorize and analyze domain generalization modules that explicitly aim to learn domain-invariant and identity-discriminative representations. To examine the broader applicability of these techniques, we further conduct a case study on a related task that also involves distribution shifts. Finally, we discuss recent trends, open challenges, and promising directions for future research in DG-ReID. To the best of our knowledge, this is the first systematic survey dedicated to DG-ReID.
Authors:Jialong Zuo, Yongtai Deng, Mengdan Tan, Rui Jin, Dongyue Wu, Nong Sang, Liang Pan, Changxin Gao
Abstract:
In real-word scenarios, person re-identification (ReID) expects to identify a person-of-interest via the descriptive query, regardless of whether the query is a single modality or a combination of multiple modalities. However, existing methods and datasets remain constrained to limited modalities, failing to meet this requirement. Therefore, we investigate a new challenging problem called Omni Multi-modal Person Re-identification (OM-ReID), which aims to achieve effective retrieval with varying multi-modal queries. To address dataset scarcity, we construct ORBench, the first high-quality multi-modal dataset comprising 1,000 unique identities across five modalities: RGB, infrared, color pencil, sketch, and textual description. This dataset also has significant superiority in terms of diversity, such as the painting perspectives and textual information. It could serve as an ideal platform for follow-up investigations in OM-ReID. Moreover, we propose ReID5o, a novel multi-modal learning framework for person ReID. It enables synergistic fusion and cross-modal alignment of arbitrary modality combinations in a single model, with a unified encoding and multi-expert routing mechanism proposed. Extensive experiments verify the advancement and practicality of our ORBench. A wide range of possible models have been evaluated and compared on it, and our proposed ReID5o model gives the best performance. The dataset and code will be made publicly available at https://github.com/Zplusdragon/ReID5o_ORBench.
Authors:Shuang Li, Jiaxu Leng, Changjiang Kuang, Mingpi Tan, Xinbo Gao
Abstract:
Video-based Visible-Infrared Person Re-Identification (VVI-ReID) aims to match pedestrian sequences across modalities by extracting modality-invariant sequence-level features. As a high-level semantic representation, language provides a consistent description of pedestrian characteristics in both infrared and visible modalities. Leveraging the Contrastive Language-Image Pre-training (CLIP) model to generate video-level language prompts and guide the learning of modality-invariant sequence-level features is theoretically feasible. However, the challenge of generating and utilizing modality-shared video-level language prompts to address modality gaps remains a critical problem. To address this problem, we propose a simple yet powerful framework, video-level language-driven VVI-ReID (VLD), which consists of two core modules: invariant-modality language prompting (IMLP) and spatial-temporal prompting (STP). IMLP employs a joint fine-tuning strategy for the visual encoder and the prompt learner to effectively generate modality-shared text prompts and align them with visual features from different modalities in CLIP's multimodal space, thereby mitigating modality differences. Additionally, STP models spatiotemporal information through two submodules, the spatial-temporal hub (STH) and spatial-temporal aggregation (STA), which further enhance IMLP by incorporating spatiotemporal information into text prompts. The STH aggregates and diffuses spatiotemporal information into the [CLS] token of each frame across the vision transformer (ViT) layers, whereas STA introduces dedicated identity-level loss and specialized multihead attention to ensure that the STH focuses on identity-relevant spatiotemporal feature aggregation. The VLD framework achieves state-of-the-art results on two VVI-ReID benchmarks. The code will be released at https://github.com/Visuang/VLD.
Authors:Xianheng Ma, Hongchen Tan, Xiuping Liu, Yi Zhang, Huasheng Wang, Jiang Liu, Ying Chen, Hantao Liu
Abstract:
In this paper, we leverage the advantages of event cameras to resist harsh lighting conditions, reduce background interference, achieve high time resolution, and protect facial information to study the long-sequence event-based person re-identification (Re-ID) task. To this end, we propose a simple and efficient long-sequence event Re-ID model, namely the Spike-guided Spatiotemporal Semantic Coupling and Expansion Network (S3CE-Net). To better handle asynchronous event data, we build S3CE-Net based on spiking neural networks (SNNs). The S3CE-Net incorporates the Spike-guided Spatial-temporal Attention Mechanism (SSAM) and the Spatiotemporal Feature Sampling Strategy (STFS). The SSAM is designed to carry out semantic interaction and association in both spatial and temporal dimensions, leveraging the capabilities of SNNs. The STFS involves sampling spatial feature subsequences and temporal feature subsequences from the spatiotemporal dimensions, driving the Re-ID model to perceive broader and more robust effective semantics. Notably, the STFS introduces no additional parameters and is only utilized during the training stage. Therefore, S3CE-Net is a low-parameter and high-efficiency model for long-sequence event-based person Re-ID. Extensive experiments have verified that our S3CE-Net achieves outstanding performance on many mainstream long-sequence event-based person Re-ID datasets. Code is available at:https://github.com/Mhsunshine/SC3E_Net.
Authors:Dongyang Jin, Chao Fan, Jingzhe Ma, Jingkai Zhou, Weihua Chen, Shiqi Yu
Abstract:
To capture individual gait patterns, excluding identity-irrelevant cues in walking videos, such as clothing texture and color, remains a persistent challenge for vision-based gait recognition. Traditional silhouette- and pose-based methods, though theoretically effective at removing such distractions, often fall short of high accuracy due to their sparse and less informative inputs. Emerging end-to-end methods address this by directly denoising RGB videos using human priors. Building on this trend, we propose DenoisingGait, a novel gait denoising method. Inspired by the philosophy that "what I cannot create, I do not understand", we turn to generative diffusion models, uncovering how they partially filter out irrelevant factors for gait understanding. Additionally, we introduce a geometry-driven Feature Matching module, which, combined with background removal via human silhouettes, condenses the multi-channel diffusion features at each foreground pixel into a two-channel direction vector. Specifically, the proposed within- and cross-frame matching respectively capture the local vectorized structures of gait appearance and motion, producing a novel flow-like gait representation termed Gait Feature Field, which further reduces residual noise in diffusion features. Experiments on the CCPG, CASIA-B*, and SUSTech1K datasets demonstrate that DenoisingGait achieves a new SoTA performance in most cases for both within- and cross-domain evaluations. Code is available at https://github.com/ShiqiYu/OpenGait.
Authors:Qian Zhou, Xianda Guo, Jilong Wang, Chuanfu Shen, Zhongyuan Wang, Hua Zou, Qin Zou, Chao Liang, Long Chen, Gang Wu
Abstract:
Generalized gait recognition, which aims to achieve robust performance across diverse domains, remains a challenging problem due to severe domain shifts in viewpoints, appearances, and environments. While mixed-dataset training is widely used to enhance generalization, it introduces new obstacles including inter-dataset optimization conflicts and redundant or noisy samples, both of which hinder effective representation learning. To address these challenges, we propose a unified framework that systematically improves cross-domain gait recognition. First, we design a disentangled triplet loss that isolates supervision signals across datasets, mitigating gradient conflicts during optimization. Second, we introduce a targeted dataset distillation strategy that filters out the least informative 20\% of training samples based on feature redundancy and prediction uncertainty, enhancing data efficiency. Extensive experiments on CASIA-B, OU-MVLP, Gait3D, and GREW demonstrate that our method significantly improves cross-dataset recognition for both GaitBase and DeepGaitV2 backbones, without sacrificing source-domain accuracy. Code will be released at https://github.com/li1er3/Generalized_Gait.
Authors:Yancheng Wang, Nebojsa Jojic, Yingzhen Yang
Abstract:
In this paper, we propose a novel attention module termed the Differentiable Channel Selection Attention module, or the DCS-Attention module. In contrast with conventional self-attention, the DCS-Attention module features selection of informative channels in the computation of the attention weights. The selection of the feature channels is performed in a differentiable manner, enabling seamless integration with DNN training. Our DCS-Attention is compatible with either fixed neural network backbones or learnable backbones with Differentiable Neural Architecture Search (DNAS), leading to DCS with Fixed Backbone (DCS-FB) and DCS-DNAS, respectively. Importantly, our DCS-Attention is motivated by the principle of Information Bottleneck (IB), and a novel variational upper bound for the IB loss, which can be optimized by SGD, is derived and incorporated into the training loss of the networks with the DCS-Attention modules. In this manner, a neural network with DCS-Attention modules is capable of selecting the most informative channels for feature extraction so that it enjoys state-of-the-art performance for the Re-ID task. Extensive experiments on multiple person Re-ID benchmarks using both DCS-FB and DCS-DNAS show that DCS-Attention significantly enhances the prediction accuracy of DNNs for person Re-ID, which demonstrates the effectiveness of DCS-Attention in learning discriminative features critical to identifying person identities. The code of our work is available at https://github.com/Statistical-Deep-Learning/DCS-Attention.
Authors:Branko BrkljaÄ, Milan BrkljaÄ
Abstract:
Practical applications of computer vision in smart cities usually assume system integration and operation in challenging open-world environments. In the case of person re-identification task the main goal is to retrieve information whether the specific person has appeared in another place at a different time instance of the same video, or over multiple camera feeds. This typically assumes collecting raw data from video surveillance cameras in different places and under varying illumination conditions. In the considered open-world setting it also requires detection and localization of the person inside the analyzed video frame before the main re-identification step. With multi-person and multi-camera setups the system complexity becomes higher, requiring sophisticated tracking solutions and re-identification models. In this work we will discuss existing challenges in system design architectures, consider possible solutions based on different computer vision techniques, and describe applications of such systems in retail stores and public spaces for improved marketing analytics. In order to analyse sensitivity of person re-identification task under different open-world environments, a performance of one close to real-time solution will be demonstrated over several video captures and live camera feeds. Finally, based on conducted experiments we will indicate further research directions and possible system improvements.
Authors:De Cheng, Lingfeng He, Nannan Wang, Dingwen Zhang, Xinbo Gao
Abstract:
Unsupervised visible-infrared person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning. Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning. However, these methods overlook the cross-modality variations in feature representation and pseudo-label distributions brought by fine-grained patterns. This insight results in insufficient modality-shared learning when only global features are optimized. To address this issue, we propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up optimization objective for specific fine-grained patterns emphasized by each modality, thereby achieving complementary alignment between the label distributions of different modalities. Specifically, we first introduce a Dual Association with Global Learning (DAGI) module to unify the pseudo-labels of cross-modality instances in a bi-directional manner. Afterward, a Fine-Grained Semantic-Aligned Learning (FGSAL) module is carried out to explore part-level semantic-aligned patterns emphasized by each modality from cross-modality instances. Optimization objective is then formulated based on the semantic-aligned features and their corresponding label space. To alleviate the side-effects arising from noisy pseudo-labels, we propose a Global-Part Collaborative Refinement (GPCR) module to mine reliable positive sample sets for the global and part features dynamically and optimize the inter-instance relationships. Extensive experiments demonstrate the effectiveness of the proposed method, which achieves superior performances to state-of-the-art methods. Our code is available at \href{https://github.com/FranklinLingfeng/code-for-SALCR}.
Authors:Shiben Liu, Huijie Fan, Qiang Wang, Baojie Fan, Yandong Tang, Liangqiong Qu
Abstract:
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
Authors:Prasanna Reddy Pulakurthi, Majid Rabbani, Celso M. de Melo, Sohail A. Dianat, Raghuveer M. Rao
Abstract:
This paper introduces a novel dual-region augmentation approach designed to reduce reliance on large-scale labeled datasets while improving model robustness and adaptability across diverse computer vision tasks, including source-free domain adaptation (SFDA) and person re-identification (ReID). Our method performs targeted data transformations by applying random noise perturbations to foreground objects and spatially shuffling background patches. This effectively increases the diversity of the training data, improving model robustness and generalization. Evaluations on the PACS dataset for SFDA demonstrate that our augmentation strategy consistently outperforms existing methods, achieving significant accuracy improvements in both single-target and multi-target adaptation settings. By augmenting training data through structured transformations, our method enables model generalization across domains, providing a scalable solution for reducing reliance on manually annotated datasets. Furthermore, experiments on Market-1501 and DukeMTMC-reID datasets validate the effectiveness of our approach for person ReID, surpassing traditional augmentation techniques. The code is available at https://github.com/PrasannaPulakurthi/Foreground-Background-Augmentation
Authors:Keqi Chen, Vinkle Srivastav, Didier Mutter, Nicolas Padoy
Abstract:
Multi-view person association is a fundamental step towards multi-view analysis of human activities. Although the person re-identification features have been proven effective, they become unreliable in challenging scenes where persons share similar appearances. Therefore, cross-view geometric constraints are required for a more robust association. However, most existing approaches are either fully-supervised using ground-truth identity labels or require calibrated camera parameters that are hard to obtain. In this work, we investigate the potential of learning from synchronization, and propose a self-supervised uncalibrated multi-view person association approach, Self-MVA, without using any annotations. Specifically, we propose a self-supervised learning framework, consisting of an encoder-decoder model and a self-supervised pretext task, cross-view image synchronization, which aims to distinguish whether two images from different views are captured at the same time. The model encodes each person's unified geometric and appearance features, and we train it by utilizing synchronization labels for supervision after applying Hungarian matching to bridge the gap between instance-wise and image-wise distances. To further reduce the solution space, we propose two types of self-supervised linear constraints: multi-view re-projection and pairwise edge association. Extensive experiments on three challenging public benchmark datasets (WILDTRACK, MVOR, and SOLDIERS) show that our approach achieves state-of-the-art results, surpassing existing unsupervised and fully-supervised approaches. Code is available at https://github.com/CAMMA-public/Self-MVA.
Authors:Wenbo Dai, Lijing Lu, Zhihang Li
Abstract:
The performance of models is intricately linked to the abundance of training data. In Visible-Infrared person Re-IDentification (VI-ReID) tasks, collecting and annotating large-scale images of each individual under various cameras and modalities is tedious, time-expensive, costly and must comply with data protection laws, posing a severe challenge in meeting dataset requirements. Current research investigates the generation of synthetic data as an efficient and privacy-ensuring alternative to collecting real data in the field. However, a specific data synthesis technique tailored for VI-ReID models has yet to be explored. In this paper, we present a novel data generation framework, dubbed Diffusion-based VI-ReID data Expansion (DiVE), that automatically obtain massive RGB-IR paired images with identity preserving by decoupling identity and modality to improve the performance of VI-ReID models. Specifically, identity representation is acquired from a set of samples sharing the same ID, whereas the modality of images is learned by fine-tuning the Stable Diffusion (SD) on modality-specific data. DiVE extend the text-driven image synthesis to identity-preserving RGB-IR multimodal image synthesis. This approach significantly reduces data collection and annotation costs by directly incorporating synthetic data into ReID model training. Experiments have demonstrated that VI-ReID models trained on synthetic data produced by DiVE consistently exhibit notable enhancements. In particular, the state-of-the-art method, CAJ, trained with synthetic images, achieves an improvement of about $9\%$ in mAP over the baseline on the LLCM dataset. Code: https://github.com/BorgDiven/DiVE
Authors:Yan Jiang, Hao Yu, Mengting Wei, Zhaodong Sun, Haoyu Chen, Xu Cheng, Guoying Zhao
Abstract:
Visible-infrared person re-identification (VI-ReID) is a challenging task that aims to match pedestrian images captured under varying lighting conditions, which has drawn intensive research attention and achieved promising results. However, existing methods adopt the centralized training, ignoring the potential privacy concerns as the data is distributed across multiple devices or entities in reality. In this paper, we propose L2RW+, a benchmark that brings VI-ReID closer to real-world applications. The core rationale behind L2RW+ is that incorporating decentralized training into VI-ReID can address privacy concerns in scenarios with limited data-sharing constrains. Specifically, we design protocols and corresponding algorithms for different privacy sensitivity levels. In our new benchmark, we simulate the training under real-world data conditions that: 1) data from each camera is completely isolated, or 2) different data entities (e.g., data controllers of a certain region) can selectively share the data. In this way, we simulate scenarios with strict privacy restrictions, which is closer to real-world conditions. Comprehensive experiments show the feasibility and potential of decentralized VI-ReID training at both image and video levels. In particular, with increasing data scales, the performance gap between decentralized and centralized training decreases, especially in video-level VI-ReID. In unseen domains, decentralized training even achieves performance comparable to SOTA centralized methods. This work offers a novel research entry for deploying VI-ReID into real-world scenarios and can benefit the community. Code is available at: https://github.com/Joey623/L2RW.
Authors:Jiayu Jiang, Changxing Ding, Wentao Tan, Junhong Wang, Jin Tao, Xiangmin Xu
Abstract:
Text-to-image person re-identification (ReID) aims to retrieve the images of an interested person based on textual descriptions. One main challenge for this task is the high cost in manually annotating large-scale databases, which affects the generalization ability of ReID models. Recent works handle this problem by leveraging Multi-modal Large Language Models (MLLMs) to describe pedestrian images automatically. However, the captions produced by MLLMs lack diversity in description styles. To address this issue, we propose a Human Annotator Modeling (HAM) approach to enable MLLMs to mimic the description styles of thousands of human annotators. Specifically, we first extract style features from human textual descriptions and perform clustering on them. This allows us to group textual descriptions with similar styles into the same cluster. Then, we employ a prompt to represent each of these clusters and apply prompt learning to mimic the description styles of different human annotators. Furthermore, we define a style feature space and perform uniform sampling in this space to obtain more diverse clustering prototypes, which further enriches the diversity of the MLLM-generated captions. Finally, we adopt HAM to automatically annotate a massive-scale database for text-to-image ReID. Extensive experiments on this database demonstrate that it significantly improves the generalization ability of ReID models.
Authors:Huy Nguyen, Kien Nguyen, Akila Pemasiri, Feng Liu, Sridha Sridharan, Clinton Fookes
Abstract:
We introduce AG-VPReID, a new large-scale dataset for aerial-ground video-based person re-identification (ReID) that comprises 6,632 subjects, 32,321 tracklets and over 9.6 million frames captured by drones (altitudes ranging from 15-120m), CCTV, and wearable cameras. This dataset offers a real-world benchmark for evaluating the robustness to significant viewpoint changes, scale variations, and resolution differences in cross-platform aerial-ground settings. In addition, to address these challenges, we propose AG-VPReID-Net, an end-to-end framework composed of three complementary streams: (1) an Adapted Temporal-Spatial Stream addressing motion pattern inconsistencies and facilitating temporal feature learning, (2) a Normalized Appearance Stream leveraging physics-informed techniques to tackle resolution and appearance changes, and (3) a Multi-Scale Attention Stream handling scale variations across drone altitudes. We integrate visual-semantic cues from all streams to form a robust, viewpoint-invariant whole-body representation. Extensive experiments demonstrate that AG-VPReID-Net outperforms state-of-the-art approaches on both our new dataset and existing video-based ReID benchmarks, showcasing its effectiveness and generalizability. Nevertheless, the performance gap observed on AG-VPReID across all methods underscores the dataset's challenging nature. The dataset, code and trained models are available at https://github.com/agvpreid25/AG-VPReID-Net.
Authors:Shining Wang, Yunlong Wang, Ruiqi Wu, Bingliang Jiao, Wenxuan Wang, Peng Wang
Abstract:
When discussing the Aerial-Ground Person Re-identification (AGPReID) task, we face the main challenge of the significant appearance variations caused by different viewpoints, making identity matching difficult. To address this issue, previous methods attempt to reduce the differences between viewpoints by critical attributes and decoupling the viewpoints. While these methods can mitigate viewpoint differences to some extent, they still face two main issues: (1) difficulty in handling viewpoint diversity and (2) neglect of the contribution of local features. To effectively address these challenges, we design and implement the Self-Calibrating and Adaptive Prompt (SeCap) method for the AGPReID task. The core of this framework relies on the Prompt Re-calibration Module (PRM), which adaptively re-calibrates prompts based on the input. Combined with the Local Feature Refinement Module (LFRM), SeCap can extract view-invariant features from local features for AGPReID. Meanwhile, given the current scarcity of datasets in the AGPReID field, we further contribute two real-world Large-scale Aerial-Ground Person Re-Identification datasets, LAGPeR and G2APS-ReID. The former is collected and annotated by us independently, covering $4,231$ unique identities and containing $63,841$ high-quality images; the latter is reconstructed from the person search dataset G2APS. Through extensive experiments on AGPReID datasets, we demonstrate that SeCap is a feasible and effective solution for the AGPReID task. The datasets and source code available on https://github.com/wangshining681/SeCap-AGPReID.
Authors:Bessie Dominguez-Dager, Felix Escalona, Francisco Gomez-Donoso, Miguel Cazorla
Abstract:
Person re-identification (Re-ID) is a key challenge in computer vision, requiring the matching of individuals across cameras, locations, and time. While most research focuses on short-term scenarios with minimal appearance changes, real-world applications demand robust systems that handle long-term variations caused by clothing and physical changes. We present CHIRLA, Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis, a novel dataset designed for video-based long-term person Re-ID. CHIRLA was recorded over seven months in four connected indoor environments using seven strategically placed cameras, capturing realistic movements with substantial clothing and appearance variability. The dataset includes 22 individuals, more than five hours of video, and about 1M bounding boxes with identity annotations obtained through semi-automatic labeling. We also define benchmark protocols for person tracking and Re-ID, covering diverse and challenging scenarios such as occlusion, reappearance, and multi-camera conditions. By introducing this comprehensive benchmark, we aim to facilitate the development and evaluation of Re-ID algorithms that can reliably perform in challenging, long-term real-world scenarios. The benchmark code is publicly available at: https://github.com/bdager/CHIRLA.
Authors:Jiachen Li, Xiaojin Gong
Abstract:
Domain-generalizable re-identification (DG Re-ID) aims to train a model on one or more source domains and evaluate its performance on unseen target domains, a task that has attracted growing attention due to its practical relevance. While numerous methods have been proposed, most rely on discriminative or contrastive learning frameworks to learn generalizable feature representations. However, these approaches often fail to mitigate shortcut learning, leading to suboptimal performance. In this work, we propose a novel method called diffusion model-assisted representation learning with a correlation-aware conditioning scheme (DCAC) to enhance DG Re-ID. Our method integrates a discriminative and contrastive Re-ID model with a pre-trained diffusion model through a correlation-aware conditioning scheme. By incorporating ID classification probabilities generated from the Re-ID model with a set of learnable ID-wise prompts, the conditioning scheme injects dark knowledge that captures ID correlations to guide the diffusion process. Simultaneously, feedback from the diffusion model is back-propagated through the conditioning scheme to the Re-ID model, effectively improving the generalization capability of Re-ID features. Extensive experiments on both single-source and multi-source DG Re-ID tasks demonstrate that our method achieves state-of-the-art performance. Comprehensive ablation studies further validate the effectiveness of the proposed approach, providing insights into its robustness. Codes will be available at https://github.com/RikoLi/DCAC.
Authors:Xiaolei Liu, Yan Sun, Zhiliang Wang, Mark Nixon
Abstract:
Gait recognition is an emerging identification technology that distinguishes individuals at long distances by analyzing individual walking patterns. Traditional techniques rely heavily on large-scale labeled datasets, which incurs high costs and significant labeling challenges. Recently, researchers have explored unsupervised gait recognition with clustering-based unsupervised domain adaptation methods and achieved notable success. However, these methods directly use pseudo-label generated by clustering and neglect pseudolabel noise caused by domain differences, which affects the effect of the model training process. To mitigate these issues, we proposed a novel model called GaitDCCR, which aims to reduce the influence of noisy pseudo labels on clustering and model training. Our approach can be divided into two main stages: clustering and training stage. In the clustering stage, we propose Dynamic Cluster Parameters (DCP) and Dynamic Weight Centroids (DWC) to improve the efficiency of clustering and obtain reliable cluster centroids. In the training stage, we employ the classical teacher-student structure and propose Confidence-based Pseudo-label Refinement (CPR) and Contrastive Teacher Module (CTM) to encourage noisy samples to converge towards clusters containing their true identities. Extensive experiments on public gait datasets have demonstrated that our simple and effective method significantly enhances the performance of unsupervised gait recognition, laying the foundation for its application in the real-world. We will release the code at https://github.com/YanSun-github/GaitDCCR upon acceptance.
Authors:Ayush Gupta, Rama Chellappa
Abstract:
Gait recognition is an important biometric technique over large distances. State-of-the-art gait recognition systems perform very well in controlled environments at close range. Recently, there has been an increased interest in gait recognition in the wild prompted by the collection of outdoor, more challenging datasets containing variations in terms of illumination, pitch angles, and distances. An important problem in these environments is that of occlusion, where the subject is partially blocked from camera view. While important, this problem has received little attention. Thus, we propose MimicGait, a model-agnostic approach for gait recognition in the presence of occlusions. We train the network using a multi-instance correlational distillation loss to capture both inter-sequence and intra-sequence correlations in the occluded gait patterns of a subject, utilizing an auxiliary Visibility Estimation Network to guide the training of the proposed mimic network. We demonstrate the effectiveness of our approach on challenging real-world datasets like GREW, Gait3D and BRIAR. We release the code in https://github.com/Ayush-00/mimicgait.
Authors:Zheng-An Zhu, Hsin-Che Chien, Chen-Kuo Chiang
Abstract:
This paper proposes the ViT Token Constraint and Multi-scale Memory bank (TCMM) method to address the patch noises and feature inconsistency in unsupervised person re-identification works. Many excellent methods use ViT features to obtain pseudo labels and clustering prototypes, then train the model with contrastive learning. However, ViT processes images by performing patch embedding, which inevitably introduces noise in patches and may compromise the performance of the re-identification model. On the other hand, previous memory bank based contrastive methods may lead data inconsistency due to the limitation of batch size. Furthermore, existing pseudo label methods often discard outlier samples that are difficult to cluster. It sacrifices the potential value of outlier samples, leading to limited model diversity and robustness. This paper introduces the ViT Token Constraint to mitigate the damage caused by patch noises to the ViT architecture. The proposed Multi-scale Memory enhances the exploration of outlier samples and maintains feature consistency. Experimental results demonstrate that our system achieves state-of-the-art performance on common benchmarks. The project is available at \href{https://github.com/andy412510/TCMM}{https://github.com/andy412510/TCMM}.
Authors:Yiyuan Ge, Zhihao Chen, Ziyang Wang, Jiaju Kang, Mingya Zhang
Abstract:
The development of deep learning has facilitated the application of person re-identification (ReID) technology in intelligent security. Visible-infrared person re-identification (VI-ReID) aims to match pedestrians across infrared and visible modality images enabling 24-hour surveillance. Current studies relying on unsupervised modality transformations as well as inefficient embedding constraints to bridge the spectral differences between infrared and visible images, however, limit their potential performance. To tackle the limitations of the above approaches, this paper introduces a simple yet effective Spectral Enhancement and Pseudo-anchor Guidance Network, named SEPG-Net. Specifically, we propose a more homogeneous spectral enhancement scheme based on frequency domain information and greyscale space, which avoids the information loss typically caused by inefficient modality transformations. Further, a Pseudo Anchor-guided Bidirectional Aggregation (PABA) loss is introduced to bridge local modality discrepancies while better preserving discriminative identity embeddings. Experimental results on two public benchmark datasets demonstrate the superior performance of SEPG-Net against other state-of-the-art methods. The code is available at https://github.com/1024AILab/ReID-SEPG.
Authors:Yuhao Wang, Pingping Zhang, Xuehu Liu, Zhengzheng Tu, Huchuan Lu
Abstract:
Person Re-identification (ReID) aims to retrieve the specific person across non-overlapping cameras, which greatly helps intelligent transportation systems. As we all know, Convolutional Neural Networks (CNNs) and Transformers have the unique strengths to extract local and global features, respectively. Considering this fact, we focus on the mutual fusion between them to learn more comprehensive representations for persons. In particular, we utilize the complementary integration of deep features from different model structures. We propose a novel fusion framework called FusionReID to unify the strengths of CNNs and Transformers for image-based person ReID. More specifically, we first deploy a Dual-branch Feature Extraction (DFE) to extract features through CNNs and Transformers from a single image. Moreover, we design a novel Dual-attention Mutual Fusion (DMF) to achieve sufficient feature fusions. The DMF comprises Local Refinement Units (LRU) and Heterogenous Transmission Modules (HTM). LRU utilizes depth-separable convolutions to align deep features in channel dimensions and spatial sizes. HTM consists of a Shared Encoding Unit (SEU) and two Mutual Fusion Units (MFU). Through the continuous stacking of HTM, deep features after LRU are repeatedly utilized to generate more discriminative features. Extensive experiments on three public ReID benchmarks demonstrate that our method can attain superior performances than most state-of-the-arts. The source code is available at https://github.com/924973292/FusionReID.
Authors:Xiao Teng, Long Lan, Dingyao Chen, Kele Xu, Nan Yin
Abstract:
Unsupervised visible-infrared person re-identification (USL-VI-ReID) is of great research and practical significance yet remains challenging due to the absence of annotations. Existing approaches aim to learn modality-invariant representations in an unsupervised setting. However, these methods often encounter label noise within and across modalities due to suboptimal clustering results and considerable modality discrepancies, which impedes effective training. To address these challenges, we propose a straightforward yet effective solution for USL-VI-ReID by mitigating universal label noise using neighbor information. Specifically, we introduce the Neighbor-guided Universal Label Calibration (N-ULC) module, which replaces explicit hard pseudo labels in both homogeneous and heterogeneous spaces with soft labels derived from neighboring samples to reduce label noise. Additionally, we present the Neighbor-guided Dynamic Weighting (N-DW) module to enhance training stability by minimizing the influence of unreliable samples. Extensive experiments on the RegDB and SYSU-MM01 datasets demonstrate that our method outperforms existing USL-VI-ReID approaches, despite its simplicity. The source code is available at: https://github.com/tengxiao14/Neighbor-guided-USL-VI-ReID.
Authors:Kunlun Xu, Chenghao Jiang, Peixi Xiong, Yuxin Peng, Jiahuan Zhou
Abstract:
Lifelong person re-identification (LReID) is an important but challenging task that suffers from catastrophic forgetting due to significant domain gaps between training steps. Existing LReID approaches typically rely on data replay and knowledge distillation to mitigate this issue. However, data replay methods compromise data privacy by storing historical exemplars, while knowledge distillation methods suffer from limited performance due to the cumulative forgetting of undistilled knowledge. To overcome these challenges, we propose a novel paradigm that models and rehearses the distribution of the old domains to enhance knowledge consolidation during the new data learning, possessing a strong anti-forgetting capacity without storing any exemplars. Specifically, we introduce an exemplar-free LReID method called Distribution Rehearsing via Adaptive Style Kernel Learning (DASK). DASK includes a Distribution Rehearser Learning (DRL) mechanism that learns to transform arbitrary distribution data into the current data style at each learning step. To enhance the style transfer capacity of DRL, an Adaptive Kernel Prediction Network (AKPNet) is explored to achieve an instance-specific distribution adjustment. Additionally, we design a Distribution Rehearsing-driven LReID Training (DRRT) module, which rehearses old distribution based on the new data via the old AKPNet model, achieving effective new-old knowledge accumulation under a joint knowledge consolidation scheme. Experimental results show our DASK outperforms the existing methods by 3.6%-6.8% and 4.5%-6.5% on anti-forgetting and generalization capacity, respectively. Our code is available at https://github.com/zhoujiahuan1991/AAAI2025-LReID-DASK
Authors:Haocong Rao, Chunyan Miao
Abstract:
Person re-identification (re-ID) via 3D skeleton data is a challenging task with significant value in many scenarios. Existing skeleton-based methods typically assume virtual motion relations between all joints, and adopt average joint or sequence representations for learning. However, they rarely explore key body structure and motion such as gait to focus on more important body joints or limbs, while lacking the ability to fully mine valuable spatial-temporal sub-patterns of skeletons to enhance model learning. This paper presents a generic Motif guided graph transformer with Combinatorial skeleton prototype learning (MoCos) that exploits structure-specific and gait-related body relations as well as combinatorial features of skeleton graphs to learn effective skeleton representations for person re-ID. In particular, motivated by the locality within joints' structure and the body-component collaboration in gait, we first propose the motif guided graph transformer (MGT) that incorporates hierarchical structural motifs and gait collaborative motifs, which simultaneously focuses on multi-order local joint correlations and key cooperative body parts to enhance skeleton relation learning. Then, we devise the combinatorial skeleton prototype learning (CSP) that leverages random spatial-temporal combinations of joint nodes and skeleton graphs to generate diverse sub-skeleton and sub-tracklet representations, which are contrasted with the most representative features (prototypes) of each identity to learn class-related semantics and discriminative skeleton representations. Extensive experiments validate the superior performance of MoCos over existing state-of-the-art models. We further show its generality under RGB-estimated skeletons, different graph modeling, and unsupervised scenarios.
Authors:Xiyu Han, Xian Zhong, Wenxin Huang, Xuemei Jia, Xiaohan Yu, Alex Chichung Kot
Abstract:
Cloth-changing person re-identification (CC-ReID) aims to match individuals across surveillance cameras despite variations in clothing. Existing methods typically mitigate the impact of clothing changes or enhance identity (ID)-relevant features, but they often struggle to capture complex semantic information. In this paper, we propose a novel prompt learning framework Semantic Contextual Integration (SCI), which leverages the visual-textual representation capabilities of CLIP to reduce clothing-induced discrepancies and strengthen ID cues. Specifically, we introduce the Semantic Separation Enhancement (SSE) module, which employs dual learnable text tokens to disentangle clothing-related semantics from confounding factors, thereby isolating ID-relevant features. Furthermore, we develop a Semantic-Guided Interaction Module (SIM) that uses orthogonalized text features to guide visual representations, sharpening the focus of the model on distinctive ID characteristics. This semantic integration improves the discriminative power of the model and enriches the visual context with high-dimensional insights. Extensive experiments on three CC-ReID datasets demonstrate that our method outperforms state-of-the-art techniques. The code will be released at https://github.com/hxy-499/CCREID-SCI.
Authors:Yoonki Cho, Jaeyoon Kim, Woo Jae Kim, Junsik Jung, Sung-eui Yoon
Abstract:
Domain generalizable person re-identification (DG re-ID) aims to learn discriminative representations that are robust to distributional shifts. While data augmentation is a straightforward solution to improve generalization, certain augmentations exhibit a polarized effect in this task, enhancing in-distribution performance while deteriorating out-of-distribution performance. In this paper, we investigate this phenomenon and reveal that it leads to sparse representation spaces with reduced uniformity. To address this issue, we propose a novel framework, Balancing Alignment and Uniformity (BAU), which effectively mitigates this effect by maintaining a balance between alignment and uniformity. Specifically, BAU incorporates alignment and uniformity losses applied to both original and augmented images and integrates a weighting strategy to assess the reliability of augmented samples, further improving the alignment loss. Additionally, we introduce a domain-specific uniformity loss that promotes uniformity within each source domain, thereby enhancing the learning of domain-invariant features. Extensive experimental results demonstrate that BAU effectively exploits the advantages of data augmentation, which previous studies could not fully utilize, and achieves state-of-the-art performance without requiring complex training procedures. The code is available at \url{https://github.com/yoonkicho/BAU}.
Authors:Nyle Siddiqui, Florinel Alin Croitoru, Gaurav Kumar Nayak, Radu Tudor Ionescu, Mubarak Shah
Abstract:
With the recent exhibited strength of generative diffusion models, an open research question is if images generated by these models can be used to learn better visual representations. While this generative data expansion may suffice for easier visual tasks, we explore its efficacy on a more difficult discriminative task: clothes-changing person re-identification (CC-ReID). CC-ReID aims to match people appearing in non-overlapping cameras, even when they change their clothes across cameras. Not only are current CC-ReID models constrained by the limited diversity of clothing in current CC-ReID datasets, but generating additional data that retains important personal features for accurate identification is a current challenge. To address this issue we propose DLCR, a novel data expansion framework that leverages pre-trained diffusion and large language models (LLMs) to accurately generate diverse images of individuals in varied attire. We generate additional data for five benchmark CC-ReID datasets (PRCC, CCVID, LaST, VC-Clothes, and LTCC) and increase their clothing diversity by 10X, totaling over 2.1M images generated. DLCR employs diffusion-based text-guided inpainting, conditioned on clothing prompts constructed using LLMs, to generate synthetic data that only modifies a subject's clothes while preserving their personally identifiable features. With this massive increase in data, we introduce two novel strategies - progressive learning and test-time prediction refinement - that respectively reduce training time and further boosts CC-ReID performance. On the PRCC dataset, we obtain a large top-1 accuracy improvement of 11.3% by training CAL, a previous state of the art (SOTA) method, with DLCR-generated data. We publicly release our code and generated data for each dataset here: https://github.com/CroitoruAlin/dlcr.
Authors:Haiwen Diao, Ying Zhang, Shang Gao, Jiawen Zhu, Long Chen, Huchuan Lu
Abstract:
Cross-modal metric learning is a prominent research topic that bridges the semantic heterogeneity between vision and language. Existing methods frequently utilize simple cosine or complex distance metrics to transform the pairwise features into a similarity score, which suffers from an inadequate or inefficient capability for distance measurements. Consequently, we propose a Generalized Structural Sparse Function to dynamically capture thorough and powerful relationships across modalities for pair-wise similarity learning while remaining concise but efficient. Specifically, the distance metric delicately encapsulates two formats of diagonal and block-diagonal terms, automatically distinguishing and highlighting the cross-channel relevancy and dependency inside a structured and organized topology. Hence, it thereby empowers itself to adapt to the optimal matching patterns between the paired features and reaches a sweet spot between model complexity and capability. Extensive experiments on cross-modal and two extra uni-modal retrieval tasks (image-text retrieval, person re-identification, fine-grained image retrieval) have validated its superiority and flexibility over various popular retrieval frameworks. More importantly, we further discover that it can be seamlessly incorporated into multiple application scenarios, and demonstrates promising prospects from Attention Mechanism to Knowledge Distillation in a plug-and-play manner. Our code is publicly available at: https://github.com/Paranioar/GSSF.
Authors:Yujian Zhao, Chengru Wu, Yinong Xu, Xuanzheng Du, Ruiyu Li, Guanglin Niu
Abstract:
Cloth-changing person re-identification (CC-ReID), also known as Long-Term Person Re-Identification (LT-ReID) is a critical and challenging research topic in computer vision that has recently garnered significant attention. However, due to the high cost of constructing CC-ReID data, the existing data-driven models are hard to train efficiently on limited data, causing overfitting issue. To address this challenge, we propose a low-cost and efficient pipeline for generating controllable and high-quality synthetic data simulating the surveillance of real scenarios specific to the CC-ReID task. Particularly, we construct a new self-annotated CC-ReID dataset named Cloth-Changing Unreal Person (CCUP), containing 6,000 IDs, 1,179,976 images, 100 cameras, and 26.5 outfits per individual. Based on this large-scale dataset, we introduce an effective and scalable pretrain-finetune framework for enhancing the generalization capabilities of the traditional CC-ReID models. The extensive experiments demonstrate that two typical models namely TransReID and FIRe^2, when integrated into our framework, outperform other state-of-the-art models after pretraining on CCUP and finetuning on the benchmarks such as PRCC, VC-Clothes and NKUP. The CCUP is available at: https://github.com/yjzhao1019/CCUP.
Authors:Meenakshi Subhash Chippa, Prakash Chandra Chhipa, Kanjar De, Marcus Liwicki, Rajkumar Saini
Abstract:
Perspective distortion (PD) leads to substantial alterations in the shape, size, orientation, angles, and spatial relationships of visual elements in images. Accurately determining camera intrinsic and extrinsic parameters is challenging, making it hard to synthesize perspective distortion effectively. The current distortion correction methods involve removing distortion and learning vision tasks, thus making it a multi-step process, often compromising performance. Recent work leverages the Möbius transform for mitigating perspective distortions (MPD) to synthesize perspective distortions without estimating camera parameters. Möbius transform requires tuning multiple interdependent and interrelated parameters and involving complex arithmetic operations, leading to substantial computational complexity. To address these challenges, we propose Log Conformal Maps (LCM), a method leveraging the logarithmic function to approximate perspective distortions with fewer parameters and reduced computational complexity. We provide a detailed foundation complemented with experiments to demonstrate that LCM with fewer parameters approximates the MPD. We show that LCM integrates well with supervised and self-supervised representation learning, outperform standard models, and matches the state-of-the-art performance in mitigating perspective distortion over multiple benchmarks, namely Imagenet-PD, Imagenet-E, and Imagenet-X. Further LCM demonstrate seamless integration with person re-identification and improved the performance. Source code is made publicly available at https://github.com/meenakshi23/Log-Conformal-Maps.
Authors:Can Cui, Siteng Huang, Wenxuan Song, Pengxiang Ding, Min Zhang, Donglin Wang
Abstract:
To address the occlusion issues in person Re-Identification (ReID) tasks, many methods have been proposed to extract part features by introducing external spatial information. However, due to missing part appearance information caused by occlusion and noisy spatial information from external model, these purely vision-based approaches fail to correctly learn the features of human body parts from limited training data and struggle in accurately locating body parts, ultimately leading to misaligned part features. To tackle these challenges, we propose a Prompt-guided Feature Disentangling method (ProFD), which leverages the rich pre-trained knowledge in the textual modality facilitate model to generate well-aligned part features. ProFD first designs part-specific prompts and utilizes noisy segmentation mask to preliminarily align visual and textual embedding, enabling the textual prompts to have spatial awareness. Furthermore, to alleviate the noise from external masks, ProFD adopts a hybrid-attention decoder, ensuring spatial and semantic consistency during the decoding process to minimize noise impact. Additionally, to avoid catastrophic forgetting, we employ a self-distillation strategy, retaining pre-trained knowledge of CLIP to mitigate over-fitting. Evaluation results on the Market1501, DukeMTMC-ReID, Occluded-Duke, Occluded-ReID, and P-DukeMTMC datasets demonstrate that ProFD achieves state-of-the-art results. Our project is available at: https://github.com/Cuixxx/ProFD.
Authors:Shiben Liu, Huijie Fan, Qiang Wang, Weihong Ren, Yandong Tang, Yang Cong
Abstract:
Lifelong person re-identification (LReID) exhibits a contradictory relationship between intra-domain discrimination and inter-domain gaps when learning from continuous data. Intra-domain discrimination focuses on individual nuances (i.e., clothing type, accessories, etc.), while inter-domain gaps emphasize domain consistency. Achieving a trade-off between maximizing intra-domain discrimination and minimizing inter-domain gaps is a crucial challenge for improving LReID performance. Most existing methods strive to reduce inter-domain gaps through knowledge distillation to maintain domain consistency. However, they often ignore intra-domain discrimination. To address this challenge, we propose a novel domain consistency representation learning (DCR) model that explores global and attribute-wise representations as a bridge to balance intra-domain discrimination and inter-domain gaps. At the intra-domain level, we explore the complementary relationship between global and attribute-wise representations to improve discrimination among similar identities. Excessive learning intra-domain discrimination can lead to catastrophic forgetting. We further develop an attribute-oriented anti-forgetting (AF) strategy that explores attribute-wise representations to enhance inter-domain consistency, and propose a knowledge consolidation (KC) strategy to facilitate knowledge transfer. Extensive experiments show that our DCR achieves superior performance compared to state-of-the-art LReID methods. Our code is available at https://github.com/LiuShiBen/DCR.
Authors:Xuan Tan, Xun Gong, Yang Xiang
Abstract:
Contrastive Language-Image Pre-Training (CLIP) model excels in traditional person re-identification (ReID) tasks due to its inherent advantage in generating textual descriptions for pedestrian images. However, applying CLIP directly to intra-camera supervised person re-identification (ICS ReID) presents challenges. ICS ReID requires independent identity labeling within each camera, without associations across cameras. This limits the effectiveness of text-based enhancements. To address this, we propose a novel framework called CLIP-based Camera-Agnostic Feature Learning (CCAFL) for ICS ReID. Accordingly, two custom modules are designed to guide the model to actively learn camera-agnostic pedestrian features: Intra-Camera Discriminative Learning (ICDL) and Inter-Camera Adversarial Learning (ICAL). Specifically, we first establish learnable textual prompts for intra-camera pedestrian images to obtain crucial semantic supervision signals for subsequent intra- and inter-camera learning. Then, we design ICDL to increase inter-class variation by considering the hard positive and hard negative samples within each camera, thereby learning intra-camera finer-grained pedestrian features. Additionally, we propose ICAL to reduce inter-camera pedestrian feature discrepancies by penalizing the model's ability to predict the camera from which a pedestrian image originates, thus enhancing the model's capability to recognize pedestrians from different viewpoints. Extensive experiments on popular ReID datasets demonstrate the effectiveness of our approach. Especially, on the challenging MSMT17 dataset, we arrive at 58.9\% in terms of mAP accuracy, surpassing state-of-the-art methods by 7.6\%. Code will be available at: https://github.com/Trangle12/CCAFL.
Authors:Jialong Zuo, Ying Nie, Hanyu Zhou, Huaxin Zhang, Haoyu Wang, Tianyu Guo, Nong Sang, Changxin Gao
Abstract:
Recent researches have proven that pre-training on large-scale person images extracted from internet videos is an effective way in learning better representations for person re-identification. However, these researches are mostly confined to pre-training at the instance-level or single-video tracklet-level. They ignore the identity-invariance in images of the same person across different videos, which is a key focus in person re-identification. To address this issue, we propose a Cross-video Identity-cOrrelating pre-traiNing (CION) framework. Defining a noise concept that comprehensively considers both intra-identity consistency and inter-identity discrimination, CION seeks the identity correlation from cross-video images by modeling it as a progressive multi-level denoising problem. Furthermore, an identity-guided self-distillation loss is proposed to implement better large-scale pre-training by mining the identity-invariance within person images. We conduct extensive experiments to verify the superiority of our CION in terms of efficiency and performance. CION achieves significantly leading performance with even fewer training samples. For example, compared with the previous state-of-the-art~\cite{ISR}, CION with the same ResNet50-IBN achieves higher mAP of 93.3\% and 74.3\% on Market1501 and MSMT17, while only utilizing 8\% training samples. Finally, with CION demonstrating superior model-agnostic ability, we contribute a model zoo named ReIDZoo to meet diverse research and application needs in this field. It contains a series of CION pre-trained models with spanning structures and parameters, totaling 32 models with 10 different structures, including GhostNet, ConvNext, RepViT, FastViT and so on. The code and models will be made publicly available at https://github.com/Zplusdragon/CION_ReIDZoo.
Authors:Jiarui Li, Zhen Qiu, Yilin Yang, Yuqi Li, Zeyu Dong, Chuanguang Yang
Abstract:
The primary challenges in visible-infrared person re-identification arise from the differences between visible (vis) and infrared (ir) images, including inter-modal and intra-modal variations. These challenges are further complicated by varying viewpoints and irregular movements. Existing methods often rely on horizontal partitioning to align part-level features, which can introduce inaccuracies and have limited effectiveness in reducing modality discrepancies. In this paper, we propose a novel Prototype-Driven Multi-feature generation framework (PDM) aimed at mitigating cross-modal discrepancies by constructing diversified features and mining latent semantically similar features for modal alignment. PDM comprises two key components: Multi-Feature Generation Module (MFGM) and Prototype Learning Module (PLM). The MFGM generates diversity features closely distributed from modality-shared features to represent pedestrians. Additionally, the PLM utilizes learnable prototypes to excavate latent semantic similarities among local features between visible and infrared modalities, thereby facilitating cross-modal instance-level alignment. We introduce the cosine heterogeneity loss to enhance prototype diversity for extracting rich local features. Extensive experiments conducted on the SYSU-MM01 and LLCM datasets demonstrate that our approach achieves state-of-the-art performance. Our codes are available at https://github.com/mmunhappy/ICASSP2025-PDM.
Authors:Mingxiao Zheng, Yanpeng Qu, Changjing Shang, Longzhi Yang, Qiang Shen
Abstract:
Unsupervised person re-identification (Re-ID) aims to learn a feature network with cross-camera retrieval capability in unlabelled datasets. Although the pseudo-label based methods have achieved great progress in Re-ID, their performance in the complex scenario still needs to sharpen up. In order to reduce potential misguidance, including feature bias, noise pseudo-labels and invalid hard samples, accumulated during the learning process, in this pa per, a confidence-guided clustering and contrastive learning (3C) framework is proposed for unsupervised person Re-ID. This 3C framework presents three confidence degrees. i) In the clustering stage, the confidence of the discrepancy between samples and clusters is proposed to implement a harmonic discrepancy clustering algorithm (HDC). ii) In the forward-propagation training stage, the confidence of the camera diversity of a cluster is evaluated via a novel camera information entropy (CIE). Then, the clusters with high CIE values will play leading roles in training the model. iii) In the back-propagation training stage, the confidence of the hard sample in each cluster is designed and further used in a confidence integrated harmonic discrepancy (CHD), to select the informative sample for updating the memory in contrastive learning. Extensive experiments on three popular Re-ID benchmarks demonstrate the superiority of the proposed framework. Particularly, the 3C framework achieves state-of-the-art results: 86.7%/94.7%, 45.3%/73.1% and 47.1%/90.6% in terms of mAP/Rank-1 accuracy on Market-1501, the com plex datasets MSMT17 and VeRi-776, respectively. Code is available at https://github.com/stone5265/3C-reid.
Authors:Guozhen Peng, Yunhong Wang, Yuwei Zhao, Shaoxiong Zhang, Annan Li
Abstract:
Gait recognition has attracted increasing attention from academia and industry as a human recognition technology from a distance in non-intrusive ways without requiring cooperation. Although advanced methods have achieved impressive success in lab scenarios, most of them perform poorly in the wild. Recently, some Convolution Neural Networks (ConvNets) based methods have been proposed to address the issue of gait recognition in the wild. However, the temporal receptive field obtained by convolution operations is limited for long gait sequences. If directly replacing convolution blocks with visual transformer blocks, the model may not enhance a local temporal receptive field, which is important for covering a complete gait cycle. To address this issue, we design a Global-Local Temporal Receptive Field Network (GLGait). GLGait employs a Global-Local Temporal Module (GLTM) to establish a global-local temporal receptive field, which mainly consists of a Pseudo Global Temporal Self-Attention (PGTA) and a temporal convolution operation. Specifically, PGTA is used to obtain a pseudo global temporal receptive field with less memory and computation complexity compared with a multi-head self-attention (MHSA). The temporal convolution operation is used to enhance the local temporal receptive field. Besides, it can also aggregate pseudo global temporal receptive field to a true holistic temporal receptive field. Furthermore, we also propose a Center-Augmented Triplet Loss (CTL) in GLGait to reduce the intra-class distance and expand the positive samples in the training stage. Extensive experiments show that our method obtains state-of-the-art results on in-the-wild datasets, $i.e.$, Gait3D and GREW. The code is available at https://github.com/bgdpgz/GLGait.
Authors:Delong Zhang, Yi-Xing Peng, Xiao-Ming Wu, Ancong Wu, Wei-Shi Zheng
Abstract:
Online person re-identification services face privacy breaches from potential data leakage and recovery attacks, exposing cloud-stored images to malicious attackers and triggering public concern. The privacy protection of pedestrian images is crucial. Previous privacy-preserving person re-identification methods are unable to resist recovery attacks and compromise accuracy. In this paper, we propose an iterative method (PixelFade) to optimize pedestrian images into noise-like images to resist recovery attacks. We first give an in-depth study of protected images from previous privacy methods, which reveal that the chaos of protected images can disrupt the learning of recovery models. Accordingly, Specifically, we propose Noise-guided Objective Function with the feature constraints of a specific authorization model, optimizing pedestrian images to normal-distributed noise images while preserving their original identity information as per the authorization model. To solve the above non-convex optimization problem, we propose a heuristic optimization algorithm that alternately performs the Constraint Operation and the Partial Replacement Operation. This strategy not only safeguards that original pixels are replaced with noises to protect privacy, but also guides the images towards an improved optimization direction to effectively preserve discriminative features. Extensive experiments demonstrate that our PixelFade outperforms previous methods in resisting recovery attacks and Re-ID performance. The code is available at https://github.com/iSEE-Laboratory/PixelFade.
Authors:Bin Hu, Xinggang Wang, Wenyu Liu
Abstract:
Person Re-Identification (ReID) aims to retrieve relevant individuals in non-overlapping camera images and has a wide range of applications in the field of public safety. In recent years, with the development of Vision Transformer (ViT) and self-supervised learning techniques, the performance of person ReID based on self-supervised pre-training has been greatly improved. Person ReID requires extracting highly discriminative local fine-grained features of the human body, while traditional ViT is good at extracting context-related global features, making it difficult to focus on local human body features. To this end, this article introduces the recently emerged Masked Image Modeling (MIM) self-supervised learning method into person ReID, and effectively extracts high-quality global and local features through large-scale unsupervised pre-training by combining masked image modeling and discriminative contrastive learning, and then conducts supervised fine-tuning training in the person ReID task. This person feature extraction method based on ViT with masked image modeling (PersonViT) has the good characteristics of unsupervised, scalable, and strong generalization capabilities, overcoming the problem of difficult annotation in supervised person ReID, and achieves state-of-the-art results on publicly available benchmark datasets, including MSMT17, Market1501, DukeMTMC-reID, and Occluded-Duke. The code and pre-trained models of the PersonViT method are released at \url{https://github.com/hustvl/PersonViT} to promote further research in the person ReID field.
Authors:Vladimir Somers, Christophe De Vleeschouwer, Alexandre Alahi
Abstract:
Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance. While many studies have tackled occlusions caused by objects, multi-person occlusions remain less explored. In this work, we identify and address a critical challenge overlooked by previous occluded ReID methods: the Multi-Person Ambiguity (MPA) arising when multiple individuals are visible in the same bounding box, making it impossible to determine the intended ReID target among the candidates. Inspired by recent work on prompting in vision, we introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints indicating the intended target. Since promptable re-identification is an unexplored paradigm, existing ReID datasets lack the pixel-level annotations necessary for prompting. To bridge this gap and foster further research on this topic, we introduce Occluded-PoseTrack ReID, a novel ReID dataset with keypoints labels, that features strong inter-person occlusions. Furthermore, we release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches on various occluded scenarios. Our code, dataset and annotations are available at https://github.com/VlSomers/keypoint_promptable_reidentification.
Authors:Yiyang Su, Minchul Kim, Feng Liu, Anil Jain, Xiaoming Liu
Abstract:
Biometric recognition has primarily addressed closed-set identification, assuming all probe subjects are in the gallery. However, most practical applications involve open-set biometrics, where probe subjects may or may not be present in the gallery. This poses distinct challenges in effectively distinguishing individuals in the gallery while minimizing false detections. While it is commonly believed that powerful biometric models can excel in both closed- and open-set scenarios, existing loss functions are inconsistent with open-set evaluation. They treat genuine (mated) and imposter (non-mated) similarity scores symmetrically and neglect the relative magnitudes of imposter scores. To address these issues, we simulate open-set evaluation using minibatches during training and introduce novel loss functions: (1) the identification-detection loss optimized for open-set performance under selective thresholds and (2) relative threshold minimization to reduce the maximum negative score for each probe. Across diverse biometric tasks, including face recognition, gait recognition, and person re-identification, our experiments demonstrate the effectiveness of the proposed loss functions, significantly enhancing open-set performance while positively impacting closed-set performance. Our code and models are available at https://github.com/prevso1088/open-set-biometrics.
Authors:Qizao Wang, Xuelin Qian, Bin Li, Xiangyang Xue
Abstract:
In real-world scenarios, person Re-IDentification (Re-ID) systems need to be adaptable to changes in space and time. Therefore, the adaptation of Re-ID models to new domains while preserving previously acquired knowledge is crucial, known as Lifelong person Re-IDentification (LReID). Advanced LReID methods rely on replaying exemplars from old domains and applying knowledge distillation in logits with old models. However, due to privacy concerns, retaining previous data is inappropriate. Additionally, the fine-grained and open-set characteristics of Re-ID limit the effectiveness of the distillation paradigm for accumulating knowledge. We argue that a Re-ID model trained on diverse and challenging pedestrian images at a large scale can acquire robust and general human semantic knowledge. These semantics can be readily utilized as shared knowledge for lifelong applications. In this paper, we identify the challenges and discrepancies associated with adapting a pre-trained model to each application domain and introduce the Distribution Aligned Semantics Adaption (DASA) framework. It efficiently adjusts Batch Normalization (BN) to mitigate interference from data distribution discrepancy and freezes the pre-trained convolutional layers to preserve shared knowledge. Additionally, we propose the lightweight Semantics Adaption (SA) module, which effectively adapts learned semantics to enhance pedestrian representations. Extensive experiments demonstrate the remarkable superiority of our proposed framework over advanced LReID methods, and it exhibits significantly reduced storage consumption. DASA presents a novel and cost-effective perspective on effectively adapting pre-trained models for LReID. The code is available at https://github.com/QizaoWang/DASA-LReID.
Authors:Weizhen He, Yiheng Deng, Yunfeng Yan, Feng Zhu, Yizhou Wang, Lei Bai, Qingsong Xie, Donglian Qi, Wanli Ouyang, Shixiang Tang
Abstract:
Human intelligence can retrieve any person according to both visual and language descriptions. However, the current computer vision community studies specific person re-identification (ReID) tasks in different scenarios separately, which limits the applications in the real world. This paper strives to resolve this problem by proposing a novel instruct-ReID task that requires the model to retrieve images according to the given image or language instructions. Instruct-ReID is the first exploration of a general ReID setting, where existing 6 ReID tasks can be viewed as special cases by assigning different instructions. To facilitate research in this new instruct-ReID task, we propose a large-scale OmniReID++ benchmark equipped with diverse data and comprehensive evaluation methods e.g., task specific and task-free evaluation settings. In the task-specific evaluation setting, gallery sets are categorized according to specific ReID tasks. We propose a novel baseline model, IRM, with an adaptive triplet loss to handle various retrieval tasks within a unified framework. For task-free evaluation setting, where target person images are retrieved from task-agnostic gallery sets, we further propose a new method called IRM++ with novel memory bank-assisted learning. Extensive evaluations of IRM and IRM++ on OmniReID++ benchmark demonstrate the superiority of our proposed methods, achieving state-of-the-art performance on 10 test sets. The datasets, the model, and the code will be available at https://github.com/hwz-zju/Instruct-ReID
Authors:Qizao Wang, Xuelin Qian, Bin Li, Lifeng Chen, Yanwei Fu, Xiangyang Xue
Abstract:
Cloth-changing person re-identification aims at recognizing the same person with clothing changes across non-overlapping cameras. Advanced methods either resort to identity-related auxiliary modalities (e.g., sketches, silhouettes, and keypoints) or clothing labels to mitigate the impact of clothes. However, relying on unpractical and inflexible auxiliary modalities or annotations limits their real-world applicability. In this paper, we promote cloth-changing person re-identification by leveraging abundant semantics present within pedestrian images, without the need for any auxiliaries. Specifically, we first propose a unified Semantics Mining and Refinement (SMR) module to extract robust identity-related content and salient semantics, mitigating interference from clothing appearances effectively. We further propose the Content and Salient Semantics Collaboration (CSSC) framework to collaborate and leverage various semantics, facilitating cross-parallel semantic interaction and refinement. Our proposed method achieves state-of-the-art performance on three cloth-changing benchmarks, demonstrating its superiority over advanced competitors. The code is available at https://github.com/QizaoWang/CSSC-CCReID.
Authors:Jiahao Nie, Shan Lin, Alex C. Kot
Abstract:
The primary color profile of the same identity is assumed to remain consistent in typical Person Re-identification (Person ReID) tasks. However, this assumption may be invalid in real-world situations and images hold variant color profiles, because of cross-modality cameras or identity with different clothing. To address this issue, we propose Color Space Learning (CSL) for those Cross-Color Person ReID problems. Specifically, CSL guides the model to be less color-sensitive with two modules: Image-level Color-Augmentation and Pixel-level Color-Transformation. The first module increases the color diversity of the inputs and guides the model to focus more on the non-color information. The second module projects every pixel of input images onto a new color space. In addition, we introduce a new Person ReID benchmark across RGB and Infrared modalities, NTU-Corridor, which is the first with privacy agreements from all participants. To evaluate the effectiveness and robustness of our proposed CSL, we evaluate it on several Cross-Color Person ReID benchmarks. Our method surpasses the state-of-the-art methods consistently. The code and benchmark are available at: https://github.com/niejiahao1998/CSL
Authors:Chao Fan, Saihui Hou, Junhao Liang, Chuanfu Shen, Jingzhe Ma, Dongyang Jin, Yongzhen Huang, Shiqi Yu
Abstract:
Gait recognition, a rapidly advancing vision technology for person identification from a distance, has made significant strides in indoor settings. However, evidence suggests that existing methods often yield unsatisfactory results when applied to newly released real-world gait datasets. Furthermore, conclusions drawn from indoor gait datasets may not easily generalize to outdoor ones. Therefore, the primary goal of this paper is to present a comprehensive benchmark study aimed at improving practicality rather than solely focusing on enhancing performance. To this end, we developed OpenGait, a flexible and efficient gait recognition platform. Using OpenGait, we conducted in-depth ablation experiments to revisit recent developments in gait recognition. Surprisingly, we detected some imperfect parts of some prior methods and thereby uncovered several critical yet previously neglected insights. These findings led us to develop three structurally simple yet empirically powerful and practically robust baseline models: DeepGaitV2, SkeletonGait, and SkeletonGait++, which represent the appearance-based, model-based, and multi-modal methodologies for gait pattern description, respectively. In addition to achieving state-of-the-art performance, our careful exploration provides new perspectives on the modeling experience of deep gait models and the representational capacity of typical gait modalities. In the end, we discuss the key trends and challenges in current gait recognition, aiming to inspire further advancements towards better practicality. The code is available at https://github.com/ShiqiYu/OpenGait.
Authors:Quang-Huy Che, Le-Chuong Nguyen, Duc-Tuan Luu, Vinh-Tiep Nguyen
Abstract:
Person re-identification (Re-ID) is a challenging task that involves identifying the same person across different camera views in surveillance systems. Current methods usually rely on features from single-camera views, which can be limiting when dealing with multiple cameras and challenges such as changing viewpoints and occlusions. In this paper, a new approach is introduced that enhances the capability of ReID models through the Uncertain Feature Fusion Method (UFFM) and Auto-weighted Measure Combination (AMC). UFFM generates multi-view features using features extracted independently from multiple images to mitigate view bias. However, relying only on similarity based on multi-view features is limited because these features ignore the details represented in single-view features. Therefore, we propose the AMC method to generate a more robust similarity measure by combining various measures. Our method significantly improves Rank@1 accuracy and Mean Average Precision (mAP) when evaluated on person re-identification datasets. Combined with the BoT Baseline on challenging datasets, we achieve impressive results, with a 7.9% improvement in Rank@1 and a 12.1% improvement in mAP on the MSMT17 dataset. On the Occluded-DukeMTMC dataset, our method increases Rank@1 by 22.0% and mAP by 18.4%. Code is available: https://github.com/chequanghuy/Enhancing-Person-Re-Identification-via-UFFM-and-AMC
Authors:Pengna Li, Kangyi Wu, Wenli Huang, Sanping Zhou, Jinjun Wang
Abstract:
Unsupervised person re-identification aims to retrieve images of a specified person without identity labels. Many recent unsupervised Re-ID approaches adopt clustering-based methods to measure cross-camera feature similarity to roughly divide images into clusters. They ignore the feature distribution discrepancy induced by camera domain gap, resulting in the unavoidable performance degradation. Camera information is usually available, and the feature distribution in the single camera usually focuses more on the appearance of the individual and has less intra-identity variance. Inspired by the observation, we introduce a \textbf{C}amera-\textbf{A}ware \textbf{L}abel \textbf{R}efinement~(CALR) framework that reduces camera discrepancy by clustering intra-camera similarity. Specifically, we employ intra-camera training to obtain reliable local pseudo labels within each camera, and then refine global labels generated by inter-camera clustering and train the discriminative model using more reliable global pseudo labels in a self-paced manner. Meanwhile, we develop a camera-alignment module to align feature distributions under different cameras, which could help deal with the camera variance further. Extensive experiments validate the superiority of our proposed method over state-of-the-art approaches. The code is accessible at https://github.com/leeBooMla/CALR.
Authors:Quan Zhang, Lei Wang, Vishal M. Patel, Xiaohua Xie, Jianhuang Lai
Abstract:
Existing person re-identification methods have achieved remarkable advances in appearance-based identity association across homogeneous cameras, such as ground-ground matching. However, as a more practical scenario, aerial-ground person re-identification (AGPReID) among heterogeneous cameras has received minimal attention. To alleviate the disruption of discriminative identity representation by dramatic view discrepancy as the most significant challenge in AGPReID, the view-decoupled transformer (VDT) is proposed as a simple yet effective framework. Two major components are designed in VDT to decouple view-related and view-unrelated features, namely hierarchical subtractive separation and orthogonal loss, where the former separates these two features inside the VDT, and the latter constrains these two to be independent. In addition, we contribute a large-scale AGPReID dataset called CARGO, consisting of five/eight aerial/ground cameras, 5,000 identities, and 108,563 images. Experiments on two datasets show that VDT is a feasible and effective solution for AGPReID, surpassing the previous method on mAP/Rank1 by up to 5.0%/2.7% on CARGO and 3.7%/5.2% on AG-ReID, keeping the same magnitude of computational complexity. Our project is available at https://github.com/LinlyAC/VDT-AGPReID
Authors:Kaijie Ren, Lei Zhang
Abstract:
Visible-Infrared Person Re-identification (VI-ReID) is a challenging cross-modal pedestrian retrieval task, due to significant intra-class variations and cross-modal discrepancies among different cameras. Existing works mainly focus on embedding images of different modalities into a unified space to mine modality-shared features. They only seek distinctive information within these shared features, while ignoring the identity-aware useful information that is implicit in the modality-specific features. To address this issue, we propose a novel Implicit Discriminative Knowledge Learning (IDKL) network to uncover and leverage the implicit discriminative information contained within the modality-specific. First, we extract modality-specific and modality-shared features using a novel dual-stream network. Then, the modality-specific features undergo purification to reduce their modality style discrepancies while preserving identity-aware discriminative knowledge. Subsequently, this kind of implicit knowledge is distilled into the modality-shared feature to enhance its distinctiveness. Finally, an alignment loss is proposed to minimize modality discrepancy on enhanced modality-shared features. Extensive experiments on multiple public datasets demonstrate the superiority of IDKL network over the state-of-the-art methods. Code is available at https://github.com/1KK077/IDKL.
Authors:Wei-Shi Zheng, Junkai Yan, Yi-Xing Peng
Abstract:
Person Re-identification (ReID) has been extensively developed for a decade in order to learn the association of images of the same person across non-overlapping camera views. To overcome significant variations between images across camera views, mountains of variants of ReID models were developed for solving a number of challenges, such as resolution change, clothing change, occlusion, modality change, and so on. Despite the impressive performance of many ReID variants, these variants typically function distinctly and cannot be applied to other challenges. To our best knowledge, there is no versatile ReID model that can handle various ReID challenges at the same time. This work contributes to the first attempt at learning a versatile ReID model to solve such a problem. Our main idea is to form a two-stage prompt-based twin modeling framework called VersReID. Our VersReID firstly leverages the scene label to train a ReID Bank that contains abundant knowledge for handling various scenes, where several groups of scene-specific prompts are used to encode different scene-specific knowledge. In the second stage, we distill a V-Branch model with versatile prompts from the ReID Bank for adaptively solving the ReID of different scenes, eliminating the demand for scene labels during the inference stage. To facilitate training VersReID, we further introduce the multi-scene properties into self-supervised learning of ReID via a multi-scene prioris data augmentation (MPDA) strategy. Through extensive experiments, we demonstrate the success of learning an effective and versatile ReID model for handling ReID tasks under multi-scene conditions without manual assignment of scene labels in the inference stage, including general, low-resolution, clothing change, occlusion, and cross-modality scenes. Codes and models are available at https://github.com/iSEE-Laboratory/VersReID.
Authors:Zhihao Chen, Yiyuan Ge, Yanyan Lv, Ziyang Wang, Mingya Zhang
Abstract:
The study of Cloth-Changing Person Re-identification (CC-ReID) focuses on retrieving specific pedestrians when their clothing has changed, typically under the assumption that the entire pedestrian images are visible. Pedestrian images in real-world scenarios, however, are often partially obscured by obstacles, presenting a significant challenge to existing CC-ReID systems. In this paper, we introduce a more challenging task termed Occluded Cloth-Changing Person Re-Identification (OC4-ReID), which simultaneously addresses two challenges of clothing changes and occlusion. Concretely, we construct two new datasets, Occ-LTCC and Occ-PRCC, based on original CC-ReID datasets to include random occlusions of key pedestrians components (e.g., head, torso). Moreover, a novel benchmark is proposed for OC4-ReID incorporating a Train-Test Micro Granularity Screening (T2MGS) module to mitigate the influence of occlusion and proposing a Part-Robust Triplet (PRT) loss for partial features learning. Comprehensive experiments on the proposed datasets, as well as on two CC-ReID benchmark datasets demonstrate the superior performance of proposed method against other state-of-the-art methods. The codes and datasets are available at: https://github.com/1024AILab/OC4-ReID.
Authors:Yunhao Du, Zhicheng Zhao, Fei Su
Abstract:
Visible-infrared person re-identification (VI-ReID) is challenging due to considerable cross-modality discrepancies. Existing works mainly focus on learning modality-invariant features while suppressing modality-specific ones. However, retrieving visible images only depends on infrared samples is an extreme problem because of the absence of color information. To this end, we present the Refer-VI-ReID settings, which aims to match target visible images from both infrared images and coarse language descriptions (e.g., "a man with red top and black pants") to complement the missing color information. To address this task, we design a Y-Y-shape decomposition structure, dubbed YYDS, to decompose and aggregate texture and color features of targets. Specifically, the text-IoU regularization strategy is firstly presented to facilitate the decomposition training, and a joint relation module is then proposed to infer the aggregation. Furthermore, the cross-modal version of k-reciprocal re-ranking algorithm is investigated, named CMKR, in which three neighbor search strategies and one local query expansion method are explored to alleviate the modality bias problem of the near neighbors. We conduct experiments on SYSU-MM01, RegDB and LLCM datasets with our manually annotated descriptions. Both YYDS and CMKR achieve remarkable improvements over SOTA methods on all three datasets. Codes are available at https://github.com/dyhBUPT/YYDS.
Authors:Dingqiang Ye, Chao Fan, Jingzhe Ma, Xiaoming Liu, Shiqi Yu
Abstract:
Gait recognition stands as one of the most pivotal remote identification technologies and progressively expands across research and industry communities. However, existing gait recognition methods heavily rely on task-specific upstream driven by supervised learning to provide explicit gait representations like silhouette sequences, which inevitably introduce expensive annotation costs and potential error accumulation. Escaping from this trend, this work explores effective gait representations based on the all-purpose knowledge produced by task-agnostic Large Vision Models (LVMs) and proposes a simple yet efficient gait framework, termed BigGait. Specifically, the Gait Representation Extractor (GRE) within BigGait draws upon design principles from established gait representations, effectively transforming all-purpose knowledge into implicit gait representations without requiring third-party supervision signals. Experiments on CCPG, CAISA-B* and SUSTech1K indicate that BigGait significantly outperforms the previous methods in both within-domain and cross-domain tasks in most cases, and provides a more practical paradigm for learning the next-generation gait representation. Finally, we delve into prospective challenges and promising directions in LVMs-based gait recognition, aiming to inspire future work in this emerging topic. The source code is available at https://github.com/ShiqiYu/OpenGait.
Authors:Xiangqun Zhang, Wei Feng, Ruize Han, Likai Wang, Linqi Song, Junhui Hou
Abstract:
Person re-identification (Re-ID) is an important task and has significant applications for public security and information forensics, which has progressed rapidly with the development of deep learning. In this work, we investigate a novel and challenging setting of Re-ID, i.e., cross-domain video-based person Re-ID. Specifically, we utilize synthetic video datasets as the source domain for training and real-world videos for testing, notably reducing the reliance on expensive real data acquisition and annotation. To harness the potential of synthetic data, we first propose a self-supervised domain-invariant feature learning strategy for both static and dynamic (temporal) features. Additionally, to enhance person identification accuracy in the target domain, we propose a mean-teacher scheme incorporating a self-supervised ID consistency loss. Experimental results across five real datasets validate the rationale behind cross-synthetic-real domain adaptation and demonstrate the efficacy of our method. Notably, the discovery that synthetic data outperforms real data in the cross-domain scenario is a surprising outcome. The code and data are publicly available at https://github.com/XiangqunZhang/UDA_Video_ReID.
Authors:Lingfeng He, De Cheng, Nannan Wang, Xinbo Gao
Abstract:
Unsupervised visible-infrared person re-identification (USL-VI-ReID) endeavors to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency between the feature space and the pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to quantify the inconsistency between the pseudo-label space and the feature space, subsequently minimizing it. The proposed MULT ensures that the generated pseudo-labels maintain alignment across modalities while upholding structural consistency within intra-modality. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the side effects of noisy pseudo-labels while simultaneously aligning different modalities, coupled with an Alternative Modality-Invariant Representation Learning (AMIRL) framework. Experiments demonstrate that our proposed method outperforms existing state-of-the-art USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. Code is available at https://github.com/FranklinLingfeng/code_for_MULT.
Authors:Shuguang Dou, Xiangyang Jiang, Yuanpeng Tu, Junyao Gao, Zefan Qu, Qingsong Zhao, Cairong Zhao
Abstract:
The paper introduces the Decouple Re-identificatiOn and human Parsing (DROP) method for occluded person re-identification (ReID). Unlike mainstream approaches using global features for simultaneous multi-task learning of ReID and human parsing, or relying on semantic information for attention guidance, DROP argues that the inferior performance of the former is due to distinct granularity requirements for ReID and human parsing features. ReID focuses on instance part-level differences between pedestrian parts, while human parsing centers on semantic spatial context, reflecting the internal structure of the human body. To address this, DROP decouples features for ReID and human parsing, proposing detail-preserving upsampling to combine varying resolution feature maps. Parsing-specific features for human parsing are decoupled, and human position information is exclusively added to the human parsing branch. In the ReID branch, a part-aware compactness loss is introduced to enhance instance-level part differences. Experimental results highlight the efficacy of DROP, especially achieving a Rank-1 accuracy of 76.8% on Occluded-Duke, surpassing two mainstream methods. The codebase is accessible at https://github.com/shuguang-52/DROP.
Authors:Haocong Rao, Chunyan Miao
Abstract:
Person re-identification via 3D skeletons is an important emerging research area that attracts increasing attention within the pattern recognition community. With distinctive advantages across various application scenarios, numerous 3D skeleton based person re-identification (SRID) methods with diverse skeleton modeling and learning paradigms have been proposed in recent years. In this survey, we provide a comprehensive review and analysis of recent SRID advances. First of all, we define the SRID task and provide an overview of its origin and major advancements. Secondly, we formulate a systematic taxonomy that organizes existing methods into three categories based on different skeleton modeling ($i.e.,$ hand-crafted, sequence-based, graph-based). Then, we elaborate on the representative models along these three categories with an analysis of their merits and limitations. Meanwhile, we provide an in-depth review of mainstream supervised, self-supervised, and unsupervised SRID learning paradigms and corresponding skeleton semantics learning tasks. A thorough evaluation of state-of-the-art SRID methods is further conducted over various types of benchmarks and protocols to compare their effectiveness and efficiency. Finally, we discuss the challenges of existing studies along with promising directions for future research, highlighting research impacts and potential applications of SRID.
Authors:Zengbin Wang, Saihui Hou, Man Zhang, Xu Liu, Chunshui Cao, Yongzhen Huang, Peipei Li, Shibiao Xu
Abstract:
Gait recognition is a promising biometric method that aims to identify pedestrians from their unique walking patterns. Silhouette modality, renowned for its easy acquisition, simple structure, sparse representation, and convenient modeling, has been widely employed in controlled in-the-lab research. However, as gait recognition rapidly advances from in-the-lab to in-the-wild scenarios, various conditions raise significant challenges for silhouette modality, including 1) unidentifiable low-quality silhouettes (abnormal segmentation, severe occlusion, or even non-human shape), and 2) identifiable but challenging silhouettes (background noise, non-standard posture, slight occlusion). To address these challenges, we revisit gait recognition pipeline and approach gait recognition from a quality perspective, namely QAGait. Specifically, we propose a series of cost-effective quality assessment strategies, including Maxmial Connect Area and Template Match to eliminate background noises and unidentifiable silhouettes, Alignment strategy to handle non-standard postures. We also propose two quality-aware loss functions to integrate silhouette quality into optimization within the embedding space. Extensive experiments demonstrate our QAGait can guarantee both gait reliability and performance enhancement. Furthermore, our quality assessment strategies can seamlessly integrate with existing gait datasets, showcasing our superiority. Code is available at https://github.com/wzb-bupt/QAGait.
Authors:Yunpeng Gong, Jiaquan Li, Lifei Chen, Min Jiang
Abstract:
In the field of computer vision, the persistent presence of color bias, resulting from fluctuations in real-world lighting and camera conditions, presents a substantial challenge to the robustness of models. This issue is particularly pronounced in complex wide-area surveillance scenarios, such as person re-identification and industrial dust segmentation, where models often experience a decline in performance due to overfitting on color information during training, given the presence of environmental variations. Consequently, there is a need to effectively adapt models to cope with the complexities of camera conditions. To address this challenge, this study introduces a learning strategy named Random Color Erasing, which draws inspiration from ensemble learning. This strategy selectively erases partial or complete color information in the training data without disrupting the original image structure, thereby achieving a balanced weighting of color features and other features within the neural network. This approach mitigates the risk of overfitting and enhances the model's ability to handle color variation, thereby improving its overall robustness. The approach we propose serves as an ensemble learning strategy, characterized by robust interpretability. A comprehensive analysis of this methodology is presented in this paper. Across various tasks such as person re-identification and semantic segmentation, our approach consistently improves strong baseline methods. Notably, in comparison to existing methods that prioritize color robustness, our strategy significantly enhances performance in cross-domain scenarios. The code available at \url{https://github.com/layumi/Person\_reID\_baseline\_pytorch/blob/master/random\_erasing.py} or \url{https://github.com/finger-monkey/Data-Augmentation}.
Authors:Yunpeng Gong, Zhun Zhong, Yansong Qu, Zhiming Luo, Rongrong Ji, Min Jiang
Abstract:
In recent years, there has been significant research focusing on addressing security concerns in single-modal person re-identification (ReID) systems that are based on RGB images. However, the safety of cross-modality scenarios, which are more commonly encountered in practical applications involving images captured by infrared cameras, has not received adequate attention. The main challenge in cross-modality ReID lies in effectively dealing with visual differences between different modalities. For instance, infrared images are typically grayscale, unlike visible images that contain color information. Existing attack methods have primarily focused on the characteristics of the visible image modality, overlooking the features of other modalities and the variations in data distribution among different modalities. This oversight can potentially undermine the effectiveness of these methods in image retrieval across diverse modalities. This study represents the first exploration into the security of cross-modality ReID models and proposes a universal perturbation attack specifically designed for cross-modality ReID. This attack optimizes perturbations by leveraging gradients from diverse modality data, thereby disrupting the discriminator and reinforcing the differences between modalities. We conducted experiments on three widely used cross-modality datasets, namely RegDB, SYSU, and LLCM. The results not only demonstrate the effectiveness of our method but also provide insights for future improvements in the robustness of cross-modality ReID systems. The code will be available at https://github.com/finger-monkey/cmps__attack.
Authors:Huiyuan Fu, Kuilong Cui, Chuanming Wang, Mengshi Qi, Huadong Ma
Abstract:
With the rapid advancements in deep learning technologies, person re-identification (ReID) has witnessed remarkable performance improvements. However, the majority of prior works have traditionally focused on solving the problem via extracting features solely from a single perspective, such as uniform partitioning, hard attention mechanisms, or semantic masks. While these approaches have demonstrated efficacy within specific contexts, they fall short in diverse situations. In this paper, we propose a novel approach, Mutual Distillation Learning For Person Re-identification (termed as MDPR), which addresses the challenging problem from multiple perspectives within a single unified model, leveraging the power of mutual distillation to enhance the feature representations collectively. Specifically, our approach encompasses two branches: a hard content branch to extract local features via a uniform horizontal partitioning strategy and a Soft Content Branch to dynamically distinguish between foreground and background and facilitate the extraction of multi-granularity features via a carefully designed attention mechanism. To facilitate knowledge exchange between these two branches, a mutual distillation and fusion process is employed, promoting the capability of the outputs of each branch. Extensive experiments are conducted on widely used person ReID datasets to validate the effectiveness and superiority of our approach. Notably, our method achieves an impressive $88.7\%/94.4\%$ in mAP/Rank-1 on the DukeMTMC-reID dataset, surpassing the current state-of-the-art results. Our source code is available at https://github.com/KuilongCui/MDPR.
Authors:Xiaoyan Yu, Neng Dong, Liehuang Zhu, Hao Peng, Dapeng Tao
Abstract:
Visible-infrared person re-identification (VIReID) primarily deals with matching identities across person images from different modalities. Due to the modality gap between visible and infrared images, cross-modality identity matching poses significant challenges. Recognizing that high-level semantics of pedestrian appearance, such as gender, shape, and clothing style, remain consistent across modalities, this paper intends to bridge the modality gap by infusing visual features with high-level semantics. Given the capability of CLIP to sense high-level semantic information corresponding to visual representations, we explore the application of CLIP within the domain of VIReID. Consequently, we propose a CLIP-Driven Semantic Discovery Network (CSDN) that consists of Modality-specific Prompt Learner, Semantic Information Integration (SII), and High-level Semantic Embedding (HSE). Specifically, considering the diversity stemming from modality discrepancies in language descriptions, we devise bimodal learnable text tokens to capture modality-private semantic information for visible and infrared images, respectively. Additionally, acknowledging the complementary nature of semantic details across different modalities, we integrate text features from the bimodal language descriptions to achieve comprehensive semantics. Finally, we establish a connection between the integrated text features and the visual features across modalities. This process embed rich high-level semantic information into visual representations, thereby promoting the modality invariance of visual representations. The effectiveness and superiority of our proposed CSDN over existing methods have been substantiated through experimental evaluations on multiple widely used benchmarks. The code will be released at \url{https://github.com/nengdong96/CSDN}.
Authors:Chunlei Peng, Boyu Wang, Decheng Liu, Nannan Wang, Ruimin Hu, Xinbo Gao
Abstract:
Cloth-changing person re-identification (CC-ReID) aims to match persons who change clothes over long periods. The key challenge in CC-ReID is to extract clothing-independent features, such as face, hairstyle, body shape, and gait. Current research mainly focuses on modeling body shape using multi-modal biological features (such as silhouettes and sketches). However, it does not fully leverage the personal description information hidden in the original RGB image. Considering that there are certain attribute descriptions which remain unchanged after the changing of cloth, we propose a Masked Attribute Description Embedding (MADE) method that unifies personal visual appearance and attribute description for CC-ReID. Specifically, handling variable clothing-sensitive information, such as color and type, is challenging for effective modeling. To address this, we mask the clothing and color information in the personal attribute description extracted through an attribute detection model. The masked attribute description is then connected and embedded into Transformer blocks at various levels, fusing it with the low-level to high-level features of the image. This approach compels the model to discard clothing information. Experiments are conducted on several CC-ReID benchmarks, including PRCC, LTCC, Celeb-reID-light, and LaST. Results demonstrate that MADE effectively utilizes attribute description, enhancing cloth-changing person re-identification performance, and compares favorably with state-of-the-art methods. The code is available at https://github.com/moon-wh/MADE.
Authors:Huy Nguyen, Kien Nguyen, Sridha Sridharan, Clinton Fookes
Abstract:
Aerial-ground person re-identification (Re-ID) presents unique challenges in computer vision, stemming from the distinct differences in viewpoints, poses, and resolutions between high-altitude aerial and ground-based cameras. Existing research predominantly focuses on ground-to-ground matching, with aerial matching less explored due to a dearth of comprehensive datasets. To address this, we introduce AG-ReID.v2, a dataset specifically designed for person Re-ID in mixed aerial and ground scenarios. This dataset comprises 100,502 images of 1,615 unique individuals, each annotated with matching IDs and 15 soft attribute labels. Data were collected from diverse perspectives using a UAV, stationary CCTV, and smart glasses-integrated camera, providing a rich variety of intra-identity variations. Additionally, we have developed an explainable attention network tailored for this dataset. This network features a three-stream architecture that efficiently processes pairwise image distances, emphasizes key top-down features, and adapts to variations in appearance due to altitude differences. Comparative evaluations demonstrate the superiority of our approach over existing baselines. We plan to release the dataset and algorithm source code publicly, aiming to advance research in this specialized field of computer vision. For access, please visit https://github.com/huynguyen792/AG-ReID.v2.
Authors:Yilan Dong, Chunlin Yu, Ruiyang Ha, Ye Shi, Yuexin Ma, Lan Xu, Yanwei Fu, Jingya Wang
Abstract:
Existing gait recognition benchmarks mostly include minor clothing variations in the laboratory environments, but lack persistent changes in appearance over time and space. In this paper, we propose the first in-the-wild benchmark CCGait for cloth-changing gait recognition, which incorporates diverse clothing changes, indoor and outdoor scenes, and multi-modal statistics over 92 days. To further address the coupling effect of clothing and viewpoint variations, we propose a hybrid approach HybridGait that exploits both temporal dynamics and the projected 2D information of 3D human meshes. Specifically, we introduce a Canonical Alignment Spatial-Temporal Transformer (CA-STT) module to encode human joint position-aware features, and fully exploit 3D dense priors via a Silhouette-guided Deformation with 3D-2D Appearance Projection (SilD) strategy. Our contributions are twofold: we provide a challenging benchmark CCGait that captures realistic appearance changes across an expanded and space, and we propose a hybrid framework HybridGait that outperforms prior works on CCGait and Gait3D benchmarks. Our project page is available at https://github.com/HCVLab/HybridGait.
Authors:Andong Lu, Chenglong Li, Tianrui Zha, Jin Tang, Xiaofeng Wang, Bin Luo
Abstract:
Prevalent nighttime person re-identification (ReID) methods typically combine image relighting and ReID networks in a sequential manner. However, their performance (recognition accuracy) is limited by the quality of relighting images and insufficient collaboration between image relighting and ReID tasks. To handle these problems, we propose a novel Collaborative Enhancement Network called CENet, which performs the multilevel feature interactions in a parallel framework, for nighttime person ReID. In particular, the designed parallel structure of CENet can not only avoid the impact of the quality of relighting images on ReID performance, but also allow us to mine the collaborative relations between image relighting and person ReID tasks. To this end, we integrate the multilevel feature interactions in CENet, where we first share the Transformer encoder to build the low-level feature interaction, and then perform the feature distillation that transfers the high-level features from image relighting to ReID, thereby alleviating the severe image degradation issue caused by the nighttime scenario while avoiding the impact of relighting images. In addition, the sizes of existing real-world nighttime person ReID datasets are limited, and large-scale synthetic ones exhibit substantial domain gaps with real-world data. To leverage both small-scale real-world and large-scale synthetic training data, we develop a multi-domain learning algorithm, which alternately utilizes both kinds of data to reduce the inter-domain difference in training procedure. Extensive experiments on two real nighttime datasets, \textit{Night600} and \textit{RGBNT201$_{rgb}$}, and a synthetic nighttime ReID dataset are conducted to validate the effectiveness of CENet. We release the code and synthetic dataset at: \hyperlink{https://github.com/Alexadlu/CENet}{\color{red} https://github.com/Alexadlu/CENet}.
Authors:Rohit Lal, Saketh Bachu, Yash Garg, Arindam Dutta, Calvin-Khang Ta, Dripta S. Raychaudhuri, Hannah Dela Cruz, M. Salman Asif, Amit K. Roy-Chowdhury
Abstract:
The capability to accurately estimate 3D human poses is crucial for diverse fields such as action recognition, gait recognition, and virtual/augmented reality. However, a persistent and significant challenge within this field is the accurate prediction of human poses under conditions of severe occlusion. Traditional image-based estimators struggle with heavy occlusions due to a lack of temporal context, resulting in inconsistent predictions. While video-based models benefit from processing temporal data, they encounter limitations when faced with prolonged occlusions that extend over multiple frames. This challenge arises because these models struggle to generalize beyond their training datasets, and the variety of occlusions is hard to capture in the training data. Addressing these challenges, we propose STRIDE (Single-video based TempoRally contInuous Occlusion-Robust 3D Pose Estimation), a novel Test-Time Training (TTT) approach to fit a human motion prior for each video. This approach specifically handles occlusions that were not encountered during the model's training. By employing STRIDE, we can refine a sequence of noisy initial pose estimates into accurate, temporally coherent poses during test time, effectively overcoming the limitations of prior methods. Our framework demonstrates flexibility by being model-agnostic, allowing us to use any off-the-shelf 3D pose estimation method for improving robustness and temporal consistency. We validate STRIDE's efficacy through comprehensive experiments on challenging datasets like Occluded Human3.6M, Human3.6M, and OCMotion, where it not only outperforms existing single-image and video-based pose estimation models but also showcases superior handling of substantial occlusions, achieving fast, robust, accurate, and temporally consistent 3D pose estimates. Code is made publicly available at https://github.com/take2rohit/stride
Authors:Shinan Zou, Jianbo Xiong, Chao Fan, Shiqi Yu, Jin Tang
Abstract:
Gait recognition is a biometric technology that has received extensive attention. Most existing gait recognition algorithms are unimodal, and a few multimodal gait recognition algorithms perform multimodal fusion only once. None of these algorithms may fully exploit the complementary advantages of the multiple modalities. In this paper, by considering the temporal and spatial characteristics of gait data, we propose a multi-stage feature fusion strategy (MSFFS), which performs multimodal fusions at different stages in the feature extraction process. Also, we propose an adaptive feature fusion module (AFFM) that considers the semantic association between silhouettes and skeletons. The fusion process fuses different silhouette areas with their more related skeleton joints. Since visual appearance changes and time passage co-occur in a gait period, we propose a multiscale spatial-temporal feature extractor (MSSTFE) to learn the spatial-temporal linkage features thoroughly. Specifically, MSSTFE extracts and aggregates spatial-temporal linkages information at different spatial scales. Combining the strategy and modules mentioned above, we propose a multi-stage adaptive feature fusion (MSAFF) neural network, which shows state-of-the-art performance in many experiments on three datasets. Besides, MSAFF is equipped with feature dimensional pooling (FD Pooling), which can significantly reduce the dimension of the gait representations without hindering the accuracy. https://github.com/ShinanZou/MSAFF
Authors:Shinan Zou, Chao Fan, Jianbo Xiong, Chuanfu Shen, Shiqi Yu, Jin Tang
Abstract:
Gait datasets are essential for gait research. However, this paper observes that present benchmarks, whether conventional constrained or emerging real-world datasets, fall short regarding covariate diversity. To bridge this gap, we undertake an arduous 20-month effort to collect a cross-covariate gait recognition (CCGR) dataset. The CCGR dataset has 970 subjects and about 1.6 million sequences; almost every subject has 33 views and 53 different covariates. Compared to existing datasets, CCGR has both population and individual-level diversity. In addition, the views and covariates are well labeled, enabling the analysis of the effects of different factors. CCGR provides multiple types of gait data, including RGB, parsing, silhouette, and pose, offering researchers a comprehensive resource for exploration. In order to delve deeper into addressing cross-covariate gait recognition, we propose parsing-based gait recognition (ParsingGait) by utilizing the newly proposed parsing data. We have conducted extensive experiments. Our main results show: 1) Cross-covariate emerges as a pivotal challenge for practical applications of gait recognition. 2) ParsingGait demonstrates remarkable potential for further advancement. 3) Alarmingly, existing SOTA methods achieve less than 43% accuracy on the CCGR, highlighting the urgency of exploring cross-covariate gait recognition. Link: https://github.com/ShinanZou/CCGR.
Authors:Shang Gao, Chenyang Yu, Pingping Zhang, Huchuan Lu
Abstract:
Occluded person re-identification (ReID) is a very challenging task due to the occlusion disturbance and incomplete target information. Leveraging external cues such as human pose or parsing to locate and align part features has been proven to be very effective in occluded person ReID. Meanwhile, recent Transformer structures have a strong ability of long-range modeling. Considering the above facts, we propose a Teacher-Student Decoder (TSD) framework for occluded person ReID, which utilizes the Transformer decoder with the help of human parsing. More specifically, our proposed TSD consists of a Parsing-aware Teacher Decoder (PTD) and a Standard Student Decoder (SSD). PTD employs human parsing cues to restrict Transformer's attention and imparts this information to SSD through feature distillation. Thereby, SSD can learn from PTD to aggregate information of body parts automatically. Moreover, a mask generator is designed to provide discriminative regions for better ReID. In addition, existing occluded person ReID benchmarks utilize occluded samples as queries, which will amplify the role of alleviating occlusion interference and underestimate the impact of the feature absence issue. Contrastively, we propose a new benchmark with non-occluded queries, serving as a complement to the existing benchmark. Extensive experiments demonstrate that our proposed method is superior and the new benchmark is essential. The source codes are available at https://github.com/hh23333/TSD.
Authors:Chenyang Yu, Xuehu Liu, Yingquan Wang, Pingping Zhang, Huchuan Lu
Abstract:
Large-scale language-image pre-trained models (e.g., CLIP) have shown superior performances on many cross-modal retrieval tasks. However, the problem of transferring the knowledge learned from such models to video-based person re-identification (ReID) has barely been explored. In addition, there is a lack of decent text descriptions in current ReID benchmarks. To address these issues, in this work, we propose a novel one-stage text-free CLIP-based learning framework named TF-CLIP for video-based person ReID. More specifically, we extract the identity-specific sequence feature as the CLIP-Memory to replace the text feature. Meanwhile, we design a Sequence-Specific Prompt (SSP) module to update the CLIP-Memory online. To capture temporal information, we further propose a Temporal Memory Diffusion (TMD) module, which consists of two key components: Temporal Memory Construction (TMC) and Memory Diffusion (MD). Technically, TMC allows the frame-level memories in a sequence to communicate with each other, and to extract temporal information based on the relations within the sequence. MD further diffuses the temporal memories to each token in the original features to obtain more robust sequence features. Extensive experiments demonstrate that our proposed method shows much better results than other state-of-the-art methods on MARS, LS-VID and iLIDS-VID. The code is available at https://github.com/AsuradaYuci/TF-CLIP.
Authors:Liuxiang Qiu, Si Chen, Yan Yan, Jing-Hao Xue, Da-Han Wang, Shunzhi Zhu
Abstract:
Visible-infrared person re-identification (VI-ReID) aims to retrieve images of the same persons captured by visible (VIS) and infrared (IR) cameras. Existing VI-ReID methods ignore high-order structure information of features while being relatively difficult to learn a reasonable common feature space due to the large modality discrepancy between VIS and IR images. To address the above problems, we propose a novel high-order structure based middle-feature learning network (HOS-Net) for effective VI-ReID. Specifically, we first leverage a short- and long-range feature extraction (SLE) module to effectively exploit both short-range and long-range features. Then, we propose a high-order structure learning (HSL) module to successfully model the high-order relationship across different local features of each person image based on a whitened hypergraph network.This greatly alleviates model collapse and enhances feature representations. Finally, we develop a common feature space learning (CFL) module to learn a discriminative and reasonable common feature space based on middle features generated by aligning features from different modalities and ranges. In particular, a modality-range identity-center contrastive (MRIC) loss is proposed to reduce the distances between the VIS, IR, and middle features, smoothing the training process. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets show that our HOS-Net achieves superior state-of-the-art performance. Our code is available at \url{https://github.com/Jaulaucoeng/HOS-Net}.
Authors:Quoc-Huy Trinh, Nhat-Tan Bui, Dinh-Hieu Hoang, Phuoc-Thao Vo Thi, Hai-Dang Nguyen, Debesh Jha, Ulas Bagci, Ngan Le, Minh-Triet Tran
Abstract:
Person Re-Identification (Re-ID) task seeks to enhance the tracking of multiple individuals by surveillance cameras. It supports multimodal tasks, including text-based person retrieval and human matching. One of the most significant challenges faced in Re-ID is clothes-changing, where the same person may appear in different outfits. While previous methods have made notable progress in maintaining clothing data consistency and handling clothing change data, they still rely excessively on clothing information, which can limit performance due to the dynamic nature of human appearances. To mitigate this challenge, we propose the Pose-Guidance Deep Supervision (PGDS), an effective framework for learning pose guidance within the Re-ID task. It consists of three modules: a human encoder, a pose encoder, and a Pose-to-Human Projection module (PHP). Our framework guides the human encoder, i.e., the main re-identification model, with pose information from the pose encoder through multiple layers via the knowledge transfer mechanism from the PHP module, helping the human encoder learn body parts information without increasing computation resources in the inference stage. Through extensive experiments, our method surpasses the performance of current state-of-the-art methods, demonstrating its robustness and effectiveness for real-world applications. Our code is available at https://github.com/huyquoctrinh/PGDS.
Authors:Yunhao Du, Cheng Lei, Zhicheng Zhao, Yuan Dong, Fei Su
Abstract:
Visible-infrared person re-identification (VI-ReID) aims to match persons captured by visible and infrared cameras, allowing person retrieval and tracking in 24-hour surveillance systems. Previous methods focus on learning from cross-modality person images in different cameras. However, temporal information and single-camera samples tend to be neglected. To crack this nut, in this paper, we first contribute a large-scale VI-ReID dataset named BUPTCampus. Different from most existing VI-ReID datasets, it 1) collects tracklets instead of images to introduce rich temporal information, 2) contains pixel-aligned cross-modality sample pairs for better modality-invariant learning, 3) provides one auxiliary set to help enhance the optimization, in which each identity only appears in a single camera. Based on our constructed dataset, we present a two-stream framework as baseline and apply Generative Adversarial Network (GAN) to narrow the gap between the two modalities. To exploit the advantages introduced by the auxiliary set, we propose a curriculum learning based strategy to jointly learn from both primary and auxiliary sets. Moreover, we design a novel temporal k-reciprocal re-ranking method to refine the ranking list with fine-grained temporal correlation cues. Experimental results demonstrate the effectiveness of the proposed methods. We also reproduce 9 state-of-the-art image-based and video-based VI-ReID methods on BUPTCampus and our methods show substantial superiority to them. The codes and dataset are available at: https://github.com/dyhBUPT/BUPTCampus.
Authors:Chao Fan, Jingzhe Ma, Dongyang Jin, Chuanfu Shen, Shiqi Yu
Abstract:
The choice of the representations is essential for deep gait recognition methods. The binary silhouettes and skeletal coordinates are two dominant representations in recent literature, achieving remarkable advances in many scenarios. However, inherent challenges remain, in which silhouettes are not always guaranteed in unconstrained scenes, and structural cues have not been fully utilized from skeletons. In this paper, we introduce a novel skeletal gait representation named skeleton map, together with SkeletonGait, a skeleton-based method to exploit structural information from human skeleton maps. Specifically, the skeleton map represents the coordinates of human joints as a heatmap with Gaussian approximation, exhibiting a silhouette-like image devoid of exact body structure. Beyond achieving state-of-the-art performances over five popular gait datasets, more importantly, SkeletonGait uncovers novel insights about how important structural features are in describing gait and when they play a role. Furthermore, we propose a multi-branch architecture, named SkeletonGait++, to make use of complementary features from both skeletons and silhouettes. Experiments indicate that SkeletonGait++ outperforms existing state-of-the-art methods by a significant margin in various scenarios. For instance, it achieves an impressive rank-1 accuracy of over 85% on the challenging GREW dataset. All the source code is available at https://github.com/ShiqiYu/OpenGait.
Authors:Arindam Dutta, Rohit Lal, Dripta S. Raychaudhuri, Calvin Khang Ta, Amit K. Roy-Chowdhury
Abstract:
Human silhouette extraction is a fundamental task in computer vision with applications in various downstream tasks. However, occlusions pose a significant challenge, leading to incomplete and distorted silhouettes. To address this challenge, we introduce POISE: Pose Guided Human Silhouette Extraction under Occlusions, a novel self-supervised fusion framework that enhances accuracy and robustness in human silhouette prediction. By combining initial silhouette estimates from a segmentation model with human joint predictions from a 2D pose estimation model, POISE leverages the complementary strengths of both approaches, effectively integrating precise body shape information and spatial information to tackle occlusions. Furthermore, the self-supervised nature of \POISE eliminates the need for costly annotations, making it scalable and practical. Extensive experimental results demonstrate its superiority in improving silhouette extraction under occlusions, with promising results in downstream tasks such as gait recognition. The code for our method is available https://github.com/take2rohit/poise.
Authors:Neng Dong, Shuanglin Yan, Hao Tang, Jinhui Tang, Liyan Zhang
Abstract:
Occluded person re-identification (re-ID) presents a challenging task due to occlusion perturbations. Although great efforts have been made to prevent the model from being disturbed by occlusion noise, most current solutions only capture information from a single image, disregarding the rich complementary information available in multiple images depicting the same pedestrian. In this paper, we propose a novel framework called Multi-view Information Integration and Propagation (MVI$^{2}$P). Specifically, realizing the potential of multi-view images in effectively characterizing the occluded target pedestrian, we integrate feature maps of which to create a comprehensive representation. During this process, to avoid introducing occlusion noise, we develop a CAMs-aware Localization module that selectively integrates information contributing to the identification. Additionally, considering the divergence in the discriminative nature of different images, we design a probability-aware Quantification module to emphatically integrate highly reliable information. Moreover, as multiple images with the same identity are not accessible in the testing stage, we devise an Information Propagation (IP) mechanism to distill knowledge from the comprehensive representation to that of a single occluded image. Extensive experiments and analyses have unequivocally demonstrated the effectiveness and superiority of the proposed MVI$^{2}$P. The code will be released at \url{https://github.com/nengdong96/MVIIP}.
Authors:Shuoyi Chen, Mang Ye, Bo Du
Abstract:
Recognizing a target of interest from the UAVs is much more challenging than the existing object re-identification tasks across multiple city cameras. The images taken by the UAVs usually suffer from significant size difference when generating the object bounding boxes and uncertain rotation variations. Existing methods are usually designed for city cameras, incapable of handing the rotation issue in UAV scenarios. A straightforward solution is to perform the image-level rotation augmentation, but it would cause loss of useful information when inputting the powerful vision transformer as patches. This motivates us to simulate the rotation operation at the patch feature level, proposing a novel rotation invariant vision transformer (RotTrans). This strategy builds on high-level features with the help of the specificity of the vision transformer structure, which enhances the robustness against large rotation differences. In addition, we design invariance constraint to establish the relationship between the original feature and the rotated features, achieving stronger rotation invariance. Our proposed transformer tested on the latest UAV datasets greatly outperforms the current state-of-the-arts, which is 5.9\% and 4.8\% higher than the highest mAP and Rank1. Notably, our model also performs competitively for the person re-identification task on traditional city cameras. In particular, our solution wins the first place in the UAV-based person re-recognition track in the Multi-Modal Video Reasoning and Analyzing Competition held in ICCV 2021. Code is available at https://github.com/whucsy/RotTrans.
Authors:Menglin Wang, Xiaojin Gong
Abstract:
Supervised person re-identification assumes that a person has images captured under multiple cameras. However when cameras are placed in distance, a person rarely appears in more than one camera. This paper thus studies person re-ID under such isolated camera supervised (ISCS) setting. Instead of trying to generate fake cross-camera features like previous methods, we explore a novel perspective by making efficient use of the variation in training data. Under ISCS setting, a person only has limited images from a single camera, so the camera bias becomes a critical issue confounding ID discrimination. Cross-camera images are prone to being recognized as different IDs simply by camera style. To eliminate the confounding effect of camera bias, we propose to learn both intra- and inter-camera invariance under a unified framework. First, we construct style-consistent environments via clustering, and perform prototypical contrastive learning within each environment. Meanwhile, strongly augmented images are contrasted with original prototypes to enforce intra-camera augmentation invariance. For inter-camera invariance, we further design a much improved variant of multi-camera negative loss that optimizes the distance of multi-level negatives. The resulting model learns to be invariant to both subtle and severe style variation within and cross-camera. On multiple benchmarks, we conduct extensive experiments and validate the effectiveness and superiority of the proposed method. Code will be available at https://github.com/Terminator8758/IICI.
Authors:Shuang Li, Jiaxu Leng, Ji Gan, Mengjingcheng Mo, Xinbo Gao
Abstract:
Visible-Infrared Person Re-Identification (VI-ReID) plays a critical role in all-day surveillance systems. However, existing methods primarily focus on learning appearance features while overlooking body shape features, which not only complement appearance features but also exhibit inherent robustness to modality variations. Despite their potential, effectively integrating shape and appearance features remains challenging. Appearance features are highly susceptible to modality variations and background noise, while shape features often suffer from inaccurate infrared shape estimation due to the limitations of auxiliary models. To address these challenges, we propose the Shape-centered Representation Learning (ScRL) framework, which enhances VI-ReID performance by innovatively integrating shape and appearance features. Specifically, we introduce Infrared Shape Restoration (ISR) to restore inaccuracies in infrared body shape representations at the feature level by leveraging infrared appearance features. In addition, we propose Shape Feature Propagation (SFP), which enables the direct extraction of shape features from original images during inference with minimal computational complexity. Furthermore, we design Appearance Feature Enhancement (AFE), which utilizes shape features to emphasize shape-related appearance features while effectively suppressing identity-unrelated noise. Benefiting from the effective integration of shape and appearance features, ScRL demonstrates superior performance through extensive experiments. On the SYSU-MM01, HITSZ-VCM, and RegDB datasets, it achieves Rank-1 (mAP) accuracies of 76.1% (72.6%), 71.2% (52.9%), and 92.4% (86.7%), respectively, surpassing existing state-of-the-art methods.
Authors:Kejun Lin, Zhixiang Wang, Zheng Wang, Yinqiang Zheng, Shin'ichi Satoh
Abstract:
Person re-identification (re-ID) requires densely distributed cameras. In practice, the person of interest may not be captured by cameras and, therefore, needs to be retrieved using subjective information (e.g., sketches from witnesses). Previous research defines this case using the sketch as sketch re-identification (Sketch re-ID) and focuses on eliminating the domain gap. Actually, subjectivity is another significant challenge. We model and investigate it by posing a new dataset with multi-witness descriptions. It features two aspects. 1) Large-scale. It contains over 4,763 sketches and 32,668 photos, making it the largest Sketch re-ID dataset. 2) Multi-perspective and multi-style. Our dataset offers multiple sketches for each identity. Witnesses' subjective cognition provides multiple perspectives on the same individual, while different artists' drawing styles provide variation in sketch styles. We further have two novel designs to alleviate the challenge of subjectivity. 1) Fusing subjectivity. We propose a non-local (NL) fusion module that gathers sketches from different witnesses for the same identity. 2) Introducing objectivity. An AttrAlign module utilizes attributes as an implicit mask to align cross-domain features. To push forward the advance of Sketch re-ID, we set three benchmarks (large-scale, multi-style, cross-style). Extensive experiments demonstrate our leading performance in these benchmarks. Dataset and Codes are publicly available at: https://github.com/Lin-Kayla/subjectivity-sketch-reid
Authors:Shibei Meng, Yang Fu, Saihui Hou, Chunshui Cao, Xu Liu, Yongzhen Huang
Abstract:
We present FastPoseGait, an open-source toolbox for pose-based gait recognition based on PyTorch. Our toolbox supports a set of cutting-edge pose-based gait recognition algorithms and a variety of related benchmarks. Unlike other pose-based projects that focus on a single algorithm, FastPoseGait integrates several state-of-the-art (SOTA) algorithms under a unified framework, incorporating both the latest advancements and best practices to ease the comparison of effectiveness and efficiency. In addition, to promote future research on pose-based gait recognition, we provide numerous pre-trained models and detailed benchmark results, which offer valuable insights and serve as a reference for further investigations. By leveraging the highly modular structure and diverse methods offered by FastPoseGait, researchers can quickly delve into pose-based gait recognition and promote development in the field. In this paper, we outline various features of this toolbox, aiming that our toolbox and benchmarks can further foster collaboration, facilitate reproducibility, and encourage the development of innovative algorithms for pose-based gait recognition. FastPoseGait is available at https://github.com//BNU-IVC/FastPoseGait and is actively maintained. We will continue updating this report as we add new features.
Authors:Andong Lu, Zhang Zhang, Yan Huang, Yifan Zhang, Chenglong Li, Jin Tang, Liang Wang
Abstract:
Nighttime person Re-ID (person re-identification in the nighttime) is a very important and challenging task for visual surveillance but it has not been thoroughly investigated. Under the low illumination condition, the performance of person Re-ID methods usually sharply deteriorates. To address the low illumination challenge in nighttime person Re-ID, this paper proposes an Illumination Distillation Framework (IDF), which utilizes illumination enhancement and illumination distillation schemes to promote the learning of Re-ID models. Specifically, IDF consists of a master branch, an illumination enhancement branch, and an illumination distillation module. The master branch is used to extract the features from a nighttime image. The illumination enhancement branch first estimates an enhanced image from the nighttime image using a nonlinear curve mapping method and then extracts the enhanced features. However, nighttime and enhanced features usually contain data noise due to unstable lighting conditions and enhancement failures. To fully exploit the complementary benefits of nighttime and enhanced features while suppressing data noise, we propose an illumination distillation module. In particular, the illumination distillation module fuses the features from two branches through a bottleneck fusion model and then uses the fused features to guide the learning of both branches in a distillation manner. In addition, we build a real-world nighttime person Re-ID dataset, named Night600, which contains 600 identities captured from different viewpoints and nighttime illumination conditions under complex outdoor environments. Experimental results demonstrate that our IDF can achieve state-of-the-art performance on two nighttime person Re-ID datasets (i.e., Night600 and Knight ). We will release our code and dataset at https://github.com/Alexadlu/IDF.
Authors:Peini Guo, Hong Liu, Jianbing Wu, Guoquan Wang, Tao Wang
Abstract:
Cloth-changing Person Re-Identification (CC-ReID) is a challenging task that aims to retrieve the target person across multiple surveillance cameras when clothing changes might happen. Despite recent progress in CC-ReID, existing approaches are still hindered by the interference of clothing variations since they lack effective constraints to keep the model consistently focused on clothing-irrelevant regions. To address this issue, we present a Semantic-aware Consistency Network (SCNet) to learn identity-related semantic features by proposing effective consistency constraints. Specifically, we generate the black-clothing image by erasing pixels in the clothing area, which explicitly mitigates the interference from clothing variations. In addition, to fully exploit the fine-grained identity information, a head-enhanced attention module is introduced, which learns soft attention maps by utilizing the proposed part-based matching loss to highlight head information. We further design a semantic consistency loss to facilitate the learning of high-level identity-related semantic features, forcing the model to focus on semantically consistent cloth-irrelevant regions. By using the consistency constraint, our model does not require any extra auxiliary segmentation module to generate the black-clothing image or locate the head region during the inference stage. Extensive experiments on four cloth-changing person Re-ID datasets (LTCC, PRCC, Vc-Clothes, and DeepChange) demonstrate that our proposed SCNet makes significant improvements over prior state-of-the-art approaches. Our code is available at: https://github.com/Gpn-star/SCNet.
Authors:Yan Sun, Xueling Feng, Liyan Ma, Long Hu, Mark Nixon
Abstract:
Gait recognition is a promising biometric technology for identification due to its non-invasiveness and long-distance. However, external variations such as clothing changes and viewpoint differences pose significant challenges to gait recognition. Silhouette-based methods preserve body shape but neglect internal structure information, while skeleton-based methods preserve structure information but omit appearance. To fully exploit the complementary nature of the two modalities, a novel triple branch gait recognition framework, TriGait, is proposed in this paper. It effectively integrates features from the skeleton and silhouette data in a hybrid fusion manner, including a two-stream network to extract static and motion features from appearance, a simple yet effective module named JSA-TC to capture dependencies between all joints, and a third branch for cross-modal learning by aligning and fusing low-level features of two modalities. Experimental results demonstrate the superiority and effectiveness of TriGait for gait recognition. The proposed method achieves a mean rank-1 accuracy of 96.0% over all conditions on CASIA-B dataset and 94.3% accuracy for CL, significantly outperforming all the state-of-the-art methods. The source code will be available at https://github.com/feng-xueling/TriGait/.
Authors:Jianyang Gu, Hao Luo, Kai Wang, Wei Jiang, Yang You, Jian Zhao
Abstract:
Unsupervised domain adaptive person re-identification (Re-ID) methods alleviate the burden of data annotation through generating pseudo supervision messages. However, real-world Re-ID systems, with continuously accumulating data streams, simultaneously demand more robust adaptation and anti-forgetting capabilities. Methods based on image rehearsal addresses the forgetting issue with limited extra storage but carry the risk of privacy leakage. In this work, we propose a Color Prompting (CoP) method for data-free continual unsupervised domain adaptive person Re-ID. Specifically, we employ a light-weighted prompter network to fit the color distribution of the current task together with Re-ID training. Then for the incoming new tasks, the learned color distribution serves as color style transfer guidance to transfer the images into past styles. CoP achieves accurate color style recovery for past tasks with adequate data diversity, leading to superior anti-forgetting effects compared with image rehearsal methods. Moreover, CoP demonstrates strong generalization performance for fast adaptation into new domains, given only a small amount of unlabeled images. Extensive experiments demonstrate that after the continual training pipeline the proposed CoP achieves 6.7% and 8.1% average rank-1 improvements over the replay method on seen and unseen domains, respectively. The source code for this work is publicly available in https://github.com/vimar-gu/ColorPromptReID.
Authors:Qizao Wang, Xuelin Qian, Bin Li, Xiangyang Xue, Yanwei Fu
Abstract:
Cloth-changing person Re-IDentification (Re-ID) is a particularly challenging task, suffering from two limitations of inferior discriminative features and limited training samples. Existing methods mainly leverage auxiliary information to facilitate identity-relevant feature learning, including soft-biometrics features of shapes or gaits, and additional labels of clothing. However, this information may be unavailable in real-world applications. In this paper, we propose a novel FIne-grained Representation and Recomposition (FIRe$^{2}$) framework to tackle both limitations without any auxiliary annotation or data. Specifically, we first design a Fine-grained Feature Mining (FFM) module to separately cluster images of each person. Images with similar so-called fine-grained attributes (e.g., clothes and viewpoints) are encouraged to cluster together. An attribute-aware classification loss is introduced to perform fine-grained learning based on cluster labels, which are not shared among different people, promoting the model to learn identity-relevant features. Furthermore, to take full advantage of fine-grained attributes, we present a Fine-grained Attribute Recomposition (FAR) module by recomposing image features with different attributes in the latent space. It significantly enhances robust feature learning. Extensive experiments demonstrate that FIRe$^{2}$ can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks. The code is available at https://github.com/QizaoWang/FIRe-CCReID.
Authors:Yang Qin, Yingke Chen, Dezhong Peng, Xi Peng, Joey Tianyi Zhou, Peng Hu
Abstract:
Text-to-image person re-identification (TIReID) is a compelling topic in the cross-modal community, which aims to retrieve the target person based on a textual query. Although numerous TIReID methods have been proposed and achieved promising performance, they implicitly assume the training image-text pairs are correctly aligned, which is not always the case in real-world scenarios. In practice, the image-text pairs inevitably exist under-correlated or even false-correlated, a.k.a noisy correspondence (NC), due to the low quality of the images and annotation errors. To address this problem, we propose a novel Robust Dual Embedding method (RDE) that can learn robust visual-semantic associations even with NC. Specifically, RDE consists of two main components: 1) A Confident Consensus Division (CCD) module that leverages the dual-grained decisions of dual embedding modules to obtain a consensus set of clean training data, which enables the model to learn correct and reliable visual-semantic associations. 2) A Triplet Alignment Loss (TAL) relaxes the conventional Triplet Ranking loss with the hardest negative samples to a log-exponential upper bound over all negative ones, thus preventing the model collapse under NC and can also focus on hard-negative samples for promising performance. We conduct extensive experiments on three public benchmarks, namely CUHK-PEDES, ICFG-PEDES, and RSTPReID, to evaluate the performance and robustness of our RDE. Our method achieves state-of-the-art results both with and without synthetic noisy correspondences on all three datasets. Code is available at https://github.com/QinYang79/RDE.
Authors:Zhaopeng Dou, Zhongdao Wang, Yali Li, Shengjin Wang
Abstract:
This paper aims to learn a domain-generalizable (DG) person re-identification (ReID) representation from large-scale videos \textbf{without any annotation}. Prior DG ReID methods employ limited labeled data for training due to the high cost of annotation, which restricts further advances. To overcome the barriers of data and annotation, we propose to utilize large-scale unsupervised data for training. The key issue lies in how to mine identity information. To this end, we propose an Identity-seeking Self-supervised Representation learning (ISR) method. ISR constructs positive pairs from inter-frame images by modeling the instance association as a maximum-weight bipartite matching problem. A reliability-guided contrastive loss is further presented to suppress the adverse impact of noisy positive pairs, ensuring that reliable positive pairs dominate the learning process. The training cost of ISR scales approximately linearly with the data size, making it feasible to utilize large-scale data for training. The learned representation exhibits superior generalization ability. \textbf{Without human annotation and fine-tuning, ISR achieves 87.0\% Rank-1 on Market-1501 and 56.4\% Rank-1 on MSMT17}, outperforming the best supervised domain-generalizable method by 5.0\% and 19.5\%, respectively. In the pre-training$\rightarrow$fine-tuning scenario, ISR achieves state-of-the-art performance, with 88.4\% Rank-1 on MSMT17. The code is at \url{https://github.com/dcp15/ISR_ICCV2023_Oral}.
Authors:Xiaohu Huang, Xinggang Wang, Zhidianqiu Jin, Bo Yang, Botao He, Bin Feng, Wenyu Liu
Abstract:
Graph convolutional networks have been widely applied in skeleton-based gait recognition. A key challenge in this task is to distinguish the individual walking styles of different subjects across various views. Existing state-of-the-art methods employ uniform convolutions to extract features from diverse sequences and ignore the effects of viewpoint changes. To overcome these limitations, we propose a condition-adaptive graph (CAG) convolution network that can dynamically adapt to the specific attributes of each skeleton sequence and the corresponding view angle. In contrast to using fixed weights for all joints and sequences, we introduce a joint-specific filter learning (JSFL) module in the CAG method, which produces sequence-adaptive filters at the joint level. The adaptive filters capture fine-grained patterns that are unique to each joint, enabling the extraction of diverse spatial-temporal information about body parts. Additionally, we design a view-adaptive topology learning (VATL) module that generates adaptive graph topologies. These graph topologies are used to correlate the joints adaptively according to the specific view conditions. Thus, CAG can simultaneously adjust to various walking styles and viewpoints. Experiments on the two most widely used datasets (i.e., CASIA-B and OU-MVLP) show that CAG surpasses all previous skeleton-based methods. Moreover, the recognition performance can be enhanced by simply combining CAG with appearance-based methods, demonstrating the ability of CAG to provide useful complementary information.The source code will be available at https://github.com/OliverHxh/CAG.
Authors:Hao Ni, Yuke Li, Lianli Gao, Heng Tao Shen, Jingkuan Song
Abstract:
Domain generalization person re-identification (DG-ReID) aims to train a model on source domains and generalize well on unseen domains. Vision Transformer usually yields better generalization ability than common CNN networks under distribution shifts. However, Transformer-based ReID models inevitably over-fit to domain-specific biases due to the supervised learning strategy on the source domain. We observe that while the global images of different IDs should have different features, their similar local parts (e.g., black backpack) are not bounded by this constraint. Motivated by this, we propose a pure Transformer model (termed Part-aware Transformer) for DG-ReID by designing a proxy task, named Cross-ID Similarity Learning (CSL), to mine local visual information shared by different IDs. This proxy task allows the model to learn generic features because it only cares about the visual similarity of the parts regardless of the ID labels, thus alleviating the side effect of domain-specific biases. Based on the local similarity obtained in CSL, a Part-guided Self-Distillation (PSD) is proposed to further improve the generalization of global features. Our method achieves state-of-the-art performance under most DG ReID settings. Under the Market$\to$Duke setting, our method exceeds state-of-the-art by 10.9% and 12.8% in Rank1 and mAP, respectively. The code is available at https://github.com/liyuke65535/Part-Aware-Transformer.
Authors:Yan Sun, Hu Long, Xueling Feng, Mark Nixon
Abstract:
Gait recognition is one of the most promising video-based biometric technologies. The edge of silhouettes and motion are the most informative feature and previous studies have explored them separately and achieved notable results. However, due to occlusions and variations in viewing angles, their gait recognition performance is often affected by the predefined spatial segmentation strategy. Moreover, traditional temporal pooling usually neglects distinctive temporal information in gait. To address the aforementioned issues, we propose a novel gait recognition framework, denoted as GaitASMS, which can effectively extract the adaptive structured spatial representations and naturally aggregate the multi-scale temporal information. The Adaptive Structured Representation Extraction Module (ASRE) separates the edge of silhouettes by using the adaptive edge mask and maximizes the representation in semantic latent space. Moreover, the Multi-Scale Temporal Aggregation Module (MSTA) achieves effective modeling of long-short-range temporal information by temporally aggregated structure. Furthermore, we propose a new data augmentation, denoted random mask, to enrich the sample space of long-term occlusion and enhance the generalization of the model. Extensive experiments conducted on two datasets demonstrate the competitive advantage of proposed method, especially in complex scenes, i.e. BG and CL. On the CASIA-B dataset, GaitASMS achieves the average accuracy of 93.5\% and outperforms the baseline on rank-1 accuracies by 3.4\% and 6.3\%, respectively, in BG and CL. The ablation experiments demonstrate the effectiveness of ASRE and MSTA. The source code is available at https://github.com/YanSungithub/GaitASMS.
Authors:Haocong Rao, Cyril Leung, Chunyan Miao
Abstract:
With rapid advancements in depth sensors and deep learning, skeleton-based person re-identification (re-ID) models have recently achieved remarkable progress with many advantages. Most existing solutions learn single-level skeleton features from body joints with the assumption of equal skeleton importance, while they typically lack the ability to exploit more informative skeleton features from various levels such as limb level with more global body patterns. The label dependency of these methods also limits their flexibility in learning more general skeleton representations. This paper proposes a generic unsupervised Hierarchical skeleton Meta-Prototype Contrastive learning (Hi-MPC) approach with Hard Skeleton Mining (HSM) for person re-ID with unlabeled 3D skeletons. Firstly, we construct hierarchical representations of skeletons to model coarse-to-fine body and motion features from the levels of body joints, components, and limbs. Then a hierarchical meta-prototype contrastive learning model is proposed to cluster and contrast the most typical skeleton features ("prototypes") from different-level skeletons. By converting original prototypes into meta-prototypes with multiple homogeneous transformations, we induce the model to learn the inherent consistency of prototypes to capture more effective skeleton features for person re-ID. Furthermore, we devise a hard skeleton mining mechanism to adaptively infer the informative importance of each skeleton, so as to focus on harder skeletons to learn more discriminative skeleton representations. Extensive evaluations on five datasets demonstrate that our approach outperforms a wide variety of state-of-the-art skeleton-based methods. We further show the general applicability of our method to cross-view person re-ID and RGB-based scenarios with estimated skeletons.
Authors:Wenyu Zhang, Qing Ding, Jian Hu, Yi Ma, Mingzhe Lu
Abstract:
Graph convolutional networks (GCN) is widely used to handle irregular data since it updates node features by using the structure information of graph. With the help of iterated GCN, high-order information can be obtained to further enhance the representation of nodes. However, how to apply GCN to structured data (such as pictures) has not been deeply studied. In this paper, we explore the application of graph attention networks (GAT) in image feature extraction. First of all, we propose a novel graph generation algorithm to convert images into graphs through matrix transformation. It is one magnitude faster than the algorithm based on K Nearest Neighbors (KNN). Then, GAT is used on the generated graph to update the node features. Thus, a more robust representation is obtained. These two steps are combined into a module called pixel-wise graph attention module (PGA). Since the graph obtained by our graph generation algorithm can still be transformed into a picture after processing, PGA can be well combined with CNN. Based on these two modules, we consulted the ResNet and design a pixel-wise graph attention network (PGANet). The PGANet is applied to the task of person re-identification in the datasets Market1501, DukeMTMC-reID and Occluded-DukeMTMC (outperforms state-of-the-art by 0.8\%, 1.1\% and 11\% respectively, in mAP scores). Experiment results show that it achieves the state-of-the-art performance. \href{https://github.com/wenyu1009/PGANet}{The code is available here}.
Authors:Neng Dong, Liyan Zhang, Shuanglin Yan, Hao Tang, Jinhui Tang
Abstract:
Occlusion perturbation presents a significant challenge in person re-identification (re-ID), and existing methods that rely on external visual cues require additional computational resources and only consider the issue of missing information caused by occlusion. In this paper, we propose a simple yet effective framework, termed Erasing, Transforming, and Noising Defense Network (ETNDNet), which treats occlusion as a noise disturbance and solves occluded person re-ID from the perspective of adversarial defense. In the proposed ETNDNet, we introduce three strategies: Firstly, we randomly erase the feature map to create an adversarial representation with incomplete information, enabling adversarial learning of identity loss to protect the re-ID system from the disturbance of missing information. Secondly, we introduce random transformations to simulate the position misalignment caused by occlusion, training the extractor and classifier adversarially to learn robust representations immune to misaligned information. Thirdly, we perturb the feature map with random values to address noisy information introduced by obstacles and non-target pedestrians, and employ adversarial gaming in the re-ID system to enhance its resistance to occlusion noise. Without bells and whistles, ETNDNet has three key highlights: (i) it does not require any external modules with parameters, (ii) it effectively handles various issues caused by occlusion from obstacles and non-target pedestrians, and (iii) it designs the first GAN-based adversarial defense paradigm for occluded person re-ID. Extensive experiments on five public datasets fully demonstrate the effectiveness, superiority, and practicality of the proposed ETNDNet. The code will be released at \url{https://github.com/nengdong96/ETNDNet}.
Authors:Huafeng Li, Le Xu, Yafei Zhang, Dapeng Tao, Zhengtao Yu
Abstract:
In visible-infrared video person re-identification (re-ID), extracting features not affected by complex scenes (such as modality, camera views, pedestrian pose, background, etc.) changes, and mining and utilizing motion information are the keys to solving cross-modal pedestrian identity matching. To this end, the paper proposes a new visible-infrared video person re-ID method from a novel perspective, i.e., adversarial self-attack defense and spatial-temporal relation mining. In this work, the changes of views, posture, background and modal discrepancy are considered as the main factors that cause the perturbations of person identity features. Such interference information contained in the training samples is used as an adversarial perturbation. It performs adversarial attacks on the re-ID model during the training to make the model more robust to these unfavorable factors. The attack from the adversarial perturbation is introduced by activating the interference information contained in the input samples without generating adversarial samples, and it can be thus called adversarial self-attack. This design allows adversarial attack and defense to be integrated into one framework. This paper further proposes a spatial-temporal information-guided feature representation network to use the information in video sequences. The network cannot only extract the information contained in the video-frame sequences but also use the relation of the local information in space to guide the network to extract more robust features. The proposed method exhibits compelling performance on large-scale cross-modality video datasets. The source code of the proposed method will be released at https://github.com/lhf12278/xxx.
Authors:Yuqi Zhang, Qi Qian, Hongsong Wang, Chong Liu, Weihua Chen, Fan Wang
Abstract:
Visual retrieval tasks such as image retrieval and person re-identification (Re-ID) aim at effectively and thoroughly searching images with similar content or the same identity. After obtaining retrieved examples, re-ranking is a widely adopted post-processing step to reorder and improve the initial retrieval results by making use of the contextual information from semantically neighboring samples. Prevailing re-ranking approaches update distance metrics and mostly rely on inefficient crosscheck set comparison operations while computing expanded neighbors based distances. In this work, we present an efficient re-ranking method which refines initial retrieval results by updating features. Specifically, we reformulate re-ranking based on Graph Convolution Networks (GCN) and propose a novel Graph Convolution based Re-ranking (GCR) for visual retrieval tasks via feature propagation. To accelerate computation for large-scale retrieval, a decentralized and synchronous feature propagation algorithm which supports parallel or distributed computing is introduced. In particular, the plain GCR is extended for cross-camera retrieval and an improved feature propagation formulation is presented to leverage affinity relationships across different cameras. It is also extended for video-based retrieval, and Graph Convolution based Re-ranking for Video (GCRV) is proposed by mathematically deriving a novel profile vector generation method for the tracklet. Without bells and whistles, the proposed approaches achieve state-of-the-art performances on seven benchmark datasets from three different tasks, i.e., image retrieval, person Re-ID and video-based person Re-ID.
Authors:Weizhen He, Yiheng Deng, Shixiang Tang, Qihao Chen, Qingsong Xie, Yizhou Wang, Lei Bai, Feng Zhu, Rui Zhao, Wanli Ouyang, Donglian Qi, Yunfeng Yan
Abstract:
Human intelligence can retrieve any person according to both visual and language descriptions. However, the current computer vision community studies specific person re-identification (ReID) tasks in different scenarios separately, which limits the applications in the real world. This paper strives to resolve this problem by proposing a new instruct-ReID task that requires the model to retrieve images according to the given image or language instructions. Our instruct-ReID is a more general ReID setting, where existing 6 ReID tasks can be viewed as special cases by designing different instructions. We propose a large-scale OmniReID benchmark and an adaptive triplet loss as a baseline method to facilitate research in this new setting. Experimental results show that the proposed multi-purpose ReID model, trained on our OmniReID benchmark without fine-tuning, can improve +0.5%, +0.6%, +7.7% mAP on Market1501, MSMT17, CUHK03 for traditional ReID, +6.4%, +7.1%, +11.2% mAP on PRCC, VC-Clothes, LTCC for clothes-changing ReID, +11.7% mAP on COCAS+ real2 for clothes template based clothes-changing ReID when using only RGB images, +24.9% mAP on COCAS+ real2 for our newly defined language-instructed ReID, +4.3% on LLCM for visible-infrared ReID, +2.6% on CUHK-PEDES for text-to-image ReID. The datasets, the model, and code will be available at https://github.com/hwz-zju/Instruct-ReID.
Authors:Haijun Xiong, Yunze Deng, Bin Feng, Xinggang Wang, Wenyu Liu
Abstract:
Gait recognition, a growing field in biological recognition technology, utilizes distinct walking patterns for accurate individual identification. However, existing methods lack the incorporation of temporal information. To reach the full potential of gait recognition, we advocate for the consideration of temporal features at varying granularities and spans. This paper introduces a novel framework, GaitGS, which aggregates temporal features simultaneously in both granularity and span dimensions. Specifically, the Multi-Granularity Feature Extractor (MGFE) is designed to capture micro-motion and macro-motion information at fine and coarse levels respectively, while the Multi-Span Feature Extractor (MSFE) generates local and global temporal representations. Through extensive experiments on two datasets, our method demonstrates state-of-the-art performance, achieving Rank-1 accuracy of 98.2%, 96.5%, and 89.7% on CASIA-B under different conditions, and 97.6% on OU-MVLP. The source code will be available at https://github.com/Haijun-Xiong/GaitGS.
Authors:Suncheng Xiang, Jingsheng Gao, Mengyuan Guan, Jiacheng Ruan, Chengfeng Zhou, Ting Liu, Dahong Qian, Yuzhuo Fu
Abstract:
Generalizable person re-identification (Re-ID) is a very hot research topic in machine learning and computer vision, which plays a significant role in realistic scenarios due to its various applications in public security and video surveillance. However, previous methods mainly focus on the visual representation learning, while neglect to explore the potential of semantic features during training, which easily leads to poor generalization capability when adapted to the new domain. In this paper, we propose a Multi-Modal Equivalent Transformer called MMET for more robust visual-semantic embedding learning on visual, textual and visual-textual tasks respectively. To further enhance the robust feature learning in the context of transformer, a dynamic masking mechanism called Masked Multimodal Modeling strategy (MMM) is introduced to mask both the image patches and the text tokens, which can jointly works on multimodal or unimodal data and significantly boost the performance of generalizable person Re-ID. Extensive experiments on benchmark datasets demonstrate the competitive performance of our method over previous approaches. We hope this method could advance the research towards visual-semantic representation learning. Our source code is also publicly available at https://github.com/JeremyXSC/MMET.
Authors:Haidong Zhu, Wanrong Zheng, Zhaoheng Zheng, Ram Nevatia
Abstract:
Identifying humans with their walking sequences, known as gait recognition, is a useful biometric understanding task as it can be observed from a long distance and does not require cooperation from the subject. Two common modalities used for representing the walking sequence of a person are silhouettes and joint skeletons. Silhouette sequences, which record the boundary of the walking person in each frame, may suffer from the variant appearances from carried-on objects and clothes of the person. Framewise joint detections are noisy and introduce some jitters that are not consistent with sequential detections. In this paper, we combine the silhouettes and skeletons and refine the framewise joint predictions for gait recognition. With temporal information from the silhouette sequences, we show that the refined skeletons can improve gait recognition performance without extra annotations. We compare our methods on four public datasets, CASIA-B, OUMVLP, Gait3D and GREW, and show state-of-the-art performance.
Authors:Weihua Chen, Xianzhe Xu, Jian Jia, Hao luo, Yaohua Wang, Fan Wang, Rong Jin, Xiuyu Sun
Abstract:
Human-centric visual tasks have attracted increasing research attention due to their widespread applications. In this paper, we aim to learn a general human representation from massive unlabeled human images which can benefit downstream human-centric tasks to the maximum extent. We call this method SOLIDER, a Semantic cOntrollable seLf-supervIseD lEaRning framework. Unlike the existing self-supervised learning methods, prior knowledge from human images is utilized in SOLIDER to build pseudo semantic labels and import more semantic information into the learned representation. Meanwhile, we note that different downstream tasks always require different ratios of semantic information and appearance information. For example, human parsing requires more semantic information, while person re-identification needs more appearance information for identification purpose. So a single learned representation cannot fit for all requirements. To solve this problem, SOLIDER introduces a conditional network with a semantic controller. After the model is trained, users can send values to the controller to produce representations with different ratios of semantic information, which can fit different needs of downstream tasks. Finally, SOLIDER is verified on six downstream human-centric visual tasks. It outperforms state of the arts and builds new baselines for these tasks. The code is released in https://github.com/tinyvision/SOLIDER.
Authors:Yukang Zhang, Hanzi Wang
Abstract:
For the visible-infrared person re-identification (VIReID) task, one of the major challenges is the modality gaps between visible (VIS) and infrared (IR) images. However, the training samples are usually limited, while the modality gaps are too large, which leads that the existing methods cannot effectively mine diverse cross-modality clues. To handle this limitation, we propose a novel augmentation network in the embedding space, called diverse embedding expansion network (DEEN). The proposed DEEN can effectively generate diverse embeddings to learn the informative feature representations and reduce the modality discrepancy between the VIS and IR images. Moreover, the VIReID model may be seriously affected by drastic illumination changes, while all the existing VIReID datasets are captured under sufficient illumination without significant light changes. Thus, we provide a low-light cross-modality (LLCM) dataset, which contains 46,767 bounding boxes of 1,064 identities captured by 9 RGB/IR cameras. Extensive experiments on the SYSU-MM01, RegDB and LLCM datasets show the superiority of the proposed DEEN over several other state-of-the-art methods. The code and dataset are released at: https://github.com/ZYK100/LLCM
Authors:Huy Nguyen, Kien Nguyen, Sridha Sridharan, Clinton Fookes
Abstract:
Person re-ID matches persons across multiple non-overlapping cameras. Despite the increasing deployment of airborne platforms in surveillance, current existing person re-ID benchmarks' focus is on ground-ground matching and very limited efforts on aerial-aerial matching. We propose a new benchmark dataset - AG-ReID, which performs person re-ID matching in a new setting: across aerial and ground cameras. Our dataset contains 21,983 images of 388 identities and 15 soft attributes for each identity. The data was collected by a UAV flying at altitudes between 15 to 45 meters and a ground-based CCTV camera on a university campus. Our dataset presents a novel elevated-viewpoint challenge for person re-ID due to the significant difference in person appearance across these cameras. We propose an explainable algorithm to guide the person re-ID model's training with soft attributes to address this challenge. Experiments demonstrate the efficacy of our method on the aerial-ground person re-ID task. The dataset will be published and the baseline codes will be open-sourced at https://github.com/huynguyen792/AG-ReID to facilitate research in this area.
Authors:Wenhao Xu, Zhiyin Shao, Changxing Ding
Abstract:
Text-based person re-identification (ReID) aims to identify images of the targeted person from a large-scale person image database according to a given textual description. However, due to significant inter-modal gaps, text-based person ReID remains a challenging problem. Most existing methods generally rely heavily on the similarity contributed by matched word-region pairs, while neglecting mismatched word-region pairs which may play a decisive role. Accordingly, we propose to mine false positive examples (MFPE) via a jointly optimized multi-branch architecture to handle this problem. MFPE contains three branches including a false positive mining (FPM) branch to highlight the role of mismatched word-region pairs. Besides, MFPE delicately designs a cross-relu loss to increase the gap of similarity scores between matched and mismatched word-region pairs. Extensive experiments on CUHK-PEDES demonstrate the superior effectiveness of MFPE. Our code is released at https://github.com/xx-adeline/MFPE.
Authors:Haocong Rao, Chunyan Miao
Abstract:
Person re-identification (re-ID) via 3D skeleton data is an emerging topic with prominent advantages. Existing methods usually design skeleton descriptors with raw body joints or perform skeleton sequence representation learning. However, they typically cannot concurrently model different body-component relations, and rarely explore useful semantics from fine-grained representations of body joints. In this paper, we propose a generic Transformer-based Skeleton Graph prototype contrastive learning (TranSG) approach with structure-trajectory prompted reconstruction to fully capture skeletal relations and valuable spatial-temporal semantics from skeleton graphs for person re-ID. Specifically, we first devise the Skeleton Graph Transformer (SGT) to simultaneously learn body and motion relations within skeleton graphs, so as to aggregate key correlative node features into graph representations. Then, we propose the Graph Prototype Contrastive learning (GPC) to mine the most typical graph features (graph prototypes) of each identity, and contrast the inherent similarity between graph representations and different prototypes from both skeleton and sequence levels to learn discriminative graph representations. Last, a graph Structure-Trajectory Prompted Reconstruction (STPR) mechanism is proposed to exploit the spatial and temporal contexts of graph nodes to prompt skeleton graph reconstruction, which facilitates capturing more valuable patterns and graph semantics for person re-ID. Empirical evaluations demonstrate that TranSG significantly outperforms existing state-of-the-art methods. We further show its generality under different graph modeling, RGB-estimated skeletons, and unsupervised scenarios.
Authors:Shixiang Tang, Cheng Chen, Qingsong Xie, Meilin Chen, Yizhou Wang, Yuanzheng Ci, Lei Bai, Feng Zhu, Haiyang Yang, Li Yi, Rui Zhao, Wanli Ouyang
Abstract:
Human-centric perceptions include a variety of vision tasks, which have widespread industrial applications, including surveillance, autonomous driving, and the metaverse. It is desirable to have a general pretrain model for versatile human-centric downstream tasks. This paper forges ahead along this path from the aspects of both benchmark and pretraining methods. Specifically, we propose a \textbf{HumanBench} based on existing datasets to comprehensively evaluate on the common ground the generalization abilities of different pretraining methods on 19 datasets from 6 diverse downstream tasks, including person ReID, pose estimation, human parsing, pedestrian attribute recognition, pedestrian detection, and crowd counting. To learn both coarse-grained and fine-grained knowledge in human bodies, we further propose a \textbf{P}rojector \textbf{A}ssis\textbf{T}ed \textbf{H}ierarchical pretraining method (\textbf{PATH}) to learn diverse knowledge at different granularity levels. Comprehensive evaluations on HumanBench show that our PATH achieves new state-of-the-art results on 17 downstream datasets and on-par results on the other 2 datasets. The code will be publicly at \href{https://github.com/OpenGVLab/HumanBench}{https://github.com/OpenGVLab/HumanBench}.
Authors:Yang Fu, Shibei Meng, Saihui Hou, Xuecai Hu, Yongzhen Huang
Abstract:
Recent works on pose-based gait recognition have demonstrated the potential of using such simple information to achieve results comparable to silhouette-based methods. However, the generalization ability of pose-based methods on different datasets is undesirably inferior to that of silhouette-based ones, which has received little attention but hinders the application of these methods in real-world scenarios. To improve the generalization ability of pose-based methods across datasets, we propose a \textbf{G}eneralized \textbf{P}ose-based \textbf{Gait} recognition (\textbf{GPGait}) framework. First, a Human-Oriented Transformation (HOT) and a series of Human-Oriented Descriptors (HOD) are proposed to obtain a unified pose representation with discriminative multi-features. Then, given the slight variations in the unified representation after HOT and HOD, it becomes crucial for the network to extract local-global relationships between the keypoints. To this end, a Part-Aware Graph Convolutional Network (PAGCN) is proposed to enable efficient graph partition and local-global spatial feature extraction. Experiments on four public gait recognition datasets, CASIA-B, OUMVLP-Pose, Gait3D and GREW, show that our model demonstrates better and more stable cross-domain capabilities compared to existing skeleton-based methods, achieving comparable recognition results to silhouette-based ones. Code is available at https://github.com/BNU-IVC/FastPoseGait.
Authors:Jingzhe Ma, Dingqiang Ye, Chao Fan, Shiqi Yu
Abstract:
As a kind of biometrics, the gait information of pedestrians has attracted widespread attention from both industry and academia since it can be acquired from long distances without the cooperation of targets. In recent literature, this line of research has brought exciting chances along with alarming challenges: On the positive side, gait recognition used for security applications such as suspect retrieval and safety checks is becoming more and more promising. On the negative side, the misuse of gait information may lead to privacy concerns, as lawbreakers can track subjects of interest using gait characteristics even under face-masked and clothes-changed scenarios. To handle this double-edged sword, we propose a gait attribute editing framework termed GaitEditor. It can perform various degrees of attribute edits on real gait sequences while maintaining the visual authenticity, respectively used for gait data augmentation and de-identification, thereby adaptively enhancing or degrading gait recognition performance according to users' intentions. Experimentally, we conduct a comprehensive evaluation under both gait recognition and anonymization protocols on three widely used gait benchmarks. Numerous results illustrate that the adaptable utilization of GaitEditor efficiently improves gait recognition performance and generates vivid visualizations with de-identification to protect human privacy. To the best of our knowledge, GaitEditor is the first framework capable of editing multiple gait attributes while simultaneously benefiting gait recognition and gait anonymization. The source code of GaitEditor will be available at https://github.com/ShiqiYu/OpenGait.
Authors:Chao Fan, Saihui Hou, Yongzhen Huang, Shiqi Yu
Abstract:
Gait recognition is a rapidly advancing vision technique for person identification from a distance. Prior studies predominantly employed relatively shallow networks to extract subtle gait features, achieving impressive successes in constrained settings. Nevertheless, experiments revealed that existing methods mostly produce unsatisfactory results when applied to newly released real-world gait datasets. This paper presents a unified perspective to explore how to construct deep models for state-of-the-art outdoor gait recognition, including the classical CNN-based and emerging Transformer-based architectures. Specifically, we challenge the stereotype of shallow gait models and demonstrate the superiority of explicit temporal modeling and deep transformer structure for discriminative gait representation learning. Consequently, the proposed CNN-based DeepGaitV2 series and Transformer-based SwinGait series exhibit significant performance improvements on Gait3D and GREW. As for the constrained gait datasets, the DeepGaitV2 series also reaches a new state-of-the-art in most cases, convincingly showing its practicality and generality. The source code is available at https://github.com/ShiqiYu/OpenGait.
Authors:Boqiang Xu, Lingxiao He, Jian Liang, Zhenan Sun
Abstract:
One major issue that challenges person re-identification (Re-ID) is the ubiquitous occlusion over the captured persons. There are two main challenges for the occluded person Re-ID problem, i.e., the interference of noise during feature matching and the loss of pedestrian information brought by the occlusions. In this paper, we propose a new approach called Feature Recovery Transformer (FRT) to address the two challenges simultaneously, which mainly consists of visibility graph matching and feature recovery transformer. To reduce the interference of the noise during feature matching, we mainly focus on visible regions that appear in both images and develop a visibility graph to calculate the similarity. In terms of the second challenge, based on the developed graph similarity, for each query image, we propose a recovery transformer that exploits the feature sets of its $k$-nearest neighbors in the gallery to recover the complete features. Extensive experiments across different person Re-ID datasets, including occluded, partial and holistic datasets, demonstrate the effectiveness of FRT. Specifically, FRT significantly outperforms state-of-the-art results by at least 6.2\% Rank-1 accuracy and 7.2\% mAP scores on the challenging Occluded-Duke dataset. The code is available at https://github.com/xbq1994/Feature-Recovery-Transformer.
Authors:Hao Chen, Yaohui Wang, Benoit Lagadec, Antitza Dantcheva, Francois Bremond
Abstract:
This work focuses on unsupervised representation learning in person re-identification (ReID). Recent self-supervised contrastive learning methods learn invariance by maximizing the representation similarity between two augmented views of a same image. However, traditional data augmentation may bring to the fore undesirable distortions on identity features, which is not always favorable in id-sensitive ReID tasks. In this paper, we propose to replace traditional data augmentation with a generative adversarial network (GAN) that is targeted to generate augmented views for contrastive learning. A 3D mesh guided person image generator is proposed to disentangle a person image into id-related and id-unrelated features. Deviating from previous GAN-based ReID methods that only work in id-unrelated space (pose and camera style), we conduct GAN-based augmentation on both id-unrelated and id-related features. We further propose specific contrastive losses to help our network learn invariance from id-unrelated and id-related augmentations. By jointly training the generative and the contrastive modules, our method achieves new state-of-the-art unsupervised person ReID performance on mainstream large-scale benchmarks.
Authors:Chao Fan, Junhao Liang, Chuanfu Shen, Saihui Hou, Yongzhen Huang, Shiqi Yu
Abstract:
Gait recognition is one of the most critical long-distance identification technologies and increasingly gains popularity in both research and industry communities. Despite the significant progress made in indoor datasets, much evidence shows that gait recognition techniques perform poorly in the wild. More importantly, we also find that some conclusions drawn from indoor datasets cannot be generalized to real applications. Therefore, the primary goal of this paper is to present a comprehensive benchmark study for better practicality rather than only a particular model for better performance. To this end, we first develop a flexible and efficient gait recognition codebase named OpenGait. Based on OpenGait, we deeply revisit the recent development of gait recognition by re-conducting the ablative experiments. Encouragingly,we detect some unperfect parts of certain prior woks, as well as new insights. Inspired by these discoveries, we develop a structurally simple, empirically powerful, and practically robust baseline model, GaitBase. Experimentally, we comprehensively compare GaitBase with many current gait recognition methods on multiple public datasets, and the results reflect that GaitBase achieves significantly strong performance in most cases regardless of indoor or outdoor situations. Code is available at https://github.com/ShiqiYu/OpenGait.
Authors:Vladimir Somers, Christophe De Vleeschouwer, Alexandre Alahi
Abstract:
Occluded person re-identification (ReID) is a person retrieval task which aims at matching occluded person images with holistic ones. For addressing occluded ReID, part-based methods have been shown beneficial as they offer fine-grained information and are well suited to represent partially visible human bodies. However, training a part-based model is a challenging task for two reasons. Firstly, individual body part appearance is not as discriminative as global appearance (two distinct IDs might have the same local appearance), this means standard ReID training objectives using identity labels are not adapted to local feature learning. Secondly, ReID datasets are not provided with human topographical annotations. In this work, we propose BPBreID, a body part-based ReID model for solving the above issues. We first design two modules for predicting body part attention maps and producing body part-based features of the ReID target. We then propose GiLt, a novel training scheme for learning part-based representations that is robust to occlusions and non-discriminative local appearance. Extensive experiments on popular holistic and occluded datasets show the effectiveness of our proposed method, which outperforms state-of-the-art methods by 0.7% mAP and 5.6% rank-1 accuracy on the challenging Occluded-Duke dataset. Our code is available at https://github.com/VlSomers/bpbreid.
Authors:Suncheng Xiang, Hao Chen, Wei Ran, Zefang Yu, Ting Liu, Dahong Qian, Yuzhuo Fu
Abstract:
Person re-identification plays a significant role in realistic scenarios due to its various applications in public security and video surveillance. Recently, leveraging the supervised or semi-unsupervised learning paradigms, which benefits from the large-scale datasets and strong computing performance, has achieved a competitive performance on a specific target domain. However, when Re-ID models are directly deployed in a new domain without target samples, they always suffer from considerable performance degradation and poor domain generalization. To address this challenge, we propose a Deep Multimodal Fusion network to elaborate rich semantic knowledge for assisting in representation learning during the pre-training. Importantly, a multimodal fusion strategy is introduced to translate the features of different modalities into the common space, which can significantly boost generalization capability of Re-ID model. As for the fine-tuning stage, a realistic dataset is adopted to fine-tune the pre-trained model for better distribution alignment with real-world data. Comprehensive experiments on benchmarks demonstrate that our method can significantly outperform previous domain generalization or meta-learning methods with a clear margin. Our source code will also be publicly available at https://github.com/JeremyXSC/DMF.
Authors:Zi Wang, Huaibo Huang, Aihua Zheng, Chenglong Li, Ran He
Abstract:
Occluded person re-identification (Re-ID), the task of searching for the same person's images in occluded environments, has attracted lots of attention in the past decades. Recent approaches concentrate on improving performance on occluded data by data/feature augmentation or using extra models to predict occlusions. However, they ignore the imbalance problem in this task and can not fully utilize the information from the training data. To alleviate these two issues, we propose a simple yet effective method with Parallel Augmentation and Dual Enhancement (PADE), which is robust on both occluded and non-occluded data and does not require any auxiliary clues. First, we design a parallel augmentation mechanism (PAM) to generate more suitable occluded data to mitigate the negative effects of unbalanced data. Second, we propose the global and local dual enhancement strategy (DES) to promote the context information and details. Experimental results on three widely used occluded datasets and two non-occluded datasets validate the effectiveness of our method. The code is available at https://github.com/littleprince1121/PADE_Parallel_Augmentation_and_Dual_Enhancement_for_Occluded_Person_ReID
Authors:Mingjie Wang, Jianxiong Guo, Sirui Li, Dingwen Xiao, Zhiqing Tang
Abstract:
Deep neural networks have significantly advanced person re-identification (ReID) applications in the realm of the industrial internet, yet they remain vulnerable. Thus, it is crucial to study the robustness of ReID systems, as there are risks of adversaries using these vulnerabilities to compromise industrial surveillance systems. Current adversarial methods focus on generating attack samples using misclassification feedback from victim models (VMs), neglecting VM's cognitive processes. We seek to address this by producing authentic ReID attack instances through VM cognition decryption. This approach boasts advantages like better transferability to open-set ReID tests, easier VM misdirection, and enhanced creation of realistic and undetectable assault images. However, the task of deciphering the cognitive mechanism in VM is widely considered to be a formidable challenge. In this paper, we propose a novel inconspicuous and controllable ReID attack baseline, LCYE (Look Closer to Your Enemy), to generate adversarial query images. Specifically, LCYE first distills VM's knowledge via teacher-student memory mimicking the proxy task. This knowledge prior serves as an unambiguous cryptographic token, encapsulating elements deemed indispensable and plausible by the VM, with the intent of facilitating precise adversarial misdirection. Further, benefiting from the multiple opposing task framework of LCYE, we investigate the interpretability and generalization of ReID models from the view of the adversarial attack, including cross-domain adaption, cross-model consensus, and online learning process. Extensive experiments on four ReID benchmarks show that our method outperforms other state-of-the-art attackers with a large margin in white-box, black-box, and target attacks. The source code can be found at https://github.com/MingjieWang0606/LCYE-attack_reid.
Authors:Lei Zhang, Guanyu Gao, Huaizheng Zhang
Abstract:
Data drift is a thorny challenge when deploying person re-identification (ReID) models into real-world devices, where the data distribution is significantly different from that of the training environment and keeps changing. To tackle this issue, we propose a federated spatial-temporal incremental learning approach, named FedSTIL, which leverages both lifelong learning and federated learning to continuously optimize models deployed on many distributed edge clients. Unlike previous efforts, FedSTIL aims to mine spatial-temporal correlations among the knowledge learnt from different edge clients. Specifically, the edge clients first periodically extract general representations of drifted data to optimize their local models. Then, the learnt knowledge from edge clients will be aggregated by centralized parameter server, where the knowledge will be selectively and attentively distilled from spatial- and temporal-dimension with carefully designed mechanisms. Finally, the distilled informative spatial-temporal knowledge will be sent back to correlated edge clients to further improve the recognition accuracy of each edge client with a lifelong learning method. Extensive experiments on a mixture of five real-world datasets demonstrate that our method outperforms others by nearly 4% in Rank-1 accuracy, while reducing communication cost by 62%. All implementation codes are publicly available on https://github.com/MSNLAB/Federated-Lifelong-Person-ReID
Authors:Wentao Tan, Changxing Ding, Pengfei Wang, Mingming Gong, Kui Jia
Abstract:
Domain generalization (DG) for person re-identification (ReID) is a challenging problem, as access to target domain data is not permitted during the training process. Most existing DG ReID methods update the feature extractor and classifier parameters based on the same features. This common practice causes the model to overfit to existing feature styles in the source domain, resulting in sub-optimal generalization ability on target domains. To solve this problem, we propose a novel style interleaved learning (IL) framework. Unlike conventional learning strategies, IL incorporates two forward propagations and one backward propagation for each iteration. We employ the features of interleaved styles to update the feature extractor and classifiers using different forward propagations, which helps to prevent the model from overfitting to certain domain styles. To generate interleaved feature styles, we further propose a new feature stylization approach. It produces a wide range of meaningful styles that are both different and independent from the original styles in the source domain, which caters to the IL methodology. Extensive experimental results show that our model not only consistently outperforms state-of-the-art methods on large-scale benchmarks for DG ReID, but also has clear advantages in computational efficiency. The code is available at https://github.com/WentaoTan/Interleaved-Learning.
Authors:Chao Fan, Saihui Hou, Jilong Wang, Yongzhen Huang, Shiqi Yu
Abstract:
Gait depicts individuals' unique and distinguishing walking patterns and has become one of the most promising biometric features for human identification. As a fine-grained recognition task, gait recognition is easily affected by many factors and usually requires a large amount of completely annotated data that is costly and insatiable. This paper proposes a large-scale self-supervised benchmark for gait recognition with contrastive learning, aiming to learn the general gait representation from massive unlabelled walking videos for practical applications via offering informative walking priors and diverse real-world variations. Specifically, we collect a large-scale unlabelled gait dataset GaitLU-1M consisting of 1.02M walking sequences and propose a conceptually simple yet empirically powerful baseline model GaitSSB. Experimentally, we evaluate the pre-trained model on four widely-used gait benchmarks, CASIA-B, OU-MVLP, GREW and Gait3D with or without transfer learning. The unsupervised results are comparable to or even better than the early model-based and GEI-based methods. After transfer learning, our method outperforms existing methods by a large margin in most cases. Theoretically, we discuss the critical issues for gait-specific contrastive framework and present some insights for further study. As far as we know, GaitLU-1M is the first large-scale unlabelled gait dataset, and GaitSSB is the first method that achieves remarkable unsupervised results on the aforementioned benchmarks. The source code of GaitSSB will be integrated into OpenGait which is available at https://github.com/ShiqiYu/OpenGait.
Authors:Xianda Guo, Zheng Zhu, Tian Yang, Beibei Lin, Junjie Huang, Jiankang Deng, Guan Huang, Jie Zhou, Jiwen Lu
Abstract:
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems. Even though growing efforts have been devoted to cross-view recognition, academia is restricted by current existing databases captured in the controlled environment. In this paper, we contribute a new benchmark and strong baseline for Gait REcognition in the Wild (GREW). The GREW dataset is constructed from natural videos, which contain hundreds of cameras and thousands of hours of streams in open systems. With tremendous manual annotations, the GREW consists of 26K identities and 128K sequences with rich attributes for unconstrained gait recognition. Moreover, we add a distractor set of over 233K sequences, making it more suitable for real-world applications. Compared with prevailing predefined cross-view datasets, the GREW has diverse and practical view variations, as well as more naturally challenging factors. To the best of our knowledge, this is the first large-scale dataset for gait recognition in the wild. Equipped with this benchmark, we dissect the unconstrained gait recognition problem, where representative appearance-based and model-based methods are explored. The proposed GREW benchmark proves to be essential for both training and evaluating gait recognizers in unconstrained scenarios. In addition, we propose the Single Path One-Shot neural architecture search with uniform sampling for Gait recognition, named SPOSGait, which is the first NAS-based gait recognition model. In experiments, SPOSGait achieves state-of-the-art performance on the CASIA-B, OU-MVLP, Gait3D, and GREW benchmarks, outperforming existing approaches by a large margin. The code will be released at https://github.com/XiandaGuo/SPOSGait.
Authors:Haotang Li, Shengtao Guo, Kailin Lyu, Xiao Yang, Tianchen Chen, Jianqing Zhu, Huanqiang Zeng
Abstract:
Given two images of different anime roles, anime style recognition (ASR) aims to learn abstract painting style to determine whether the two images are from the same work, which is an interesting but challenging problem. Unlike biometric recognition, such as face recognition, iris recognition, and person re-identification, ASR suffers from a much larger semantic gap but receives less attention. In this paper, we propose a challenging ASR benchmark. Firstly, we collect a large-scale ASR dataset (LSASRD), which contains 20,937 images of 190 anime works and each work at least has ten different roles. In addition to the large-scale, LSASRD contains a list of challenging factors, such as complex illuminations, various poses, theatrical colors and exaggerated compositions. Secondly, we design a cross-role protocol to evaluate ASR performance, in which query and gallery images must come from different roles to validate an ASR model is to learn abstract painting style rather than learn discriminative features of roles. Finally, we apply two powerful person re-identification methods, namely, AGW and TransReID, to construct the baseline performance on LSASRD. Surprisingly, the recent transformer model (i.e., TransReID) only acquires a 42.24% mAP on LSASRD. Therefore, we believe that the ASR task of a huge semantic gap deserves deep and long-term research. We will open our dataset and code at https://github.com/nkjcqvcpi/ASR.
Authors:Duowang Zhu, Xiaohu Huang, Xinggang Wang, Bo Yang, Botao He, Wenyu Liu, Bin Feng
Abstract:
Although gait recognition has drawn increasing research attention recently, since the silhouette differences are quite subtle in spatial domain, temporal feature representation is crucial for gait recognition. Inspired by the observation that humans can distinguish gaits of different subjects by adaptively focusing on clips of varying time scales, we propose a multi-scale context-aware network with transformer (MCAT) for gait recognition. MCAT generates temporal features across three scales, and adaptively aggregates them using contextual information from both local and global perspectives. Specifically, MCAT contains an adaptive temporal aggregation (ATA) module that performs local relation modeling followed by global relation modeling to fuse the multi-scale features. Besides, in order to remedy the spatial feature corruption resulting from temporal operations, MCAT incorporates a salient spatial feature learning (SSFL) module to select groups of discriminative spatial features. Extensive experiments conducted on three datasets demonstrate the state-of-the-art performance. Concretely, we achieve rank-1 accuracies of 98.7%, 96.2% and 88.7% under normal walking, bag-carrying and coat-wearing conditions on CASIA-B, 97.5% on OU-MVLP and 50.6% on GREW. The source code will be available at https://github.com/zhuduowang/MCAT.git.
Authors:Feng Chen, Fei Wu, Qi Wu, Zhiguo Wan
Abstract:
The domain shift, coming from unneglectable modality gap and non-overlapped identity classes between training and test sets, is a major issue of RGB-Infrared person re-identification. A key to tackle the inherent issue -- domain shift -- is to enforce the data distributions of the two domains to be similar. However, RGB-IR ReID always demands discriminative features, leading to over-rely feature sensitivity of seen classes, \textit{e.g.}, via attention-based feature alignment or metric learning. Therefore, predicting the unseen query category from predefined training classes may not be accurate and leads to a sub-optimal adversarial gradient. In this paper, we uncover it in a more explainable way and propose a novel multi-granularity memory regulation and alignment module (MG-MRA) to solve this issue. By explicitly incorporating a latent variable attribute, from fine-grained to coarse semantic granularity, into intermediate features, our method could alleviate the over-confidence of the model about discriminative features of seen classes. Moreover, instead of matching discriminative features by traversing nearest neighbor, sparse attributes, \textit{i.e.}, global structural pattern, are recollected with respect to features and assigned to measure pair-wise image similarity in hashing. Extensive experiments on RegDB \cite{RegDB} and SYSU-MM01 \cite{SYSU} show the superiority of the proposed method that outperforms existing state-of-the-art methods. Our code is available in https://github.com/Chenfeng1271/MGMRA.
Authors:Xumeng Han, Xuehui Yu, Guorong Li, Jian Zhao, Gang Pan, Qixiang Ye, Jianbin Jiao, Zhenjun Han
Abstract:
Unsupervised person re-identification (re-ID) remains a challenging task. While extensive research has focused on the framework design and loss function, this paper shows that sampling strategy plays an equally important role. We analyze the reasons for the performance differences between various sampling strategies under the same framework and loss function. We suggest that deteriorated over-fitting is an important factor causing poor performance, and enhancing statistical stability can rectify this problem. Inspired by that, a simple yet effective approach is proposed, termed group sampling, which gathers samples from the same class into groups. The model is thereby trained using normalized group samples, which helps alleviate the negative impact of individual samples. Group sampling updates the pipeline of pseudo-label generation by guaranteeing that samples are more efficiently classified into the correct classes. It regulates the representation learning process, enhancing statistical stability for feature representation in a progressive fashion. Extensive experiments on Market-1501, DukeMTMC-reID and MSMT17 show that group sampling achieves performance comparable to state-of-the-art methods and outperforms the current techniques under purely camera-agnostic settings. Code has been available at https://github.com/ucas-vg/GroupSampling.
Authors:Zuozhuo Dai, Guangyuan Wang, Weihao Yuan, Xiaoli Liu, Siyu Zhu, Ping Tan
Abstract:
State-of-the-art unsupervised re-ID methods train the neural networks using a memory-based non-parametric softmax loss. Instance feature vectors stored in memory are assigned pseudo-labels by clustering and updated at instance level. However, the varying cluster sizes leads to inconsistency in the updating progress of each cluster. To solve this problem, we present Cluster Contrast which stores feature vectors and computes contrast loss at the cluster level. Our approach employs a unique cluster representation to describe each cluster, resulting in a cluster-level memory dictionary. In this way, the consistency of clustering can be effectively maintained throughout the pipline and the GPU memory consumption can be significantly reduced. Thus, our method can solve the problem of cluster inconsistency and be applicable to larger data sets. In addition, we adopt different clustering algorithms to demonstrate the robustness and generalization of our framework. The application of Cluster Contrast to a standard unsupervised re-ID pipeline achieves considerable improvements of 9.9%, 8.3%, 12.1% compared to state-of-the-art purely unsupervised re-ID methods and 5.5%, 4.8%, 4.4% mAP compared to the state-of-the-art unsupervised domain adaptation re-ID methods on the Market, Duke, and MSMT17 datasets. Code is available at https://github.com/alibaba/cluster-contrast.
Authors:Liping Bao, Longhui Wei, Xiaoyu Qiu, Wengang Zhou, Houqiang Li, Qi Tian
Abstract:
Recent researches on unsupervised person re-identification~(reID) have demonstrated that pre-training on unlabeled person images achieves superior performance on downstream reID tasks than pre-training on ImageNet. However, those pre-trained methods are specifically designed for reID and suffer flexible adaption to other pedestrian analysis tasks. In this paper, we propose VAL-PAT, a novel framework that learns transferable representations to enhance various pedestrian analysis tasks with multimodal information. To train our framework, we introduce three learning objectives, \emph{i.e.,} self-supervised contrastive learning, image-text contrastive learning and multi-attribute classification. The self-supervised contrastive learning facilitates the learning of the intrinsic pedestrian properties, while the image-text contrastive learning guides the model to focus on the appearance information of pedestrians.Meanwhile, multi-attribute classification encourages the model to recognize attributes to excavate fine-grained pedestrian information. We first perform pre-training on LUPerson-TA dataset, where each image contains text and attribute annotations, and then transfer the learned representations to various downstream tasks, including person reID, person attribute recognition and text-based person search. Extensive experiments demonstrate that our framework facilitates the learning of general pedestrian representations and thus leads to promising results on various pedestrian analysis tasks.
Authors:Yiheng Liu, Wengang Zhou, Qiaokang Xie, Houqiang Li
Abstract:
Existing unsupervised person re-identification methods only rely on visual clues to match pedestrians under different cameras. Since visual data is essentially susceptible to occlusion, blur, clothing changes, etc., a promising solution is to introduce heterogeneous data to make up for the defect of visual data. Some works based on full-scene labeling introduce wireless positioning to assist cross-domain person re-identification, but their GPS labeling of entire monitoring scenes is laborious. To this end, we propose to explore unsupervised person re-identification with both visual data and wireless positioning trajectories under weak scene labeling, in which we only need to know the locations of the cameras. Specifically, we propose a novel unsupervised multimodal training framework (UMTF), which models the complementarity of visual data and wireless information. Our UMTF contains a multimodal data association strategy (MMDA) and a multimodal graph neural network (MMGN). MMDA explores potential data associations in unlabeled multimodal data, while MMGN propagates multimodal messages in the video graph based on the adjacency matrix learned from histogram statistics of wireless data. Thanks to the robustness of the wireless data to visual noise and the collaboration of various modules, UMTF is capable of learning a model free of the human label on data. Extensive experimental results conducted on two challenging datasets, i.e., WP-ReID and DukeMTMC-VideoReID demonstrate the effectiveness of the proposed method.
Authors:Yuanzheng Ci, Yizhou Wang, Meilin Chen, Shixiang Tang, Lei Bai, Feng Zhu, Rui Zhao, Fengwei Yu, Donglian Qi, Wanli Ouyang
Abstract:
Human-centric perceptions (e.g., pose estimation, human parsing, pedestrian detection, person re-identification, etc.) play a key role in industrial applications of visual models. While specific human-centric tasks have their own relevant semantic aspect to focus on, they also share the same underlying semantic structure of the human body. However, few works have attempted to exploit such homogeneity and design a general-propose model for human-centric tasks. In this work, we revisit a broad range of human-centric tasks and unify them in a minimalist manner. We propose UniHCP, a Unified Model for Human-Centric Perceptions, which unifies a wide range of human-centric tasks in a simplified end-to-end manner with the plain vision transformer architecture. With large-scale joint training on 33 human-centric datasets, UniHCP can outperform strong baselines on several in-domain and downstream tasks by direct evaluation. When adapted to a specific task, UniHCP achieves new SOTAs on a wide range of human-centric tasks, e.g., 69.8 mIoU on CIHP for human parsing, 86.18 mA on PA-100K for attribute prediction, 90.3 mAP on Market1501 for ReID, and 85.8 JI on CrowdHuman for pedestrian detection, performing better than specialized models tailored for each task.
Authors:Haijun Xiong, Bin Feng, Xinggang Wang, Wenyu Liu
Abstract:
Gait recognition is a biometric technology that distinguishes individuals by their walking patterns. However, previous methods face challenges when accurately extracting identity features because they often become entangled with non-identity clues. To address this challenge, we propose CLTD, a causality-inspired discriminative feature learning module designed to effectively eliminate the influence of confounders in triple domains, \ie, spatial, temporal, and spectral. Specifically, we utilize the Cross Pixel-wise Attention Generator (CPAG) to generate attention distributions for factual and counterfactual features in spatial and temporal domains. Then, we introduce the Fourier Projection Head (FPH) to project spatial features into the spectral space, which preserves essential information while reducing computational costs. Additionally, we employ an optimization method with contrastive learning to enforce semantic consistency constraints across sequences from the same subject. Our approach has demonstrated significant performance improvements on challenging datasets, proving its effectiveness. Moreover, it can be seamlessly integrated into existing gait recognition methods.
Authors:Junkun Yuan, Xinyu Zhang, Hao Zhou, Jian Wang, Zhongwei Qiu, Zhiyin Shao, Shaofeng Zhang, Sifan Long, Kun Kuang, Kun Yao, Junyu Han, Errui Ding, Lanfen Lin, Fei Wu, Jingdong Wang
Abstract:
Model pre-training is essential in human-centric perception. In this paper, we first introduce masked image modeling (MIM) as a pre-training approach for this task. Upon revisiting the MIM training strategy, we reveal that human structure priors offer significant potential. Motivated by this insight, we further incorporate an intuitive human structure prior - human parts - into pre-training. Specifically, we employ this prior to guide the mask sampling process. Image patches, corresponding to human part regions, have high priority to be masked out. This encourages the model to concentrate more on body structure information during pre-training, yielding substantial benefits across a range of human-centric perception tasks. To further capture human characteristics, we propose a structure-invariant alignment loss that enforces different masked views, guided by the human part prior, to be closely aligned for the same image. We term the entire method as HAP. HAP simply uses a plain ViT as the encoder yet establishes new state-of-the-art performance on 11 human-centric benchmarks, and on-par result on one dataset. For example, HAP achieves 78.1% mAP on MSMT17 for person re-identification, 86.54% mA on PA-100K for pedestrian attribute recognition, 78.2% AP on MS COCO for 2D pose estimation, and 56.0 PA-MPJPE on 3DPW for 3D pose and shape estimation.
Authors:De Cheng, Xiaojian Huang, Nannan Wang, Lingfeng He, Zhihui Li, Xinbo Gao
Abstract:
Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset, which is crucial for practical applications in video surveillance systems. The key to essentially address the USL-VI-ReID task is to solve the cross-modality data association problem for further heterogeneous joint learning. To address this issue, we propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality. The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations. Besides, we further propose a cross-modality neighbor consistency guided label refinement and regularization module, to eliminate the negative effects brought by the inaccurate supervised signals, under the assumption that the prediction or label distribution of each example should be similar to its nearest neighbors. Extensive experimental results on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing existing state-of-the-art approach by a large margin of 7.76% mAP on average, which even surpasses some supervised VI-ReID methods.
Authors:De Cheng, Lingfeng He, Nannan Wang, Shizhou Zhang, Zhen Wang, Xinbo Gao
Abstract:
Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to match pedestrian images of the same identity from different modalities without annotations. Existing works mainly focus on alleviating the modality gap by aligning instance-level features of the unlabeled samples. However, the relationships between cross-modality clusters are not well explored. To this end, we propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters. Specifically, we design a Many-to-many Bilateral Cross-Modality Cluster Matching (MBCCM) algorithm through optimizing the maximum matching problem in a bipartite graph. Then, the matched pairwise clusters utilize shared visible and infrared pseudo-labels during the model training. Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level. Meanwhile, the cross-modality Consistency Constraint (CC) is proposed to explicitly reduce the large modality discrepancy. Extensive experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing state-of-the-art approaches by a large margin of 8.76% mAP on average.
Authors:Kien Nguyen, Clinton Fookes, Sridha Sridharan, Huy Nguyen, Feng Liu, Xiaoming Liu, Arun Ross, Dana Michalski, Tamás Endrei, Ivan DeAndres-Tame, Ruben Tolosana, Ruben Vera-Rodriguez, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zijing Gong, Yuhao Wang, Xuehu Liu, Pingping Zhang, Md Rashidunnabi, Hugo Proença, Kailash A. Hambarde, Saeid Rezaei
Abstract:
Person re-identification (ReID) across aerial and ground vantage points has become crucial for large-scale surveillance and public safety applications. Although significant progress has been made in ground-only scenarios, bridging the aerial-ground domain gap remains a formidable challenge due to extreme viewpoint differences, scale variations, and occlusions. Building upon the achievements of the AG-ReID 2023 Challenge, this paper introduces the AG-VPReID 2025 Challenge - the first large-scale video-based competition focused on high-altitude (80-120m) aerial-ground ReID. Constructed on the new AG-VPReID dataset with 3,027 identities, over 13,500 tracklets, and approximately 3.7 million frames captured from UAVs, CCTV, and wearable cameras, the challenge featured four international teams. These teams developed solutions ranging from multi-stream architectures to transformer-based temporal reasoning and physics-informed modeling. The leading approach, X-TFCLIP from UAM, attained 72.28% Rank-1 accuracy in the aerial-to-ground ReID setting and 70.77% in the ground-to-aerial ReID setting, surpassing existing baselines while highlighting the dataset's complexity. For additional details, please refer to the official website at https://agvpreid25.github.io.
Authors:Long Lan, Xiao Teng, Jing Zhang, Xiang Zhang, Dacheng Tao
Abstract:
Unsupervised person re-identification is a challenging and promising task in computer vision. Nowadays unsupervised person re-identification methods have achieved great progress by training with pseudo labels. However, how to purify feature and label noise is less explicitly studied in the unsupervised manner. To purify the feature, we take into account two types of additional features from different local views to enrich the feature representation. The proposed multi-view features are carefully integrated into our cluster contrast learning to leverage more discriminative cues that the global feature easily ignored and biased. To purify the label noise, we propose to take advantage of the knowledge of teacher model in an offline scheme. Specifically, we first train a teacher model from noisy pseudo labels, and then use the teacher model to guide the learning of our student model. In our setting, the student model could converge fast with the supervision of the teacher model thus reduce the interference of noisy labels as the teacher model greatly suffered. After carefully handling the noise and bias in the feature learning, our purification modules are proven to be very effective for unsupervised person re-identification. Extensive experiments on three popular person re-identification datasets demonstrate the superiority of our method. Especially, our approach achieves a state-of-the-art accuracy 85.8\% @mAP and 94.5\% @Rank-1 on the challenging Market-1501 benchmark with ResNet-50 under the fully unsupervised setting. The code will be released.
Authors:Hao Ni, Lianli Gao, Pengpeng Zeng, Heng Tao Shen, Jingkuan Song
Abstract:
Real-world surveillance systems are dynamically evolving, requiring a person Re-identification model to continuously handle newly incoming data from various domains. To cope with these dynamics, Lifelong ReID (LReID) has been proposed to learn and accumulate knowledge across multiple domains incrementally. However, LReID models need to be trained on large-scale labeled data for each unseen domain, which are typically inaccessible due to privacy and cost concerns. In this paper, we propose a new paradigm called Continual Few-shot ReID (CFReID), which requires models to be incrementally trained using few-shot data and tested on all seen domains. Under few-shot conditions, CFREID faces two core challenges: 1) learning knowledge from few-shot data of unseen domain, and 2) avoiding catastrophic forgetting of seen domains. To tackle these two challenges, we propose a Stable Distribution Alignment (SDA) framework from feature distribution perspective. Specifically, our SDA is composed of two modules, i.e., Meta Distribution Alignment (MDA) and Prototype-based Few-shot Adaptation (PFA). To support the study of CFReID, we establish an evaluation benchmark for CFReID on five publicly available ReID datasets. Extensive experiments demonstrate that our SDA can enhance the few-shot learning and anti-forgetting capabilities under few-shot conditions. Notably, our approach, using only 5\% of the data, i.e., 32 IDs, significantly outperforms LReID's state-of-the-art performance, which requires 700 to 1,000 IDs.
Authors:Lei Qi, Ziang Liu, Yinghuan Shi, Xin Geng
Abstract:
Person Re-identification (Re-ID) is a crucial technique for public security and has made significant progress in supervised settings. However, the cross-domain (i.e., domain generalization) scene presents a challenge in Re-ID tasks due to unseen test domains and domain-shift between the training and test sets. To tackle this challenge, most existing methods aim to learn domain-invariant or robust features for all domains. In this paper, we observe that the data-distribution gap between the training and test sets is smaller in the sample-pair space than in the sample-instance space. Based on this observation, we propose a Generalizable Metric Network (GMN) to further explore sample similarity in the sample-pair space. Specifically, we add a Metric Network (M-Net) after the main network and train it on positive and negative sample-pair features, which is then employed during the test stage. Additionally, we introduce the Dropout-based Perturbation (DP) module to enhance the generalization capability of the metric network by enriching the sample-pair diversity. Moreover, we develop a Pair-Identity Center (PIC) loss to enhance the model's discrimination by ensuring that sample-pair features with the same pair-identity are consistent. We validate the effectiveness of our proposed method through a lot of experiments on multiple benchmark datasets and confirm the value of each module in our GMN.
Authors:Qiong Wu, Jiahan Li, Pingyang Dai, Qixiang Ye, Liujuan Cao, Yongjian Wu, Rongrong Ji
Abstract:
Unsupervised domain adaptation person re-identification (Re-ID) aims to identify pedestrian images within an unlabeled target domain with an auxiliary labeled source-domain dataset. Many existing works attempt to recover reliable identity information by considering multiple homogeneous networks. And take these generated labels to train the model in the target domain. However, these homogeneous networks identify people in approximate subspaces and equally exchange their knowledge with others or their mean net to improve their ability, inevitably limiting the scope of available knowledge and putting them into the same mistake. This paper proposes a Dual-level Asymmetric Mutual Learning method (DAML) to learn discriminative representations from a broader knowledge scope with diverse embedding spaces. Specifically, two heterogeneous networks mutually learn knowledge from asymmetric subspaces through the pseudo label generation in a hard distillation manner. The knowledge transfer between two networks is based on an asymmetric mutual learning manner. The teacher network learns to identify both the target and source domain while adapting to the target domain distribution based on the knowledge of the student. Meanwhile, the student network is trained on the target dataset and employs the ground-truth label through the knowledge of the teacher. Extensive experiments in Market-1501, CUHK-SYSU, and MSMT17 public datasets verified the superiority of DAML over state-of-the-arts.
Authors:Lei Qi, Jiaqi Liu, Lei Wang, Yinghuan Shi, Xin Geng
Abstract:
Domain generalization (DG) has attracted much attention in person re-identification (ReID) recently. It aims to make a model trained on multiple source domains generalize to an unseen target domain. Although achieving promising progress, existing methods usually need the source domains to be labeled, which could be a significant burden for practical ReID tasks. In this paper, we turn to investigate unsupervised domain generalization for ReID, by assuming that no label is available for any source domains.
To address this challenging setting, we propose a simple and efficient domain-specific adaptive framework, and realize it with an adaptive normalization module designed upon the batch and instance normalization techniques. In doing so, we successfully yield reliable pseudo-labels to implement training and also enhance the domain generalization capability of the model as required. In addition, we show that our framework can even be applied to improve person ReID under the settings of supervised domain generalization and unsupervised domain adaptation, demonstrating competitive performance with respect to relevant methods. Extensive experimental study on benchmark datasets is conducted to validate the proposed framework. A significance of our work lies in that it shows the potential of unsupervised domain generalization for person ReID and sets a strong baseline for the further research on this topic.
Authors:Ke Niu, Haiyang Yu, Mengyang Zhao, Teng Fu, Siyang Yi, Wei Lu, Bin Li, Xuelin Qian, Xiangyang Xue
Abstract:
Person re-identification (Re-ID) is a crucial task in computer vision, aiming to recognize individuals across non-overlapping camera views. While recent advanced vision-language models (VLMs) excel in logical reasoning and multi-task generalization, their applications in Re-ID tasks remain limited. They either struggle to perform accurate matching based on identity-relevant features or assist image-dominated branches as auxiliary semantics. In this paper, we propose a novel framework ChatReID, that shifts the focus towards a text-side-dominated retrieval paradigm, enabling flexible and interactive re-identification. To integrate the reasoning abilities of language models into Re-ID pipelines, We first present a large-scale instruction dataset, which contains more than 8 million prompts to promote the model fine-tuning. Next. we introduce a hierarchical progressive tuning strategy, which endows Re-ID ability through three stages of tuning, i.e., from person attribute understanding to fine-grained image retrieval and to multi-modal task reasoning. Extensive experiments across ten popular benchmarks demonstrate that ChatReID outperforms existing methods, achieving state-of-the-art performance in all Re-ID tasks. More experiments demonstrate that ChatReID not only has the ability to recognize fine-grained details but also to integrate them into a coherent reasoning process.
Authors:Qizao Wang, Bin Li, Xiangyang Xue
Abstract:
Large Vision-Language Models (LVLMs) that incorporate visual models and Large Language Models (LLMs) have achieved impressive results across various cross-modal understanding and reasoning tasks. In recent years, person re-identification (ReID) has also started to explore cross-modal semantics to improve the accuracy of identity recognition. However, effectively utilizing LVLMs for ReID remains an open challenge. While LVLMs operate under a generative paradigm by predicting the next output word, ReID requires the extraction of discriminative identity features to match pedestrians across cameras. In this paper, we propose LVLM-ReID, a novel framework that harnesses the strengths of LVLMs to promote ReID. Specifically, we employ instructions to guide the LVLM in generating one pedestrian semantic token that encapsulates key appearance semantics from the person image. This token is further refined through our Semantic-Guided Interaction (SGI) module, establishing a reciprocal interaction between the semantic token and visual tokens. Ultimately, the reinforced semantic token serves as the pedestrian identity representation. Our framework integrates the semantic understanding and generation capabilities of LVLMs into end-to-end ReID training, allowing LVLMs to capture rich semantic cues from pedestrian images during both training and inference. Our method achieves competitive results on multiple benchmarks without additional image-text annotations, demonstrating the potential of LVLM-generated semantics to advance person ReID and offering a promising direction for future research.
Authors:Nanxing Meng, Qizao Wang, Bin Li, Xiangyang Xue
Abstract:
With rich temporal-spatial information, video-based person re-identification methods have shown broad prospects. Although tracklets can be easily obtained with ready-made tracking models, annotating identities is still expensive and impractical. Therefore, some video-based methods propose using only a few identity annotations or camera labels to facilitate feature learning. They also simply average the frame features of each tracklet, overlooking unexpected variations and inherent identity consistency within tracklets. In this paper, we propose the Self-Supervised Refined Clustering (SSR-C) framework without relying on any annotation or auxiliary information to promote unsupervised video person re-identification. Specifically, we first propose the Noise-Filtered Tracklet Partition (NFTP) module to reduce the feature bias of tracklets caused by noisy tracking results, and sequentially partition the noise-filtered tracklets into "sub-tracklets". Then, we cluster and further merge sub-tracklets using the self-supervised signal from tracklet partition, which is enhanced through a progressive strategy to generate reliable pseudo labels, facilitating intra-class cross-tracklet aggregation. Moreover, we propose the Class Smoothing Classification (CSC) loss to efficiently promote model learning. Extensive experiments on the MARS and DukeMTMC-VideoReID datasets demonstrate that our proposed SSR-C for unsupervised video person re-identification achieves state-of-the-art results and is comparable to advanced supervised methods.
Authors:Ke Niu, Haiyang Yu, Xuelin Qian, Teng Fu, Bin Li, Xiangyang Xue
Abstract:
Existing person re-identification (Re-ID) methods principally deploy the ImageNet-1K dataset for model initialization, which inevitably results in sub-optimal situations due to the large domain gap. One of the key challenges is that building large-scale person Re-ID datasets is time-consuming. Some previous efforts address this problem by collecting person images from the internet e.g., LUPerson, but it struggles to learn from unlabeled, uncontrollable, and noisy data. In this paper, we present a novel paradigm Diffusion-ReID to efficiently augment and generate diverse images based on known identities without requiring any cost of data collection and annotation. Technically, this paradigm unfolds in two stages: generation and filtering. During the generation stage, we propose Language Prompts Enhancement (LPE) to ensure the ID consistency between the input image sequence and the generated images. In the diffusion process, we propose a Diversity Injection (DI) module to increase attribute diversity. In order to make the generated data have higher quality, we apply a Re-ID confidence threshold filter to further remove the low-quality images. Benefiting from our proposed paradigm, we first create a new large-scale person Re-ID dataset Diff-Person, which consists of over 777K images from 5,183 identities. Next, we build a stronger person Re-ID backbone pre-trained on our Diff-Person. Extensive experiments are conducted on four person Re-ID benchmarks in six widely used settings. Compared with other pre-training and self-supervised competitors, our approach shows significant superiority.
Authors:Qizao Wang, Xuelin Qian, Bin Li, Yanwei Fu, Xiangyang Xue
Abstract:
With the continuous expansion of intelligent surveillance networks, lifelong person re-identification (LReID) has received widespread attention, pursuing the need of self-evolution across different domains. However, existing LReID studies accumulate knowledge with the assumption that people would not change their clothes. In this paper, we propose a more practical task, namely lifelong person re-identification with hybrid clothing states (LReID-Hybrid), which takes a series of cloth-changing and same-cloth domains into account during lifelong learning. To tackle the challenges of knowledge granularity mismatch and knowledge presentation mismatch in LReID-Hybrid, we take advantage of the consistency and generalization capabilities of the text space, and propose a novel framework, dubbed $Teata$, to effectively align, transfer, and accumulate knowledge in an "image-text-image" closed loop. Concretely, to achieve effective knowledge transfer, we design a Structured Semantic Prompt (SSP) learning to decompose the text prompt into several structured pairs to distill knowledge from the image space with a unified granularity of text description. Then, we introduce a Knowledge Adaptation and Projection (KAP) strategy, which tunes text knowledge via a slow-paced learner to adapt to different tasks without catastrophic forgetting. Extensive experiments demonstrate the superiority of our proposed $Teata$ for LReID-Hybrid as well as on conventional LReID benchmarks over advanced methods.
Authors:Qizao Wang, Xuelin Qian, Bin Li, Yanwei Fu, Xiangyang Xue
Abstract:
Person Re-IDentification (Re-ID) as a retrieval task, has achieved tremendous development over the past decade. Existing state-of-the-art methods follow an analogous framework to first extract features from the input images and then categorize them with a classifier. However, since there is no identity overlap between training and testing sets, the classifier is often discarded during inference. Only the extracted features are used for person retrieval via distance metrics. In this paper, we rethink the role of the classifier in person Re-ID, and advocate a new perspective to conceive the classifier as a projection from image features to class prototypes. These prototypes are exactly the learned parameters of the classifier. In this light, we describe the identity of input images as similarities to all prototypes, which are then utilized as more discriminative features to perform person Re-ID. We thereby propose a new baseline ProNet, which innovatively reserves the function of the classifier at the inference stage. To facilitate the learning of class prototypes, both triplet loss and identity classification loss are applied to features that undergo the projection by the classifier. An improved version of ProNet++ is presented by further incorporating multi-granularity designs. Experiments on four benchmarks demonstrate that our proposed ProNet is simple yet effective, and significantly beats previous baselines. ProNet++ also achieves competitive or even better results than transformer-based competitors.
Authors:Yandong Wen, Weiyang Liu, Yao Feng, Bhiksha Raj, Rita Singh, Adrian Weller, Michael J. Black, Bernhard Schölkopf
Abstract:
In this paper, we focus on a general yet important learning problem, pairwise similarity learning (PSL). PSL subsumes a wide range of important applications, such as open-set face recognition, speaker verification, image retrieval and person re-identification. The goal of PSL is to learn a pairwise similarity function assigning a higher similarity score to positive pairs (i.e., a pair of samples with the same label) than to negative pairs (i.e., a pair of samples with different label). We start by identifying a key desideratum for PSL, and then discuss how existing methods can achieve this desideratum. We then propose a surprisingly simple proxy-free method, called SimPLE, which requires neither feature/proxy normalization nor angular margin and yet is able to generalize well in open-set recognition. We apply the proposed method to three challenging PSL tasks: open-set face recognition, image retrieval and speaker verification. Comprehensive experimental results on large-scale benchmarks show that our method performs significantly better than current state-of-the-art methods.
Authors:Kuan Zhu, Haiyun Guo, Shiliang Zhang, Yaowei Wang, Jing Liu, Jinqiao Wang, Ming Tang
Abstract:
In person re-identification (re-ID), extracting part-level features from person images has been verified to be crucial to offer fine-grained information. Most of the existing CNN-based methods only locate the human parts coarsely, or rely on pretrained human parsing models and fail in locating the identifiable nonhuman parts (e.g., knapsack). In this article, we introduce an alignment scheme in transformer architecture for the first time and propose the auto-aligned transformer (AAformer) to automatically locate both the human parts and nonhuman ones at patch level. We introduce the "Part tokens ([PART]s)", which are learnable vectors, to extract part features in the transformer. A [PART] only interacts with a local subset of patches in self-attention and learns to be the part representation. To adaptively group the image patches into different subsets, we design the auto-alignment. Auto-alignment employs a fast variant of optimal transport (OT) algorithm to online cluster the patch embeddings into several groups with the [PART]s as their prototypes. AAformer integrates the part alignment into the self-attention and the output [PART]s can be directly used as part features for retrieval. Extensive experiments validate the effectiveness of [PART]s and the superiority of AAformer over various state-of-the-art methods.
Authors:Jiahao Hong, Jialong Zuo, Chuchu Han, Ruochen Zheng, Ming Tian, Changxin Gao, Nong Sang
Abstract:
Recent unsupervised person re-identification (re-ID) methods achieve high performance by leveraging fine-grained local context. These methods are referred to as part-based methods. However, most part-based methods obtain local contexts through horizontal division, which suffer from misalignment due to various human poses. Additionally, the misalignment of semantic information in part features restricts the use of metric learning, thus affecting the effectiveness of part-based methods. The two issues mentioned above result in the under-utilization of part features in part-based methods. We introduce the Spatial Cascaded Clustering and Weighted Memory (SCWM) method to address these challenges. SCWM aims to parse and align more accurate local contexts for different human body parts while allowing the memory module to balance hard example mining and noise suppression. Specifically, we first analyze the foreground omissions and spatial confusions issues in the previous method. Then, we propose foreground and space corrections to enhance the completeness and reasonableness of the human parsing results. Next, we introduce a weighted memory and utilize two weighting strategies. These strategies address hard sample mining for global features and enhance noise resistance for part features, which enables better utilization of both global and part features. Extensive experiments on Market-1501 and MSMT17 validate the proposed method's effectiveness over many state-of-the-art methods.
Authors:Jiahe Zhao, Ruibing Hou, Hong Chang, Xinqian Gu, Bingpeng Ma, Shiguang Shan, Xilin Chen
Abstract:
Current clothes-changing person re-identification (re-id) approaches usually perform retrieval based on clothes-irrelevant features, while neglecting the potential of clothes-relevant features. However, we observe that relying solely on clothes-irrelevant features for clothes-changing re-id is limited, since they often lack adequate identity information and suffer from large intra-class variations. On the contrary, clothes-relevant features can be used to discover same-clothes intermediaries that possess informative identity clues. Based on this observation, we propose a Feasibility-Aware Intermediary Matching (FAIM) framework to additionally utilize clothes-relevant features for retrieval. Firstly, an Intermediary Matching (IM) module is designed to perform an intermediary-assisted matching process. This process involves using clothes-relevant features to find informative intermediates, and then using clothes-irrelevant features of these intermediates to complete the matching. Secondly, in order to reduce the negative effect of low-quality intermediaries, an Intermediary-Based Feasibility Weighting (IBFW) module is designed to evaluate the feasibility of intermediary matching process by assessing the quality of intermediaries. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on several widely-used clothes-changing re-id benchmarks.
Authors:Aihua Zheng, Ziling He, Zi Wang, Chenglong Li, Jin Tang
Abstract:
Many existing multi-modality studies are based on the assumption of modality integrity. However, the problem of missing arbitrary modalities is very common in real life, and this problem is less studied, but actually important in the task of multi-modality person re-identification (Re-ID). To this end, we design a novel dynamic enhancement network (DENet), which allows missing arbitrary modalities while maintaining the representation ability of multiple modalities, for partial multi-modality person Re-ID. To be specific, the multi-modal representation of the RGB, near-infrared (NIR) and thermal-infrared (TIR) images is learned by three branches, in which the information of missing modalities is recovered by the feature transformation module. Since the missing state might be changeable, we design a dynamic enhancement module, which dynamically enhances modality features according to the missing state in an adaptive manner, to improve the multi-modality representation. Extensive experiments on multi-modality person Re-ID dataset RGBNT201 and vehicle Re-ID dataset RGBNT100 comparing to the state-of-the-art methods verify the effectiveness of our method in complex and changeable environments.
Authors:Taha Mustapha Nehdi, Nairouz Mrabah, Atif Belal, Marco Pedersoli, Eric Granger
Abstract:
Adapting person re-identification (reID) models to new target environments remains a challenging problem that is typically addressed using unsupervised domain adaptation (UDA) methods. Recent works show that when labeled data originates from several distinct sources (e.g., datasets and cameras), considering each source separately and applying multi-source domain adaptation (MSDA) typically yields higher accuracy and robustness compared to blending the sources and performing conventional UDA. However, state-of-the-art MSDA methods learn domain-specific backbone models or require access to source domain data during adaptation, resulting in significant growth in training parameters and computational cost. In this paper, a Source-free Adaptive Gated Experts (SAGE-reID) method is introduced for person reID. Our SAGE-reID is a cost-effective, source-free MSDA method that first trains individual source-specific low-rank adapters (LoRA) through source-free UDA. Next, a lightweight gating network is introduced and trained to dynamically assign optimal merging weights for fusion of LoRA experts, enabling effective cross-domain knowledge transfer. While the number of backbone parameters remains constant across source domains, LoRA experts scale linearly but remain negligible in size (<= 2% of the backbone), reducing both the memory consumption and risk of overfitting. Extensive experiments conducted on three challenging benchmarks: Market-1501, DukeMTMC-reID, and MSMT17 indicate that SAGE-reID outperforms state-of-the-art methods while being computationally efficient.
Authors:Huy Nguyen, Kien Nguyen, Akila Pemasiri, Sridha Sridharan, Clinton Fookes
Abstract:
This study introduces a new framework for 3D person re-identification (re-ID) that leverages readily available high-resolution texture data in 3D reconstruction to improve the performance and explainability of the person re-ID task. We propose a method to emphasize texture in 3D person re-ID models by incorporating UVTexture mapping, which better differentiates human subjects. Our approach uniquely combines UVTexture and its heatmaps with 3D models to visualize and explain the person re-ID process. In particular, the visualization and explanation are achieved through activation maps and attribute-based attention maps, which highlight the important regions and features contributing to the person re-ID decision. Our contributions include: (1) a novel technique for emphasizing texture in 3D models using UVTexture processing, (2) an innovative method for explicating person re-ID matches through a combination of 3D models and UVTexture mapping, and (3) achieving state-of-the-art performance in 3D person re-ID. We ensure the reproducibility of our results by making all data, codes, and models publicly available.
Authors:Zhizhong Zhang, Jiangming Wang, Xin Tan, Yanyun Qu, Junping Wang, Yong Xie, Yuan Xie
Abstract:
Unsupervised visible infrared person re-identification (USVI-ReID) is a challenging retrieval task that aims to retrieve cross-modality pedestrian images without using any label information. In this task, the large cross-modality variance makes it difficult to generate reliable cross-modality labels, and the lack of annotations also provides additional difficulties for learning modality-invariant features. In this paper, we first deduce an optimization objective for unsupervised VI-ReID based on the mutual information between the model's cross-modality input and output. With equivalent derivation, three learning principles, i.e., "Sharpness" (entropy minimization), "Fairness" (uniform label distribution), and "Fitness" (reliable cross-modality matching) are obtained. Under their guidance, we design a loop iterative training strategy alternating between model training and cross-modality matching. In the matching stage, a uniform prior guided optimal transport assignment ("Fitness", "Fairness") is proposed to select matched visible and infrared prototypes. In the training stage, we utilize this matching information to introduce prototype-based contrastive learning for minimizing the intra- and cross-modality entropy ("Sharpness"). Extensive experimental results on benchmarks demonstrate the effectiveness of our method, e.g., 60.6% and 90.3% of Rank-1 accuracy on SYSU-MM01 and RegDB without any annotations.
Authors:Xiangbo Yin, Jiangming Shi, Yachao Zhang, Yang Lu, Zhizhong Zhang, Yuan Xie, Yanyun Qu
Abstract:
Unsupervised Visible-Infrared Person Re-identification (USVI-ReID) presents a formidable challenge, which aims to match pedestrian images across visible and infrared modalities without any annotations. Recently, clustered pseudo-label methods have become predominant in USVI-ReID, although the inherent noise in pseudo-labels presents a significant obstacle. Most existing works primarily focus on shielding the model from the harmful effects of noise, neglecting to calibrate noisy pseudo-labels usually associated with hard samples, which will compromise the robustness of the model. To address this issue, we design a Robust Pseudo-label Learning with Neighbor Relation (RPNR) framework for USVI-ReID. To be specific, we first introduce a straightforward yet potent Noisy Pseudo-label Calibration module to correct noisy pseudo-labels. Due to the high intra-class variations, noisy pseudo-labels are difficult to calibrate completely. Therefore, we introduce a Neighbor Relation Learning module to reduce high intra-class variations by modeling potential interactions between all samples. Subsequently, we devise an Optimal Transport Prototype Matching module to establish reliable cross-modality correspondences. On that basis, we design a Memory Hybrid Learning module to jointly learn modality-specific and modality-invariant information. Comprehensive experiments conducted on two widely recognized benchmarks, SYSU-MM01 and RegDB, demonstrate that RPNR outperforms the current state-of-the-art GUR with an average Rank-1 improvement of 10.3%. The source codes will be released soon.
Authors:Junjie Li, Guanshuo Wang, Fufu Yu, Yichao Yan, Qiong Jia, Shouhong Ding, Xingdong Sheng, Yunhui Liu, Xiaokang Yang
Abstract:
Clothes-changing person re-identification (CC-ReID) aims to retrieve images of the same person wearing different outfits. Mainstream researches focus on designing advanced model structures and strategies to capture identity information independent of clothing. However, the same-clothes discrimination as the standard ReID learning objective in CC-ReID is persistently ignored in previous researches. In this study, we dive into the relationship between standard and clothes-changing~(CC) learning objectives, and bring the inner conflicts between these two objectives to the fore. We try to magnify the proportion of CC training pairs by supplementing high-fidelity clothes-varying synthesis, produced by our proposed Clothes-Changing Diffusion model. By incorporating the synthetic images into CC-ReID model training, we observe a significant improvement under CC protocol. However, such improvement sacrifices the performance under the standard protocol, caused by the inner conflict between standard and CC. For conflict mitigation, we decouple these objectives and re-formulate CC-ReID learning as a multi-objective optimization (MOO) problem. By effectively regularizing the gradient curvature across multiple objectives and introducing preference restrictions, our MOO solution surpasses the single-task training paradigm. Our framework is model-agnostic, and demonstrates superior performance under both CC and standard ReID protocols.
Authors:Jiangming Shi, Xiangbo Yin, Yachao Zhang, Zhizhong Zhang, Yuan Xie, Yanyun Qu
Abstract:
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to match specified people in infrared images to visible images without annotations, and vice versa. USVI-ReID is a challenging yet under-explored task. Most existing methods address the USVI-ReID using cluster-based contrastive learning, which simply employs the cluster center as a representation of a person. However, the cluster center primarily focuses on commonality, overlooking divergence and variety. To address the problem, we propose a Progressive Contrastive Learning with Hard and Dynamic Prototypes method for USVI-ReID. In brief, we generate the hard prototype by selecting the sample with the maximum distance from the cluster center. We theoretically show that the hard prototype is used in the contrastive loss to emphasize divergence. Additionally, instead of rigidly aligning query images to a specific prototype, we generate the dynamic prototype by randomly picking samples within a cluster. The dynamic prototype is used to encourage the variety. Finally, we introduce a progressive learning strategy to gradually shift the model's attention towards divergence and variety, avoiding cluster deterioration. Extensive experiments conducted on the publicly available SYSU-MM01 and RegDB datasets validate the effectiveness of the proposed method.
Authors:Jiangming Shi, Xiangbo Yin, Yeyun Chen, Yachao Zhang, Zhizhong Zhang, Yuan Xie, Yanyun Qu
Abstract:
Unsupervised visible-infrared person re-identification (USL-VI-ReID) is a promising yet challenging retrieval task. The key challenges in USL-VI-ReID are to effectively generate pseudo-labels and establish pseudo-label correspondences across modalities without relying on any prior annotations. Recently, clustered pseudo-label methods have gained more attention in USL-VI-ReID. However, previous methods fell short of fully exploiting the individual nuances, as they simply utilized a single memory that represented an identity to establish cross-modality correspondences, resulting in ambiguous cross-modality correspondences. To address the problem, we propose a Multi-Memory Matching (MMM) framework for USL-VI-ReID. We first design a Cross-Modality Clustering (CMC) module to generate the pseudo-labels through clustering together both two modality samples. To associate cross-modality clustered pseudo-labels, we design a Multi-Memory Learning and Matching (MMLM) module, ensuring that optimization explicitly focuses on the nuances of individual perspectives and establishes reliable cross-modality correspondences. Finally, we design a Soft Cluster-level Alignment (SCA) module to narrow the modality gap while mitigating the effect of noise pseudo-labels through a soft many-to-many alignment strategy. Extensive experiments on the public SYSU-MM01 and RegDB datasets demonstrate the reliability of the established cross-modality correspondences and the effectiveness of our MMM. The source codes will be released.
Authors:Yuwei Guo, Wenhao Zhang, Licheng Jiao, Shuang Wang, Shuo Wang, Fang Liu
Abstract:
Visible-infrared person re-identification (VI-ReID) aims to search the same pedestrian of interest across visible and infrared modalities. Existing models mainly focus on compensating for modality-specific information to reduce modality variation. However, these methods often lead to a higher computational overhead and may introduce interfering information when generating the corresponding images or features. To address this issue, it is critical to leverage pedestrian-attentive features and learn modality-complete and -consistent representation. In this paper, a novel Transferring Modality-Aware Pedestrian Attentive Learning (TMPA) model is proposed, focusing on the pedestrian regions to efficiently compensate for missing modality-specific features. Specifically, we propose a region-based data augmentation module PedMix to enhance pedestrian region coherence by mixing the corresponding regions from different modalities. A lightweight hybrid compensation module, i.e., the Modality Feature Transfer (MFT), is devised to integrate cross attention and convolution networks to fully explore the discriminative modality-complete features with minimal computational overhead. Extensive experiments conducted on the benchmark SYSU-MM01 and RegDB datasets demonstrated the effectiveness of our proposed TMPA model.
Authors:Yichao Yan, Junjie Li, Shengcai Liao, Jie Qin, Bingbing Ni, Xiaokang Yang
Abstract:
Domain generalizable person re-identification aims to apply a trained model to unseen domains. Prior works either combine the data in all the training domains to capture domain-invariant features, or adopt a mixture of experts to investigate domain-specific information. In this work, we argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models. To this end, we design a novel framework, which we name two-stream adaptive learning (TAL), to simultaneously model these two kinds of information. Specifically, a domain-specific stream is proposed to capture training domain statistics with batch normalization (BN) parameters, while an adaptive matching layer is designed to dynamically aggregate domain-level information. In the meantime, we design an adaptive BN layer in the domain-invariant stream, to approximate the statistics of various unseen domains. These two streams work adaptively and collaboratively to learn generalizable re-id features. Our framework can be applied to both single-source and multi-source domain generalization tasks, where experimental results show that our framework notably outperforms the state-of-the-art methods.
Authors:Shafiq Ahmad, Pietro Morerio, Alessio Del Bue
Abstract:
Wide-scale use of visual surveillance in public spaces puts individual privacy at stake while increasing resource consumption (energy, bandwidth, and computation). Neuromorphic vision sensors (event-cameras) have been recently considered a valid solution to the privacy issue because they do not capture detailed RGB visual information of the subjects in the scene. However, recent deep learning architectures have been able to reconstruct images from event cameras with high fidelity, reintroducing a potential threat to privacy for event-based vision applications. In this paper, we aim to anonymize event-streams to protect the identity of human subjects against such image reconstruction attacks. To achieve this, we propose an end-to-end network architecture jointly optimized for the twofold objective of preserving privacy and performing a downstream task such as person ReId. Our network learns to scramble events, enforcing the degradation of images recovered from the privacy attacker. In this work, we also bring to the community the first ever event-based person ReId dataset gathered to evaluate the performance of our approach. We validate our approach with extensive experiments and report results on the synthetic event data simulated from the publicly available SoftBio dataset and our proposed Event-ReId dataset.
Authors:Christopher Neff, Armin Danesh Pazho, Hamed Tabkhi
Abstract:
Following the popularity of Unsupervised Domain Adaptation (UDA) in person re-identification, the recently proposed setting of Online Unsupervised Domain Adaptation (OUDA) attempts to bridge the gap towards practical applications by introducing a consideration of streaming data. However, this still falls short of truly representing real-world applications. This paper defines the setting of Real-world Real-time Online Unsupervised Domain Adaptation (R$^2$OUDA) for Person Re-identification. The R$^2$OUDA setting sets the stage for true real-world real-time OUDA, bringing to light four major limitations found in real-world applications that are often neglected in current research: system generated person images, subset distribution selection, time-based data stream segmentation, and a segment-based time constraint. To address all aspects of this new R$^2$OUDA setting, this paper further proposes Real-World Real-Time Online Streaming Mutual Mean-Teaching (R$^2$MMT), a novel multi-camera system for real-world person re-identification. Taking a popular person re-identification dataset, R$^2$MMT was used to construct over 100 data subsets and train more than 3000 models, exploring the breadth of the R$^2$OUDA setting to understand the training time and accuracy trade-offs and limitations for real-world applications. R$^2$MMT, a real-world system able to respect the strict constraints of the proposed R$^2$OUDA setting, achieves accuracies within 0.1% of comparable OUDA methods that cannot be applied directly to real-world applications.
Authors:Jinhao Li, Zijian Chen, Lirong Deng, Changbo Wang, Guangtao Zhai
Abstract:
Person re-identification (ReID) aims to retrieve the images of an interested person in the gallery images, with wide applications in medical rehabilitation, abnormal behavior detection, and public security. However, traditional person ReID models suffer from uni-modal capability, leading to poor generalization ability in multi-modal data, such as RGB, thermal, infrared, sketch images, textual descriptions, etc. Recently, the emergence of multi-modal large language models (MLLMs) shows a promising avenue for addressing this problem. Despite this potential, existing methods merely regard MLLMs as feature extractors or caption generators, which do not fully unleash their reasoning, instruction-following, and cross-modal understanding capabilities. To bridge this gap, we introduce MMReID-Bench, the first multi-task multi-modal benchmark specifically designed for person ReID. The MMReID-Bench includes 20,710 multi-modal queries and gallery images covering 10 different person ReID tasks. Comprehensive experiments demonstrate the remarkable capabilities of MLLMs in delivering effective and versatile person ReID. Nevertheless, they also have limitations in handling a few modalities, particularly thermal and infrared data. We hope MMReID-Bench can facilitate the community to develop more robust and generalizable multimodal foundation models for person ReID.
Authors:Kunjun Li, Cheng-Yen Yang, Hsiang-Wei Huang, Jenq-Neng Hwang
Abstract:
This report introduces ReID-SAM, a novel model developed for the SkiTB Challenge that addresses the complexities of tracking skier appearance. Our approach integrates the SAMURAI tracker with a person re-identification (Re-ID) module and advanced post-processing techniques to enhance accuracy in challenging skiing scenarios. We employ an OSNet-based Re-ID model to minimize identity switches and utilize YOLOv11 with Kalman filtering or STARK-based object detection for precise equipment tracking. When evaluated on the SkiTB dataset, ReID-SAM achieved a state-of-the-art F1-score of 0.870, surpassing existing methods across alpine, ski jumping, and freestyle skiing disciplines. These results demonstrate significant advancements in skier tracking accuracy and provide valuable insights for computer vision applications in winter sports.
Authors:Hezhen Hu, Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Lu Yuan, Dong Chen, Houqiang Li
Abstract:
Pre-training is playing an increasingly important role in learning generic feature representation for Person Re-identification (ReID). We argue that a high-quality ReID representation should have three properties, namely, multi-level awareness, occlusion robustness, and cross-region invariance. To this end, we propose a simple yet effective pre-training framework, namely PersonMAE, which involves two core designs into masked autoencoders to better serve the task of Person Re-ID. 1) PersonMAE generates two regions from the given image with RegionA as the input and \textit{RegionB} as the prediction target. RegionA is corrupted with block-wise masking to mimic common occlusion in ReID and its remaining visible parts are fed into the encoder. 2) Then PersonMAE aims to predict the whole RegionB at both pixel level and semantic feature level. It encourages its pre-trained feature representations with the three properties mentioned above. These properties make PersonMAE compatible with downstream Person ReID tasks, leading to state-of-the-art performance on four downstream ReID tasks, i.e., supervised (holistic and occluded setting), and unsupervised (UDA and USL setting). Notably, on the commonly adopted supervised setting, PersonMAE with ViT-B backbone achieves 79.8% and 69.5% mAP on the MSMT17 and OccDuke datasets, surpassing the previous state-of-the-art by a large margin of +8.0 mAP, and +5.3 mAP, respectively.
Authors:Jingqi Li, Jiaqi Gao, Yuzhen Zhang, Hongming Shan, Junping Zhang
Abstract:
As a unique biometric that can be perceived at a distance, gait has broad applications in person authentication, social security, and so on. Existing gait recognition methods suffer from changes in viewpoint and clothing and barely consider extracting diverse motion features, a fundamental characteristic in gaits, from gait sequences. This paper proposes a novel motion modeling method to extract the discriminative and robust representation. Specifically, we first extract the motion features from the encoded motion sequences in the shallow layer. Then we continuously enhance the motion feature in deep layers. This motion modeling approach is independent of mainstream work in building network architectures. As a result, one can apply this motion modeling method to any backbone to improve gait recognition performance. In this paper, we combine motion modeling with one commonly used backbone~(GaitGL) as GaitGL-M to illustrate motion modeling. Extensive experimental results on two commonly-used cross-view gait datasets demonstrate the superior performance of GaitGL-M over existing state-of-the-art methods.
Authors:Wenxuan Guo, Yingping Liang, Zhiyu Pan, Ziheng Xi, Jianjiang Feng, Jie Zhou
Abstract:
Gait recognition is a crucial biometric identification technique. Camera-based gait recognition has been widely applied in both research and industrial fields. LiDAR-based gait recognition has also begun to evolve most recently, due to the provision of 3D structural information. However, in certain applications, cameras fail to recognize persons, such as in low-light environments and long-distance recognition scenarios, where LiDARs work well. On the other hand, the deployment cost and complexity of LiDAR systems limit its wider application. Therefore, it is essential to consider cross-modality gait recognition between cameras and LiDARs for a broader range of applications. In this work, we propose the first cross-modality gait recognition framework between Camera and LiDAR, namely CL-Gait. It employs a two-stream network for feature embedding of both modalities. This poses a challenging recognition task due to the inherent matching between 3D and 2D data, exhibiting significant modality discrepancy. To align the feature spaces of the two modalities, i.e., camera silhouettes and LiDAR points, we propose a contrastive pre-training strategy to mitigate modality discrepancy. To make up for the absence of paired camera-LiDAR data for pre-training, we also introduce a strategy for generating data on a large scale. This strategy utilizes monocular depth estimated from single RGB images and virtual cameras to generate pseudo point clouds for contrastive pre-training. Extensive experiments show that the cross-modality gait recognition is very challenging but still contains potential and feasibility with our proposed model and pre-training strategy. To the best of our knowledge, this is the first work to address cross-modality gait recognition.
Authors:Wenxuan Guo, Zhiyu Pan, Yingping Liang, Ziheng Xi, Zhi Chen Zhong, Jianjiang Feng, Jie Zhou
Abstract:
Camera-based person re-identification (ReID) systems have been widely applied in the field of public security. However, cameras often lack the perception of 3D morphological information of human and are susceptible to various limitations, such as inadequate illumination, complex background, and personal privacy. In this paper, we propose a LiDAR-based ReID framework, ReID3D, that utilizes pre-training strategy to retrieve features of 3D body shape and introduces Graph-based Complementary Enhancement Encoder for extracting comprehensive features. Due to the lack of LiDAR datasets, we build LReID, the first LiDAR-based person ReID dataset, which is collected in several outdoor scenes with variations in natural conditions. Additionally, we introduce LReID-sync, a simulated pedestrian dataset designed for pre-training encoders with tasks of point cloud completion and shape parameter learning. Extensive experiments on LReID show that ReID3D achieves exceptional performance with a rank-1 accuracy of 94.0, highlighting the significant potential of LiDAR in addressing person ReID tasks. To the best of our knowledge, we are the first to propose a solution for LiDAR-based ReID. The code and datasets will be released soon.
Authors:Han Huang, Yan Huang, Liang Wang
Abstract:
Visible-Infrared person re-identification (VI-ReID) in real-world scenarios poses a significant challenge due to the high cost of cross-modality data annotation. Different sensing cameras, such as RGB/IR cameras for good/poor lighting conditions, make it costly and error-prone to identify the same person across modalities. To overcome this, we explore the use of single-modality labeled data for the VI-ReID task, which is more cost-effective and practical. By labeling pedestrians in only one modality (e.g., visible images) and retrieving in another modality (e.g., infrared images), we aim to create a training set containing both originally labeled and modality-translated data using unpaired image-to-image translation techniques. In this paper, we propose VI-Diff, a diffusion model that effectively addresses the task of Visible-Infrared person image translation. Through comprehensive experiments, we demonstrate that VI-Diff outperforms existing diffusion and GAN models, making it a promising solution for VI-ReID with single-modality labeled data. Our approach can be a promising solution to the VI-ReID task with single-modality labeled data and serves as a good starting point for future study. Code will be available.
Authors:Jilong Wang, Saihui Hou, Yan Huang, Chunshui Cao, Xu Liu, Yongzhen Huang, Tianzhu Zhang, Liang Wang
Abstract:
Gait recognition is to seek correct matches for query individuals by their unique walking patterns. However, current methods focus solely on extracting individual-specific features, overlooking ``interpersonal" relationships. In this paper, we propose a novel $\textbf{Relation Descriptor}$ that captures not only individual features but also relations between test gaits and pre-selected gait anchors. Specifically, we reinterpret classifier weights as gait anchors and compute similarity scores between test features and these anchors, which re-expresses individual gait features into a similarity relation distribution. In essence, the relation descriptor offers a holistic perspective that leverages the collective knowledge stored within the classifier's weights, emphasizing meaningful patterns and enhancing robustness. Despite its potential, relation descriptor poses dimensionality challenges since its dimension depends on the training set's identity count. To address this, we propose Farthest gait-Anchor Selection to identify the most discriminative gait anchors and an Orthogonal Regularization Loss to increase diversity within gait anchors. Compared to individual-specific features extracted from the backbone, our relation descriptor can boost the performance nearly without any extra costs. We evaluate the effectiveness of our method on the popular GREW, Gait3D, OU-MVLP, CASIA-B, and CCPG, showing that our method consistently outperforms the baselines and achieves state-of-the-art performance.
Authors:Ziqi He, Mengjia Xue, Yunhao Du, Zhicheng Zhao, Fei Su
Abstract:
Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data. However, existing methods often ignore the relationship between module parameters of Re-ID framework and feature distributions, which may lead to feature misalignment and hinder the model performance. To address this problem, we propose a dynamic clustering and cluster contrastive learning (DCCC) method. Specifically, we first design a dynamic clustering parameters scheduler (DCPS) which adjust the hyper-parameter of clustering to fit the variation of intra- and inter-class distances. Then, a dynamic cluster contrastive learning (DyCL) method is designed to match the cluster representation vectors' weights with the local feature association. Finally, a label smoothing soft contrastive loss ($L_{ss}$) is built to keep the balance between cluster contrastive learning and self-supervised learning with low computational consumption and high computational efficiency. Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC which outperforms previous state-of-the-art methods by achieving the best performance.
Authors:Jianfeng Weng, Kun Hu, Tingting Yao, Jingya Wang, Zhiyong Wang
Abstract:
Person Re-identification (ReID) has been extensively studied in recent years due to the increasing demand in public security. However, collecting and dealing with sensitive personal data raises privacy concerns. Therefore, federated learning has been explored for Person ReID, which aims to share minimal sensitive data between different parties (clients). However, existing federated learning based person ReID methods generally rely on laborious and time-consuming data annotations and it is difficult to guarantee cross-domain consistency. Thus, in this work, a federated unsupervised cluster-contrastive (FedUCC) learning method is proposed for Person ReID. FedUCC introduces a three-stage modelling strategy following a coarse-to-fine manner. In detail, generic knowledge, specialized knowledge and patch knowledge are discovered using a deep neural network. This enables the sharing of mutual knowledge among clients while retaining local domain-specific knowledge based on the kinds of network layers and their parameters. Comprehensive experiments on 8 public benchmark datasets demonstrate the state-of-the-art performance of our proposed method.
Authors:YuTeng Ye, Hang Zhou, Jiale Cai, Chenxing Gao, Youjia Zhang, Junle Wang, Qiang Hu, Junqing Yu, Wei Yang
Abstract:
Occluded person re-identification (ReID) is a challenging problem due to contamination from occluders. Existing approaches address the issue with prior knowledge cues, such as human body key points and semantic segmentations, which easily fail in the presence of heavy occlusion and other humans as occluders. In this paper, we propose a feature pruning and consolidation (FPC) framework to circumvent explicit human structure parsing. The framework mainly consists of a sparse encoder, a multi-view feature mathcing module, and a feature consolidation decoder. Specifically, the sparse encoder drops less important image tokens, mostly related to background noise and occluders, solely based on correlation within the class token attention. Subsequently, the matching stage relies on the preserved tokens produced by the sparse encoder to identify k-nearest neighbors in the gallery by measuring the image and patch-level combined similarity. Finally, we use the feature consolidation module to compensate pruned features using identified neighbors for recovering essential information while disregarding disturbance from noise and occlusion. Experimental results demonstrate the effectiveness of our proposed framework on occluded, partial, and holistic Re-ID datasets. In particular, our method outperforms state-of-the-art results by at least 8.6\% mAP and 6.0\% Rank-1 accuracy on the challenging Occluded-Duke dataset.
Authors:Xiang Hu, Pingping Zhang, Yuhao Wang, Bin Yan, Huchuan Lu
Abstract:
Aerial-Ground Person Re-IDentification (AG-ReID) aims to retrieve specific persons across cameras with different viewpoints. Previous works focus on designing discriminative ReID models to maintain identity consistency despite drastic changes in camera viewpoints. The core idea behind these methods is quite natural, but designing a view-robust network is a very challenging task. Moreover, they overlook the contribution of view-specific features in enhancing the model's capability to represent persons. To address these issues, we propose a novel two-stage feature learning framework named SD-ReID for AG-ReID, which takes advantage of the powerful understanding capacity of generative models, e.g., Stable Diffusion (SD), to generate view-specific features between different viewpoints. In the first stage, we train a simple ViT-based model to extract coarse-grained representations and controllable conditions. Then, in the second stage, we fine-tune the SD model to learn complementary representations guided by the controllable conditions. Furthermore, we propose the View-Refine Decoder (VRD) to obtain additional controllable conditions to generate missing cross-view features. Finally, we use the coarse-grained representations and all-view features generated by SD to retrieve target persons. Extensive experiments on the AG-ReID benchmarks demonstrate the effectiveness of our proposed SD-ReID. The source code will be available upon acceptance.
Authors:Xiang Hu, Yuhao Wang, Pingping Zhang, Huchuan Lu
Abstract:
As an important task in intelligent transportation systems, Aerial-Ground person Re-IDentification (AG-ReID) aims to retrieve specific persons across heterogeneous cameras in different viewpoints. Previous methods typically adopt deep learning-based models, focusing on extracting view-invariant features. However, they usually overlook the semantic information in person attributes. In addition, existing training strategies often rely on full fine-tuning large-scale models, which significantly increases training costs. To address these issues, we propose a novel framework named LATex for AG-ReID, which adopts prompt-tuning strategies to leverage attribute-based text knowledge. More specifically, we first introduce the Contrastive Language-Image Pre-training (CLIP) model as the backbone, and propose an Attribute-aware Image Encoder (AIE) to extract both global semantic features and attribute-aware features from input images. Then, with these features, we propose a Prompted Attribute Classifier Group (PACG) to predict person attributes and obtain attribute representations. Finally, we design a Coupled Prompt Template (CPT) to transform attribute representations and view information into structured sentences. These sentences are processed by the text encoder of CLIP to generate more discriminative features. As a result, our framework can fully leverage attribute-based text knowledge to improve AG-ReID performance. Extensive experiments on three AG-ReID benchmarks demonstrate the effectiveness of our proposed methods. The source code will be available.
Authors:Xuehu Liu, Pingping Zhang, Huchuan Lu
Abstract:
Video-based person Re-Identification (V-ReID) aims to retrieve specific persons from raw videos captured by non-overlapped cameras. As a fundamental task, it spreads many multimedia and computer vision applications. However, due to the variations of persons and scenes, there are still many obstacles that must be overcome for high performance. In this work, we notice that both the long-term and short-term information of persons are important for robust video representations. Thus, we propose a novel deep learning framework named Long Short-Term Representation Learning (LSTRL) for effective V-ReID. More specifically, to extract long-term representations, we propose a Multi-granularity Appearance Extractor (MAE), in which four granularity appearances are effectively captured across multiple frames. Meanwhile, to extract short-term representations, we propose a Bi-direction Motion Estimator (BME), in which reciprocal motion information is efficiently extracted from consecutive frames. The MAE and BME are plug-and-play and can be easily inserted into existing networks for efficient feature learning. As a result, they significantly improve the feature representation ability for V-ReID. Extensive experiments on three widely used benchmarks show that our proposed approach can deliver better performances than most state-of-the-arts.
Authors:Xuehu Liu, Chenyang Yu, Pingping Zhang, Huchuan Lu
Abstract:
Advanced deep Convolutional Neural Networks (CNNs) have shown great success in video-based person Re-Identification (Re-ID). However, they usually focus on the most obvious regions of persons with a limited global representation ability. Recently, it witnesses that Transformers explore the inter-patch relations with global observations for performance improvements. In this work, we take both sides and propose a novel spatial-temporal complementary learning framework named Deeply-Coupled Convolution-Transformer (DCCT) for high-performance video-based person Re-ID. Firstly, we couple CNNs and Transformers to extract two kinds of visual features and experimentally verify their complementarity. Further, in spatial, we propose a Complementary Content Attention (CCA) to take advantages of the coupled structure and guide independent features for spatial complementary learning. In temporal, a Hierarchical Temporal Aggregation (HTA) is proposed to progressively capture the inter-frame dependencies and encode temporal information. Besides, a gated attention is utilized to deliver aggregated temporal information into the CNN and Transformer branches for temporal complementary learning. Finally, we introduce a self-distillation training strategy to transfer the superior spatial-temporal knowledge to backbone networks for higher accuracy and more efficiency. In this way, two kinds of typical features from same videos are integrated mechanically for more informative representations. Extensive experiments on four public Re-ID benchmarks demonstrate that our framework could attain better performances than most state-of-the-art methods.
Authors:Wenli Sun, Xinyang Jiang, Dongsheng Li, Cairong Zhao
Abstract:
Person Re-Identification (ReID) systems pose a significant security risk from backdoor attacks, allowing adversaries to evade tracking or impersonate others. Beyond recognizing this issue, we investigate how backdoor attacks can be deployed in real-world scenarios, where a ReID model is typically trained on data collected in the digital domain and then deployed in a physical environment. This attack scenario requires an attack flow that embeds backdoor triggers in the digital domain realistically enough to also activate the buried backdoor in person ReID models in the physical domain. This paper realizes this attack flow by leveraging a diffusion model to generate realistic accessories on pedestrian images (e.g., bags, hats, etc.) as backdoor triggers. However, the noticeable domain gap between the triggers generated by the off-the-shelf diffusion model and their physical counterparts results in a low attack success rate. Therefore, we introduce a novel diffusion-based physical backdoor attack (DiffPhysBA) method that adopts a training-free similarity-guided sampling process to enhance the resemblance between generated and physical triggers. Consequently, DiffPhysBA can generate realistic attributes as semantic-level triggers in the digital domain and provides higher physical ASR compared to the direct paste method by 25.6% on the real-world test set. Through evaluations on newly proposed real-world and synthetic ReID test sets, DiffPhysBA demonstrates an impressive success rate exceeding 90% in both the digital and physical domains. Notably, it excels in digital stealth metrics and can effectively evade state-of-the-art defense methods.
Authors:Ammar Chouchane, Abdelmalik Ouamane, Yassine Himeur, Wathiq Mansoor, Shadi Atalla, Afaf Benzaibak, Chahrazed Boudellal
Abstract:
Person re-identification (PRe-ID) is a crucial task in security, surveillance, and retail analysis, which involves identifying an individual across multiple cameras and views. However, it is a challenging task due to changes in illumination, background, and viewpoint. Efficient feature extraction and metric learning algorithms are essential for a successful PRe-ID system. This paper proposes a novel approach for PRe-ID, which combines a Convolutional Neural Network (CNN) based feature extraction method with Cross-view Quadratic Discriminant Analysis (XQDA) for metric learning. Additionally, a matching algorithm that employs Mahalanobis distance and a score normalization process to address inconsistencies between camera scores is implemented. The proposed approach is tested on four challenging datasets, including VIPeR, GRID, CUHK01, and PRID450S, and promising results are obtained. For example, without normalization, the rank-20 rate accuracies of the GRID, CUHK01, VIPeR and PRID450S datasets were 61.92%, 83.90%, 92.03%, 96.22%; however, after score normalization, they have increased to 64.64%, 89.30%, 92.78%, and 98.76%, respectively. Accordingly, the promising results on four challenging datasets indicate the effectiveness of the proposed approach.
Authors:Junyao Gao, Xinyang Jiang, Huishuai Zhang, Yifan Yang, Shuguang Dou, Dongsheng Li, Duoqian Miao, Cheng Deng, Cairong Zhao
Abstract:
While person Re-identification (Re-ID) has progressed rapidly due to its wide real-world applications, it also causes severe risks of leaking personal information from training data. Thus, this paper focuses on quantifying this risk by membership inference (MI) attack. Most of the existing MI attack algorithms focus on classification models, while Re-ID follows a totally different training and inference paradigm. Re-ID is a fine-grained recognition task with complex feature embedding, and model outputs commonly used by existing MI like logits and losses are not accessible during inference. Since Re-ID focuses on modelling the relative relationship between image pairs instead of individual semantics, we conduct a formal and empirical analysis which validates that the distribution shift of the inter-sample similarity between training and test set is a critical criterion for Re-ID membership inference. As a result, we propose a novel membership inference attack method based on the inter-sample similarity distribution. Specifically, a set of anchor images are sampled to represent the similarity distribution conditioned on a target image, and a neural network with a novel anchor selection module is proposed to predict the membership of the target image. Our experiments validate the effectiveness of the proposed approach on both the Re-ID task and conventional classification task.
Authors:Wenli Sun, Xinyang Jiang, Shuguang Dou, Dongsheng Li, Duoqian Miao, Cheng Deng, Cairong Zhao
Abstract:
In recent years, person Re-identification (ReID) has rapidly progressed with wide real-world applications, but also poses significant risks of adversarial attacks. In this paper, we focus on the backdoor attack on deep ReID models. Existing backdoor attack methods follow an all-to-one or all-to-all attack scenario, where all the target classes in the test set have already been seen in the training set. However, ReID is a much more complex fine-grained open-set recognition problem, where the identities in the test set are not contained in the training set. Thus, previous backdoor attack methods for classification are not applicable for ReID. To ameliorate this issue, we propose a novel backdoor attack on deep ReID under a new all-to-unknown scenario, called Dynamic Triggers Invisible Backdoor Attack (DT-IBA). Instead of learning fixed triggers for the target classes from the training set, DT-IBA can dynamically generate new triggers for any unknown identities. Specifically, an identity hashing network is proposed to first extract target identity information from a reference image, which is then injected into the benign images by image steganography. We extensively validate the effectiveness and stealthiness of the proposed attack on benchmark datasets, and evaluate the effectiveness of several defense methods against our attack.
Authors:Xulin Li, Yan Lu, Bin Liu, Jiaze Li, Qinhong Yang, Tao Gong, Qi Chu, Mang Ye, Nenghai Yu
Abstract:
In real applications, person re-identification (ReID) is expected to retrieve the target person at any time, including both daytime and nighttime, ranging from short-term to long-term. However, existing ReID tasks and datasets can not meet this requirement, as they are constrained by available time and only provide training and evaluation for specific scenarios. Therefore, we investigate a new task called Anytime Person Re-identification (AT-ReID), which aims to achieve effective retrieval in multiple scenarios based on variations in time. To address the AT-ReID problem, we collect the first large-scale dataset, AT-USTC, which contains 403k images of individuals wearing multiple clothes captured by RGB and IR cameras. Our data collection spans 21 months, and 270 volunteers were photographed on average 29.1 times across different dates or scenes, 4-15 times more than current datasets, providing conditions for follow-up investigations in AT-ReID. Further, to tackle the new challenge of multi-scenario retrieval, we propose a unified model named Uni-AT, which comprises a multi-scenario ReID (MS-ReID) framework for scenario-specific features learning, a Mixture-of-Attribute-Experts (MoAE) module to alleviate inter-scenario interference, and a Hierarchical Dynamic Weighting (HDW) strategy to ensure balanced training across all scenarios. Extensive experiments show that our model leads to satisfactory results and exhibits excellent generalization to all scenarios.
Authors:Lanyun Zhu, Tianrun Chen, Deyi Ji, Jieping Ye, Jun Liu
Abstract:
This paper proposes a new effective and efficient plug-and-play backbone for video-based person re-identification (ReID). Conventional video-based ReID methods typically use CNN or transformer backbones to extract deep features for every position in every sampled video frame. Here, we argue that this exhaustive feature extraction could be unnecessary, since we find that different frames in a ReID video often exhibit small differences and contain many similar regions due to the relatively slight movements of human beings. Inspired by this, a more selective, efficient paradigm is explored in this paper. Specifically, we introduce a patch selection mechanism to reduce computational cost by choosing only the crucial and non-repetitive patches for feature extraction. Additionally, we present a novel network structure that generates and utilizes pseudo frame global context to address the issue of incomplete views resulting from sparse inputs. By incorporating these new designs, our backbone can achieve both high performance and low computational cost. Extensive experiments on multiple datasets show that our approach reduces the computational cost by 74\% compared to ViT-B and 28\% compared to ResNet50, while the accuracy is on par with ViT-B and outperforms ResNet50 significantly.
Authors:Peini Guo, Mengyuan Liu, Hong Liu, Ruijia Fan, Guoquan Wang, Bin He
Abstract:
Cloth-Changing Person Re-Identification (CC-ReID) aims to accurately identify the target person in more realistic surveillance scenarios, where pedestrians usually change their clothing. Despite great progress, limited cloth-changing training samples in existing CC-ReID datasets still prevent the model from adequately learning cloth-irrelevant features. In addition, due to the absence of explicit supervision to keep the model constantly focused on cloth-irrelevant areas, existing methods are still hampered by the disruption of clothing variations. To solve the above issues, we propose an Identity-aware Dual-constraint Network (IDNet) for the CC-ReID task. Specifically, to help the model extract cloth-irrelevant clues, we propose a Clothes Diversity Augmentation (CDA), which generates more realistic cloth-changing samples by enriching the clothing color while preserving the texture. In addition, a Multi-scale Constraint Block (MCB) is designed, which extracts fine-grained identity-related features and effectively transfers cloth-irrelevant knowledge. Moreover, a Counterfactual-guided Attention Module (CAM) is presented, which learns cloth-irrelevant features from channel and space dimensions and utilizes the counterfactual intervention for supervising the attention map to highlight identity-related regions. Finally, a Semantic Alignment Constraint (SAC) is designed to facilitate high-level semantic feature interaction. Comprehensive experiments on four CC-ReID datasets indicate that our method outperforms prior state-of-the-art approaches.
Authors:Shuting He, Weihua Chen, Kai Wang, Hao Luo, Fan Wang, Wei Jiang, Henghui Ding
Abstract:
Person Re-identification (ReID) plays a more and more crucial role in recent years with a wide range of applications. Existing ReID methods are suffering from the challenges of misalignment and occlusions, which degrade the performance dramatically. Most methods tackle such challenges by utilizing external tools to locate body parts or exploiting matching strategies. Nevertheless, the inevitable domain gap between the datasets utilized for external tools and the ReID datasets and the complicated matching process make these methods unreliable and sensitive to noises. In this paper, we propose a Region Generation and Assessment Network (RGANet) to effectively and efficiently detect the human body regions and highlight the important regions. In the proposed RGANet, we first devise a Region Generation Module (RGM) which utilizes the pre-trained CLIP to locate the human body regions using semantic prototypes extracted from text descriptions. Learnable prompt is designed to eliminate domain gap between CLIP datasets and ReID datasets. Then, to measure the importance of each generated region, we introduce a Region Assessment Module (RAM) that assigns confidence scores to different regions and reduces the negative impact of the occlusion regions by lower scores. The RAM consists of a discrimination-aware indicator and an invariance-aware indicator, where the former indicates the capability to distinguish from different identities and the latter represents consistency among the images of the same class of human body regions. Extensive experimental results for six widely-used benchmarks including three tasks (occluded, partial, and holistic) demonstrate the superiority of RGANet against state-of-the-art methods.
Authors:Xulin Li, Yan Lu, Bin Liu, Yuenan Hou, Yating Liu, Qi Chu, Wanli Ouyang, Nenghai Yu
Abstract:
Clothes-invariant feature extraction is critical to the clothes-changing person re-identification (CC-ReID). It can provide discriminative identity features and eliminate the negative effects caused by the confounder--clothing changes. But we argue that there exists a strong spurious correlation between clothes and human identity, that restricts the common likelihood-based ReID method P(Y|X) to extract clothes-irrelevant features. In this paper, we propose a new Causal Clothes-Invariant Learning (CCIL) method to achieve clothes-invariant feature learning by modeling causal intervention P(Y|do(X)). This new causality-based model is inherently invariant to the confounder in the causal view, which can achieve the clothes-invariant features and avoid the barrier faced by the likelihood-based methods. Extensive experiments on three CC-ReID benchmarks, including PRCC, LTCC, and VC-Clothes, demonstrate the effectiveness of our approach, which achieves a new state of the art.
Authors:Tao Wang, Mengyuan Liu, Hong Liu, Wenhao Li, Miaoju Ban, Tuanyu Guo, Yidi Li
Abstract:
Occluded person re-identification (Re-ID) is a challenging problem due to the destruction of occluders. Most existing methods focus on visible human body parts through some prior information. However, when complementary occlusions occur, features in occluded regions can interfere with matching, which affects performance severely. In this paper, different from most previous works that discard the occluded region, we propose a Feature Completion Transformer (FCFormer) to implicitly complement the semantic information of occluded parts in the feature space. Specifically, Occlusion Instance Augmentation (OIA) is proposed to simulates real and diverse occlusion situations on the holistic image. These augmented images not only enrich the amount of occlusion samples in the training set, but also form pairs with the holistic images. Subsequently, a dual-stream architecture with a shared encoder is proposed to learn paired discriminative features from pairs of inputs. Without additional semantic information, an occluded-holistic feature sample-label pair can be automatically created. Then, Feature Completion Decoder (FCD) is designed to complement the features of occluded regions by using learnable tokens to aggregate possible information from self-generated occluded features. Finally, we propose the Cross Hard Triplet (CHT) loss to further bridge the gap between complementing features and extracting features under the same ID. In addition, Feature Completion Consistency (FC$^2$) loss is introduced to help the generated completion feature distribution to be closer to the real holistic feature distribution. Extensive experiments over five challenging datasets demonstrate that the proposed FCFormer achieves superior performance and outperforms the state-of-the-art methods by significant margins on occluded datasets.
Authors:Dengjie Li, Siyu Chen, Yujie Zhong, Lin Ma
Abstract:
In person re-identification (ReID) tasks, many works explore the learning of part features to improve the performance over global image features. Existing methods explicitly extract part features by either using a hand-designed image division or keypoints obtained with external visual systems. In this work, we propose to learn Discriminative implicit Parts (DiPs) which are decoupled from explicit body parts. Therefore, DiPs can learn to extract any discriminative features that can benefit in distinguishing identities, which is beyond predefined body parts (such as accessories). Moreover, we propose a novel implicit position to give a geometric interpretation for each DiP. The implicit position can also serve as a learning signal to encourage DiPs to be more position-equivariant with the identity in the image. Lastly, an additional DiP weighting is introduced to handle the invisible or occluded situation and further improve the feature representation of DiPs. Extensive experiments show that the proposed method achieves state-of-the-art performance on multiple person ReID benchmarks.
Authors:Ming Wang, Xianda Guo, Beibei Lin, Tian Yang, Zheng Zhu, Lincheng Li, Shunli Zhang, Xin Yu
Abstract:
Gait recognition is a biometric technology that recognizes the identity of humans through their walking patterns. Compared with other biometric technologies, gait recognition is more difficult to disguise and can be applied to the condition of long-distance without the cooperation of subjects. Thus, it has unique potential and wide application for crime prevention and social security. At present, most gait recognition methods directly extract features from the video frames to establish representations. However, these architectures learn representations from different features equally but do not pay enough attention to dynamic features, which refers to a representation of dynamic parts of silhouettes over time (e.g. legs). Since dynamic parts of the human body are more informative than other parts (e.g. bags) during walking, in this paper, we propose a novel and high-performance framework named DyGait. This is the first framework on gait recognition that is designed to focus on the extraction of dynamic features. Specifically, to take full advantage of the dynamic information, we propose a Dynamic Augmentation Module (DAM), which can automatically establish spatial-temporal feature representations of the dynamic parts of the human body. The experimental results show that our DyGait network outperforms other state-of-the-art gait recognition methods. It achieves an average Rank-1 accuracy of 71.4% on the GREW dataset, 66.3% on the Gait3D dataset, 98.4% on the CASIA-B dataset and 98.3% on the OU-MVLP dataset.
Authors:Heming Du, Chen Liu, Ming Wang, Lincheng Li, Shunli Zhang, Xin Yu
Abstract:
Existing gait recognition methods typically identify individuals based on the similarity between probe and gallery samples. However, these methods often neglect the fact that the gallery may not contain identities corresponding to the probes, leading to incorrect recognition.To identify Out-of-Gallery (OOG) gait queries, we propose an Evidence-based Match-status-Aware Gait Recognition (EMA-GR) framework. Inspired by Evidential Deep Learning (EDL), EMA-GR is designed to quantify the uncertainty associated with the match status of recognition. Thus, EMA-GR identifies whether the probe has a counterpart in the gallery. Specifically, we adopt an evidence collector to gather match status evidence from a recognition result pair and parameterize a Dirichlet distribution over the gathered evidence, following the Dempster-Shafer Theory of Evidence (DST). We measure the uncertainty and predict the match status of the recognition results, and thus determine whether the probe is an OOG query.To the best of our knowledge, our method is the first attempt to tackle OOG queries in gait recognition. Moreover, EMA-GR is agnostic against gait recognition methods and improves the robustness against OOG queries. Extensive experiments demonstrate that our method achieves state-of-the-art performance on datasets with OOG queries, and can also generalize well to other identity-retrieval tasks. Importantly, our method surpasses existing state-of-the-art methods by a substantial margin, achieving a 51.26% improvement when the OOG query rate is around 50% on OUMVLP.
Authors:Madhu Kiran, R Gnana Praveen, Le Thanh Nguyen-Meidine, Soufiane Belharbi, Louis-Antoine Blais-Morin, Eric Granger
Abstract:
In real-world video surveillance applications, person re-identification (ReID) suffers from the effects of occlusions and detection errors. Despite recent advances, occlusions continue to corrupt the features extracted by state-of-art CNN backbones, and thereby deteriorate the accuracy of ReID systems. To address this issue, methods in the literature use an additional costly process such as pose estimation, where pose maps provide supervision to exclude occluded regions. In contrast, we introduce a novel Holistic Guidance (HG) method that relies only on person identity labels, and on the distribution of pairwise matching distances of datasets to alleviate the problem of occlusion, without requiring additional supervision. Hence, our proposed student-teacher framework is trained to address the occlusion problem by matching the distributions of between- and within-class distances (DCDs) of occluded samples with that of holistic (non-occluded) samples, thereby using the latter as a soft labeled reference to learn well separated DCDs. This approach is supported by our empirical study where the distribution of between- and within-class distances between images have more overlap in occluded than holistic datasets. In particular, features extracted from both datasets are jointly learned using the student model to produce an attention map that allows separating visible regions from occluded ones. In addition to this, a joint generative-discriminative backbone is trained with a denoising autoencoder, allowing the system to self-recover from occlusions. Extensive experiments on several challenging public datasets indicate that the proposed approach can outperform state-of-the-art methods on both occluded and holistic datasets
Authors:Yang Qin, Chao Chen, Zhihang Fu, Dezhong Peng, Xi Peng, Peng Hu
Abstract:
Despite remarkable advancements in text-to-image person re-identification (TIReID) facilitated by the breakthrough of cross-modal embedding models, existing methods often struggle to distinguish challenging candidate images due to intrinsic limitations, such as network architecture and data quality. To address these issues, we propose an Interactive Cross-modal Learning framework (ICL), which leverages human-centered interaction to enhance the discriminability of text queries through external multimodal knowledge. To achieve this, we propose a plug-and-play Test-time Humane-centered Interaction (THI) module, which performs visual question answering focused on human characteristics, facilitating multi-round interactions with a multimodal large language model (MLLM) to align query intent with latent target images. Specifically, THI refines user queries based on the MLLM responses to reduce the gap to the best-matching images, thereby boosting ranking accuracy. Additionally, to address the limitation of low-quality training texts, we introduce a novel Reorganization Data Augmentation (RDA) strategy based on information enrichment and diversity enhancement to enhance query discriminability by enriching, decomposing, and reorganizing person descriptions. Extensive experiments on four TIReID benchmarks, i.e., CUHK-PEDES, ICFG-PEDES, RSTPReid, and UFine6926, demonstrate that our method achieves remarkable performance with substantial improvement.
Authors:Yongxiang Li, Yuan Sun, Yang Qin, Dezhong Peng, Xi Peng, Peng Hu
Abstract:
Unsupervised visible-infrared person re-identification (UVI-ReID) aims to retrieve pedestrian images across different modalities without costly annotations, but faces challenges due to the modality gap and lack of supervision. Existing methods often adopt self-training with clustering-generated pseudo-labels but implicitly assume these labels are always correct. In practice, however, this assumption fails due to inevitable pseudo-label noise, which hinders model learning. To address this, we introduce a new learning paradigm that explicitly considers Pseudo-Label Noise (PLN), characterized by three key challenges: noise overfitting, error accumulation, and noisy cluster correspondence. To this end, we propose a novel Robust Duality Learning framework (RoDE) for UVI-ReID to mitigate the effects of noisy pseudo-labels. First, to combat noise overfitting, a Robust Adaptive Learning mechanism (RAL) is proposed to dynamically emphasize clean samples while down-weighting noisy ones. Second, to alleviate error accumulation-where the model reinforces its own mistakes-RoDE employs dual distinct models that are alternately trained using pseudo-labels from each other, encouraging diversity and preventing collapse. However, this dual-model strategy introduces misalignment between clusters across models and modalities, creating noisy cluster correspondence. To resolve this, we introduce Cluster Consistency Matching (CCM), which aligns clusters across models and modalities by measuring cross-cluster similarity. Extensive experiments on three benchmarks demonstrate the effectiveness of RoDE.
Authors:Yiding Lu, Mouxing Yang, Dezhong Peng, Peng Hu, Yijie Lin, Xi Peng
Abstract:
Traditional text-based person ReID assumes that person descriptions from witnesses are complete and provided at once. However, in real-world scenarios, such descriptions are often partial or vague. To address this limitation, we introduce a new task called interactive person re-identification (Inter-ReID). Inter-ReID is a dialogue-based retrieval task that iteratively refines initial descriptions through ongoing interactions with the witnesses. To facilitate the study of this new task, we construct a dialogue dataset that incorporates multiple types of questions by decomposing fine-grained attributes of individuals. We further propose LLaVA-ReID, a question model that generates targeted questions based on visual and textual contexts to elicit additional details about the target person. Leveraging a looking-forward strategy, we prioritize the most informative questions as supervision during training. Experimental results on both Inter-ReID and text-based ReID benchmarks demonstrate that LLaVA-ReID significantly outperforms baselines.
Authors:Junyang Chen, Xiaoyu Xian, Zhijing Yang, Tianshui Chen, Yongyi Lu, Yukai Shi, Jinshan Pan, Liang Lin
Abstract:
Pose transfer aims to transfer a given person into a specified posture, has recently attracted considerable attention. A typical pose transfer framework usually employs representative datasets to train a discriminative model, which is often violated by out-of-distribution (OOD) instances. Recently, test-time adaption (TTA) offers a feasible solution for OOD data by using a pre-trained model that learns essential features with self-supervision. However, those methods implicitly make an assumption that all test distributions have a unified signal that can be learned directly. In open-world conditions, the pose transfer task raises various independent signals: OOD appearance and skeleton, which need to be extracted and distributed in speciality. To address this point, we develop a SEquential Test-time Adaption (SETA). In the test-time phrase, SETA extracts and distributes external appearance texture by augmenting OOD data for self-supervised training. To make non-Euclidean similarity among different postures explicit, SETA uses the image representations derived from a person re-identification (Re-ID) model for similarity computation. By addressing implicit posture representation in the test-time sequentially, SETA greatly improves the generalization performance of current pose transfer models. In our experiment, we first show that pose transfer can be applied to open-world applications, including Tiktok reenactment and celebrity motion synthesis.
Authors:Xiao Han, Yiming Ren, Peishan Cong, Yujing Sun, Jingya Wang, Lan Xu, Yuexin Ma
Abstract:
Human gait recognition is crucial in multimedia, enabling identification through walking patterns without direct interaction, enhancing the integration across various media forms in real-world applications like smart homes, healthcare and non-intrusive security. LiDAR's ability to capture depth makes it pivotal for robotic perception and holds promise for real-world gait recognition. In this paper, based on a single LiDAR, we present the Hierarchical Multi-representation Feature Interaction Network (HMRNet) for robust gait recognition. Prevailing LiDAR-based gait datasets primarily derive from controlled settings with predefined trajectory, remaining a gap with real-world scenarios. To facilitate LiDAR-based gait recognition research, we introduce FreeGait, a comprehensive gait dataset from large-scale, unconstrained settings, enriched with multi-modal and varied 2D/3D data. Notably, our approach achieves state-of-the-art performance on prior dataset (SUSTech1K) and on FreeGait.
Authors:Yafei Zhang, Lingqi Kong, Huafeng Li, Jie Wen
Abstract:
To reduce the reliance of visible-infrared person re-identification (ReID) models on labeled cross-modal samples, this paper explores a weakly supervised cross-modal person ReID method that uses only single-modal sample identity labels, addressing scenarios where cross-modal identity labels are unavailable. To mitigate the impact of missing cross-modal labels on model performance, we propose a heterogeneous expert collaborative consistency learning framework, designed to establish robust cross-modal identity correspondences in a weakly supervised manner. This framework leverages labeled data from each modality to independently train dedicated classification experts. To associate cross-modal samples, these classification experts act as heterogeneous predictors, predicting the identities of samples from the other modality. To improve prediction accuracy, we design a cross-modal relationship fusion mechanism that effectively integrates predictions from different experts. Under the implicit supervision provided by cross-modal identity correspondences, collaborative and consistent learning among the experts is encouraged, significantly enhancing the model's ability to extract modality-invariant features and improve cross-modal identity recognition. Experimental results on two challenging datasets validate the effectiveness of the proposed method.
Authors:Yukang Zhang, Yang Lu, Yan Yan, Hanzi Wang, Xuelong Li
Abstract:
The key of visible-infrared person re-identification (VIReID) lies in how to minimize the modality discrepancy between visible and infrared images. Existing methods mainly exploit the spatial information while ignoring the discriminative frequency information. To address this issue, this paper aims to reduce the modality discrepancy from the frequency domain perspective. Specifically, we propose a novel Frequency Domain Nuances Mining (FDNM) method to explore the cross-modality frequency domain information, which mainly includes an amplitude guided phase (AGP) module and an amplitude nuances mining (ANM) module. These two modules are mutually beneficial to jointly explore frequency domain visible-infrared nuances, thereby effectively reducing the modality discrepancy in the frequency domain. Besides, we propose a center-guided nuances mining loss to encourage the ANM module to preserve discriminative identity information while discovering diverse cross-modality nuances. Extensive experiments show that the proposed FDNM has significant advantages in improving the performance of VIReID. Specifically, our method outperforms the second-best method by 5.2\% in Rank-1 accuracy and 5.8\% in mAP on the SYSU-MM01 dataset under the indoor search mode, respectively. Besides, we also validate the effectiveness and generalization of our method on the challenging visible-infrared face recognition task. \textcolor{magenta}{The code will be available.}
Authors:Huafeng Li, Yanmei Mao, Yafei Zhang, Guanqiu Qi, Zhengtao Yu
Abstract:
Existing person re-identification (re-ID) research mainly focuses on pedestrian identity matching across cameras in adjacent areas. However, in reality, it is inevitable to face the problem of pedestrian identity matching across long-distance scenes. The cross-camera pedestrian samples collected from long-distance scenes often have no positive samples. It is extremely challenging to use cross-camera negative samples to achieve cross-region pedestrian identity matching. Therefore, a novel domain-adaptive person re-ID method that focuses on cross-camera consistent discriminative feature learning under the supervision of unpaired samples is proposed. This method mainly includes category synergy co-promotion module (CSCM) and cross-camera consistent feature learning module (CCFLM). In CSCM, a task-specific feature recombination (FRT) mechanism is proposed. This mechanism first groups features according to their contributions to specific tasks. Then an interactive promotion learning (IPL) scheme between feature groups is developed and embedded in this mechanism to enhance feature discriminability. Since the control parameters of the specific task model are reduced after division by task, the generalization ability of the model is improved. In CCFLM, instance-level feature distribution alignment and cross-camera identity consistent learning methods are constructed. Therefore, the supervised model training is achieved under the style supervision of the target domain by exchanging styles between source-domain samples and target-domain samples, and the challenges caused by the lack of cross-camera paired samples are solved by utilizing cross-camera similar samples. In experiments, three challenging datasets are used as target domains, and the effectiveness of the proposed method is demonstrated through four experimental settings.
Authors:Dingqiang Ye, Chao Fan, Zhanbo Huang, Chengwen Luo, Jianqiang Li, Shiqi Yu, Xiaoming Liu
Abstract:
Large vision models (LVM) based gait recognition has achieved impressive performance. However, existing LVM-based approaches may overemphasize gait priors while neglecting the intrinsic value of LVM itself, particularly the rich, distinct representations across its multi-layers. To adequately unlock LVM's potential, this work investigates the impact of layer-wise representations on downstream recognition tasks. Our analysis reveals that LVM's intermediate layers offer complementary properties across tasks, integrating them yields an impressive improvement even without rich well-designed gait priors. Building on this insight, we propose a simple and universal baseline for LVM-based gait recognition, termed BiggerGait. Comprehensive evaluations on CCPG, CAISA-B*, SUSTech1K, and CCGR\_MINI validate the superiority of BiggerGait across both within- and cross-domain tasks, establishing it as a simple yet practical baseline for gait representation learning. All the models and code will be publicly available.
Authors:Yunlong Huang, Junshuo Liu, Jianan Zhang, Tiebin Mi, Xin Shi, Robert Caiming Qiu
Abstract:
Gait recognition with radio frequency (RF) signals enables many potential applications requiring accurate identification. However, current systems require individuals to be within a line-of-sight (LOS) environment and struggle with low signal-to-noise ratio (SNR) when signals traverse concrete and thick walls. To address these challenges, we present TRGR, a novel transmissive reconfigurable intelligent surface (RIS)-aided gait recognition system. TRGR can recognize human identities through walls using only the magnitude measurements of channel state information (CSI) from a pair of transceivers. Specifically, by leveraging transmissive RIS alongside a configuration alternating optimization algorithm, TRGR enhances wall penetration and signal quality, enabling accurate gait recognition. Furthermore, a residual convolution network (RCNN) is proposed as the backbone network to learn robust human information. Experimental results confirm the efficacy of transmissive RIS, highlighting the significant potential of transmissive RIS in enhancing RF-based gait recognition systems. Extensive experiment results show that TRGR achieves an average accuracy of 97.88\% in identifying persons when signals traverse concrete walls, demonstrating the effectiveness and robustness of TRGR.
Authors:Yunpeng Zhai, Peixi Peng, Mengxi Jia, Shiyong Li, Weiqiang Chen, Xuesong Gao, Yonghong Tian
Abstract:
Unsupervised person re-identification has achieved great success through the self-improvement of individual neural networks. However, limited by the lack of diversity of discriminant information, a single network has difficulty learning sufficient discrimination ability by itself under unsupervised conditions. To address this limit, we develop a population-based evolutionary gaming (PEG) framework in which a population of diverse neural networks is trained concurrently through selection, reproduction, mutation, and population mutual learning iteratively. Specifically, the selection of networks to preserve is modeled as a cooperative game and solved by the best-response dynamics, then the reproduction and mutation are implemented by cloning and fluctuating hyper-parameters of networks to learn more diversity, and population mutual learning improves the discrimination of networks by knowledge distillation from each other within the population. In addition, we propose a cross-reference scatter (CRS) to approximately evaluate re-ID models without labeled samples and adopt it as the criterion of network selection in PEG. CRS measures a model's performance by indirectly estimating the accuracy of its predicted pseudo-labels according to the cohesion and separation of the feature space. Extensive experiments demonstrate that (1) CRS approximately measures the performance of models without labeled samples; (2) and PEG produces new state-of-the-art accuracy for person re-identification, indicating the great potential of population-based network cooperative training for unsupervised learning.
Authors:Chuanfu Shen, Chao Fan, Wei Wu, Rui Wang, George Q. Huang, Shiqi Yu
Abstract:
Video-based gait recognition has achieved impressive results in constrained scenarios. However, visual cameras neglect human 3D structure information, which limits the feasibility of gait recognition in the 3D wild world. Instead of extracting gait features from images, this work explores precise 3D gait features from point clouds and proposes a simple yet efficient 3D gait recognition framework, termed LidarGait. Our proposed approach projects sparse point clouds into depth maps to learn the representations with 3D geometry information, which outperforms existing point-wise and camera-based methods by a significant margin. Due to the lack of point cloud datasets, we built the first large-scale LiDAR-based gait recognition dataset, SUSTech1K, collected by a LiDAR sensor and an RGB camera. The dataset contains 25,239 sequences from 1,050 subjects and covers many variations, including visibility, views, occlusions, clothing, carrying, and scenes. Extensive experiments show that (1) 3D structure information serves as a significant feature for gait recognition. (2) LidarGait outperforms existing point-based and silhouette-based methods by a significant margin, while it also offers stable cross-view results. (3) The LiDAR sensor is superior to the RGB camera for gait recognition in the outdoor environment. The source code and dataset have been made available at https://lidargait.github.io.
Authors:Saihui Hou, Chenye Wang, Wenpeng Lang, Zhengxiang Lan, Yongzhen Huang
Abstract:
Recent advancements in gait recognition have significantly enhanced performance by treating silhouettes as either an unordered set or an ordered sequence. However, both set-based and sequence-based approaches exhibit notable limitations. Specifically, set-based methods tend to overlook short-range temporal context for individual frames, while sequence-based methods struggle to capture long-range temporal dependencies effectively. To address these challenges, we draw inspiration from human identification and propose a new perspective that conceptualizes human gait as a composition of individualized actions. Each action is represented by a series of frames, randomly selected from a continuous segment of the sequence, which we term a snippet. Fundamentally, the collection of snippets for a given sequence enables the incorporation of multi-scale temporal context, facilitating more comprehensive gait feature learning. Moreover, we introduce a non-trivial solution for snippet-based gait recognition, focusing on Snippet Sampling and Snippet Modeling as key components. Extensive experiments on four widely-used gait datasets validate the effectiveness of our proposed approach and, more importantly, highlight the potential of gait snippets. For instance, our method achieves the rank-1 accuracy of 77.5% on Gait3D and 81.7% on GREW using a 2D convolution-based backbone.
Authors:Gavriel Habib, Noa Barzilay, Or Shimshi, Rami Ben-Ari, Nir Darshan
Abstract:
Gait recognition is a computer vision task that identifies individuals based on their walking patterns. Gait recognition performance is commonly evaluated by ranking a gallery of candidates and measuring the accuracy at the top Rank-$K$. Existing models are typically single-staged, i.e. searching for the probe's nearest neighbors in a gallery using a single global feature representation. Although these models typically excel at retrieving the correct identity within the top-$K$ predictions, they struggle when hard negatives appear in the top short-list, leading to relatively low performance at the highest ranks (e.g., Rank-1). In this paper, we introduce CarGait, a Cross-Attention Re-ranking method for gait recognition, that involves re-ordering the top-$K$ list leveraging the fine-grained correlations between pairs of gait sequences through cross-attention between gait strips. This re-ranking scheme can be adapted to existing single-stage models to enhance their final results. We demonstrate the capabilities of CarGait by extensive experiments on three common gait datasets, Gait3D, GREW, and OU-MVLP, and seven different gait models, showing consistent improvements in Rank-1,5 accuracy, superior results over existing re-ranking methods, and strong baselines.
Authors:Yuan Bian, Min Liu, Yunqi Yi, Xueping Wang, Yaonan Wang
Abstract:
Person re-identification (re-id) models are vital in security surveillance systems, requiring transferable adversarial attacks to explore the vulnerabilities of them. Recently, vision-language models (VLM) based attacks have shown superior transferability by attacking generalized image and textual features of VLM, but they lack comprehensive feature disruption due to the overemphasis on discriminative semantics in integral representation. In this paper, we introduce the Attribute-aware Prompt Attack (AP-Attack), a novel method that leverages VLM's image-text alignment capability to explicitly disrupt fine-grained semantic features of pedestrian images by destroying attribute-specific textual embeddings. To obtain personalized textual descriptions for individual attributes, textual inversion networks are designed to map pedestrian images to pseudo tokens that represent semantic embeddings, trained in the contrastive learning manner with images and a predefined prompt template that explicitly describes the pedestrian attributes. Inverted benign and adversarial fine-grained textual semantics facilitate attacker in effectively conducting thorough disruptions, enhancing the transferability of adversarial examples. Extensive experiments show that AP-Attack achieves state-of-the-art transferability, significantly outperforming previous methods by 22.9% on mean Drop Rate in cross-model&dataset attack scenarios.
Authors:Huazhong Zhao, Lei Qi, Xin Geng
Abstract:
The Visual Language Model, known for its robust cross-modal capabilities, has been extensively applied in various computer vision tasks. In this paper, we explore the use of CLIP (Contrastive Language-Image Pretraining), a vision-language model pretrained on large-scale image-text pairs to align visual and textual features, for acquiring fine-grained and domain-invariant representations in generalizable person re-identification. The adaptation of CLIP to the task presents two primary challenges: learning more fine-grained features to enhance discriminative ability, and learning more domain-invariant features to improve the model's generalization capabilities. To mitigate the first challenge thereby enhance the ability to learn fine-grained features, a three-stage strategy is proposed to boost the accuracy of text descriptions. Initially, the image encoder is trained to effectively adapt to person re-identification tasks. In the second stage, the features extracted by the image encoder are used to generate textual descriptions (i.e., prompts) for each image. Finally, the text encoder with the learned prompts is employed to guide the training of the final image encoder. To enhance the model's generalization capabilities to unseen domains, a bidirectional guiding method is introduced to learn domain-invariant image features. Specifically, domain-invariant and domain-relevant prompts are generated, and both positive (pulling together image features and domain-invariant prompts) and negative (pushing apart image features and domain-relevant prompts) views are used to train the image encoder. Collectively, these strategies contribute to the development of an innovative CLIP-based framework for learning fine-grained generalized features in person re-identification.
Authors:Yuan Bian, Min Liu, Yunqi Yi, Xueping Wang, Yunfeng Ma, Yaonan Wang
Abstract:
Deep learning based person re-identification (re-id) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnerable to adversarial examples (AEs), leaving the robustness of multi-modality re-id models unexplored. Due to the lack of knowledge about the specific type of model deployed in the target black-box surveillance system, we aim to generate modality unified AEs for omni-modality (single-, cross- and multi-modality) re-id models. Specifically, we propose a novel Modality Unified Attack method to train modality-specific adversarial generators to generate AEs that effectively attack different omni-modality models. A multi-modality model is adopted as the surrogate model, wherein the features of each modality are perturbed by metric disruption loss before fusion. To collapse the common features of omni-modality models, Cross Modality Simulated Disruption approach is introduced to mimic the cross-modality feature embeddings by intentionally feeding images to non-corresponding modality-specific subnetworks of the surrogate model. Moreover, Multi Modality Collaborative Disruption strategy is devised to facilitate the attacker to comprehensively corrupt the informative content of person images by leveraging a multi modality feature collaborative metric disruption loss. Extensive experiments show that our MUA method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate, respectively.
Authors:Huazhong Zhao, Lei Qi, Xin Geng
Abstract:
Recent advancements in pre-trained vision-language models like CLIP have shown promise in person re-identification (ReID) applications. However, their performance in generalizable person re-identification tasks remains suboptimal. The large-scale and diverse image-text pairs used in CLIP's pre-training may lead to a lack or insufficiency of certain fine-grained features. In light of these challenges, we propose a hard sample mining method called DFGS (Depth-First Graph Sampler), based on depth-first search, designed to offer sufficiently challenging samples to enhance CLIP's ability to extract fine-grained features. DFGS can be applied to both the image encoder and the text encoder in CLIP. By leveraging the powerful cross-modal learning capabilities of CLIP, we aim to apply our DFGS method to extract challenging samples and form mini-batches with high discriminative difficulty, providing the image model with more efficient and challenging samples that are difficult to distinguish, thereby enhancing the model's ability to differentiate between individuals. Our results demonstrate significant improvements over other methods, confirming the effectiveness of DFGS in providing challenging samples that enhance CLIP's performance in generalizable person re-identification.
Authors:Saihui Hou, Panjian Huang, Zengbin Wang, Yuan Liu, Zeyu Li, Man Zhang, Yongzhen Huang
Abstract:
This paper addresses the challenge of animal re-identification, an emerging field that shares similarities with person re-identification but presents unique complexities due to the diverse species, environments and poses. To facilitate research in this domain, we introduce OpenAnimals, a flexible and extensible codebase designed specifically for animal re-identification. We conduct a comprehensive study by revisiting several state-of-the-art person re-identification methods, including BoT, AGW, SBS, and MGN, and evaluate their effectiveness on animal re-identification benchmarks such as HyenaID, LeopardID, SeaTurtleID, and WhaleSharkID. Our findings reveal that while some techniques generalize well, many do not, underscoring the significant differences between the two tasks. To bridge this gap, we propose ARBase, a strong \textbf{Base} model tailored for \textbf{A}nimal \textbf{R}e-identification, which incorporates insights from extensive experiments and introduces simple yet effective animal-oriented designs. Experiments demonstrate that ARBase consistently outperforms existing baselines, achieving state-of-the-art performance across various benchmarks.
Authors:Yuan Bian, Min Liu, Xueping Wang, Yunfeng Ma, Yaonan Wang
Abstract:
Deep learning-based person re-identification (re-id) models are widely employed in surveillance systems and inevitably inherit the vulnerability of deep networks to adversarial attacks. Existing attacks merely consider cross-dataset and cross-model transferability, ignoring the cross-test capability to perturb models trained in different domains. To powerfully examine the robustness of real-world re-id models, the Meta Transferable Generative Attack (MTGA) method is proposed, which adopts meta-learning optimization to promote the generative attacker producing highly transferable adversarial examples by learning comprehensively simulated transfer-based cross-model\&dataset\&test black-box meta attack tasks. Specifically, cross-model\&dataset black-box attack tasks are first mimicked by selecting different re-id models and datasets for meta-train and meta-test attack processes. As different models may focus on different feature regions, the Perturbation Random Erasing module is further devised to prevent the attacker from learning to only corrupt model-specific features. To boost the attacker learning to possess cross-test transferability, the Normalization Mix strategy is introduced to imitate diverse feature embedding spaces by mixing multi-domain statistics of target models. Extensive experiments show the superiority of MTGA, especially in cross-model\&dataset and cross-model\&dataset\&test attacks, our MTGA outperforms the SOTA methods by 21.5\% and 11.3\% on mean mAP drop rate, respectively. The code of MTGA will be released after the paper is accepted.
Authors:Minchul Kim, Yiyang Su, Feng Liu, Anil Jain, Xiaoming Liu
Abstract:
In this paper, we address the challenge of making ViT models more robust to unseen affine transformations. Such robustness becomes useful in various recognition tasks such as face recognition when image alignment failures occur. We propose a novel method called KP-RPE, which leverages key points (e.g.~facial landmarks) to make ViT more resilient to scale, translation, and pose variations. We begin with the observation that Relative Position Encoding (RPE) is a good way to bring affine transform generalization to ViTs. RPE, however, can only inject the model with prior knowledge that nearby pixels are more important than far pixels. Keypoint RPE (KP-RPE) is an extension of this principle, where the significance of pixels is not solely dictated by their proximity but also by their relative positions to specific keypoints within the image. By anchoring the significance of pixels around keypoints, the model can more effectively retain spatial relationships, even when those relationships are disrupted by affine transformations. We show the merit of KP-RPE in face and gait recognition. The experimental results demonstrate the effectiveness in improving face recognition performance from low-quality images, particularly where alignment is prone to failure. Code and pre-trained models are available.
Authors:Feng Liu, Minchul Kim, ZiAng Gu, Anil Jain, Xiaoming Liu
Abstract:
Long-Term Person Re-Identification (LT-ReID) has become increasingly crucial in computer vision and biometrics. In this work, we aim to extend LT-ReID beyond pedestrian recognition to include a wider range of real-world human activities while still accounting for cloth-changing scenarios over large time gaps. This setting poses additional challenges due to the geometric misalignment and appearance ambiguity caused by the diversity of human pose and clothing. To address these challenges, we propose a new approach 3DInvarReID for (i) disentangling identity from non-identity components (pose, clothing shape, and texture) of 3D clothed humans, and (ii) reconstructing accurate 3D clothed body shapes and learning discriminative features of naked body shapes for person ReID in a joint manner. To better evaluate our study of LT-ReID, we collect a real-world dataset called CCDA, which contains a wide variety of human activities and clothing changes. Experimentally, we show the superior performance of our approach for person ReID.
Authors:Gavriel Habib, Noa Barzilay, Or Shimshi, Rami Ben-Ari, Nir Darshan
Abstract:
Gait Recognition is a computer vision task aiming to identify people by their walking patterns. Although existing methods often show high performance on specific datasets, they lack the ability to generalize to unseen scenarios. Unsupervised Domain Adaptation (UDA) tries to adapt a model, pre-trained in a supervised manner on a source domain, to an unlabelled target domain. There are only a few works on UDA for gait recognition proposing solutions to limited scenarios. In this paper, we reveal a fundamental phenomenon in adaptation of gait recognition models, caused by the bias in the target domain to viewing angle or walking direction. We then suggest a remedy to reduce this bias with a novel triplet selection strategy combined with curriculum learning. To this end, we present Gait Orientation-based method for Unsupervised Domain Adaptation (GOUDA). We provide extensive experiments on four widely-used gait datasets, CASIA-B, OU-MVLP, GREW, and Gait3D, and on three backbones, GaitSet, GaitPart, and GaitGL, justifying the view bias and showing the superiority of our proposed method over prior UDA works.
Authors:Xuqian Ren, Shaopeng Yang, Saihui Hou, Chunshui Cao, Xu Liu, Yongzhen Huang
Abstract:
Previous gait recognition methods primarily trained on labeled datasets, which require painful labeling effort. However, using a pre-trained model on a new dataset without fine-tuning can lead to significant performance degradation. So to make the pre-trained gait recognition model able to be fine-tuned on unlabeled datasets, we propose a new task: Unsupervised Gait Recognition (UGR). We introduce a new cluster-based baseline to solve UGR with cluster-level contrastive learning. But we further find more challenges this task meets. First, sequences of the same person in different clothes tend to cluster separately due to the significant appearance changes. Second, sequences taken from 0° and 180° views lack walking postures and do not cluster with sequences taken from other views. To address these challenges, we propose a Selective Fusion method, which includes Selective Cluster Fusion (SCF) and Selective Sample Fusion (SSF). With SCF, we merge matched clusters of the same person wearing different clothes by updating the cluster-level memory bank with a multi-cluster update strategy. And in SSF, we merge sequences taken from front/back views gradually with curriculum learning. Extensive experiments show the effectiveness of our method in improving the rank-1 accuracy in walking with different coats condition and front/back views conditions.
Authors:Xuqian Ren, Saihui Hou, Chunshui Cao, Xu Liu, Yongzhen Huang
Abstract:
Gait recognition is instrumental in crime prevention and social security, for it can be conducted at a long distance to figure out the identity of persons. However, existing datasets and methods cannot satisfactorily deal with the most challenging cloth-changing problem in practice. Specifically, the practical gait models are usually trained on automatically labeled data, in which the sequences' views and cloth conditions of each person have some restrictions. To be concrete, the cross-view sub-dataset only has normal walking condition without cloth-changing, while the cross-cloth sub-dataset has cloth-changing sequences but only in front views. As a result, the cloth-changing accuracy cannot meet practical requirements. In this work, we formulate the problem as Realistic Cloth-Changing Gait Recognition (abbreviated as RCC-GR) and we construct two benchmarks: CASIA-BN-RCC and OUMVLP-RCC, to simulate the above setting. Furthermore, we propose a new framework called Progressive Feature Learning that can be applied with off-the-shelf backbones to improve their performance in RCC-GR. Specifically, in our framework, we design Progressive Mapping and Progressive Uncertainty to extract cross-view features and then extract cross-cloth features on the basis. In this way, the feature from the cross-view sub-dataset can first dominate the feature space and relieve the uneven distribution caused by the adverse effect from the cross-cloth sub-dataset. The experiments on our benchmarks show that our framework can effectively improve recognition performance, especially in the cloth-changing conditions.
Authors:Xueping Wang, Sujoy Paul, Dripta S. Raychaudhuri, Min Liu, Yaonan Wang, Amit K. Roy-Chowdhury
Abstract:
Most person re-identification methods, being supervised techniques, suffer from the burden of massive annotation requirement. Unsupervised methods overcome this need for labeled data, but perform poorly compared to the supervised alternatives. In order to cope with this issue, we introduce the problem of learning person re-identification models from videos with weak supervision. The weak nature of the supervision arises from the requirement of video-level labels, i.e. person identities who appear in the video, in contrast to the more precise framelevel annotations. Towards this goal, we propose a multiple instance attention learning framework for person re-identification using such video-level labels. Specifically, we first cast the video person re-identification task into a multiple instance learning setting, in which person images in a video are collected into a bag. The relations between videos with similar labels can be utilized to identify persons, on top of that, we introduce a co-person attention mechanism which mines the similarity correlations between videos with person identities in common. The attention weights are obtained based on all person images instead of person tracklets in a video, making our learned model less affected by noisy annotations. Extensive experiments demonstrate the superiority of the proposed method over the related methods on two weakly labeled person re-identification datasets.
Authors:Shizhou Zhang, Wenlong Luo, De Cheng, Qingchun Yang, Lingyan Ran, Yinghui Xing, Yanning Zhang
Abstract:
In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
Authors:Wentao Tan, Changxing Ding, Jiayu Jiang, Fei Wang, Yibing Zhan, Dapeng Tao
Abstract:
Text-to-image person re-identification (ReID) retrieves pedestrian images according to textual descriptions. Manually annotating textual descriptions is time-consuming, restricting the scale of existing datasets and therefore the generalization ability of ReID models. As a result, we study the transferable text-to-image ReID problem, where we train a model on our proposed large-scale database and directly deploy it to various datasets for evaluation. We obtain substantial training data via Multi-modal Large Language Models (MLLMs). Moreover, we identify and address two key challenges in utilizing the obtained textual descriptions. First, an MLLM tends to generate descriptions with similar structures, causing the model to overfit specific sentence patterns. Thus, we propose a novel method that uses MLLMs to caption images according to various templates. These templates are obtained using a multi-turn dialogue with a Large Language Model (LLM). Therefore, we can build a large-scale dataset with diverse textual descriptions. Second, an MLLM may produce incorrect descriptions. Hence, we introduce a novel method that automatically identifies words in a description that do not correspond with the image. This method is based on the similarity between one text and all patch token embeddings in the image. Then, we mask these words with a larger probability in the subsequent training epoch, alleviating the impact of noisy textual descriptions. The experimental results demonstrate that our methods significantly boost the direct transfer text-to-image ReID performance. Benefiting from the pre-trained model weights, we also achieve state-of-the-art performance in the traditional evaluation settings.
Authors:Prakash Chandra Chhipa, Meenakshi Subhash Chippa, Kanjar De, Rajkumar Saini, Marcus Liwicki, Mubarak Shah
Abstract:
Perspective distortion (PD) causes unprecedented changes in shape, size, orientation, angles, and other spatial relationships of visual concepts in images. Precisely estimating camera intrinsic and extrinsic parameters is a challenging task that prevents synthesizing perspective distortion. Non-availability of dedicated training data poses a critical barrier to developing robust computer vision methods. Additionally, distortion correction methods make other computer vision tasks a multi-step approach and lack performance. In this work, we propose mitigating perspective distortion (MPD) by employing a fine-grained parameter control on a specific family of Möbius transform to model real-world distortion without estimating camera intrinsic and extrinsic parameters and without the need for actual distorted data. Also, we present a dedicated perspectively distorted benchmark dataset, ImageNet-PD, to benchmark the robustness of deep learning models against this new dataset. The proposed method outperforms existing benchmarks, ImageNet-E and ImageNet-X. Additionally, it significantly improves performance on ImageNet-PD while consistently performing on standard data distribution. Notably, our method shows improved performance on three PD-affected real-world applications crowd counting, fisheye image recognition, and person re-identification and one PD-affected challenging CV task: object detection. The source code, dataset, and models are available on the project webpage at https://prakashchhipa.github.io/projects/mpd.
Authors:Yiyang Su, Yunping Shi, Feng Liu, Xiaoming Liu
Abstract:
Recently, research interest in person re-identification (ReID) has increasingly focused on video-based scenarios, which are essential for robust surveillance and security in varied and dynamic environments. However, existing video-based ReID methods often overlook the necessity of identifying and selecting the most discriminative features from both videos in a query-gallery pair for effective matching. To address this issue, we propose a novel Hierarchical and Adaptive Mixture of Biometric Experts (HAMoBE) framework, which leverages multi-layer features from a pre-trained large model (e.g., CLIP) and is designed to mimic human perceptual mechanisms by independently modeling key biometric features--appearance, static body shape, and dynamic gait--and adaptively integrating them. Specifically, HAMoBE includes two levels: the first level extracts low-level features from multi-layer representations provided by the frozen large model, while the second level consists of specialized experts focusing on long-term, short-term, and temporal features. To ensure robust matching, we introduce a new dual-input decision gating network that dynamically adjusts the contributions of each expert based on their relevance to the input scenarios. Extensive evaluations on benchmarks like MEVID demonstrate that our approach yields significant performance improvements (e.g., +13.0% Rank-1 accuracy).
Authors:Jiahang Zhang, Mingtong Chen, Zhengbao Yang
Abstract:
This project presents the development of a gait recognition system using Tiny Machine Learning (Tiny ML) and Inertial Measurement Unit (IMU) sensors. The system leverages the XIAO-nRF52840 Sense microcontroller and the LSM6DS3 IMU sensor to capture motion data, including acceleration and angular velocity, from four distinct activities: walking, stationary, going upstairs, and going downstairs. The data collected is processed through Edge Impulse, an edge AI platform, which enables the training of machine learning models that can be deployed directly onto the microcontroller for real-time activity classification.The data preprocessing step involves extracting relevant features from the raw sensor data using techniques such as sliding windows and data normalization, followed by training a Deep Neural Network (DNN) classifier for activity recognition. The model achieves over 80% accuracy on a test dataset, demonstrating its ability to classify the four activities effectively. Additionally, the platform enables anomaly detection, further enhancing the robustness of the system. The integration of Tiny ML ensures low-power operation, making it suitable for battery-powered or energy-harvesting devices.
Authors:Yunfei Xie, Yuxuan Cheng, Juncheng Wu, Haoyu Zhang, Yuyin Zhou, Shoudong Han
Abstract:
Recent advancements in adapting vision-language pre-training models like CLIP for person re-identification (ReID) tasks often rely on complex adapter design or modality-specific tuning while neglecting cross-modal interaction, leading to high computational costs or suboptimal alignment. To address these limitations, we propose a simple yet effective framework named Selective Cross-modal Prompt Tuning (SCING) that enhances cross-modal alignment and robustness against real-world perturbations. Our method introduces two key innovations: Firstly, we proposed Selective Visual Prompt Fusion (SVIP), a lightweight module that dynamically injects discriminative visual features into text prompts via a cross-modal gating mechanism. Moreover, the proposed Perturbation-Driven Consistency Alignment (PDCA) is a dual-path training strategy that enforces invariant feature alignment under random image perturbations by regularizing consistency between original and augmented cross-modal embeddings. Extensive experiments are conducted on several popular benchmarks covering Market1501, DukeMTMC-ReID, Occluded-Duke, Occluded-REID, and P-DukeMTMC, which demonstrate the impressive performance of the proposed method. Notably, our framework eliminates heavy adapters while maintaining efficient inference, achieving an optimal trade-off between performance and computational overhead. The code will be released upon acceptance.
Authors:Inès Hyeonsu Kim, JoungBin Lee, Woojeong Jin, Soowon Son, Kyusun Cho, Junyoung Seo, Min-Seop Kwak, Seokju Cho, JeongYeol Baek, Byeongwon Lee, Seungryong Kim
Abstract:
Person re-identification (Re-ID) often faces challenges due to variations in human poses and camera viewpoints, which significantly affect the appearance of individuals across images. Existing datasets frequently lack diversity and scalability in these aspects, hindering the generalization of Re-ID models to new camera systems. We propose Pose-dIVE, a novel data augmentation approach that incorporates sparse and underrepresented human pose and camera viewpoint examples into the training data, addressing the limited diversity in the original training data distribution. Our objective is to augment the training dataset to enable existing Re-ID models to learn features unbiased by human pose and camera viewpoint variations. To achieve this, we leverage the knowledge of pre-trained large-scale diffusion models. By conditioning the diffusion model on both the human pose and camera viewpoint concurrently through the SMPL model, we generate training data with diverse human poses and camera viewpoints. Experimental results demonstrate the effectiveness of our method in addressing human pose bias and enhancing the generalizability of Re-ID models compared to other data augmentation-based Re-ID approaches.
Authors:Yitu Wang, Shiyu Li, Qilin Zheng, Linghao Song, Zongwang Li, Andrew Chang, Hai "Helen" Li, Yiran Chen
Abstract:
Approximate nearest neighbor search (ANNS) is a key retrieval technique for vector database and many data center applications, such as person re-identification and recommendation systems. It is also fundamental to retrieval augmented generation (RAG) for large language models (LLM) now. Among all the ANNS algorithms, graph-traversal-based ANNS achieves the highest recall rate. However, as the size of dataset increases, the graph may require hundreds of gigabytes of memory, exceeding the main memory capacity of a single workstation node. Although we can do partitioning and use solid-state drive (SSD) as the backing storage, the limited SSD I/O bandwidth severely degrades the performance of the system. To address this challenge, we present NDSEARCH, a hardware-software co-designed near-data processing (NDP) solution for ANNS processing. NDSEARCH consists of a novel in-storage computing architecture, namely, SEARSSD, that supports the ANNS kernels and leverages logic unit (LUN)-level parallelism inside the NAND flash chips. NDSEARCH also includes a processing model that is customized for NDP and cooperates with SEARSSD. The processing model enables us to apply a two-level scheduling to improve the data locality and exploit the internal bandwidth in NDSEARCH, and a speculative searching mechanism to further accelerate the ANNS workload. Our results show that NDSEARCH improves the throughput by up to 31.7x, 14.6x, 7.4x 2.9x over CPU, GPU, a state-of-the-art SmartSSD-only design, and DeepStore, respectively. NDSEARCH also achieves two orders-of-magnitude higher energy efficiency than CPU and GPU.
Authors:Hongjun Wang, Jiyuan Chen, Zhengwei Yin, Xuan Song, Yinqiang Zheng
Abstract:
Cloth-Changing Person Re-Identification (CC-ReID) involves recognizing individuals in images regardless of clothing status. In this paper, we empirically and experimentally demonstrate that completely eliminating or fully retaining clothing features is detrimental to the task. Existing work, either relying on clothing labels, silhouettes, or other auxiliary data, fundamentally aim to balance the learning of clothing and identity features. However, we practically find that achieving this balance is challenging and nuanced. In this study, we introduce a novel module called Diverse Norm, which expands personal features into orthogonal spaces and employs channel attention to separate clothing and identity features. A sample re-weighting optimization strategy is also introduced to guarantee the opposite optimization direction. Diverse Norm presents a simple yet effective approach that does not require additional data. Furthermore, Diverse Norm can be seamlessly integrated ResNet50 and significantly outperforms the state-of-the-art methods.
Authors:Federico Cunico, Marco Cristani
Abstract:
In recent years, the development of deep learning approaches for the task of person re-identification led to impressive results. However, this comes with a limitation for industrial and practical real-world applications. Firstly, most of the existing works operate on closed-world scenarios, in which the people to re-identify (probes) are compared to a closed-set (gallery). Real-world scenarios often are open-set problems in which the gallery is not known a priori, but the number of open-set approaches in the literature is significantly lower. Secondly, challenges such as multi-camera setups, occlusions, real-time requirements, etc., further constrain the applicability of off-the-shelf methods. This work presents MICRO-TRACK, a Modular Industrial multi-Camera Re_identification and Open-set Tracking system that is real-time, scalable, and easy to integrate into existing industrial surveillance scenarios. Furthermore, we release a novel Re-ID and tracking dataset acquired in an industrial manufacturing facility, dubbed Facility-ReID, consisting of 18-minute videos captured by 8 surveillance cameras.
Authors:Hanjing Ye, Jieting Zhao, Yu Zhan, Weinan Chen, Li He, Hong Zhang
Abstract:
Robot person following (RPF) is a crucial capability in human-robot interaction (HRI) applications, allowing a robot to persistently follow a designated person. In practical RPF scenarios, the person can often be occluded by other objects or people. Consequently, it is necessary to re-identify the person when he/she reappears within the robot's field of view. Previous person re-identification (ReID) approaches to person following rely on a fixed feature extractor. Such an approach often fails to generalize to different viewpoints and lighting conditions in practical RPF environments. In other words, it suffers from the so-called domain shift problem where it cannot re-identify the person when his re-appearance is out of the domain modeled by the fixed feature extractor. To mitigate this problem, we propose a ReID framework for RPF where we use a feature extractor that is optimized online with both short-term and long-term experiences (i.e., recently and previously observed samples during RPF) using the online continual learning (OCL) framework. The long-term experiences are maintained by a memory manager to enable OCL to update the feature extractor. Our experiments demonstrate that even in the presence of severe appearance changes and distractions from visually similar people, the proposed method can still re-identify the person more accurately than the state-of-the-art methods.
Authors:Lei Tan, Pingyang Dai, Qixiang Ye, Mingliang Xu, Yongjian Wu, Rongrong Ji
Abstract:
Visible-infrared person re-identification (VI-ReID) aims to match specific pedestrian images from different modalities. Although suffering an extra modality discrepancy, existing methods still follow the softmax loss training paradigm, which is widely used in single-modality classification tasks. The softmax loss lacks an explicit penalty for the apparent modality gap, which adversely limits the performance upper bound of the VI-ReID task. In this paper, we propose the spectral-aware softmax (SA-Softmax) loss, which can fully explore the embedding space with the modality information and has clear interpretability. Specifically, SA-Softmax loss utilizes an asynchronous optimization strategy based on the modality prototype instead of the synchronous optimization based on the identity prototype in the original softmax loss. To encourage a high overlapping between two modalities, SA-Softmax optimizes each sample by the prototype from another spectrum. Based on the observation and analysis of SA-Softmax, we modify the SA-Softmax with the Feature Mask and Absolute-Similarity Term to alleviate the ambiguous optimization during model training. Extensive experimental evaluations conducted on RegDB and SYSU-MM01 demonstrate the superior performance of the SA-Softmax over the state-of-the-art methods in such a cross-modality condition.
Authors:Lei Tan, Yukang Zhang, Shengmei Shen, Yan Wang, Pingyang Dai, Xianming Lin, Yongjian Wu, Rongrong Ji
Abstract:
Cross-spectral person re-identification, which aims to associate identities to pedestrians across different spectra, faces a main challenge of the modality discrepancy. In this paper, we address the problem from both image-level and feature-level in an end-to-end hybrid learning framework named robust feature mining network (RFM). In particular, we observe that the reflective intensity of the same surface in photos shot in different wavelengths could be transformed using a linear model. Besides, we show the variable linear factor across the different surfaces is the main culprit which initiates the modality discrepancy. We integrate such a reflection observation into an image-level data augmentation by proposing the linear transformation generator (LTG). Moreover, at the feature level, we introduce a cross-center loss to explore a more compact intra-class distribution and modality-aware spatial attention to take advantage of textured regions more efficiently. Experiment results on two standard cross-spectral person re-identification datasets, i.e., RegDB and SYSU-MM01, have demonstrated state-of-the-art performance.
Authors:Rajarshi Bhattacharya, Shakeeb Murtaza, Christian Desrosiers, Jose Dolz, Maguelonne Heritier, Eric Granger
Abstract:
Person re-identification (ReID) models are known to suffer from camera bias, where learned representations cluster according to camera viewpoints rather than identity, leading to significant performance degradation under (inter-camera) domain shifts in real-world surveillance systems when new cameras are added to camera networks. State-of-the-art test-time adaptation (TTA) methods, largely designed for classification tasks, rely on classification entropy-based objectives that fail to generalize well to ReID, thus making them unsuitable for tackling camera bias. In this paper, we introduce DART$^3$, a TTA framework specifically designed to mitigate camera-induced domain shifts in person ReID. DART$^3$ (Distance-Aware Retrieval Tuning at Test Time) leverages a distance-based objective that aligns better with image retrieval tasks like ReID by exploiting the correlation between nearest-neighbor distance and prediction error. Unlike prior ReID-specific domain adaptation methods, DART$^3$ requires no source data, architectural modifications, or retraining, and can be deployed in both fully black-box and hybrid settings. Empirical evaluations on multiple ReID benchmarks indicate that DART$^3$ and DART$^3$ LITE, a lightweight alternative to the approach, consistently outperforms state-of-the-art TTA baselines, making for a viable option to online learning to mitigate the adverse effects of camera bias.
Authors:Neng Dong, Shuanglin Yan, Liyan Zhang, Jinhui Tang
Abstract:
Visible-Infrared Person Re-Identification (VI-ReID) is a challenging task due to the large modality discrepancy between visible and infrared images, which complicates the alignment of their features into a suitable common space. Moreover, style noise, such as illumination and color contrast, reduces the identity discriminability and modality invariance of features. To address these challenges, we propose a novel Diverse Semantics-guided Feature Alignment and Decoupling (DSFAD) network to align identity-relevant features from different modalities into a textual embedding space and disentangle identity-irrelevant features within each modality. Specifically, we develop a Diverse Semantics-guided Feature Alignment (DSFA) module, which generates pedestrian descriptions with diverse sentence structures to guide the cross-modality alignment of visual features. Furthermore, to filter out style information, we propose a Semantic Margin-guided Feature Decoupling (SMFD) module, which decomposes visual features into pedestrian-related and style-related components, and then constrains the similarity between the former and the textual embeddings to be at least a margin higher than that between the latter and the textual embeddings. Additionally, to prevent the loss of pedestrian semantics during feature decoupling, we design a Semantic Consistency-guided Feature Restitution (SCFR) module, which further excavates useful information for identification from the style-related features and restores it back into the pedestrian-related features, and then constrains the similarity between the features after restitution and the textual embeddings to be consistent with that between the features before decoupling and the textual embeddings. Extensive experiments on three VI-ReID datasets demonstrate the superiority of our DSFAD.
Authors:Neng Dong, Shuanglin Yan, Liyan Zhang, Jinhui Tang
Abstract:
Visible-infrared person re-identification (VIReID) retrieves pedestrian images with the same identity across different modalities. Existing methods learn visual content solely from images, lacking the capability to sense high-level semantics. In this paper, we propose an Embedding and Enriching Explicit Semantics (EEES) framework to learn semantically rich cross-modality pedestrian representations. Our method offers several contributions. First, with the collaboration of multiple large language-vision models, we develop Explicit Semantics Embedding (ESE), which automatically supplements language descriptions for pedestrians and aligns image-text pairs into a common space, thereby learning visual content associated with explicit semantics. Second, recognizing the complementarity of multi-view information, we present Cross-View Semantics Compensation (CVSC), which constructs multi-view image-text pair representations, establishes their many-to-many matching, and propagates knowledge to single-view representations, thus compensating visual content with its missing cross-view semantics. Third, to eliminate noisy semantics such as conflicting color attributes in different modalities, we design Cross-Modality Semantics Purification (CMSP), which constrains the distance between inter-modality image-text pair representations to be close to that between intra-modality image-text pair representations, further enhancing the modality-invariance of visual content. Finally, experimental results demonstrate the effectiveness and superiority of the proposed EEES.
Authors:Shuanglin Yan, Jun Liu, Neng Dong, Liyan Zhang, Jinhui Tang
Abstract:
In this paper, we study the problem of Text-to-Image Person Re-identification (TIReID), which aims to find images of the same identity described by a text sentence from a pool of candidate images. Benefiting from Vision-Language Pre-training, such as CLIP (Contrastive Language-Image Pretraining), the TIReID techniques have achieved remarkable progress recently. However, most existing methods only focus on instance-level matching and ignore identity-level matching, which involves associating multiple images and texts belonging to the same person. In this paper, we propose a novel prototypical prompting framework (Propot) designed to simultaneously model instance-level and identity-level matching for TIReID. Our Propot transforms the identity-level matching problem into a prototype learning problem, aiming to learn identity-enriched prototypes. Specifically, Propot works by 'initialize, adapt, enrich, then aggregate'. We first use CLIP to generate high-quality initial prototypes. Then, we propose a domain-conditional prototypical prompting (DPP) module to adapt the prototypes to the TIReID task using task-related information. Further, we propose an instance-conditional prototypical prompting (IPP) module to update prototypes conditioned on intra-modal and inter-modal instances to ensure prototype diversity. Finally, we design an adaptive prototype aggregation module to aggregate these prototypes, generating final identity-enriched prototypes. With identity-enriched prototypes, we diffuse its rich identity information to instances through prototype-to-instance contrastive loss to facilitate identity-level matching. Extensive experiments conducted on three benchmarks demonstrate the superiority of Propot compared to existing TIReID methods.
Authors:Huanzhang Dou, Pengyi Zhang, Yuhan Zhao, Lu Jin, Xi Li
Abstract:
Gait recognition, which aims at identifying individuals by their walking patterns, has achieved great success based on silhouette. The binary silhouette sequence encodes the walking pattern within the sparse boundary representation. Therefore, most pixels in the silhouette are under-sensitive to the walking pattern since the sparse boundary lacks dense spatial-temporal information, which is suitable to be represented with dense texture. To enhance the sensitivity to the walking pattern while maintaining the robustness of recognition, we present a Complementary Learning with neural Architecture Search (CLASH) framework, consisting of walking pattern sensitive gait descriptor named dense spatial-temporal field (DSTF) and neural architecture search based complementary learning (NCL). Specifically, DSTF transforms the representation from the sparse binary boundary into the dense distance-based texture, which is sensitive to the walking pattern at the pixel level. Further, NCL presents a task-specific search space for complementary learning, which mutually complements the sensitivity of DSTF and the robustness of the silhouette to represent the walking pattern effectively. Extensive experiments demonstrate the effectiveness of the proposed methods under both in-the-lab and in-the-wild scenarios. On CASIA-B, we achieve rank-1 accuracy of 98.8%, 96.5%, and 89.3% under three conditions. On OU-MVLP, we achieve rank-1 accuracy of 91.9%. Under the latest in-the-wild datasets, we outperform the latest silhouette-based methods by 16.3% and 19.7% on Gait3D and GREW, respectively.
Authors:Shuang Li, Jiaxu Leng, Guozhang Li, Ji Gan, Haosheng chen, Xinbo Gao
Abstract:
Contrastive Language-Image Pre-Training (CLIP) has shown impressive performance in short-term Person Re-Identification (ReID) due to its ability to extract high-level semantic features of pedestrians, yet its direct application to Cloth-Changing Person Re-Identification (CC-ReID) faces challenges due to CLIP's image encoder overly focusing on clothes clues. To address this, we propose a novel framework called CLIP-Driven Cloth-Agnostic Feature Learning (CCAF) for CC-ReID. Accordingly, two modules were custom-designed: the Invariant Feature Prompting (IFP) and the Clothes Feature Minimization (CFM). These modules guide the model to extract cloth-agnostic features positively and attenuate clothes-related features negatively. Specifically, IFP is designed to extract fine-grained semantic features unrelated to clothes from the raw image, guided by the cloth-agnostic text prompts. This module first covers the clothes in the raw image at the pixel level to obtain the shielding image and then utilizes CLIP's knowledge to generate cloth-agnostic text prompts. Subsequently, it aligns the raw image-text and the raw image-shielding image in the feature space, emphasizing discriminative clues related to identity but unrelated to clothes. Furthermore, CFM is designed to examine and weaken the image encoder's ability to extract clothes features. It first generates text prompts corresponding to clothes pixels. Then, guided by these clothes text prompts, it iteratively examines and disentangles clothes features from pedestrian features, ultimately retaining inherent discriminative features. Extensive experiments have demonstrated the effectiveness of the proposed CCAF, achieving new state-of-the-art performance on several popular CC-ReID benchmarks without any additional inference time.
Authors:Andrei Niculae, Andy Catruna, Adrian Cosma, Daniel Rosner, Emilian Radoi
Abstract:
Surveillance footage represents a valuable resource and opportunities for conducting gait analysis. However, the typical low quality and high noise levels in such footage can severely impact the accuracy of pose estimation algorithms, which are foundational for reliable gait analysis. Existing literature suggests a direct correlation between the efficacy of pose estimation and the subsequent gait analysis results. A common mitigation strategy involves fine-tuning pose estimation models on noisy data to improve robustness. However, this approach may degrade the downstream model's performance on the original high-quality data, leading to a trade-off that is undesirable in practice. We propose a processing pipeline that incorporates a task-targeted artifact correction model specifically designed to pre-process and enhance surveillance footage before pose estimation. Our artifact correction model is optimized to work alongside a state-of-the-art pose estimation network, HRNet, without requiring repeated fine-tuning of the pose estimation model. Furthermore, we propose a simple and robust method for obtaining low quality videos that are annotated with poses in an automatic manner with the purpose of training the artifact correction model. We systematically evaluate the performance of our artifact correction model against a range of noisy surveillance data and demonstrate that our approach not only achieves improved pose estimation on low-quality surveillance footage, but also preserves the integrity of the pose estimation on high resolution footage. Our experiments show a clear enhancement in gait analysis performance, supporting the viability of the proposed method as a superior alternative to direct fine-tuning strategies. Our contributions pave the way for more reliable gait analysis using surveillance data in real-world applications, regardless of data quality.
Authors:Siyuan Huang, Ram Prabhakar, Yuxiang Guo, Rama Chellappa, Cheng Peng
Abstract:
Person Re-identification is a research area with significant real world applications. Despite recent progress, existing methods face challenges in robust re-identification in the wild, e.g., by focusing only on a particular modality and on unreliable patterns such as clothing. A generalized method is highly desired, but remains elusive to achieve due to issues such as the trade-off between spatial and temporal resolution and imperfect feature extraction. We propose VILLS (Video-Image Learning to Learn Semantics), a self-supervised method that jointly learns spatial and temporal features from images and videos. VILLS first designs a local semantic extraction module that adaptively extracts semantically consistent and robust spatial features. Then, VILLS designs a unified feature learning and adaptation module to represent image and video modalities in a consistent feature space. By Leveraging self-supervised, large-scale pre-training, VILLS establishes a new State-of-The-Art that significantly outperforms existing image and video-based methods.
Authors:Yuxiang Guo, Anshul Shah, Jiang Liu, Ayush Gupta, Rama Chellappa, Cheng Peng
Abstract:
Gait recognition holds the promise to robustly identify subjects based on walking patterns instead of appearance information. In recent years, this field has been dominated by learning methods based on two principal input representations: dense silhouette masks or sparse pose keypoints. In this work, we propose a novel, point-based Contour-Pose representation, which compactly expresses both body shape and body parts information. We further propose a local-to-global architecture, called GaitContour, to leverage this novel representation and efficiently compute subject embedding in two stages. The first stage consists of a local transformer that extracts features from five different body regions. The second stage then aggregates the regional features to estimate a global human gait representation. Such a design significantly reduces the complexity of the attention operation and improves efficiency and performance simultaneously. Through large scale experiments, GaitContour is shown to perform significantly better than previous point-based methods, while also being significantly more efficient than silhouette-based methods. On challenging datasets with significant distractors, GaitContour can even outperform silhouette-based methods.
Authors:Shuanglin Yan, Neng Dong, Jun Liu, Liyan Zhang, Jinhui Tang
Abstract:
Text-to-image person re-identification (TIReID) retrieves pedestrian images of the same identity based on a query text. However, existing methods for TIReID typically treat it as a one-to-one image-text matching problem, only focusing on the relationship between image-text pairs within a view. The many-to-many matching between image-text pairs across views under the same identity is not taken into account, which is one of the main reasons for the poor performance of existing methods. To this end, we propose a simple yet effective framework, called LCR$^2$S, for modeling many-to-many correspondences of the same identity by learning comprehensive representations for both modalities from a novel perspective. We construct a support set for each image (text) by using other images (texts) under the same identity and design a multi-head attentional fusion module to fuse the image (text) and its support set. The resulting enriched image and text features fuse information from multiple views, which are aligned to train a "richer" TIReID model with many-to-many correspondences. Since the support set is unavailable during inference, we propose to distill the knowledge learned by the "richer" model into a lightweight model for inference with a single image/text as input. The lightweight model focuses on semantic association and reasoning of multi-view information, which can generate a comprehensive representation containing multi-view information with only a single-view input to perform accurate text-to-image retrieval during inference. In particular, we use the intra-modal features and inter-modal semantic relations of the "richer" model to supervise the lightweight model to inherit its powerful capability. Extensive experiments demonstrate the effectiveness of LCR$^2$S, and it also achieves new state-of-the-art performance on three popular TIReID datasets.
Authors:Adrian Cosma, Emilian Radoi
Abstract:
Gait analysis leverages unique walking patterns for person identification and assessment across multiple domains. Among the methods used for gait analysis, skeleton-based approaches have shown promise due to their robust and interpretable features. However, these methods often rely on hand-crafted spatial-temporal graphs that are based on human anatomy disregarding the particularities of the dataset and task. This paper proposes a novel method to simplify the spatial-temporal graph representation for gait-based gender estimation, improving interpretability without losing performance. Our approach employs two models, an upstream and a downstream model, that can adjust the adjacency matrix for each walking instance, thereby removing the fixed nature of the graph. By employing the Straight-Through Gumbel-Softmax trick, our model is trainable end-to-end. We demonstrate the effectiveness of our approach on the CASIA-B dataset for gait-based gender estimation. The resulting graphs are interpretable and differ qualitatively from fixed graphs used in existing models. Our research contributes to enhancing the explainability and task-specific adaptability of gait recognition, promoting more efficient and reliable gait-based biometrics.
Authors:Zhiyin Shao, Xinyu Zhang, Changxing Ding, Jian Wang, Jingdong Wang
Abstract:
The pre-training task is indispensable for the text-to-image person re-identification (T2I-ReID) task. However, there are two underlying inconsistencies between these two tasks that may impact the performance; i) Data inconsistency. A large domain gap exists between the generic images/texts used in public pre-trained models and the specific person data in the T2I-ReID task. This gap is especially severe for texts, as general textual data are usually unable to describe specific people in fine-grained detail. ii) Training inconsistency. The processes of pre-training of images and texts are independent, despite cross-modality learning being critical to T2I-ReID. To address the above issues, we present a new unified pre-training pipeline (UniPT) designed specifically for the T2I-ReID task. We first build a large-scale text-labeled person dataset "LUPerson-T", in which pseudo-textual descriptions of images are automatically generated by the CLIP paradigm using a divide-conquer-combine strategy. Benefiting from this dataset, we then utilize a simple vision-and-language pre-training framework to explicitly align the feature space of the image and text modalities during pre-training. In this way, the pre-training task and the T2I-ReID task are made consistent with each other on both data and training levels. Without the need for any bells and whistles, our UniPT achieves competitive Rank-1 accuracy of, ie, 68.50%, 60.09%, and 51.85% on CUHK-PEDES, ICFG-PEDES and RSTPReid, respectively. Both the LUPerson-T dataset and code are available at https;//github.com/ZhiyinShao-H/UniPT.
Authors:Adrian Cosma, Emilian Radoi
Abstract:
Psychological trait estimation from external factors such as movement and appearance is a challenging and long-standing problem in psychology, and is principally based on the psychological theory of embodiment. To date, attempts to tackle this problem have utilized private small-scale datasets with intrusive body-attached sensors. Potential applications of an automated system for psychological trait estimation include estimation of occupational fatigue and psychology, and marketing and advertisement. In this work, we propose PsyMo (Psychological traits from Motion), a novel, multi-purpose and multi-modal dataset for exploring psychological cues manifested in walking patterns. We gathered walking sequences from 312 subjects in 7 different walking variations and 6 camera angles. In conjunction with walking sequences, participants filled in 6 psychological questionnaires, totalling 17 psychometric attributes related to personality, self-esteem, fatigue, aggressiveness and mental health. We propose two evaluation protocols for psychological trait estimation. Alongside the estimation of self-reported psychological traits from gait, the dataset can be used as a drop-in replacement to benchmark methods for gait recognition. We anonymize all cues related to the identity of the subjects and publicly release only silhouettes, 2D / 3D human skeletons and 3D SMPL human meshes.
Authors:Andy Catruna, Adrian Cosma, Emilian Radoi
Abstract:
The analysis of patterns of walking is an important area of research that has numerous applications in security, healthcare, sports and human-computer interaction. Lately, walking patterns have been regarded as a unique fingerprinting method for automatic person identification at a distance. In this work, we propose a novel gait recognition architecture called Gait Pyramid Transformer (GaitPT) that leverages pose estimation skeletons to capture unique walking patterns, without relying on appearance information. GaitPT adopts a hierarchical transformer architecture that effectively extracts both spatial and temporal features of movement in an anatomically consistent manner, guided by the structure of the human skeleton. Our results show that GaitPT achieves state-of-the-art performance compared to other skeleton-based gait recognition works, in both controlled and in-the-wild scenarios. GaitPT obtains 82.6% average accuracy on CASIA-B, surpassing other works by a margin of 6%. Moreover, it obtains 52.16% Rank-1 accuracy on GREW, outperforming both skeleton-based and appearance-based approaches.
Authors:Adrian Cosma, Emilian Radoi
Abstract:
Gait, the manner of walking, has been proven to be a reliable biometric with uses in surveillance, marketing and security. A promising new direction for the field is training gait recognition systems without explicit human annotations, through self-supervised learning approaches. Such methods are heavily reliant on strong augmentations for the same walking sequence to induce more data variability and to simulate additional walking variations. Current data augmentation schemes are heuristic and cannot provide the necessary data variation as they are only able to provide simple temporal and spatial distortions. In this work, we propose GaitMorph, a novel method to modify the walking variation for an input gait sequence. Our method entails the training of a high-compression model for gait skeleton sequences that leverages unlabelled data to construct a discrete and interpretable latent space, which preserves identity-related features. Furthermore, we propose a method based on optimal transport theory to learn latent transport maps on the discrete codebook that morph gait sequences between variations. We perform extensive experiments and show that our method is suitable to synthesize additional views for an input sequence.
Authors:Yuxiang Guo, Siyuan Huang, Ram Prabhakar, Chun Pong Lau, Rama Chellappa, Cheng Peng
Abstract:
Gait recognition holds the promise of robustly identifying subjects based on walking patterns instead of appearance information. While previous approaches have performed well for curated indoor data, they tend to underperform in unconstrained situations, e.g. in outdoor, long distance scenes, etc. We propose a framework, termed GAit DEtection and Recognition (GADER), for human authentication in challenging outdoor scenarios. Specifically, GADER leverages a Double Helical Signature to detect segments that contain human movement and builds discriminative features through a novel gait recognition method, where only frames containing gait information are used. To further enhance robustness, GADER encodes viewpoint information in its architecture, and distills representation from an auxiliary RGB recognition model, which enables GADER to learn from silhouette and RGB data at training time. At test time, GADER only infers from the silhouette modality. We evaluate our method on multiple State-of-The-Arts(SoTA) gait baselines and demonstrate consistent improvements on indoor and outdoor datasets, especially with a significant 25.2% improvement on unconstrained, remote gait data.
Authors:Yanjing Li, Sheng Xu, Xianbin Cao, Li'an Zhuo, Baochang Zhang, Tian Wang, Guodong Guo
Abstract:
Neural architecture search (NAS) proves to be among the effective approaches for many tasks by generating an application-adaptive neural architecture, which is still challenged by high computational cost and memory consumption. At the same time, 1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices. One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS by taking advantage of the strengths of each in a unified framework, while searching the 1-bit CNNs is more challenging due to the more complicated processes involved. In this paper, we introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs, based on a new framework of searching the 1-bit model (Child) under the supervision of a real-valued model (Parent). Particularly, we first utilize a Parent model to calculate a tangent direction, based on which the tangent propagation method is introduced to search the optimized 1-bit Child. We further observe a coupling relationship between the weights and architecture parameters existing in such differentiable frameworks. To address the issue, we propose a decoupled optimization method to search an optimized architecture. Extensive experiments demonstrate that our DCP-NAS achieves much better results than prior arts on both CIFAR-10 and ImageNet datasets. In particular, the backbones achieved by our DCP-NAS achieve strong generalization performance on person re-identification and object detection.
Authors:Huanzhang Dou, Pengyi Zhang, Yuhan Zhao, Lin Dong, Zequn Qin, Xi Li
Abstract:
Gait recognition aims at identifying the pedestrians at a long distance by their biometric gait patterns. It is inherently challenging due to the various covariates and the properties of silhouettes (textureless and colorless), which result in two kinds of pair-wise hard samples: the same pedestrian could have distinct silhouettes (intra-class diversity) and different pedestrians could have similar silhouettes (inter-class similarity). In this work, we propose to solve the hard sample issue with a Memory-augmented Progressive Learning network (GaitMPL), including Dynamic Reweighting Progressive Learning module (DRPL) and Global Structure-Aligned Memory bank (GSAM). Specifically, DRPL reduces the learning difficulty of hard samples by easy-to-hard progressive learning. GSAM further augments DRPL with a structure-aligned memory mechanism, which maintains and models the feature distribution of each ID. Experiments on two commonly used datasets, CASIA-B and OU-MVLP, demonstrate the effectiveness of GaitMPL. On CASIA-B, we achieve the state-of-the-art performance, i.e., 88.0% on the most challenging condition (Clothing) and 93.3% on the average condition, which outperforms the other methods by at least 3.8% and 1.4%, respectively.
Authors:Huanzhang Dou, Pengyi Zhang, Wei Su, Yunlong Yu, Xi Li
Abstract:
Gait recognition, which aims at identifying individuals by their walking patterns, has recently drawn increasing research attention. However, gait recognition still suffers from the conflicts between the limited binary visual clues of the silhouette and numerous covariates with diverse scales, which brings challenges to the model's adaptiveness. In this paper, we address this conflict by developing a novel MetaGait that learns to learn an omni sample adaptive representation. Towards this goal, MetaGait injects meta-knowledge, which could guide the model to perceive sample-specific properties, into the calibration network of the attention mechanism to improve the adaptiveness from the omni-scale, omni-dimension, and omni-process perspectives. Specifically, we leverage the meta-knowledge across the entire process, where Meta Triple Attention and Meta Temporal Pooling are presented respectively to adaptively capture omni-scale dependency from spatial/channel/temporal dimensions simultaneously and to adaptively aggregate temporal information through integrating the merits of three complementary temporal aggregation methods. Extensive experiments demonstrate the state-of-the-art performance of the proposed MetaGait. On CASIA-B, we achieve rank-1 accuracy of 98.7%, 96.0%, and 89.3% under three conditions, respectively. On OU-MVLP, we achieve rank-1 accuracy of 92.4%.
Authors:Huanzhang Dou, Pengyi Zhang, Wei Su, Yunlong Yu, Yining Lin, Xi Li
Abstract:
Gait is one of the most promising biometrics that aims to identify pedestrians from their walking patterns. However, prevailing methods are susceptible to confounders, resulting in the networks hardly focusing on the regions that reflect effective walking patterns. To address this fundamental problem in gait recognition, we propose a Generative Counterfactual Intervention framework, dubbed GaitGCI, consisting of Counterfactual Intervention Learning (CIL) and Diversity-Constrained Dynamic Convolution (DCDC). CIL eliminates the impacts of confounders by maximizing the likelihood difference between factual/counterfactual attention while DCDC adaptively generates sample-wise factual/counterfactual attention to efficiently perceive the sample-wise properties. With matrix decomposition and diversity constraint, DCDC guarantees the model to be efficient and effective. Extensive experiments indicate that proposed GaitGCI: 1) could effectively focus on the discriminative and interpretable regions that reflect gait pattern; 2) is model-agnostic and could be plugged into existing models to improve performance with nearly no extra cost; 3) efficiently achieves state-of-the-art performance on arbitrary scenarios (in-the-lab and in-the-wild).
Authors:Zuozhuo Dai, Mingqiang Chen, Xiaodong Gu, Siyu Zhu, Ping Tan
Abstract:
Since the person re-identification task often suffers from the problem of pose changes and occlusions, some attentive local features are often suppressed when training CNNs. In this paper, we propose the Batch DropBlock (BDB) Network which is a two branch network composed of a conventional ResNet-50 as the global branch and a feature dropping branch. The global branch encodes the global salient representations. Meanwhile, the feature dropping branch consists of an attentive feature learning module called Batch DropBlock, which randomly drops the same region of all input feature maps in a batch to reinforce the attentive feature learning of local regions. The network then concatenates features from both branches and provides a more comprehensive and spatially distributed feature representation. Albeit simple, our method achieves state-of-the-art on person re-identification and it is also applicable to general metric learning tasks. For instance, we achieve 76.4% Rank-1 accuracy on the CUHK03-Detect dataset and 83.0% Recall-1 score on the Stanford Online Products dataset, outperforming the existing works by a large margin (more than 6%).
Authors:Shiben Liu, Mingyue Xu, Huijie Fan, Qiang Wang, Yandong Tang, Zhi Han
Abstract:
Lifelong person re-identification (LReID) encounters a key challenge: balancing the preservation of old knowledge with adaptation to new information. Existing LReID methods typically employ knowledge distillation to enforce representation alignment. However, these approaches ignore two crucial aspects: specific distribution awareness and cross-domain unified knowledge learning, both of which are essential for addressing this challenge. To overcome these limitations, we propose a novel distribution-aware knowledge unification and association (DKUA) framework where domain-style modeling is performed for each instance to propagate domain-specific representations, enhancing anti-forgetting and generalization capacity. Specifically, we design a distribution-aware model to transfer instance-level representations of the current domain into the domain-specific representations with the different domain styles, preserving learned knowledge without storing old samples. Next, we propose adaptive knowledge consolidation (AKC) to dynamically generate the unified representation as a cross-domain representation center. To further mitigate forgetting, we develop a unified knowledge association (UKA) mechanism, which explores the unified representation as a bridge to explicitly model inter-domain associations, reducing inter-domain gaps. Finally, distribution-based knowledge transfer (DKT) is proposed to prevent the current domain distribution from deviating from the cross-domain distribution center, improving adaptation capacity. Experimental results show our DKUA outperforms the existing methods by 7.6%/5.3% average mAP/R@1 improvement on anti-forgetting and generalization capacity, respectively. Our code will be publicly released.
Authors:Amran Bhuiyan, Mizanur Rahman, Md Tahmid Rahman Laskar, Aijun An, Jimmy Xiangji Huang
Abstract:
Person re-identification (ReID) has evolved from handcrafted feature-based methods to deep learning approaches and, more recently, to models incorporating large language models (LLMs). Early methods struggled with variations in lighting, pose, and viewpoint, but deep learning addressed these issues by learning robust visual features. Building on this, LLMs now enable ReID systems to integrate semantic and contextual information through natural language. This survey traces that full evolution and offers one of the first comprehensive reviews of ReID approaches that leverage LLMs, where textual descriptions are used as privileged information to improve visual matching. A key contribution is the use of dynamic, identity-specific prompts generated by GPT-4o, which enhance the alignment between images and text in vision-language ReID systems. Experimental results show that these descriptions improve accuracy, especially in complex or ambiguous cases. To support further research, we release a large set of GPT-4o-generated descriptions for standard ReID datasets. By bridging computer vision and natural language processing, this survey offers a unified perspective on the field's development and outlines key future directions such as better prompt design, cross-modal transfer learning, and real-world adaptability.
Authors:Mahdi Alehdaghi, Rajarshi Bhattacharya, Pourya Shamsolmoali, Rafael M. O. Cruz, Eric Granger
Abstract:
Visible-infrared person re-identification (VI-ReID) aims to match individuals across different camera modalities, a critical task in modern surveillance systems. While current VI-ReID methods focus on cross-modality matching, real-world applications often involve mixed galleries containing both V and I images, where state-of-the-art methods show significant performance limitations due to large domain shifts and low discrimination across mixed modalities. This is because gallery images from the same modality may have lower domain gaps but correspond to different identities. This paper introduces a novel mixed-modal ReID setting, where galleries contain data from both modalities. To address the domain shift among inter-modal and low discrimination capacity in intra-modal matching, we propose the Mixed Modality-Erased and -Related (MixER) method. The MixER learning approach disentangles modality-specific and modality-shared identity information through orthogonal decomposition, modality-confusion, and ID-modality-related objectives. MixER enhances feature robustness across modalities, improving cross-modal and mixed-modal settings performance. Our extensive experiments on the SYSU-MM01, RegDB and LLMC datasets indicate that our approach can provide state-of-the-art results using a single backbone, and showcase the flexibility of our approach in mixed gallery applications.
Authors:Xuelin Qian, Ruiqi Wu, Gong Cheng, Junwei Han
Abstract:
Lifelong Person Re-Identification (LReID) extends traditional ReID by requiring systems to continually learn from non-overlapping datasets across different times and locations, adapting to new identities while preserving knowledge of previous ones. Existing approaches, either rehearsal-free or rehearsal-based, still suffer from the problem of catastrophic forgetting since they try to cram diverse knowledge into one fixed model. To overcome this limitation, we introduce a novel framework AdalReID, that adopts knowledge adapters and a parameter-free auto-selection mechanism for lifelong learning. Concretely, we incrementally build distinct adapters to learn domain-specific knowledge at each step, which can effectively learn and preserve knowledge across different datasets. Meanwhile, the proposed auto-selection strategy adaptively calculates the knowledge similarity between the input set and the adapters. On the one hand, the appropriate adapters are selected for the inputs to process ReID, and on the other hand, the knowledge interaction and fusion between adapters are enhanced to improve the generalization ability of the model. Extensive experiments are conducted to demonstrate the superiority of our AdalReID, which significantly outperforms SOTAs by about 10$\sim$20\% mAP on both seen and unseen domains.
Authors:Wenwen Zhang, Hao Zhang, Zenan Jiang, Jing Wang, Amir Servati, Peyman Servati
Abstract:
Gait benchmark empowers uncounted encouraging research fields such as gait recognition, humanoid locomotion, etc. Despite the growing focus on gait analysis, the research community is hindered by the limitations of the currently available databases, which mostly consist of videos or images with limited labeling. In this paper, we introduce GaitMotion, a multitask dataset leveraging wearable sensors to capture the patients' real-time movement with pathological gait. This dataset offers extensive ground-truth labeling for multiple tasks, including step/stride segmentation and step/stride length prediction, empowers researchers with a more holistic understanding of gait disturbances linked to neurological impairments. The wearable gait analysis suit captures the gait cycle, pattern, and parameters for both normal and pathological subjects. This data may prove beneficial for healthcare products focused on patient progress monitoring and post-disease recovery, as well as for forensics technologies aimed at person reidentification, and biomechanics research to aid in the development of humanoid robotics. Moreover, the analysis has considered the drift in data distribution across individual subjects. This drift can be attributed to each participant's unique behavioral habits or potential displacement of the sensor. Stride length variance for normal, Parkinson's, and stroke patients are compared to recognize the pathological walking pattern. As the baseline and benchmark, we provide an error of 14.1, 13.3, and 12.2 centimeters of stride length prediction for normal, Parkinson's, and Stroke gaits separately. We also analyzed the gait characteristics for normal and pathological gaits in terms of the gait cycle and gait parameters.
Authors:Shanmuga Venkatachalam, Harideep Nair, Prabhu Vellaisamy, Yongqi Zhou, Ziad Youssfi, John Paul Shen
Abstract:
Each person has a unique gait, i.e., walking style, that can be used as a biometric for personal identification. Recent works have demonstrated effective gait recognition using deep neural networks, however most of these works predominantly focus on classification accuracy rather than model efficiency. In order to perform gait recognition using wearable devices on the edge, it is imperative to develop highly efficient low-power models that can be deployed on to small form-factor devices such as microcontrollers. In this paper, we propose a small CNN model with 4 layers that is very amenable for edge AI deployment and realtime gait recognition. This model was trained on a public gait dataset with 20 classes augmented with data collected by the authors, aggregating to 24 classes in total. Our model achieves 96.7% accuracy and consumes only 5KB RAM with an inferencing time of 70 ms and 125mW power, while running continuous inference on Arduino Nano 33 BLE Sense. We successfully demonstrated realtime identification of the authors with the model running on Arduino, thus underscoring the efficacy and providing a proof of feasiblity for deployment in practical systems in near future.
Authors:Yexin Liu, Weiming Zhang, Athanasios V. Vasilakos, Lin Wang
Abstract:
Unsupervised visible-infrared person re-identification (UVI-ReID) has recently gained great attention due to its potential for enhancing human detection in diverse environments without labeling. Previous methods utilize intra-modality clustering and cross-modality feature matching to achieve UVI-ReID. However, there exist two challenges: 1) noisy pseudo labels might be generated in the clustering process, and 2) the cross-modality feature alignment via matching the marginal distribution of visible and infrared modalities may misalign the different identities from two modalities. In this paper, we first conduct a theoretic analysis where an interpretable generalization upper bound is introduced. Based on the analysis, we then propose a novel unsupervised cross-modality person re-identification framework (PRAISE). Specifically, to address the first challenge, we propose a pseudo-label correction strategy that utilizes a Beta Mixture Model to predict the probability of mis-clustering based network's memory effect and rectifies the correspondence by adding a perceptual term to contrastive learning. Next, we introduce a modality-level alignment strategy that generates paired visible-infrared latent features and reduces the modality gap by aligning the labeling function of visible and infrared features to learn identity discriminative and modality-invariant features. Experimental results on two benchmark datasets demonstrate that our method achieves state-of-the-art performance than the unsupervised visible-ReID methods.
Authors:Shiben Liu, Huijie Fan, Qiang Wang, Xiai Chen, Zhi Han, Yandong Tang
Abstract:
Lifelong Person Re-Identification (LReID) aims to continuously learn from successive data streams, matching individuals across multiple cameras. The key challenge for LReID is how to effectively preserve old knowledge while incrementally learning new information, which is caused by task-level domain gaps and limited old task datasets. Existing methods based on CNN backbone are insufficient to explore the representation of each instance from different perspectives, limiting model performance on limited old task datasets and new task datasets. Unlike these methods, we propose a Diverse Representations Embedding (DRE) framework that first explores a pure transformer for LReID. The proposed DRE preserves old knowledge while adapting to new information based on instance-level and task-level layout. Concretely, an Adaptive Constraint Module (ACM) is proposed to implement integration and push away operations between multiple overlapping representations generated by transformer-based backbone, obtaining rich and discriminative representations for each instance to improve adaptive ability of LReID. Based on the processed diverse representations, we propose Knowledge Update (KU) and Knowledge Preservation (KP) strategies at the task-level layout by introducing the adjustment model and the learner model. KU strategy enhances the adaptive learning ability of learner models for new information under the adjustment model prior, and KP strategy preserves old knowledge operated by representation-level alignment and logit-level supervision in limited old task datasets while guaranteeing the adaptive learning information capacity of the LReID model. Compared to state-of-the-art methods, our method achieves significantly improved performance in holistic, large-scale, and occluded datasets.
Authors:Mahdi Alehdaghi, Pourya Shamsolmoali, Rafael M. O. Cruz, Eric Granger
Abstract:
A key challenge in visible-infrared person re-identification (V-I ReID) is training a backbone model capable of effectively addressing the significant discrepancies across modalities. State-of-the-art methods that generate a single intermediate bridging domain are often less effective, as this generated domain may not adequately capture sufficient common discriminant information. This paper introduces Bidirectional Multi-step Domain Generalization (BMDG), a novel approach for unifying feature representations across diverse modalities. BMDG creates multiple virtual intermediate domains by learning and aligning body part features extracted from both I and V modalities. In particular, our method aims to minimize the cross-modal gap in two steps. First, BMDG aligns modalities in the feature space by learning shared and modality-invariant body part prototypes from V and I images. Then, it generalizes the feature representation by applying bidirectional multi-step learning, which progressively refines feature representations in each step and incorporates more prototypes from both modalities. Based on these prototypes, multiple bridging steps enhance the feature representation. Experiments conducted on V-I ReID datasets indicate that our BMDG approach can outperform state-of-the-art part-based and intermediate generation methods, and can be integrated into other part-based methods to enhance their V-I ReID performance. (Our code is available at:https:/alehdaghi.github.io/BMDG/ )
Authors:Xin Zhang, Keren Fu, Qijun Zhao
Abstract:
Person re-identification (re-ID) continues to pose a significant challenge, particularly in scenarios involving occlusions. Prior approaches aimed at tackling occlusions have predominantly focused on aligning physical body features through the utilization of external semantic cues. However, these methods tend to be intricate and susceptible to noise. To address the aforementioned challenges, we present an innovative end-to-end solution known as the Dynamic Patch-aware Enrichment Transformer (DPEFormer). This model effectively distinguishes human body information from occlusions automatically and dynamically, eliminating the need for external detectors or precise image alignment. Specifically, we introduce a dynamic patch token selection module (DPSM). DPSM utilizes a label-guided proxy token as an intermediary to identify informative occlusion-free tokens. These tokens are then selected for deriving subsequent local part features. To facilitate the seamless integration of global classification features with the finely detailed local features selected by DPSM, we introduce a novel feature blending module (FBM). FBM enhances feature representation through the complementary nature of information and the exploitation of part diversity. Furthermore, to ensure that DPSM and the entire DPEFormer can effectively learn with only identity labels, we also propose a Realistic Occlusion Augmentation (ROA) strategy. This strategy leverages the recent advances in the Segment Anything Model (SAM). As a result, it generates occlusion images that closely resemble real-world occlusions, greatly enhancing the subsequent contrastive learning process. Experiments on occluded and holistic re-ID benchmarks signify a substantial advancement of DPEFormer over existing state-of-the-art approaches. The code will be made publicly available.
Authors:Yin Lin, Yehansen Chen, Baocai Yin, Jinshui Hu, Bing Yin, Cong Liu, Zengfu Wang
Abstract:
Recently, visual-language learning (VLL) has shown great potential in enhancing visual-based person re-identification (ReID). Existing VLL-based ReID methods typically focus on image-text feature alignment at the whole-body level, while neglecting supervision on fine-grained part features, thus lacking constraints for local feature semantic consistency. To this end, we propose Part-Informed Visual-language Learning ($Ï$-VL) to enhance fine-grained visual features with part-informed language supervisions for ReID tasks. Specifically, $Ï$-VL introduces a human parsing-guided prompt tuning strategy and a hierarchical visual-language alignment paradigm to ensure within-part feature semantic consistency. The former combines both identity labels and human parsing maps to constitute pixel-level text prompts, and the latter fuses multi-scale visual features with a light-weight auxiliary head to perform fine-grained image-text alignment. As a plug-and-play and inference-free solution, our $Ï$-VL achieves performance comparable to or better than state-of-the-art methods on four commonly used ReID benchmarks. Notably, it reports 91.0% Rank-1 and 76.9% mAP on the challenging MSMT17 database, without bells and whistles.
Authors:Mahdi Alehdaghi, Arthur Josi, Pourya Shamsolmoali, Rafael M. O. Cruz, Eric Granger
Abstract:
Visible-infrared person re-identification seeks to retrieve images of the same individual captured over a distributed network of RGB and IR sensors. Several V-I ReID approaches directly integrate both V and I modalities to discriminate persons within a shared representation space. However, given the significant gap in data distributions between V and I modalities, cross-modal V-I ReID remains challenging. Some recent approaches improve generalization by leveraging intermediate spaces that can bridge V and I modalities, yet effective methods are required to select or generate data for such informative domains. In this paper, the Adaptive Generation of Privileged Intermediate Information training approach is introduced to adapt and generate a virtual domain that bridges discriminant information between the V and I modalities. The key motivation behind AGPI^2 is to enhance the training of a deep V-I ReID backbone by generating privileged images that provide additional information. These privileged images capture shared discriminative features that are not easily accessible within the original V or I modalities alone. Towards this goal, a non-linear generative module is trained with an adversarial objective, translating V images into intermediate spaces with a smaller domain shift w.r.t. the I domain. Meanwhile, the embedding module within AGPI^2 aims to produce similar features for both V and generated images, encouraging the extraction of features that are common to all modalities. In addition to these contributions, AGPI^2 employs adversarial objectives for adapting the intermediate images, which play a crucial role in creating a non-modality-specific space to address the large domain shifts between V and I domains. Experimental results conducted on challenging V-I ReID datasets indicate that AGPI^2 increases matching accuracy without extra computational resources during inference.
Authors:Wen Li, Cheng Zou, Meng Wang, Furong Xu, Jianan Zhao, Ruobing Zheng, Yuan Cheng, Wei Chu
Abstract:
In person re-identification (re-ID) task, it is still challenging to learn discriminative representation by deep learning, due to limited data. Generally speaking, the model will get better performance when increasing the amount of data. The addition of similar classes strengthens the ability of the classifier to identify similar identities, thereby improving the discrimination of representation. In this paper, we propose a Diverse and Compact Transformer (DC-Former) that can achieve a similar effect by splitting embedding space into multiple diverse and compact subspaces. Compact embedding subspace helps model learn more robust and discriminative embedding to identify similar classes. And the fusion of these diverse embeddings containing more fine-grained information can further improve the effect of re-ID. Specifically, multiple class tokens are used in vision transformer to represent multiple embedding spaces. Then, a self-diverse constraint (SDC) is applied to these spaces to push them away from each other, which makes each embedding space diverse and compact. Further, a dynamic weight controller(DWC) is further designed for balancing the relative importance among them during training. The experimental results of our method are promising, which surpass previous state-of-the-art methods on several commonly used person re-ID benchmarks.
Authors:Ekkasit Pinyoanuntapong, Ayman Ali, Kalvik Jakkala, Pu Wang, Minwoo Lee, Qucheng Peng, Chen Chen, Zhi Sun
Abstract:
mmWave radar-based gait recognition is a novel user identification method that captures human gait biometrics from mmWave radar return signals. This technology offers privacy protection and is resilient to weather and lighting conditions. However, its generalization performance is yet unknown and limits its practical deployment. To address this problem, in this paper, a non-synthetic dataset is collected and analyzed to reveal the presence of spatial and temporal domain shifts in mmWave gait biometric data, which significantly impacts identification accuracy. To mitigate this issue, a novel self-aligned domain adaptation method called GaitSADA is proposed. GaitSADA improves system generalization performance by using a two-stage semi-supervised model training approach. The first stage employs semi-supervised contrastive learning to learn a compact gait representation from both source and target domain data, aligning source-target domain distributions implicitly. The second stage uses semi-supervised consistency training with centroid alignment to further close source-target domain gap by pseudo-labelling the target-domain samples, clustering together the samples belonging to the same class but from different domains, and pushing the class centroid close to the weight vector of each class. Experiments show that GaitSADA outperforms representative domain adaptation methods with an improvement ranging from 15.41\% to 26.32\% on average accuracy in low data regimes. Code and dataset will be available at https://exitudio.github.io/GaitSADA
Authors:Danilo Avola, Emad Emam, Dario Montagnini, Daniele Pannone, Amedeo Ranaldi
Abstract:
Person Re-Identification is a key and challenging task in video surveillance. While traditional methods rely on visual data, issues like poor lighting, occlusion, and suboptimal angles often hinder performance. To address these challenges, we introduce WhoFi, a novel pipeline that utilizes Wi-Fi signals for person re-identification. Biometric features are extracted from Channel State Information (CSI) and processed through a modular Deep Neural Network (DNN) featuring a Transformer-based encoder. The network is trained using an in-batch negative loss function to learn robust and generalizable biometric signatures. Experiments on the NTU-Fi dataset show that our approach achieves competitive results compared to state-of-the-art methods, confirming its effectiveness in identifying individuals via Wi-Fi signals.
Authors:Ammar Chouchane, Mohcene Bessaoudi, Hamza Kheddar, Abdelmalik Ouamane, Tiago Vieira, Mahmoud Hassaballah
Abstract:
Video surveillance image analysis and processing is a challenging field in computer vision, with one of its most difficult tasks being Person Re-Identification (PRe-ID). PRe-ID aims to identify and track target individuals who have already been detected in a network of cameras, using a robust description of their pedestrian images. The success of recent research in person PRe-ID is largely due to effective feature extraction and representation, as well as the powerful learning of these features to reliably discriminate between pedestrian images. To this end, two powerful features, Convolutional Neural Networks (CNN) and Local Maximal Occurrence (LOMO), are modeled on multidimensional data using the proposed method, High-Dimensional Feature Fusion (HDFF). Specifically, a new tensor fusion scheme is introduced to leverage and combine these two types of features in a single tensor, even though their dimensions are not identical. To enhance the system's accuracy, we employ Tensor Cross-View Quadratic Analysis (TXQDA) for multilinear subspace learning, followed by cosine similarity for matching. TXQDA efficiently facilitates learning while reducing the high dimensionality inherent in high-order tensor data. The effectiveness of our approach is verified through experiments on three widely-used PRe-ID datasets: VIPeR, GRID, and PRID450S. Extensive experiments demonstrate that our approach outperforms recent state-of-the-art methods.
Authors:Zhihao Chen, Yiyuan Ge, Qing Yue
Abstract:
Cloth-changing person re-identification (CC-ReID) aims to retrieve specific pedestrians in a cloth-changing scenario. Its main challenge is to disentangle the clothing-related and clothing-unrelated features. Most existing approaches force the model to learn clothing-unrelated features by changing the color of the clothes. However, due to the lack of ground truth, these methods inevitably introduce noise, which destroys the discriminative features and leads to an uncontrollable disentanglement process. In this paper, we propose a new person re-identification network called features reconstruction disentanglement ReID (FRD-ReID), which can controllably decouple the clothing-unrelated and clothing-related features. Specifically, we first introduce the human parsing mask as the ground truth of the reconstruction process. At the same time, we propose the far away attention (FAA) mechanism and the person contour attention (PCA) mechanism for clothing-unrelated features and pedestrian contour features to improve the feature reconstruction efficiency. In the testing phase, we directly discard the clothing-related features for inference,which leads to a controllable disentanglement process. We conducted extensive experiments on the PRCC, LTCC, and Vc-Clothes datasets and demonstrated that our method outperforms existing state-of-the-art methods.
Authors:Zhihao Chen, Yiyuan Ge
Abstract:
The goal of occluded person re-identification (ReID) is to retrieve specific pedestrians in occluded situations. However, occluded person ReID still suffers from background clutter and low-quality local feature representations, which limits model performance. In our research, we introduce a new framework called PAB-ReID, which is a novel ReID model incorporating part-attention mechanisms to tackle the aforementioned issues effectively. Firstly, we introduce the human parsing label to guide the generation of more accurate human part attention maps. In addition, we propose a fine-grained feature focuser for generating fine-grained human local feature representations while suppressing background interference. Moreover, We also design a part triplet loss to supervise the learning of human local features, which optimizes intra/inter-class distance. We conducted extensive experiments on specialized occlusion and regular ReID datasets, showcasing that our approach outperforms the existing state-of-the-art methods.
Authors:Kazuki Adachi, Shohei Enomoto, Taku Sasaki, Shin'ya Yamaguchi
Abstract:
Person re-identification (re-id), which aims to retrieve images of the same person in a given image from a database, is one of the most practical image recognition applications. In the real world, however, the environments that the images are taken from change over time. This causes a distribution shift between training and testing and degrades the performance of re-id. To maintain re-id performance, models should continue adapting to the test environment's temporal changes. Test-time adaptation (TTA), which aims to adapt models to the test environment with only unlabeled test data, is a promising way to handle this problem because TTA can adapt models instantly in the test environment. However, the previous TTA methods are designed for classification and cannot be directly applied to re-id. This is because the set of people's identities in the dataset differs between training and testing in re-id, whereas the set of classes is fixed in the current TTA methods designed for classification. To improve re-id performance in changing test environments, we propose TEst-time similarity Modification for Person re-identification (TEMP), a novel TTA method for re-id. TEMP is the first fully TTA method for re-id, which does not require any modification to pre-training. Inspired by TTA methods that refine the prediction uncertainty in classification, we aim to refine the uncertainty in re-id. However, the uncertainty cannot be computed in the same way as classification in re-id since it is an open-set task, which does not share person labels between training and testing. Hence, we propose re-id entropy, an alternative uncertainty measure for re-id computed based on the similarity between the feature vectors. Experiments show that the re-id entropy can measure the uncertainty on re-id and TEMP improves the performance of re-id in online settings where the distribution changes over time.
Authors:Duy Tran Thanh, Yeejin Lee, Byeongkeun Kang
Abstract:
This work addresses the task of long-term person re-identification. Typically, person re-identification assumes that people do not change their clothes, which limits its applications to short-term scenarios. To overcome this limitation, we investigate long-term person re-identification, which considers both clothes-changing and clothes-consistent scenarios. In this paper, we propose a novel framework that effectively learns and utilizes both global and local information. The proposed framework consists of three streams: global, local body part, and head streams. The global and head streams encode identity-relevant information from an entire image and a cropped image of the head region, respectively. Both streams encode the most distinct, less distinct, and average features using the combinations of adversarial erasing, max pooling, and average pooling. The local body part stream extracts identity-related information for each body part, allowing it to be compared with the same body part from another image. Since body part annotations are not available in re-identification datasets, pseudo-labels are generated using clustering. These labels are then utilized to train a body part segmentation head in the local body part stream. The proposed framework is trained by backpropagating the weighted summation of the identity classification loss, the pair-based loss, and the pseudo body part segmentation loss. To demonstrate the effectiveness of the proposed method, we conducted experiments on three publicly available datasets (Celeb-reID, PRCC, and VC-Clothes). The experimental results demonstrate that the proposed method outperforms the previous state-of-the-art method.
Authors:Akram Abderraouf Gharbi, Ammar Chouchane, Abdelmalik Ouamane
Abstract:
Person re-identification (PRe-ID) is a computer vision issue, that has been a fertile research area in the last few years. It aims to identify persons across different non-overlapping camera views. In this paper, We propose a novel PRe-ID system that combines tensor feature representation and multilinear subspace learning. Our method exploits the power of pre-trained Convolutional Neural Networks (CNNs) as a strong deep feature extractor, along with two complementary descriptors, Local Maximal Occurrence (LOMO) and Gaussian Of Gaussian (GOG). Then, Tensor-based Cross-View Quadratic Discriminant Analysis (TXQDA) is used to learn a discriminative subspace that enhances the separability between different individuals. Mahalanobis distance is used to match and similarity computation between query and gallery samples. Finally, we evaluate our approach by conducting experiments on three datasets VIPeR, GRID, and PRID450s.
Authors:Akram Abderraouf Gharbi, Ammar Chouchane, Mohcene Bessaoudi, Abdelmalik Ouamane, El ouanas Belabbaci
Abstract:
In this paper, we present a novel person reidentification (PRe-ID) system that based on tensor feature representation and multilinear subspace learning. Our approach utilizes pretrained CNNs for high-level feature extraction, along with Local Maximal Occurrence (LOMO) and Gaussian Of Gaussian (GOG ) descriptors. Additionally, Cross-View Quadratic Discriminant Analysis (TXQDA) algorithm is used for multilinear subspace learning, which models the data in a tensor framework to enhance discriminative capabilities. Similarity measure based on Mahalanobis distance is used for matching between training and test pedestrian images. Experimental evaluations on VIPeR and PRID450s datasets demonstrate the effectiveness of our method.
Authors:Dixuan Lin, Yixing Peng, Jingke Meng, Wei-Shi Zheng
Abstract:
Text-to-image person re-identification (ReID) aims to retrieve images of a person based on a given textual description. The key challenge is to learn the relations between detailed information from visual and textual modalities. Existing works focus on learning a latent space to narrow the modality gap and further build local correspondences between two modalities. However, these methods assume that image-to-text and text-to-image associations are modality-agnostic, resulting in suboptimal associations. In this work, we show the discrepancy between image-to-text association and text-to-image association and propose CADA: Cross-Modal Adaptive Dual Association that finely builds bidirectional image-text detailed associations. Our approach features a decoder-based adaptive dual association module that enables full interaction between visual and textual modalities, allowing for bidirectional and adaptive cross-modal correspondence associations. Specifically, the paper proposes a bidirectional association mechanism: Association of text Tokens to image Patches (ATP) and Association of image Regions to text Attributes (ARA). We adaptively model the ATP based on the fact that aggregating cross-modal features based on mistaken associations will lead to feature distortion. For modeling the ARA, since the attributes are typically the first distinguishing cues of a person, we propose to explore the attribute-level association by predicting the masked text phrase using the related image region. Finally, we learn the dual associations between texts and images, and the experimental results demonstrate the superiority of our dual formulation. Codes will be made publicly available.
Authors:Tengfei Liang, Yi Jin, Wu Liu, Tao Wang, Songhe Feng, Yidong Li
Abstract:
Visible-Infrared person Re-IDentification (VI-ReID) is a challenging cross-modality image retrieval task that aims to match pedestrians' images across visible and infrared cameras. To solve the modality gap, existing mainstream methods adopt a learning paradigm converting the image retrieval task into an image classification task with cross-entropy loss and auxiliary metric learning losses. These losses follow the strategy of adjusting the distribution of extracted embeddings to reduce the intra-class distance and increase the inter-class distance. However, such objectives do not precisely correspond to the final test setting of the retrieval task, resulting in a new gap at the optimization level. By rethinking these keys of VI-ReID, we propose a simple and effective method, the Multi-level Cross-modality Joint Alignment (MCJA), bridging both modality and objective-level gap. For the former, we design the Modality Alignment Augmentation, which consists of three novel strategies, the weighted grayscale, cross-channel cutmix, and spectrum jitter augmentation, effectively reducing modality discrepancy in the image space. For the latter, we introduce a new Cross-Modality Retrieval loss. It is the first work to constrain from the perspective of the ranking list, aligning with the goal of the testing stage. Moreover, based on the global feature only, our method exhibits good performance and can serve as a strong baseline method for the VI-ReID community.
Authors:Junzhu Mao, Yazhou Yao, Zeren Sun, Xingguo Huang, Fumin Shen, Heng-Tao Shen
Abstract:
Due to its significant capability of modeling long-range dependencies, vision transformer (ViT) has achieved promising success in both holistic and occluded person re-identification (Re-ID) tasks. However, the inherent problems of transformers such as the huge computational cost and memory footprint are still two unsolved issues that will block the deployment of ViT based person Re-ID models on resource-limited edge devices. Our goal is to reduce both the inference complexity and model size without sacrificing the comparable accuracy on person Re-ID, especially for tasks with occlusion. To this end, we propose a novel attention map guided (AMG) transformer pruning method, which removes both redundant tokens and heads with the guidance of the attention map in a hardware-friendly way. We first calculate the entropy in the key dimension and sum it up for the whole map, and the corresponding head parameters of maps with high entropy will be removed for model size reduction. Then we combine the similarity and first-order gradients of key tokens along the query dimension for token importance estimation and remove redundant key and value tokens to further reduce the inference complexity. Comprehensive experiments on Occluded DukeMTMC and Market-1501 demonstrate the effectiveness of our proposals. For example, our proposed pruning strategy on ViT-Base enjoys \textup{\textbf{29.4\%}} \textup{\textbf{FLOPs}} savings with \textup{\textbf{0.2\%}} drop on Rank-1 and \textup{\textbf{0.4\%}} improvement on mAP, respectively.
Authors:Yukang Zhang, Yan Yan, Jie Li, Hanzi Wang
Abstract:
Visible-infrared person re-identification (VI-ReID), which aims to search identities across different spectra, is a challenging task due to large cross-modality discrepancy between visible and infrared images. The key to reduce the discrepancy is to filter out identity-irrelevant interference and effectively learn modality-invariant person representations. In this paper, we propose a novel Modality Restitution and Compensation Network (MRCN) to narrow the gap between the two modalities. Specifically, we first reduce the modality discrepancy by using two Instance Normalization (IN) layers. Next, to reduce the influence of IN layers on removing discriminative information and to reduce modality differences, we propose a Modality Restitution Module (MRM) and a Modality Compensation Module (MCM) to respectively distill modality-irrelevant and modality-relevant features from the removed information. Then, the modality-irrelevant features are used to restitute to the normalized visible and infrared features, while the modality-relevant features are used to compensate for the features of the other modality. Furthermore, to better disentangle the modality-relevant features and the modality-irrelevant features, we propose a novel Center-Quadruplet Causal (CQC) loss to encourage the network to effectively learn the modality-relevant features and the modality-irrelevant features. Extensive experiments are conducted to validate the superiority of our method on the challenging SYSU-MM01 and RegDB datasets. More remarkably, our method achieves 95.1% in terms of Rank-1 and 89.2% in terms of mAP on the RegDB dataset.
Authors:Likai Wang, Ruize Han, Wei Feng
Abstract:
Gait recognition, a long-distance biometric technology, has aroused intense interest recently. Currently, the two dominant gait recognition works are appearance-based and model-based, which extract features from silhouettes and skeletons, respectively. However, appearance-based methods are greatly affected by clothes-changing and carrying conditions, while model-based methods are limited by the accuracy of pose estimation. To tackle this challenge, a simple yet effective two-branch network is proposed in this paper, which contains a CNN-based branch taking silhouettes as input and a GCN-based branch taking skeletons as input. In addition, for better gait representation in the GCN-based branch, we present a fully connected graph convolution operator to integrate multi-scale graph convolutions and alleviate the dependence on natural joint connections. Also, we deploy a multi-dimension attention module named STC-Att to learn spatial, temporal and channel-wise attention simultaneously. The experimental results on CASIA-B and OUMVLP show that our method achieves state-of-the-art performance in various conditions.
Authors:Tengfei Liang, Yi Jin, Yajun Gao, Wu Liu, Songhe Feng, Tao Wang, Yidong Li
Abstract:
Visible-infrared cross-modality person re-identification is a challenging ReID task, which aims to retrieve and match the same identity's images between the heterogeneous visible and infrared modalities. Thus, the core of this task is to bridge the huge gap between these two modalities. The existing convolutional neural network-based methods mainly face the problem of insufficient perception of modalities' information, and can not learn good discriminative modality-invariant embeddings for identities, which limits their performance. To solve these problems, we propose a cross-modality transformer-based method (CMTR) for the visible-infrared person re-identification task, which can explicitly mine the information of each modality and generate better discriminative features based on it. Specifically, to capture modalities' characteristics, we design the novel modality embeddings, which are fused with token embeddings to encode modalities' information. Furthermore, to enhance representation of modality embeddings and adjust matching embeddings' distribution, we propose a modality-aware enhancement loss based on the learned modalities' information, reducing intra-class distance and enlarging inter-class distance. To our knowledge, this is the first work of applying transformer network to the cross-modality re-identification task. We implement extensive experiments on the public SYSU-MM01 and RegDB datasets, and our proposed CMTR model's performance significantly surpasses existing outstanding CNN-based methods.
Authors:Yangru Huang, Peixi Peng, Yi Jin, Yidong Li, Junliang Xing, Shiming Ge
Abstract:
Person re-identification (Re-ID) across multiple datasets is a challenging task due to two main reasons: the presence of large cross-dataset distinctions and the absence of annotated target instances. To address these two issues, this paper proposes a domain adaptive attention learning approach to reliably transfer discriminative representation from the labeled source domain to the unlabeled target domain. In this approach, a domain adaptive attention model is learned to separate the feature map into domain-shared part and domain-specific part. In this manner, the domain-shared part is used to capture transferable cues that can compensate cross-dataset distinctions and give positive contributions to the target task, while the domain-specific part aims to model the noisy information to avoid the negative transfer caused by domain diversity. A soft label loss is further employed to take full use of unlabeled target data by estimating pseudo labels. Extensive experiments on the Market-1501, DukeMTMC-reID and MSMT17 benchmarks demonstrate the proposed approach outperforms the state-of-the-arts.
Authors:Kaicong Huang, Talha Azfar, Jack M. Reilly, Thomas Guggisberg, Ruimin Ke
Abstract:
Person re-identification faces two core challenges: precisely locating the foreground target while suppressing background noise and extracting fine-grained features from the target region. Numerous visual-only approaches address these issues by partitioning an image and applying attention modules, yet they rely on costly manual annotations and struggle with complex occlusions. Recent multimodal methods, motivated by CLIP, introduce semantic cues to guide visual understanding. However, they focus solely on foreground information, but overlook the potential value of background cues. Inspired by human perception, we argue that background semantics are as important as the foreground semantics in ReID, as humans tend to eliminate background distractions while focusing on target appearance. Therefore, this paper proposes an end-to-end framework that jointly models foreground and background information within a dual-branch cross-modal feature extraction pipeline. To help the network distinguish between the two domains, we propose an intra-semantic alignment and inter-semantic adversarial learning strategy. Specifically, we align visual and textual features that share the same semantics across domains, while simultaneously penalizing similarity between foreground and background features to enhance the network's discriminative power. This strategy drives the model to actively suppress noisy background regions and enhance attention toward identity-relevant foreground cues. Comprehensive experiments on two holistic and two occluded ReID benchmarks demonstrate the effectiveness and generality of the proposed method, with results that match or surpass those of current state-of-the-art approaches.
Authors:Xinzhu Li, Juepeng Zheng, Yikun Chen, Xudong Mao, Guanghui Yue, Wei Zhou, Chenlei Lv, Ruomei Wang, Fan Zhou, Baoquan Zhao
Abstract:
Robust gait recognition requires highly discriminative representations, which are closely tied to input modalities. While binary silhouettes and skeletons have dominated recent literature, these 2D representations fall short of capturing sufficient cues that can be exploited to handle viewpoint variations, and capture finer and meaningful details of gait. In this paper, we introduce a novel framework, termed DepthGait, that incorporates RGB-derived depth maps and silhouettes for enhanced gait recognition. Specifically, apart from the 2D silhouette representation of the human body, the proposed pipeline explicitly estimates depth maps from a given RGB image sequence and uses them as a new modality to capture discriminative features inherent in human locomotion. In addition, a novel multi-scale and cross-level fusion scheme has also been developed to bridge the modality gap between depth maps and silhouettes. Extensive experiments on standard benchmarks demonstrate that the proposed DepthGait achieves state-of-the-art performance compared to peer methods and attains an impressive mean rank-1 accuracy on the challenging datasets.
Authors:Anirudh Nanduri, Siyuan Huang, Rama Chellappa
Abstract:
Vision Transformers (ViTs) have demonstrated impressive performance across a wide range of biometric tasks, including face and body recognition. In this work, we adapt a ViT model pretrained on visible (VIS) imagery to the challenging problem of cross-spectral body recognition, which involves matching images captured in the visible and infrared (IR) domains. Recent ViT architectures have explored incorporating additional embeddings beyond traditional positional embeddings. Building on this idea, we integrate Side Information Embedding (SIE) and examine the impact of encoding domain and camera information to enhance cross-spectral matching. Surprisingly, our results show that encoding only camera information - without explicitly incorporating domain information - achieves state-of-the-art performance on the LLCM dataset. While occlusion handling has been extensively studied in visible-spectrum person re-identification (Re-ID), occlusions in visible-infrared (VI) Re-ID remain largely underexplored - primarily because existing VI-ReID datasets, such as LLCM, SYSU-MM01, and RegDB, predominantly feature full-body, unoccluded images. To address this gap, we analyze the impact of range-induced occlusions using the IARPA Janus Benchmark Multi-Domain Face (IJB-MDF) dataset, which provides a diverse set of visible and infrared images captured at various distances, enabling cross-range, cross-spectral evaluations.
Authors:Shuanglin Yan, Neng Dong, Shuang Li, Rui Yan, Hao Tang, Jing Qin
Abstract:
Visible-Infrared Person Re-identification (VIReID) aims to match visible and infrared pedestrian images, but the modality differences and the complexity of identity features make it challenging. Existing methods rely solely on identity label supervision, which makes it difficult to fully extract high-level semantic information. Recently, vision-language pre-trained models have been introduced to VIReID, enhancing semantic information modeling by generating textual descriptions. However, such methods do not explicitly model body shape features, which are crucial for cross-modal matching. To address this, we propose an effective Body Shape-aware Textual Alignment (BSaTa) framework that explicitly models and utilizes body shape information to improve VIReID performance. Specifically, we design a Body Shape Textual Alignment (BSTA) module that extracts body shape information using a human parsing model and converts it into structured text representations via CLIP. We also design a Text-Visual Consistency Regularizer (TVCR) to ensure alignment between body shape textual representations and visual body shape features. Furthermore, we introduce a Shape-aware Representation Learning (SRL) mechanism that combines Multi-text Supervision and Distribution Consistency Constraints to guide the visual encoder to learn modality-invariant and discriminative identity features, thus enhancing modality invariance. Experimental results demonstrate that our method achieves superior performance on the SYSU-MM01 and RegDB datasets, validating its effectiveness.
Authors:Anirudh Nanduri, Siyuan Huang, Rama Chellappa
Abstract:
Biometric recognition becomes increasingly challenging as we move away from the visible spectrum to infrared imagery, where domain discrepancies significantly impact identification performance. In this paper, we show that body embeddings perform better than face embeddings for cross-spectral person identification in medium-wave infrared (MWIR) and long-wave infrared (LWIR) domains. Due to the lack of multi-domain datasets, previous research on cross-spectral body identification - also known as Visible-Infrared Person Re-Identification (VI-ReID) - has primarily focused on individual infrared bands, such as near-infrared (NIR) or LWIR, separately. We address the multi-domain body recognition problem using the IARPA Janus Benchmark Multi-Domain Face (IJB-MDF) dataset, which enables matching of short-wave infrared (SWIR), MWIR, and LWIR images against RGB (VIS) images. We leverage a vision transformer architecture to establish benchmark results on the IJB-MDF dataset and, through extensive experiments, provide valuable insights into the interrelation of infrared domains, the adaptability of VIS-pretrained models, the role of local semantic features in body-embeddings, and effective training strategies for small datasets. Additionally, we show that finetuning a body model, pretrained exclusively on VIS data, with a simple combination of cross-entropy and triplet losses achieves state-of-the-art mAP scores on the LLCM dataset.
Authors:Basudha Pal, Siyuan Huang, Rama Chellappa
Abstract:
Person Re-identification (ReID) systems that match individuals across images or video frames are essential in many real-world applications. However, existing methods are often influenced by attributes such as gender, pose, and body mass index (BMI), which vary in unconstrained settings and raise concerns related to fairness and generalization. To address this, we extend the notion of expressivity, defined as the mutual information between learned features and specific attributes, using a secondary neural network to quantify how strongly attributes are encoded. Applying this framework to three ReID models, we find that BMI consistently shows the highest expressivity in the final layers, indicating its dominant role in recognition. In the last attention layer, attributes are ranked as BMI > Pitch > Gender > Yaw, revealing their relative influences in representation learning. Expressivity values also evolve across layers and training epochs, reflecting a dynamic encoding of attributes. These findings demonstrate the central role of body attributes in ReID and establish a principled approach for uncovering attribute driven correlations.
Authors:Jinkai Zheng, Xinchen Liu, Boyue Zhang, Chenggang Yan, Jiyong Zhang, Wu Liu, Yongdong Zhang
Abstract:
Existing studies for gait recognition primarily utilized sequences of either binary silhouette or human parsing to encode the shapes and dynamics of persons during walking. Silhouettes exhibit accurate segmentation quality and robustness to environmental variations, but their low information entropy may result in sub-optimal performance. In contrast, human parsing provides fine-grained part segmentation with higher information entropy, but the segmentation quality may deteriorate due to the complex environments. To discover the advantages of silhouette and parsing and overcome their limitations, this paper proposes a novel cross-granularity alignment gait recognition method, named XGait, to unleash the power of gait representations of different granularity. To achieve this goal, the XGait first contains two branches of backbone encoders to map the silhouette sequences and the parsing sequences into two latent spaces, respectively. Moreover, to explore the complementary knowledge across the features of two representations, we design the Global Cross-granularity Module (GCM) and the Part Cross-granularity Module (PCM) after the two encoders. In particular, the GCM aims to enhance the quality of parsing features by leveraging global features from silhouettes, while the PCM aligns the dynamics of human parts between silhouette and parsing features using the high information entropy in parsing sequences. In addition, to effectively guide the alignment of two representations with different granularity at the part level, an elaborate-designed learnable division mechanism is proposed for the parsing features. Comprehensive experiments on two large-scale gait datasets not only show the superior performance of XGait with the Rank-1 accuracy of 80.5% on Gait3D and 88.3% CCPG but also reflect the robustness of the learned features even under challenging conditions like occlusions and cloth changes.
Authors:Yunpeng Gong, Chuangliang Zhang, Yongjie Hou, Lifei Chen, Min Jiang
Abstract:
In the contemporary of deep learning, where models often grapple with the challenge of simultaneously achieving robustness against adversarial attacks and strong generalization capabilities, this study introduces an innovative Local Feature Masking (LFM) strategy aimed at fortifying the performance of Convolutional Neural Networks (CNNs) on both fronts. During the training phase, we strategically incorporate random feature masking in the shallow layers of CNNs, effectively alleviating overfitting issues, thereby enhancing the model's generalization ability and bolstering its resilience to adversarial attacks. LFM compels the network to adapt by leveraging remaining features to compensate for the absence of certain semantic features, nurturing a more elastic feature learning mechanism. The efficacy of LFM is substantiated through a series of quantitative and qualitative assessments, collectively showcasing a consistent and significant improvement in CNN's generalization ability and resistance against adversarial attacks--a phenomenon not observed in current and prior methodologies. The seamless integration of LFM into established CNN frameworks underscores its potential to advance both generalization and adversarial robustness within the deep learning paradigm. Through comprehensive experiments, including robust person re-identification baseline generalization experiments and adversarial attack experiments, we demonstrate the substantial enhancements offered by LFM in addressing the aforementioned challenges. This contribution represents a noteworthy stride in advancing robust neural network architectures.
Authors:Yunpeng Gong, Yongjie Hou, Chuangliang Zhang, Min Jiang
Abstract:
Person Re-identification (re-ID) in computer vision aims to recognize and track individuals across different cameras. While previous research has mainly focused on challenges like pose variations and lighting changes, the impact of extreme capture conditions is often not adequately addressed. These extreme conditions, including varied lighting, camera styles, angles, and image distortions, can significantly affect data distribution and re-ID accuracy.
Current research typically improves model generalization under normal shooting conditions through data augmentation techniques such as adjusting brightness and contrast. However, these methods pay less attention to the robustness of models under extreme shooting conditions. To tackle this, we propose a multi-mode synchronization learning (MMSL) strategy . This approach involves dividing images into grids, randomly selecting grid blocks, and applying data augmentation methods like contrast and brightness adjustments. This process introduces diverse transformations without altering the original image structure, helping the model adapt to extreme variations. This method improves the model's generalization under extreme conditions and enables learning diverse features, thus better addressing the challenges in re-ID. Extensive experiments on a simulated test set under extreme conditions have demonstrated the effectiveness of our method. This approach is crucial for enhancing model robustness and adaptability in real-world scenarios, supporting the future development of person re-identification technology.
Authors:Rui Wang, Chuanfu Shen, Manuel J. Marin-Jimenez, George Q. Huang, Shiqi Yu
Abstract:
Current gait recognition research mainly focuses on identifying pedestrians captured by the same type of sensor, neglecting the fact that individuals may be captured by different sensors in order to adapt to various environments. A more practical approach should involve cross-modality matching across different sensors. Hence, this paper focuses on investigating the problem of cross-modality gait recognition, with the objective of accurately identifying pedestrians across diverse vision sensors. We present CrossGait inspired by the feature alignment strategy, capable of cross retrieving diverse data modalities. Specifically, we investigate the cross-modality recognition task by initially extracting features within each modality and subsequently aligning these features across modalities. To further enhance the cross-modality performance, we propose a Prototypical Modality-shared Attention Module that learns modality-shared features from two modality-specific features. Additionally, we design a Cross-modality Feature Adapter that transforms the learned modality-specific features into a unified feature space. Extensive experiments conducted on the SUSTech1K dataset demonstrate the effectiveness of CrossGait: (1) it exhibits promising cross-modality ability in retrieving pedestrians across various modalities from different sensors in diverse scenes, and (2) CrossGait not only learns modality-shared features for cross-modality gait recognition but also maintains modality-specific features for single-modality recognition.
Authors:Wanrong Zheng, Haidong Zhu, Zhaoheng Zheng, Ram Nevatia
Abstract:
Gait recognition aims to identify a person based on their walking sequences, serving as a useful biometric modality as it can be observed from long distances without requiring cooperation from the subject. In representing a person's walking sequence, silhouettes and skeletons are the two primary modalities used. Silhouette sequences lack detailed part information when overlapping occurs between different body segments and are affected by carried objects and clothing. Skeletons, comprising joints and bones connecting the joints, provide more accurate part information for different segments; however, they are sensitive to occlusions and low-quality images, causing inconsistencies in frame-wise results within a sequence. In this paper, we explore the use of a two-stream representation of skeletons for gait recognition, alongside silhouettes. By fusing the combined data of silhouettes and skeletons, we refine the two-stream skeletons, joints, and bones through self-correction in graph convolution, along with cross-modal correction with temporal consistency from silhouettes. We demonstrate that with refined skeletons, the performance of the gait recognition model can achieve further improvement on public gait recognition datasets compared with state-of-the-art methods without extra annotations.
Authors:Lei Zhang, Xiaowei Fu, Fuxiang Huang, Yi Yang, Xinbo Gao
Abstract:
Person re-identification (ReID) has made great strides thanks to the data-driven deep learning techniques. However, the existing benchmark datasets lack diversity, and models trained on these data cannot generalize well to dynamic wild scenarios. To meet the goal of improving the explicit generalization of ReID models, we develop a new Open-World, Diverse, Cross-Spatial-Temporal dataset named OWD with several distinct features. 1) Diverse collection scenes: multiple independent open-world and highly dynamic collecting scenes, including streets, intersections, shopping malls, etc. 2) Diverse lighting variations: long time spans from daytime to nighttime with abundant illumination changes. 3) Diverse person status: multiple camera networks in all seasons with normal/adverse weather conditions and diverse pedestrian appearances (e.g., clothes, personal belongings, poses, etc.). 4) Protected privacy: invisible faces for privacy critical applications. To improve the implicit generalization of ReID, we further propose a Latent Domain Expansion (LDE) method to develop the potential of source data, which decouples discriminative identity-relevant and trustworthy domain-relevant features and implicitly enforces domain-randomized identity feature space expansion with richer domain diversity to facilitate domain invariant representations. Our comprehensive evaluations with most benchmark datasets in the community are crucial for progress, although this work is far from the grand goal toward open-world and dynamic wild applications.
Authors:Guoqiang Liang, Jiahao Hu, Qingyue Wang, Shizhou Zhang
Abstract:
Human de-occlusion, which aims to infer the appearance of invisible human parts from an occluded image, has great value in many human-related tasks, such as person re-id, and intention inference. To address this task, this paper proposes a dynamic mask-aware transformer (DMAT), which dynamically augments information from human regions and weakens that from occlusion. First, to enhance token representation, we design an expanded convolution head with enlarged kernels, which captures more local valid context and mitigates the influence of surrounding occlusion. To concentrate on the visible human parts, we propose a novel dynamic multi-head human-mask guided attention mechanism through integrating multiple masks, which can prevent the de-occluded regions from assimilating to the background. Besides, a region upsampling strategy is utilized to alleviate the impact of occlusion on interpolated images. During model learning, an amodal loss is developed to further emphasize the recovery effect of human regions, which also refines the model's convergence. Extensive experiments on the AHP dataset demonstrate its superior performance compared to recent state-of-the-art methods.
Authors:Weihao Li, Lei Tan, Pingyang Dai, Yan Zhang
Abstract:
Text-to-image person re-identification (TIReID) aims to retrieve the target person from an image gallery via a textual description query. Recently, pre-trained vision-language models like CLIP have attracted significant attention and have been widely utilized for this task due to their robust capacity for semantic concept learning and rich multi-modal knowledge. However, recent CLIP-based TIReID methods commonly rely on direct fine-tuning of the entire network to adapt the CLIP model for the TIReID task. Although these methods show competitive performance on this topic, they are suboptimal as they necessitate simultaneous domain adaptation and task adaptation. To address this issue, we attempt to decouple these two processes during the training stage. Specifically, we introduce the prompt tuning strategy to enable domain adaptation and propose a two-stage training approach to disentangle domain adaptation from task adaptation. In the first stage, we freeze the two encoders from CLIP and solely focus on optimizing the prompts to alleviate domain gap between the original training data of CLIP and downstream tasks. In the second stage, we maintain the fixed prompts and fine-tune the CLIP model to prioritize capturing fine-grained information, which is more suitable for TIReID task. Finally, we evaluate the effectiveness of our method on three widely used datasets. Compared to the directly fine-tuned approach, our method achieves significant improvements.
Authors:David Freire-Obregón, Javier Lorenzo-Navarro, Oliverio J. Santana, Daniel Hernández-Sosa, Modesto Castrillón-Santana
Abstract:
Re-identifying participants in ultra-distance running competitions can be daunting due to the extensive distances and constantly changing terrain. To overcome these challenges, computer vision techniques have been developed to analyze runners' faces, numbers on their bibs, and clothing. However, our study presents a novel gait-based approach for runners' re-identification (re-ID) by leveraging various pre-trained human action recognition (HAR) models and loss functions. Our results show that this approach provides promising results for re-identifying runners in ultra-distance competitions. Furthermore, we investigate the significance of distinct human body movements when athletes are approaching their endurance limits and their potential impact on re-ID accuracy. Our study examines how the recognition of a runner's gait is affected by a competition's critical point (CP), defined as a moment of severe fatigue and the point where the finish line comes into view, just a few kilometers away from this location. We aim to determine how this CP can improve the accuracy of athlete re-ID. Our experimental results demonstrate that gait recognition can be significantly enhanced (up to a 9% increase in mAP) as athletes approach this point. This highlights the potential of utilizing gait recognition in real-world scenarios, such as ultra-distance competitions or long-duration surveillance tasks.
Authors:Mario Srouji, Yao-Hung Hubert Tsai, Hugues Thomas, Jian Zhang
Abstract:
Human following is a crucial feature of human-robot interaction, yet it poses numerous challenges to mobile agents in real-world scenarios. Some major hurdles are that the target person may be in a crowd, obstructed by others, or facing away from the agent. To tackle these challenges, we present a novel person re-identification module composed of three parts: a 360-degree visual registration, a neural-based person re-identification using human faces and torsos, and a motion tracker that records and predicts the target person's future position. Our human-following system also addresses other challenges, including identifying fast-moving targets with low latency, searching for targets that move out of the camera's sight, collision avoidance, and adaptively choosing different following mechanisms based on the distance between the target person and the mobile agent. Extensive experiments show that our proposed person re-identification module significantly enhances the human-following feature compared to other baseline variants.
Authors:Jinkai Zheng, Xinchen Liu, Shuai Wang, Lihao Wang, Chenggang Yan, Wu Liu
Abstract:
Binary silhouettes and keypoint-based skeletons have dominated human gait recognition studies for decades since they are easy to extract from video frames. Despite their success in gait recognition for in-the-lab environments, they usually fail in real-world scenarios due to their low information entropy for gait representations. To achieve accurate gait recognition in the wild, this paper presents a novel gait representation, named Gait Parsing Sequence (GPS). GPSs are sequences of fine-grained human segmentation, i.e., human parsing, extracted from video frames, so they have much higher information entropy to encode the shapes and dynamics of fine-grained human parts during walking. Moreover, to effectively explore the capability of the GPS representation, we propose a novel human parsing-based gait recognition framework, named ParsingGait. ParsingGait contains a Convolutional Neural Network (CNN)-based backbone and two light-weighted heads. The first head extracts global semantic features from GPSs, while the other one learns mutual information of part-level features through Graph Convolutional Networks to model the detailed dynamics of human walking. Furthermore, due to the lack of suitable datasets, we build the first parsing-based dataset for gait recognition in the wild, named Gait3D-Parsing, by extending the large-scale and challenging Gait3D dataset. Based on Gait3D-Parsing, we comprehensively evaluate our method and existing gait recognition methods. The experimental results show a significant improvement in accuracy brought by the GPS representation and the superiority of ParsingGait. The code and dataset are available at https://gait3d.github.io/gait3d-parsing-hp .
Authors:Catherine Ordun, Edward Raff, Sanjay Purushotham
Abstract:
For a variety of biometric cross-spectral tasks, Visible-Thermal (VT) facial pairs are used. However, due to a lack of calibration in the lab, photographic capture between two different sensors leads to severely misaligned pairs that can lead to poor results for person re-identification and generative AI. To solve this problem, we introduce our approach for VT image registration called Vista Morph. Unlike existing VT facial registration that requires manual, hand-crafted features for pixel matching and/or a supervised thermal reference, Vista Morph is completely unsupervised without the need for a reference. By learning the affine matrix through a Vision Transformer (ViT)-based Spatial Transformer Network (STN) and Generative Adversarial Networks (GAN), Vista Morph successfully aligns facial and non-facial VT images. Our approach learns warps in Hard, No, and Low-light visual settings and is robust to geometric perturbations and erasure at test time. We conduct a downstream generative AI task to show that registering training data with Vista Morph improves subject identity of generated thermal faces when performing V2T image translation.
Authors:Jiaer Xia, Lei Tan, Pingyang Dai, Mingbo Zhao, Yongjian Wu, Liujuan Cao
Abstract:
Occluded person re-identification (Re-ID) aims to address the potential occlusion problem when matching occluded or holistic pedestrians from different camera views. Many methods use the background as artificial occlusion and rely on attention networks to exclude noisy interference. However, the significant discrepancy between simple background occlusion and realistic occlusion can negatively impact the generalization of the network. To address this issue, we propose a novel transformer-based Attention Disturbance and Dual-Path Constraint Network (ADP) to enhance the generalization of attention networks. Firstly, to imitate real-world obstacles, we introduce an Attention Disturbance Mask (ADM) module that generates an offensive noise, which can distract attention like a realistic occluder, as a more complex form of occlusion. Secondly, to fully exploit these complex occluded images, we develop a Dual-Path Constraint Module (DPC) that can obtain preferable supervision information from holistic images through dual-path interaction. With our proposed method, the network can effectively circumvent a wide variety of occlusions using the basic ViT baseline. Comprehensive experimental evaluations conducted on person re-ID benchmarks demonstrate the superiority of ADP over state-of-the-art methods.
Authors:Chuanfu Shen, Shiqi Yu, Jilong Wang, George Q. Huang, Liang Wang
Abstract:
Gait recognition aims to identify a person at a distance, serving as a promising solution for long-distance and less-cooperation pedestrian recognition. Recently, significant advancements in gait recognition have achieved inspiring success in many challenging scenarios by utilizing deep learning techniques. Against the backdrop that deep gait recognition has achieved almost perfect performance in laboratory datasets, much recent research has introduced new challenges for gait recognition, including robust deep representation modeling, in-the-wild gait recognition, and even recognition from new visual sensors such as infrared and depth cameras. Meanwhile, the increasing performance of gait recognition might also reveal concerns about biometrics security and privacy prevention for society. We provide a comprehensive survey on recent literature using deep learning and a discussion on the privacy and security of gait biometrics. This survey reviews the existing deep gait recognition methods through a novel view based on our proposed taxonomy. The proposed taxonomy differs from the conventional taxonomy of categorizing available gait recognition methods into the model- or appearance-based methods, while our taxonomic hierarchy considers deep gait recognition from two perspectives: deep representation learning and deep network architectures, illustrating the current approaches from both micro and macro levels. We also include up-to-date reviews of datasets and performance evaluations on diverse scenarios. Finally, we introduce privacy and security concerns on gait biometrics and discuss outstanding challenges and potential directions for future research.
Authors:Simon Hanisch, Evelyn Muschter, Admantini Hatzipanayioti, Shu-Chen Li, Thorsten Strufe
Abstract:
Gait recognition is the process of identifying humans from their bipedal locomotion such as walking or running. As such, gait data is privacy sensitive information and should be anonymized where possible. With the rise of higher quality gait recording techniques, such as depth cameras or motion capture suits, an increasing amount of detailed gait data is captured and processed. The introduction and rise of the Metaverse is an example of a potentially popular application scenario in which the gait of users is transferred onto digital avatars. As a first step towards developing effective anonymization techniques for high-quality gait data, we study different aspects of movement data to quantify their contribution to gait recognition. We first extract categories of features from the literature on human gait perception and then design experiments for each category to assess how much the information they contain contributes to recognition success. We evaluated the utility of gait perturbation by means of naturalness ratings in a user study. Our results show that gait anonymization will be challenging, as the data is highly redundant and inter-dependent.
Authors:Quang-Huy Che, Le-Chuong Nguyen, Gia-Nghia Tran, Dinh-Duy Phan, Vinh-Tiep Nguyen
Abstract:
In person re-identification, re-ranking is a crucial step to enhance the overall accuracy by refining the initial ranking of retrieved results. Previous studies have mainly focused on features from single-view images, which can cause view bias and issues like pose variation, viewpoint changes, and occlusions. Using multi-view features to present a person can help reduce view bias. In this work, we present an efficient re-ranking method that generates multi-view features by aggregating neighbors' features using K-nearest Weighted Fusion (KWF) method. Specifically, we hypothesize that features extracted from re-identification models are highly similar when representing the same identity. Thus, we select K neighboring features in an unsupervised manner to generate multi-view features. Additionally, this study explores the weight selection strategies during feature aggregation, allowing us to identify an effective strategy. Our re-ranking approach does not require model fine-tuning or extra annotations, making it applicable to large-scale datasets. We evaluate our method on the person re-identification datasets Market1501, MSMT17, and Occluded-DukeMTMC. The results show that our method significantly improves Rank@1 and mAP when re-ranking the top M candidates from the initial ranking results. Specifically, compared to the initial results, our re-ranking method achieves improvements of 9.8%/22.0% in Rank@1 on the challenging datasets: MSMT17 and Occluded-DukeMTMC, respectively. Furthermore, our approach demonstrates substantial enhancements in computational efficiency compared to other re-ranking methods.
Authors:Thomas Kreutz, Max Mühlhäuser, Alejandro Sanchez Guinea
Abstract:
Despite LiDAR (Light Detection and Ranging) being an effective privacy-preserving alternative to RGB cameras to perceive human activities, it remains largely underexplored in the context of multi-modal contrastive pre-training for human activity understanding (e.g., human activity recognition (HAR), retrieval, or person re-identification (RE-ID)). To close this gap, our work explores learning the correspondence between LiDAR point clouds, human skeleton poses, IMU data, and text in a joint embedding space. More specifically, we present DeSPITE, a Deep Skeleton-Pointcloud-IMU-Text Embedding model, which effectively learns a joint embedding space across these four modalities. At the heart of our empirical exploration, we have combined the existing LIPD and Babel datasets, which enabled us to synchronize data of all four modalities, allowing us to explore the learning of a new joint embedding space. Our experiments demonstrate novel human activity understanding tasks for point cloud sequences enabled through DeSPITE, including Skeleton<->Pointcloud<->IMU matching, retrieval, and temporal moment retrieval. Furthermore, we show that DeSPITE is an effective pre-training strategy for point cloud HAR through experiments in MSR-Action3D and HMPEAR.
Authors:Weizhen He, Yunfeng Yan, Shixiang Tang, Yiheng Deng, Yangyang Zhong, Pengxin Luo, Donglian Qi
Abstract:
Human-centric perception is the core of diverse computer vision tasks and has been a long-standing research focus. However, previous research studied these human-centric tasks individually, whose performance is largely limited to the size of the public task-specific datasets. Recent human-centric methods leverage the additional modalities, e.g., depth, to learn fine-grained semantic information, which limits the benefit of pretraining models due to their sensitivity to camera views and the scarcity of RGB-D data on the Internet. This paper improves the data scalability of human-centric pretraining methods by discarding depth information and exploring semantic information of RGB images in the frequency space by Discrete Cosine Transform (DCT). We further propose new annotation denoising auxiliary tasks with keypoints and DCT maps to enforce the RGB image extractor to learn fine-grained semantic information of human bodies. Our extensive experiments show that when pretrained on large-scale datasets (COCO and AIC datasets) without depth annotation, our model achieves better performance than state-of-the-art methods by +0.5 mAP on COCO, +1.4 PCKh on MPII and -0.51 EPE on Human3.6M for pose estimation, by +4.50 mIoU on Human3.6M for human parsing, by -3.14 MAE on SHA and -0.07 MAE on SHB for crowd counting, by +1.1 F1 score on SHA and +0.8 F1 score on SHA for crowd localization, and by +0.1 mAP on Market1501 and +0.8 mAP on MSMT for person ReID. We also validate the effectiveness of our method on MPII+NTURGBD datasets
Authors:Zhengxian Wu, Chuanrui Zhang, Hangrui Xu, Peng Jiao, Haoqian Wang
Abstract:
Gait recognition is emerging as a promising and innovative area within the field of computer vision, widely applied to remote person identification. Although existing gait recognition methods have achieved substantial success in controlled laboratory datasets, their performance often declines significantly when transitioning to wild datasets.We argue that the performance gap can be primarily attributed to the spatio-temporal distribution inconsistencies present in wild datasets, where subjects appear at varying angles, positions, and distances across the frames. To achieve accurate gait recognition in the wild, we propose a skeleton-guided silhouette alignment strategy, which uses prior knowledge of the skeletons to perform affine transformations on the corresponding silhouettes.To the best of our knowledge, this is the first study to explore the impact of data alignment on gait recognition. We conducted extensive experiments across multiple datasets and network architectures, and the results demonstrate the significant advantages of our proposed alignment strategy.Specifically, on the challenging Gait3D dataset, our method achieved an average performance improvement of 7.9% across all evaluated networks. Furthermore, our method achieves substantial improvements on cross-domain datasets, with accuracy improvements of up to 24.0%.
Authors:Hangrui Xu, Chuanrui Zhang, Zhengxian Wu, Peng Jiao, Haoqian Wang
Abstract:
Gait recognition has emerged as a robust biometric modality due to its non-intrusive nature and resilience to occlusion. Conventional gait recognition methods typically rely on silhouettes or skeletons. Despite their success in gait recognition for controlled laboratory environments, they usually fail in real-world scenarios due to their limited information entropy for gait representations. To achieve accurate gait recognition in the wild, we propose a novel gait representation, named Parsing Skeleton. This representation innovatively introduces the skeleton-guided human parsing method to capture fine-grained body dynamics, so they have much higher information entropy to encode the shapes and dynamics of fine-grained human parts during walking. Moreover, to effectively explore the capability of the Parsing Skeleton representation, we propose a novel Parsing Skeleton-based gait recognition framework, named PSGait, which takes Parsing Skeletons and silhouettes as input. By fusing these two modalities, the resulting image sequences are fed into gait recognition models for enhanced individual differentiation. We conduct comprehensive benchmarks on various datasets to evaluate our model. PSGait outperforms existing state-of-the-art multimodal methods that utilize both skeleton and silhouette inputs while significantly reducing computational resources. Furthermore, as a plug-and-play method, PSGait leads to a maximum improvement of 10.9% in Rank-1 accuracy across various gait recognition models. These results demonstrate that Parsing Skeleton offers a lightweight, effective, and highly generalizable representation for gait recognition in the wild.
Authors:Madhu Kiran, Kartikey Vishnu, Rafael M. O. Cruz, Eric Granger
Abstract:
Image retrieval methods rely on metric learning to train backbone feature extraction models that can extract discriminant queries and reference (gallery) feature representations for similarity matching. Although state-of-the-art accuracy has improved considerably with the advent of deep learning (DL) models trained on large datasets, image retrieval remains challenging in many real-world video analytics and surveillance applications, e.g., person re-identification. Using the Euclidean space for matching limits the performance in real-world applications due to the curse of dimensionality, overfitting, and sensitivity to noisy data.
We argue that the feature dissimilarity space is more suitable for similarity matching, and propose a dichotomy transformation to project query and reference embeddings into a single embedding in the dissimilarity space.
We also advocate for end-to-end training of a backbone and binary classification models for pair-wise matching. As opposed to comparing the distance between queries and reference embeddings, we show the benefits of classifying the single dissimilarity space embedding (as similar or dissimilar), especially when trained end-to-end. We propose a method to train the max-margin classifier together with the backbone feature extractor by applying constraints to the L2 norm of the classifier weights along with the hinge loss.
Our extensive experiments on challenging image retrieval datasets and using diverse feature extraction backbones highlight the benefits of similarity matching in the dissimilarity space. In particular, when jointly training the feature extraction backbone and regularised classifier for matching, the dissimilarity space provides a higher level of accuracy.
Authors:Huantao Ren, Jiajing Chen, Senem Velipasalar
Abstract:
Gait is a behavioral biometric modality that can be used to recognize individuals by the way they walk from a far distance. Most existing gait recognition approaches rely on either silhouettes or skeletons, while their joint use is underexplored. Features from silhouettes and skeletons can provide complementary information for more robust recognition against appearance changes or pose estimation errors. To exploit the benefits of both silhouette and skeleton features, we propose a new gait recognition network, referred to as the GaitPoint+. Our approach models skeleton key points as a 3D point cloud, and employs a computational complexity-conscious 3D point processing approach to extract skeleton features, which are then combined with silhouette features for improved accuracy. Since silhouette- or CNN-based methods already require considerable amount of computational resources, it is preferable that the key point learning module is faster and more lightweight. We present a detailed analysis of the utilization of every human key point after the use of traditional max-pooling, and show that while elbow and ankle points are used most commonly, many useful points are discarded by max-pooling. Thus, we present a method to recycle some of the discarded points by a Recycling Max-Pooling module, during processing of skeleton point clouds, and achieve further performance improvement. We provide a comprehensive set of experimental results showing that (i) incorporating skeleton features obtained by a point-based 3D point cloud processing approach boosts the performance of three different state-of-the-art silhouette- and CNN-based baselines; (ii) recycling the discarded points increases the accuracy further. Ablation studies are also provided to show the effectiveness and contribution of different components of our approach.
Authors:Wentao Jiang, Yige Zhang, Shaozhong Zheng, Si Liu, Shuicheng Yan
Abstract:
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks, a first of its kind in the field. It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection, addressing the significant challenges posed by overfitting and limited training data in these domains. Our work categorizes data augmentation methods into two main types: data generation and data perturbation. Data generation covers techniques like graphic engine-based generation, generative model-based generation, and data recombination, while data perturbation is divided into image-level and human-level perturbations. Each method is tailored to the unique requirements of human-centric tasks, with some applicable across multiple areas. Our contributions include an extensive literature review, providing deep insights into the influence of these augmentation techniques in human-centric vision and highlighting the nuances of each method. We also discuss open issues and future directions, such as the integration of advanced generative models like Latent Diffusion Models, for creating more realistic and diverse training data. This survey not only encapsulates the current state of data augmentation in human-centric vision but also charts a course for future research, aiming to develop more robust, accurate, and efficient human-centric vision systems.
Authors:Hongchen Tan, Yi Zhang, Xiuping Liu, Baocai Yin, Nan Ma, Xin Li, Huchuan Lu
Abstract:
As a cutting-edge biosensor, the event camera holds significant potential in the field of computer vision, particularly regarding privacy preservation. However, compared to traditional cameras, event streams often contain noise and possess extremely sparse semantics, posing a formidable challenge for event-based person re-identification (event Re-ID). To address this, we introduce a novel event person re-identification network: the Spectrum-guided Feature Enhancement Network (SFE-Net). This network consists of two innovative components: the Multi-grain Spectrum Attention Mechanism (MSAM) and the Consecutive Patch Dropout Module (CPDM). MSAM employs a fourier spectrum transform strategy to filter event noise, while also utilizing an event-guided multi-granularity attention strategy to enhance and capture discriminative person semantics. CPDM employs a consecutive patch dropout strategy to generate multiple incomplete feature maps, encouraging the deep Re-ID model to equally perceive each effective region of the person's body and capture robust person descriptors. Extensive experiments on Event Re-ID datasets demonstrate that our SFE-Net achieves the best performance in this task.
Authors:Ayush Gupta, Rama Chellappa
Abstract:
While gait recognition has seen many advances in recent years, the occlusion problem has largely been ignored. This problem is especially important for gait recognition from uncontrolled outdoor sequences at range - since any small obstruction can affect the recognition system. Most current methods assume the availability of complete body information while extracting the gait features. When parts of the body are occluded, these methods may hallucinate and output a corrupted gait signature as they try to look for body parts which are not present in the input at all. To address this, we exploit the learned occlusion type while extracting identity features from videos. Thus, in this work, we propose an occlusion aware gait recognition method which can be used to model intrinsic occlusion awareness into potentially any state-of-the-art gait recognition method. Our experiments on the challenging GREW and BRIAR datasets show that networks enhanced with this occlusion awareness perform better at recognition tasks than their counterparts trained on similar occlusions.
Authors:Mulham Fawakherji, Eduard Vazquez, Pasquale Giampa, Binod Bhattarai
Abstract:
Multimodal Person Reidentification is gaining popularity in the research community due to its effectiveness compared to counter-part unimodal frameworks. However, the bottleneck for multimodal deep learning is the need for a large volume of multimodal training examples. Data augmentation techniques such as cropping, flipping, rotation, etc. are often employed in the image domain to improve the generalization of deep learning models. Augmenting in other modalities than images, such as text, is challenging and requires significant computational resources and external data sources. In this study, we investigate the effectiveness of two computer vision data augmentation techniques: cutout and cutmix, for text augmentation in multi-modal person re-identification. Our approach merges these two augmentation strategies into one strategy called CutMixOut which involves randomly removing words or sub-phrases from a sentence (Cutout) and blending parts of two or more sentences to create diverse examples (CutMix) with a certain probability assigned to each operation. This augmentation was implemented at inference time without any prior training. Our results demonstrate that the proposed technique is simple and effective in improving the performance on multiple multimodal person re-identification benchmarks.
Authors:Arthur Josi, Mahdi Alehdaghi, Rafael M. O. Cruz, Eric Granger
Abstract:
Visible-infrared person re-identification (V-I ReID) seeks to match images of individuals captured over a distributed network of RGB and IR cameras. The task is challenging due to the significant differences between V and I modalities, especially under real-world conditions, where images are corrupted by, e.g, blur, noise, and weather. Indeed, state-of-art V-I ReID models cannot leverage corrupted modality information to sustain a high level of accuracy. In this paper, we propose an efficient model for multimodal V-I ReID -- named Multimodal Middle Stream Fusion (MMSF) -- that preserves modality-specific knowledge for improved robustness to corrupted multimodal images. In addition, three state-of-art attention-based multimodal fusion models are adapted to address corrupted multimodal data in V-I ReID, allowing to dynamically balance each modality importance. Recently, evaluation protocols have been proposed to assess the robustness of ReID models under challenging real-world scenarios. However, these protocols are limited to unimodal V settings. For realistic evaluation of multimodal (and cross-modal) V-I person ReID models, we propose new challenging corrupted datasets for scenarios where V and I cameras are co-located (CL) and not co-located (NCL). Finally, the benefits of our Masking and Local Multimodal Data Augmentation (ML-MDA) strategy are explored to improve the robustness of ReID models to multimodal corruption. Our experiments on clean and corrupted versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets indicate the multimodal V-I ReID models that are more likely to perform well in real-world operational conditions. In particular, our ML-MDA is an important strategy for a V-I person ReID system to sustain high accuracy and robustness when processing corrupted multimodal images. Also, our multimodal ReID model MMSF outperforms every method under CL and NCL camera scenarios.
Authors:Pengna Li, Kangyi Wu, Sanping Zhou. Qianxin Huang, Jinjun Wang
Abstract:
Unsupervised person re-identification (Re-ID) aims to retrieve person images across cameras without any identity labels. Most clustering-based methods roughly divide image features into clusters and neglect the feature distribution noise caused by domain shifts among different cameras, leading to inevitable performance degradation. To address this challenge, we propose a novel label refinement framework with clustering intra-camera similarity. Intra-camera feature distribution pays more attention to the appearance of pedestrians and labels are more reliable. We conduct intra-camera training to get local clusters in each camera, respectively, and refine inter-camera clusters with local results. We hence train the Re-ID model with refined reliable pseudo labels in a self-paced way. Extensive experiments demonstrate that the proposed method surpasses state-of-the-art performance.
Authors:Jiawei Feng, Ancong Wu, Wei-Shi Zheng
Abstract:
Due to the modality gap between visible and infrared images with high visual ambiguity, learning \textbf{diverse} modality-shared semantic concepts for visible-infrared person re-identification (VI-ReID) remains a challenging problem. Body shape is one of the significant modality-shared cues for VI-ReID. To dig more diverse modality-shared cues, we expect that erasing body-shape-related semantic concepts in the learned features can force the ReID model to extract more and other modality-shared features for identification. To this end, we propose shape-erased feature learning paradigm that decorrelates modality-shared features in two orthogonal subspaces. Jointly learning shape-related feature in one subspace and shape-erased features in the orthogonal complement achieves a conditional mutual information maximization between shape-erased feature and identity discarding body shape information, thus enhancing the diversity of the learned representation explicitly. Extensive experiments on SYSU-MM01, RegDB, and HITSZ-VCM datasets demonstrate the effectiveness of our method.
Authors:Zhihao Qian, Yutian Lin, Bo Du
Abstract:
Visible-infrared person re-identification (VI-ReID) aims to retrieve images of the same pedestrian from different modalities, where the challenges lie in the significant modality discrepancy. To alleviate the modality gap, recent methods generate intermediate images by GANs, grayscaling, or mixup strategies. However, these methods could introduce extra data distribution, and the semantic correspondence between the two modalities is not well learned. In this paper, we propose a Patch-Mixed Cross-Modality framework (PMCM), where two images of the same person from two modalities are split into patches and stitched into a new one for model learning. A part-alignment loss is introduced to regularize representation learning, and a patch-mixed modality learning loss is proposed to align between the modalities. In this way, the model learns to recognize a person through patches of different styles, thereby the modality semantic correspondence can be inferred. In addition, with the flexible image generation strategy, the patch-mixed images freely adjust the ratio of different modality patches, which could further alleviate the modality imbalance problem. On two VI-ReID datasets, we report new state-of-the-art performance with the proposed method.
Authors:Leqi Shen, Tao He, Yuchen Guo, Guiguang Ding
Abstract:
Currently, most existing person re-identification methods use Instance-Level features, which are extracted only from a single image. However, these Instance-Level features can easily ignore the discriminative information due to the appearance of each identity varies greatly in different images. Thus, it is necessary to exploit Identity-Level features, which can be shared across different images of each identity. In this paper, we propose to promote Instance-Level features to Identity-Level features by employing cross-attention to incorporate information from one image to another of the same identity, thus more unified and discriminative pedestrian information can be obtained. We propose a novel training framework named X-ReID. Specifically, a Cross Intra-Identity Instances module (IntraX) fuses different intra-identity instances to transfer Identity-Level knowledge and make Instance-Level features more compact. A Cross Inter-Identity Instances module (InterX) involves hard positive and hard negative instances to improve the attention response to the same identity instead of different identity, which minimizes intra-identity variation and maximizes inter-identity variation. Extensive experiments on benchmark datasets show the superiority of our method over existing works. Particularly, on the challenging MSMT17, our proposed method gains 1.1% mAP improvements when compared to the second place.
Authors:Jingzhe Ma, Xiaoqing Zhang, Shiqi Yu
Abstract:
Human motion transfer (HMT) aims to generate a video clip for the target subject by imitating the source subject's motion. Although previous methods have achieved good results in synthesizing good-quality videos, they lose sight of individualized motion information from the source and target motions, which is significant for the realism of the motion in the generated video. To address this problem, we propose a novel identity-preserved HMT network, termed \textit{IDPres}. This network is a skeleton-based approach that uniquely incorporates the target's individualized motion and skeleton information to augment identity representations. This integration significantly enhances the realism of movements in the generated videos. Our method focuses on the fine-grained disentanglement and synthesis of motion. To improve the representation learning capability in latent space and facilitate the training of \textit{IDPres}, we introduce three training schemes. These schemes enable \textit{IDPres} to concurrently disentangle different representations and accurately control them, ensuring the synthesis of ideal motions. To evaluate the proportion of individualized motion information in the generated video, we are the first to introduce a new quantitative metric called Identity Score (\textit{ID-Score}), motivated by the success of gait recognition methods in capturing identity information. Moreover, we collect an identity-motion paired dataset, $Dancer101$, consisting of solo-dance videos of 101 subjects from the public domain, providing a benchmark to prompt the development of HMT methods. Extensive experiments demonstrate that the proposed \textit{IDPres} method surpasses existing state-of-the-art techniques in terms of reconstruction accuracy, realistic motion, and identity preservation.
Authors:Jingjie Wang, Shunli Zhang, Xiang Wei, Senmao Tian
Abstract:
Current gait recognition methodologies generally necessitate retraining when encountering new datasets. Nevertheless, retrained models frequently encounter difficulties in preserving knowledge from previous datasets, leading to a significant decline in performance on earlier test sets. To tackle these challenges, we present a continual gait recognition task, termed GaitAdapt, which supports the progressive enhancement of gait recognition capabilities over time and is systematically categorized according to various evaluation scenarios. Additionally, we propose GaitAdapter, a non-replay continual learning approach for gait recognition. This approach integrates the GaitPartition Adaptive Knowledge (GPAK) module, employing graph neural networks to aggregate common gait patterns from current data into a repository constructed from graph vectors. Subsequently, this repository is used to improve the discriminability of gait features in new tasks, thereby enhancing the model's ability to effectively recognize gait patterns. We also introduce a Euclidean Distance Stability Method (EDSN) based on negative pairs, which ensures that newly added gait samples from different classes maintain similar relative spatial distributions across both previous and current gait tasks, thereby alleviating the impact of task changes on the distinguishability of original domain features. Extensive evaluations demonstrate that GaitAdapter effectively retains gait knowledge acquired from diverse tasks, exhibiting markedly superior discriminative capability compared to alternative methods.
Authors:Ziwei Zhao, Xizi Wang, Yuchen Wang, Feng Cheng, David Crandall
Abstract:
The increasing popularity of egocentric cameras has generated growing interest in studying multi-camera interactions in shared environments. Although large-scale datasets such as Ego4D and Ego-Exo4D have propelled egocentric vision research, interactions between multiple camera wearers remain underexplored-a key gap for applications like immersive learning and collaborative robotics. To bridge this, we present TF2025, an expanded dataset with synchronized first- and third-person views. In addition, we introduce a sequence-based method to identify first-person wearers in third-person footage, combining motion cues and person re-identification.
Authors:Qianru Han, Xinwei He, Zhi Liu, Sannyuya Liu, Ying Zhang, Jinhai Xiang
Abstract:
Person re-identification (ReID) has recently benefited from large pretrained vision-language models such as Contrastive Language-Image Pre-Training (CLIP). However, the absence of concrete descriptions necessitates the use of implicit text embeddings, which demand complicated and inefficient training strategies. To address this issue, we first propose one straightforward solution by leveraging existing image captioning models to generate pseudo captions for person images, and thereby boost person re-identification with large vision language models. Using models like the Large Language and Vision Assistant (LLAVA), we generate high-quality captions based on fixed templates that capture key semantic attributes such as gender, clothing, and age. By augmenting ReID training sets from uni-modality (image) to bi-modality (image and text), we introduce CLIP-SCGI, a simple yet effective framework that leverages synthesized captions to guide the learning of discriminative and robust representations. Built on CLIP, CLIP-SCGI fuses image and text embeddings through two modules to enhance the training process. To address quality issues in generated captions, we introduce a caption-guided inversion module that captures semantic attributes from images by converting relevant visual information into pseudo-word tokens based on the descriptions. This approach helps the model better capture key information and focus on relevant regions. The extracted features are then utilized in a cross-modal fusion module, guiding the model to focus on regions semantically consistent with the caption, thereby facilitating the optimization of the visual encoder to extract discriminative and robust representations. Extensive experiments on four popular ReID benchmarks demonstrate that CLIP-SCGI outperforms the state-of-the-art by a significant margin.
Authors:Yunze Deng, Haijun Xiong, Bin Feng
Abstract:
Gait recognition is a biometric technology that identifies individuals by using walking patterns. Due to the significant achievements of multimodal fusion in gait recognition, we consider employing LiDAR-camera fusion to obtain robust gait representations. However, existing methods often overlook intrinsic characteristics of modalities, and lack fine-grained fusion and temporal modeling. In this paper, we introduce a novel modality-sensitive network LiCAF for LiDAR-camera fusion, which employs an asymmetric modeling strategy. Specifically, we propose Asymmetric Cross-modal Channel Attention (ACCA) and Interlaced Cross-modal Temporal Modeling (ICTM) for cross-modal valuable channel information selection and powerful temporal modeling. Our method achieves state-of-the-art performance (93.9% in Rank-1 and 98.8% in Rank-5) on the SUSTech1K dataset, demonstrating its effectiveness.
Authors:Senmao Tian, Haoyu Gao, Gangyi Hong, Shuyun Wang, JingJie Wang, Xin Yu, Shunli Zhang
Abstract:
Existing deep learning methods have made significant progress in gait recognition. Typically, appearance-based models binarize inputs into silhouette sequences. However, mainstream quantization methods prioritize minimizing task loss over quantization error, which is detrimental to gait recognition with binarized inputs. Minor variations in silhouette sequences can be diminished in the network's intermediate layers due to the accumulation of quantization errors. To address this, we propose a differentiable soft quantizer, which better simulates the gradient of the round function during backpropagation. This enables the network to learn from subtle input perturbations. However, our theoretical analysis and empirical studies reveal that directly applying the soft quantizer can hinder network convergence. We further refine the training strategy to ensure convergence while simulating quantization errors. Additionally, we visualize the distribution of outputs from different samples in the feature space and observe significant changes compared to the full precision network, which harms performance. Based on this, we propose an Inter-class Distance-guided Distillation (IDD) strategy to preserve the relative distance between the embeddings of samples with different labels. Extensive experiments validate the effectiveness of our approach, demonstrating state-of-the-art accuracy across various settings and datasets. The code will be made publicly available.
Authors:Jacob Tyo, Motolani Olarinre, Youngseog Chung, Zachary C. Lipton
Abstract:
Despite significant progress in optical character recognition (OCR) and computer vision systems, robustly recognizing text and identifying people in images taken in unconstrained \emph{in-the-wild} environments remain an ongoing challenge. However, such obstacles must be overcome in practical applications of vision systems, such as identifying racers in photos taken during off-road racing events. To this end, we introduce two new challenging real-world datasets - the off-road motorcycle Racer Number Dataset (RND) and the Muddy Racer re-iDentification Dataset (MUDD) - to highlight the shortcomings of current methods and drive advances in OCR and person re-identification (ReID) under extreme conditions. These two datasets feature over 6,300 images taken during off-road competitions which exhibit a variety of factors that undermine even modern vision systems, namely mud, complex poses, and motion blur. We establish benchmark performance on both datasets using state-of-the-art models. Off-the-shelf models transfer poorly, reaching only 15% end-to-end (E2E) F1 score on text spotting, and 33% rank-1 accuracy on ReID. Fine-tuning yields major improvements, bringing model performance to 53% F1 score for E2E text spotting and 79% rank-1 accuracy on ReID, but still falls short of good performance. Our analysis exposes open problems in real-world OCR and ReID that necessitate domain-targeted techniques. With these datasets and analysis of model limitations, we aim to foster innovations in handling real-world conditions like mud and complex poses to drive progress in robust computer vision. All data was sourced from PerformancePhoto.co, a website used by professional motorsports photographers, racers, and fans. The top-performing text spotting and ReID models are deployed on this platform to power real-time race photo search.
Authors:Jacob Tyo, Zachary C. Lipton
Abstract:
The acquisition of large-scale, precisely labeled datasets for person re-identification (ReID) poses a significant challenge. Weakly supervised ReID has begun to address this issue, although its performance lags behind fully supervised methods. In response, we introduce Contrastive Multiple Instance Learning (CMIL), a novel framework tailored for more effective weakly supervised ReID. CMIL distinguishes itself by requiring only a single model and no pseudo labels while leveraging contrastive losses -- a technique that has significantly enhanced traditional ReID performance yet is absent in all prior MIL-based approaches. Through extensive experiments and analysis across three datasets, CMIL not only matches state-of-the-art performance on the large-scale SYSU-30k dataset with fewer assumptions but also consistently outperforms all baselines on the WL-market1501 and Weakly Labeled MUddy racer re-iDentification dataset (WL-MUDD) datasets. We introduce and release the WL-MUDD dataset, an extension of the MUDD dataset featuring naturally occurring weak labels from the real-world application at PerformancePhoto.co. All our code and data are accessible at https://drive.google.com/file/d/1rjMbWB6m-apHF3Wg_cfqc8QqKgQ21AsT/view?usp=drive_link.
Authors:Yulin Li, Tianzhu Zhang, Yongdong Zhang
Abstract:
Visible-infrared person re-identification (VI-ReID) is challenging due to the significant cross-modality discrepancies between visible and infrared images. While existing methods have focused on designing complex network architectures or using metric learning constraints to learn modality-invariant features, they often overlook which specific component of the image causes the modality discrepancy problem. In this paper, we first reveal that the difference in the amplitude component of visible and infrared images is the primary factor that causes the modality discrepancy and further propose a novel Frequency Domain modality-invariant feature learning framework (FDMNet) to reduce modality discrepancy from the frequency domain perspective. Our framework introduces two novel modules, namely the Instance-Adaptive Amplitude Filter (IAF) module and the Phrase-Preserving Normalization (PPNorm) module, to enhance the modality-invariant amplitude component and suppress the modality-specific component at both the image- and feature-levels. Extensive experimental results on two standard benchmarks, SYSU-MM01 and RegDB, demonstrate the superior performance of our FDMNet against state-of-the-art methods.
Authors:Geon Lee, Sanghoon Lee, Dohyung Kim, Younghoon Shin, Yongsang Yoon, Bumsub Ham
Abstract:
We present a novel unsupervised domain adaption method for person re-identification (reID) that generalizes a model trained on a labeled source domain to an unlabeled target domain. We introduce a camera-driven curriculum learning (CaCL) framework that leverages camera labels of person images to transfer knowledge from source to target domains progressively. To this end, we divide target domain dataset into multiple subsets based on the camera labels, and initially train our model with a single subset (i.e., images captured by a single camera). We then gradually exploit more subsets for training, according to a curriculum sequence obtained with a camera-driven scheduling rule. The scheduler considers maximum mean discrepancies (MMD) between each subset and the source domain dataset, such that the subset closer to the source domain is exploited earlier within the curriculum. For each curriculum sequence, we generate pseudo labels of person images in a target domain to train a reID model in a supervised way. We have observed that the pseudo labels are highly biased toward cameras, suggesting that person images obtained from the same camera are likely to have the same pseudo labels, even for different IDs. To address the camera bias problem, we also introduce a camera-diversity (CD) loss encouraging person images of the same pseudo label, but captured across various cameras, to involve more for discriminative feature learning, providing person representations robust to inter-camera variations. Experimental results on standard benchmarks, including real-to-real and synthetic-to-real scenarios, demonstrate the effectiveness of our framework.
Authors:Markus Eisenbach, Jannik Lübberstedt, Dustin Aganian, Horst-Michael Gross
Abstract:
Person re-identification plays a key role in applications where a mobile robot needs to track its users over a long period of time, even if they are partially unobserved for some time, in order to follow them or be available on demand. In this context, deep-learning based real-time feature extraction on a mobile robot is often performed on special-purpose devices whose computational resources are shared for multiple tasks. Therefore, the inference speed has to be taken into account. In contrast, person re-identification is often improved by architectural changes that come at the cost of significantly slowing down inference. Attention blocks are one such example. We will show that some well-performing attention blocks used in the state of the art are subject to inference costs that are far too high to justify their use for mobile robotic applications. As a consequence, we propose an attention block that only slightly affects the inference speed while keeping up with much deeper networks or more complex attention blocks in terms of re-identification accuracy. We perform extensive neural architecture search to derive rules at which locations this attention block should be integrated into the architecture in order to achieve the best trade-off between speed and accuracy. Finally, we confirm that the best performing configuration on a re-identification benchmark also performs well on an indoor robotic dataset.
Authors:Ziyi Tang, Ruimao Zhang, Zhanglin Peng, Jinrui Chen, Liang Lin
Abstract:
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
Authors:Zexian Yang, Dayan Wu, Wanqian Zhang, Bo Li, Weiping Wang
Abstract:
Incremental learning for person re-identification (ReID) aims to develop models that can be trained with a continuous data stream, which is a more practical setting for real-world applications. However, the existing incremental ReID methods make two strong assumptions that the cameras are fixed and the new-emerging data is class-disjoint from previous classes. This is unrealistic as previously observed pedestrians may re-appear and be captured again by new cameras. In this paper, we investigate person ReID in an unexplored scenario named Camera Incremental Person ReID (CIPR), which advances existing lifelong person ReID by taking into account the class overlap issue. Specifically, new data collected from new cameras may probably contain an unknown proportion of identities seen before. This subsequently leads to the lack of cross-camera annotations for new data due to privacy concerns. To address these challenges, we propose a novel framework ExtendOVA. First, to handle the class overlap issue, we introduce an instance-wise seen-class identification module to discover previously seen identities at the instance level. Then, we propose a criterion for selecting confident ID-wise candidates and also devise an early learning regularization term to correct noise issues in pseudo labels. Furthermore, to compensate for the lack of previous data, we resort prototypical memory bank to create surrogate features, along with a cross-camera distillation loss to further retain the inter-camera relationship. The comprehensive experimental results on multiple benchmarks show that ExtendOVA significantly outperforms the state-of-the-arts with remarkable advantages.
Authors:Xin Xu, Chaoyue Ren, Wei Liu, Wenke Huang, Bin Yang, Zhixi Yu, Kui Jiang
Abstract:
The Federated Domain Generalization for Person re-identification (FedDG-ReID) aims to learn a global server model that can be effectively generalized to source and target domains through distributed source domain data. Existing methods mainly improve the diversity of samples through style transformation, which to some extent enhances the generalization performance of the model. However, we discover that not all styles contribute to the generalization performance. Therefore, we define styles that are beneficial or harmful to the model's generalization performance as positive or negative styles. Based on this, new issues arise: How to effectively screen and continuously utilize the positive styles. To solve these problems, we propose a Style Screening and Continuous Utilization (SSCU) framework. Firstly, we design a Generalization Gain-guided Dynamic Style Memory (GGDSM) for each client model to screen and accumulate generated positive styles. Meanwhile, we propose a style memory recognition loss to fully leverage the positive styles memorized by Memory. Furthermore, we propose a Collaborative Style Training (CST) strategy to make full use of positive styles. Unlike traditional learning strategies, our approach leverages both newly generated styles and the accumulated positive styles stored in memory to train client models on two distinct branches. This training strategy is designed to effectively promote the rapid acquisition of new styles by the client models, and guarantees the continuous and thorough utilization of positive styles, which is highly beneficial for the model's generalization performance. Extensive experimental results demonstrate that our method outperforms existing methods in both the source domain and the target domain.
Authors:Lijiang Liu, Junyu Shi, Yong Sun, Zhiyuan Zhang, Jinni Zhou, Shugen Ma, Qiang Nie
Abstract:
Current exoskeleton control methods often face challenges in delivering personalized treatment. Standardized walking gaits can lead to patient discomfort or even injury. Therefore, personalized gait is essential for the effectiveness of exoskeleton robots, as it directly impacts their adaptability, comfort, and rehabilitation outcomes for individual users. To enable personalized treatment in exoskeleton-assisted therapy and related applications, accurate recognition of personal gait is crucial for implementing tailored gait control. The key challenge in gait recognition lies in effectively capturing individual differences in subtle gait features caused by joint synergy, such as step frequency and step length. To tackle this issue, we propose a novel approach, which uses Multi-Scale Global Dense Graph Convolutional Networks (GCN) in the spatial domain to identify latent joint synergy patterns. Moreover, we propose a Gait Non-linear Periodic Dynamics Learning module to effectively capture the periodic characteristics of gait in the temporal domain. To support our individual gait recognition task, we have constructed a comprehensive gait dataset that ensures both completeness and reliability. Our experimental results demonstrate that our method achieves an impressive accuracy of 94.34% on this dataset, surpassing the current state-of-the-art (SOTA) by 3.77%. This advancement underscores the potential of our approach to enhance personalized gait control in exoskeleton-assisted therapy.
Authors:Riccardo Mazzieri, Jacopo Pegoraro, Michele Rossi
Abstract:
The adoption of Millimeter-Wave (mmWave) radar devices for human sensing, particularly gait recognition, has recently gathered significant attention due to their efficiency, resilience to environmental conditions, and privacy-preserving nature. In this work, we tackle the challenging problem of Open-set Gait Recognition (OSGR) from sparse mmWave radar point clouds. Unlike most existing research, which assumes a closed-set scenario, our work considers the more realistic open-set case, where unknown subjects might be present at inference time, and should be correctly recognized by the system. Point clouds are well-suited for edge computing applications with resource constraints, but are more significantly affected by noise and random fluctuations than other representations, like the more common micro-Doppler signature. This is the first work addressing open-set gait recognition with sparse point cloud data. To do so, we propose a novel neural network architecture that combines supervised classification with unsupervised reconstruction of the point clouds, creating a robust, rich, and highly regularized latent space of gait features. To detect unknown subjects at inference time, we introduce a probabilistic novelty detection algorithm that leverages the structured latent space and offers a tunable trade-off between inference speed and prediction accuracy. Along with this paper, we release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects, under varied walking modalities. Extensive experimental results show that our solution attains F1-Score improvements by 24% over state-of-the-art methods adapted for point clouds, on average, and across multiple openness levels.
Authors:Renkai Li, Xin Yuan, Wei Liu, Xin Xu
Abstract:
Video-based person re-identification (ReID) has become increasingly important due to its applications in video surveillance applications. By employing events in video-based person ReID, more motion information can be provided between continuous frames to improve recognition accuracy. Previous approaches have assisted by introducing event data into the video person ReID task, but they still cannot avoid the privacy leakage problem caused by RGB images. In order to avoid privacy attacks and to take advantage of the benefits of event data, we consider using only event data. To make full use of the information in the event stream, we propose a Cross-Modality and Temporal Collaboration (CMTC) network for event-based video person ReID. First, we design an event transform network to obtain corresponding auxiliary information from the input of raw events. Additionally, we propose a differential modality collaboration module to balance the roles of events and auxiliaries to achieve complementary effects. Furthermore, we introduce a temporal collaboration module to exploit motion information and appearance cues. Experimental results demonstrate that our method outperforms others in the task of event-based video person ReID.
Authors:Haoxuan Xu, Bo Li, Guanglin Niu
Abstract:
Clothing-change person re-identification (CC Re-ID) has attracted increasing attention in recent years due to its application prospect. Most existing works struggle to adequately extract the ID-related information from the original RGB images. In this paper, we propose an Identity-aware Feature Decoupling (IFD) learning framework to mine identity-related features. Particularly, IFD exploits a dual stream architecture that consists of a main stream and an attention stream. The attention stream takes the clothing-masked images as inputs and derives the identity attention weights for effectively transferring the spatial knowledge to the main stream and highlighting the regions with abundant identity-related information. To eliminate the semantic gap between the inputs of two streams, we propose a clothing bias diminishing module specific to the main stream to regularize the features of clothing-relevant regions. Extensive experimental results demonstrate that our framework outperforms other baseline models on several widely-used CC Re-ID datasets.
Authors:Wei Liu, Xin Xu, Hua Chang, Xin Yuan, Zheng Wang
Abstract:
Current visible-infrared cross-modality person re-identification research has only focused on exploring the bi-modality mutual retrieval paradigm, and we propose a new and more practical mix-modality retrieval paradigm. Existing Visible-Infrared person re-identification (VI-ReID) methods have achieved some results in the bi-modality mutual retrieval paradigm by learning the correspondence between visible and infrared modalities. However, significant performance degradation occurs due to the modality confusion problem when these methods are applied to the new mix-modality paradigm. Therefore, this paper proposes a Mix-Modality person re-identification (MM-ReID) task, explores the influence of modality mixing ratio on performance, and constructs mix-modality test sets for existing datasets according to the new mix-modality testing paradigm. To solve the modality confusion problem in MM-ReID, we propose a Cross-Identity Discrimination Harmonization Loss (CIDHL) adjusting the distribution of samples in the hyperspherical feature space, pulling the centers of samples with the same identity closer, and pushing away the centers of samples with different identities while aggregating samples with the same modality and the same identity. Furthermore, we propose a Modality Bridge Similarity Optimization Strategy (MBSOS) to optimize the cross-modality similarity between the query and queried samples with the help of the similar bridge sample in the gallery. Extensive experiments demonstrate that compared to the original performance of existing cross-modality methods on MM-ReID, the addition of our CIDHL and MBSOS demonstrates a general improvement.
Authors:Hongyu Chen, Bingliang Jiao, Wenxuan Wang, Peng Wang
Abstract:
Lifelong person re-identification attempts to recognize people across cameras and integrate new knowledge from continuous data streams. Key challenges involve addressing catastrophic forgetting caused by parameter updating and domain shift, and maintaining performance in seen and unseen domains. Many previous works rely on data memories to retain prior samples. However, the amount of retained data increases linearly with the number of training domains, leading to continually increasing memory consumption. Additionally, these methods may suffer significant performance degradation when data preservation is prohibited due to privacy concerns. To address these limitations, we propose using textual descriptions as guidance to encourage the ReID model to learn cross-domain invariant features without retaining samples. The key insight is that natural language can describe pedestrian instances with an invariant style, suggesting a shared textual space for any pedestrian images. By leveraging this shared textual space as an anchor, we can prompt the ReID model to embed images from various domains into a unified semantic space, thereby alleviating catastrophic forgetting caused by domain shifts. To achieve this, we introduce a task-driven dynamic textual prompt framework in this paper. This model features a dynamic prompt fusion module, which adaptively constructs and fuses two different textual prompts as anchors. This effectively guides the ReID model to embed images into a unified semantic space. Additionally, we design a text-visual feature alignment module to learn a more precise mapping between fine-grained visual and textual features. We also developed a learnable knowledge distillation module that allows our model to dynamically balance retaining existing knowledge with acquiring new knowledge. Extensive experiments demonstrate that our method outperforms SOTAs under various settings.
Authors:Shengxun Wei, Zan Gao, Chunjie Ma, Yibo Zhao, Weili Guan, Shengyong Chen
Abstract:
Cloth-changing person re-identification is a subject closer to the real world, which focuses on solving the problem of person re-identification after pedestrians change clothes. The primary challenge in this field is to overcome the complex interplay between intra-class and inter-class variations and to identify features that remain unaffected by changes in appearance. Sufficient data collection for model training would significantly aid in addressing this problem. However, it is challenging to gather diverse datasets in practice. Current methods focus on implicitly learning identity information from the original image or introducing additional auxiliary models, which are largely limited by the quality of the image and the performance of the additional model. To address these issues, inspired by prompt learning, we propose a novel multiple information prompt learning (MIPL) scheme for cloth-changing person ReID, which learns identity robust features through the common prompt guidance of multiple messages. Specifically, the clothing information stripping (CIS) module is designed to decouple the clothing information from the original RGB image features to counteract the influence of clothing appearance. The Bio-guided attention (BGA) module is proposed to increase the learning intensity of the model for key information. A dual-length hybrid patch (DHP) module is employed to make the features have diverse coverage to minimize the impact of feature bias. Extensive experiments demonstrate that the proposed method outperforms all state-of-the-art methods on the LTCC, Celeb-reID, Celeb-reID-light, and CSCC datasets, achieving rank-1 scores of 74.8%, 73.3%, 66.0%, and 88.1%, respectively. When compared to AIM (CVPR23), ACID (TIP23), and SCNet (MM23), MIPL achieves rank-1 improvements of 11.3%, 13.8%, and 7.9%, respectively, on the PRCC dataset.
Authors:Jeongho Ahn, Kazuto Nakashima, Koki Yoshino, Yumi Iwashita, Ryo Kurazume
Abstract:
Recently, 3D LiDAR has emerged as a promising technique in the field of gait-based person identification, serving as an alternative to traditional RGB cameras, due to its robustness under varying lighting conditions and its ability to capture 3D geometric information. However, long capture distances or the use of low-cost LiDAR sensors often result in sparse human point clouds, leading to a decline in identification performance. To address these challenges, we propose a sparse-to-dense upsampling model for pedestrian point clouds in LiDAR-based gait recognition, named LidarGSU, which is designed to improve the generalization capability of existing identification models. Our method utilizes diffusion probabilistic models (DPMs), which have shown high fidelity in generative tasks such as image completion. In this work, we leverage DPMs on sparse sequential pedestrian point clouds as conditional masks in a video-to-video translation approach, applied in an inpainting manner. We conducted extensive experiments on the SUSTeck1K dataset to evaluate the generative quality and recognition performance of the proposed method. Furthermore, we demonstrate the applicability of our upsampling model using a real-world dataset, captured with a low-resolution sensor across varying measurement distances.
Authors:Eugene P. W. Ang, Shan Lin, Alex C. Kot
Abstract:
Person Re-identification (Person ReID) has advanced significantly in fully supervised and domain generalized Person R e ID. However, methods developed for one task domain transfer poorly to the other. An ideal Person ReID method should be effective regardless of the number of domains involved in training or testing. Furthermore, given training data from the target domain, it should perform at least as well as state-of-the-art (SOTA) fully supervised Person ReID methods. We call this paradigm Omni-Domain Generalization Person ReID, referred to as ODG-ReID, and propose a way to achieve this by expanding compatible backbone architectures into multiple diverse pathways. Our method, Aligned Divergent Pathways (ADP), first converts a base architecture into a multi-branch structure by copying the tail of the original backbone. We design our module Dynamic Max-Deviance Adaptive Instance Normalization (DyMAIN) that encourages learning of generalized features that are robust to omni-domain directions and apply DyMAIN to the branches of ADP. Our proposed Phased Mixture-of-Cosines (PMoC) coordinates a mix of stable and turbulent learning rate schedules among branches for further diversified learning. Finally, we realign the feature space between branches with our proposed Dimensional Consistency Metric Loss (DCML). ADP outperforms the state-of-the-art (SOTA) results for multi-source domain generalization and supervised ReID within the same domain. Furthermore, our method demonstrates improvement on a wide range of single-source domain generalization benchmarks, achieving Omni-Domain Generalization over Person ReID tasks.
Authors:Eugene P. W. Ang, Shan Lin, Alex C. Kot
Abstract:
Person Re-identification (Person ReID) has progressed to a level where single-domain supervised Person ReID performance has saturated. However, such methods experience a significant drop in performance when trained and tested across different datasets, motivating the development of domain generalization techniques. However, our research reveals that domain generalization methods significantly underperform single-domain supervised methods on single dataset benchmarks. An ideal Person ReID method should be effective regardless of the number of domains involved, and when test domain data is available for training it should perform as well as state-of-the-art (SOTA) fully supervised methods. This is a paradigm that we call Omni-Domain Generalization Person ReID (ODG-ReID). We propose a way to achieve ODG-ReID by creating deep feature diversity with self-ensembles. Our method, Diverse Deep Feature Ensemble Learning (D2FEL), deploys unique instance normalization patterns that generate multiple diverse views and recombines these views into a compact encoding. To the best of our knowledge, our work is one of few to consider omni-domain generalization in Person ReID, and we advance the study of applying feature ensembles in Person ReID. D2FEL significantly improves and matches the SOTA performance for major domain generalization and single-domain supervised benchmarks.
Authors:Eugene P. W. Ang, Shan Lin, Alex C. Kot
Abstract:
Supervised Person Re-identification (Person ReID) methods have achieved excellent performance when training and testing within one camera network. However, they usually suffer from considerable performance degradation when applied to different camera systems. In recent years, many Domain Adaptation Person ReID methods have been proposed, achieving impressive performance without requiring labeled data from the target domain. However, these approaches still need the unlabeled data of the target domain during the training process, making them impractical in many real-world scenarios. Our work focuses on the more practical Domain Generalized Person Re-identification (DG-ReID) problem. Given one or more source domains, it aims to learn a generalized model that can be applied to unseen target domains. One promising research direction in DG-ReID is the use of implicit deep semantic feature expansion, and our previous method, Domain Embedding Expansion (DEX), is one such example that achieves powerful results in DG-ReID. However, in this work we show that DEX and other similar implicit deep semantic feature expansion methods, due to limitations in their proposed loss function, fail to reach their full potential on large evaluation benchmarks as they have a tendency to saturate too early. Leveraging on this analysis, we propose Unified Deep Semantic Expansion, our novel framework that unifies implicit and explicit semantic feature expansion techniques in a single framework to mitigate this early over-fitting and achieve a new state-of-the-art (SOTA) in all DG-ReID benchmarks. Further, we apply our method on more general image retrieval tasks, also surpassing the current SOTA in all of these benchmarks by wide margins.
Authors:Jiangbo Pei, Zhuqing Jiang, Aidong Men, Haiying Wang, Haiyong Luo, Shiping Wen
Abstract:
Single-camera-training person re-identification (SCT re-ID) aims to train a re-ID model using SCT datasets where each person appears in only one camera. The main challenge of SCT re-ID is to learn camera-invariant feature representations without cross-camera same-person (CCSP) data as supervision. Previous methods address it by assuming that the most similar person should be found in another camera. However, this assumption is not guaranteed to be correct. In this paper, we propose a Camera-Invariant Meta-Learning Network (CIMN) for SCT re-ID. CIMN assumes that the camera-invariant feature representations should be robust to camera changes. To this end, we split the training data into meta-train set and meta-test set based on camera IDs and perform a cross-camera simulation via meta-learning strategy, aiming to enforce the representations learned from the meta-train set to be robust to the meta-test set. With the cross-camera simulation, CIMN can learn camera-invariant and identity-discriminative representations even there are no CCSP data. However, this simulation also causes the separation of the meta-train set and the meta-test set, which ignores some beneficial relations between them. Thus, we introduce three losses: meta triplet loss, meta classification loss, and meta camera alignment loss, to leverage the ignored relations. The experiment results demonstrate that our method achieves comparable performance with and without CCSP data, and outperforms the state-of-the-art methods on SCT re-ID benchmarks. In addition, it is also effective in improving the domain generalization ability of the model.
Authors:Ruiqi Wu, Bingliang Jiao, Wenxuan Wang, Meng Liu, Peng Wang
Abstract:
The Visible-Infrared Person Re-identification (VI ReID) aims to match visible and infrared images of the same pedestrians across non-overlapped camera views. These two input modalities contain both invariant information, such as shape, and modality-specific details, such as color. An ideal model should utilize valuable information from both modalities during training for enhanced representational capability. However, the gap caused by modality-specific information poses substantial challenges for the VI ReID model to handle distinct modality inputs simultaneously. To address this, we introduce the Modality-aware and Instance-aware Visual Prompts (MIP) network in our work, designed to effectively utilize both invariant and specific information for identification. Specifically, our MIP model is built on the transformer architecture. In this model, we have designed a series of modality-specific prompts, which could enable our model to adapt to and make use of the specific information inherent in different modality inputs, thereby reducing the interference caused by the modality gap and achieving better identification. Besides, we also employ each pedestrian feature to construct a group of instance-specific prompts. These customized prompts are responsible for guiding our model to adapt to each pedestrian instance dynamically, thereby capturing identity-level discriminative clues for identification. Through extensive experiments on SYSU-MM01 and RegDB datasets, the effectiveness of both our designed modules is evaluated. Additionally, our proposed MIP performs better than most state-of-the-art methods.
Authors:Yingxue Yu, Vidit Vidit, Andrey Davydov, Martin Engilberge, Pascal Fua
Abstract:
Animal Re-ID is crucial for wildlife conservation, yet it faces unique challenges compared to person Re-ID. First, the scarcity and lack of diversity in datasets lead to background-biased models. Second, animal Re-ID depends on subtle, species-specific cues, further complicated by variations in pose, background, and lighting. This study addresses background biases by proposing a method to systematically remove backgrounds in both training and evaluation phases. And unlike prior works that depend on pose annotations, our approach utilizes an unsupervised technique for feature alignment across body parts and pose variations, enhancing practicality. Our method achieves superior results on three key animal Re-ID datasets: ATRW, YakReID-103, and ELPephants.
Authors:Asaf Liberman, Oron Levy, Soroush Shahi, Cori Tymoszek Park, Mike Ralph, Richard Kang, Abdelkareem Bedri, Gierad Laput
Abstract:
Personal devices have adopted diverse authentication methods, including biometric recognition and passcodes. In contrast, headphones have limited input mechanisms, depending solely on the authentication of connected devices. We present Moonwalk, a novel method for passive user recognition utilizing the built-in headphone accelerometer. Our approach centers on gait recognition; enabling users to establish their identity simply by walking for a brief interval, despite the sensor's placement away from the feet. We employ self-supervised metric learning to train a model that yields a highly discriminative representation of a user's 3D acceleration, with no retraining required. We tested our method in a study involving 50 participants, achieving an average F1 score of 92.9% and equal error rate of 2.3%. We extend our evaluation by assessing performance under various conditions (e.g. shoe types and surfaces). We discuss the opportunities and challenges these variations introduce and propose new directions for advancing passive authentication for wearable devices.
Authors:Federico Rollo, Andrea Zunino, Nikolaos Tsagarakis, Enrico Mingo Hoffman, Arash Ajoudani
Abstract:
In today's Human-Robot Interaction (HRI) scenarios, a prevailing tendency exists to assume that the robot shall cooperate with the closest individual or that the scene involves merely a singular human actor. However, in realistic scenarios, such as shop floor operations, such an assumption may not hold and personalized target recognition by the robot in crowded environments is required. To fulfil this requirement, in this work, we propose a person re-identification module based on continual visual adaptation techniques that ensure the robot's seamless cooperation with the appropriate individual even subject to varying visual appearances or partial or complete occlusions. We test the framework singularly using recorded videos in a laboratory environment and an HRI scenario, i.e., a person-following task by a mobile robot. The targets are asked to change their appearance during tracking and to disappear from the camera field of view to test the challenging cases of occlusion and outfit variations. We compare our framework with one of the state-of-the-art Multi-Object Tracking (MOT) methods and the results show that the CARPE-ID can accurately track each selected target throughout the experiments in all the cases (except two limit cases). At the same time, the s-o-t-a MOT has a mean of 4 tracking errors for each video.
Authors:Fan Li, Dong Liang, Jing Lian, Qidong Liu, Hegui Zhu, Jizhao Liu
Abstract:
Most current gait recognition methods suffer from poor interpretability and high computational cost. To improve interpretability, we investigate gait features in the embedding space based on Koopman operator theory. The transition matrix in this space captures complex kinematic features of gait cycles, namely the Koopman operator. The diagonal elements of the operator matrix can represent the overall motion trend, providing a physically meaningful descriptor. To reduce the computational cost of our algorithm, we use a reversible autoencoder to reduce the model size and eliminate convolutional layers to compress its depth, resulting in fewer floating-point operations. Experimental results on multiple datasets show that our method reduces computational cost to 1% compared to state-of-the-art methods while achieving competitive recognition accuracy 98% on non-occlusion datasets.
Authors:Hao Yu, Xu Cheng, Wei Peng, Weihao Liu, Guoying Zhao
Abstract:
Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.
Authors:Zan Gao, Shenxun Wei, Weili Guan, Lei Zhu, Meng Wang, Shenyong Chen
Abstract:
Cloth-changing person reidentification (ReID) is a newly emerging research topic that is aimed at addressing the issues of large feature variations due to cloth-changing and pedestrian view/pose changes. Although significant progress has been achieved by introducing extra information (e.g., human contour sketching information, human body keypoints, and 3D human information), cloth-changing person ReID is still challenging due to impressionable pedestrian representations. Moreover, human semantic information and pedestrian identity information are not fully explored. To solve these issues, we propose a novel identity-guided collaborative learning scheme (IGCL) for cloth-changing person ReID, where the human semantic is fully utilized and the identity is unchangeable to guide collaborative learning. First, we design a novel clothing attention degradation stream to reasonably reduce the interference caused by clothing information where clothing attention and mid-level collaborative learning are employed. Second, we propose a human semantic attention and body jigsaw stream to highlight the human semantic information and simulate different poses of the same identity. In this way, the extraction features not only focus on human semantic information that is unrelated to the background but also are suitable for pedestrian pose variations. Moreover, a pedestrian identity enhancement stream is further proposed to enhance the identity importance and extract more favorable identity robust features. Most importantly, all these streams are jointly explored in an end-to-end unified framework, and the identity is utilized to guide the optimization. Extensive experiments on five public clothing person ReID datasets demonstrate that the proposed IGCL significantly outperforms SOTA methods and that the extracted feature is more robust, discriminative, and clothing-irrelevant.
Authors:Ming Li, Xinming Huang, Ziming Zhang
Abstract:
To learn distinguishable patterns, most of recent works in vehicle re-identification (ReID) struggled to redevelop official benchmarks to provide various supervisions, which requires prohibitive human labors. In this paper, we seek to achieve the similar goal but do not involve more human efforts. To this end, we introduce a novel framework, which successfully encodes both geometric local features and global representations to distinguish vehicle instances, optimized only by the supervision from official ID labels. Specifically, given our insight that objects in ReID share similar geometric characteristics, we propose to borrow self-supervised representation learning to facilitate geometric features discovery. To condense these features, we introduce an interpretable attention module, with the core of local maxima aggregation instead of fully automatic learning, whose mechanism is completely understandable and whose response map is physically reasonable. To the best of our knowledge, we are the first that perform self-supervised learning to discover geometric features. We conduct comprehensive experiments on three most popular datasets for vehicle ReID, i.e., VeRi-776, CityFlow-ReID, and VehicleID. We report our state-of-the-art (SOTA) performances and promising visualization results. We also show the excellent scalability of our approach on other ReID related tasks, i.e., person ReID and multi-target multi-camera (MTMC) vehicle tracking. The code is available at https://github.com/ ming1993li/Self-supervised-Geometric.
Authors:Jun Chen, Hong Chen, Xue Jiang, Bin Gu, Weifu Li, Tieliang Gong, Feng Zheng
Abstract:
Triplet learning, i.e. learning from triplet data, has attracted much attention in computer vision tasks with an extremely large number of categories, e.g., face recognition and person re-identification. Albeit with rapid progress in designing and applying triplet learning algorithms, there is a lacking study on the theoretical understanding of their generalization performance. To fill this gap, this paper investigates the generalization guarantees of triplet learning by leveraging the stability analysis. Specifically, we establish the first general high-probability generalization bound for the triplet learning algorithm satisfying the uniform stability, and then obtain the excess risk bounds of the order $O(n^{-\frac{1}{2}} \mathrm{log}n)$ for both stochastic gradient descent (SGD) and regularized risk minimization (RRM), where $2n$ is approximately equal to the number of training samples. Moreover, an optimistic generalization bound in expectation as fast as $O(n^{-1})$ is derived for RRM in a low noise case via the on-average stability analysis. Finally, our results are applied to triplet metric learning to characterize its theoretical underpinning.
Authors:Zan Gao, Hongwei Wei, Weili Guan, Jie Nie, Meng Wang, Shenyong Chen
Abstract:
Cloth-changing person reidentification (ReID) is a newly emerging research topic that aims to retrieve pedestrians whose clothes are changed. Since the human appearance with different clothes exhibits large variations, it is very difficult for existing approaches to extract discriminative and robust feature representations. Current works mainly focus on body shape or contour sketches, but the human semantic information and the potential consistency of pedestrian features before and after changing clothes are not fully explored or are ignored. To solve these issues, in this work, a novel semantic-aware attention and visual shielding network for cloth-changing person ReID (abbreviated as SAVS) is proposed where the key idea is to shield clues related to the appearance of clothes and only focus on visual semantic information that is not sensitive to view/posture changes. Specifically, a visual semantic encoder is first employed to locate the human body and clothing regions based on human semantic segmentation information. Then, a human semantic attention module (HSA) is proposed to highlight the human semantic information and reweight the visual feature map. In addition, a visual clothes shielding module (VCS) is also designed to extract a more robust feature representation for the cloth-changing task by covering the clothing regions and focusing the model on the visual semantic information unrelated to the clothes. Most importantly, these two modules are jointly explored in an end-to-end unified framework. Extensive experiments demonstrate that the proposed method can significantly outperform state-of-the-art methods, and more robust features can be extracted for cloth-changing persons. Compared with FSAM (published in CVPR 2021), this method can achieve improvements of 32.7% (16.5%) and 14.9% (-) on the LTCC and PRCC datasets in terms of mAP (rank-1), respectively.
Authors:Mingkun Li, Shupeng Cheng, Peng Xu, Xiatian Zhu, Chun-Guang Li, Jun Guo
Abstract:
We investigate unsupervised person re-identification (Re-ID) with clothes change, a new challenging problem with more practical usability and scalability to real-world deployment. Most existing re-id methods artificially assume the clothes of every single person to be stationary across space and time. This condition is mostly valid for short-term re-id scenarios since an average person would often change the clothes even within a single day. To alleviate this assumption, several recent works have introduced the clothes change facet to re-id, with a focus on supervised learning person identity discriminative representation with invariance to clothes changes. Taking a step further towards this long-term re-id direction, we further eliminate the requirement of person identity labels, as they are significantly more expensive and more tedious to annotate in comparison to short-term person re-id datasets. Compared to conventional unsupervised short-term re-id, this new problem is drastically more challenging as different people may have similar clothes whilst the same person can wear multiple suites of clothes over different locations and times with very distinct appearance. To overcome such obstacles, we introduce a novel Curriculum Person Clustering (CPC) method that can adaptively regulate the unsupervised clustering criterion according to the clustering confidence. Experiments on three long-term person re-id datasets show that our CPC outperforms SOTA unsupervised re-id methods and even closely matches the supervised re-id models.
Authors:Ming Li, Xinming Huang, Ziming Zhang
Abstract:
To learn distinguishable patterns, most of recent works in vehicle re-identification (ReID) struggled to redevelop official benchmarks to provide various supervisions, which requires prohibitive human labors. In this paper, we seek to achieve the similar goal but do not involve more human efforts. To this end, we introduce a novel framework, which successfully encodes both geometric local features and global representations to distinguish vehicle instances, optimized only by the supervision from official ID labels. Specifically, given our insight that objects in ReID share similar geometric characteristics, we propose to borrow self-supervised representation learning to facilitate geometric features discovery. To condense these features, we introduce an interpretable attention module, with the core of local maxima aggregation instead of fully automatic learning, whose mechanism is completely understandable and whose response map is physically reasonable. To the best of our knowledge, we are the first that perform self-supervised learning to discover geometric features. We conduct comprehensive experiments on three most popular datasets for vehicle ReID, i.e., VeRi-776, CityFlow-ReID, and VehicleID. We report our state-of-the-art (SOTA) performances and promising visualization results. We also show the excellent scalability of our approach on other ReID related tasks, i.e., person ReID and multi-target multi-camera (MTMC) vehicle tracking.
Authors:Shaoxiong Zhang, Jinkai Zheng, Shangdong Zhu, Chenggang Yan
Abstract:
Gait recognition aims to identify individuals based on their body shape and walking patterns. Though much progress has been achieved driven by deep learning, gait recognition in real-world surveillance scenarios remains quite challenging to current methods. Conventional approaches, which rely on periodic gait cycles and controlled environments, struggle with the non-periodic and occluded silhouette sequences encountered in the wild. In this paper, we propose a novel framework, TrackletGait, designed to address these challenges in the wild. We propose Random Tracklet Sampling, a generalization of existing sampling methods, which strikes a balance between robustness and representation in capturing diverse walking patterns. Next, we introduce Haar Wavelet-based Downsampling to preserve information during spatial downsampling. Finally, we present a Hardness Exclusion Triplet Loss, designed to exclude low-quality silhouettes by discarding hard triplet samples. TrackletGait achieves state-of-the-art results, with 77.8 and 80.4 rank-1 accuracy on the Gait3D and GREW datasets, respectively, while using only 10.3M backbone parameters. Extensive experiments are also conducted to further investigate the factors affecting gait recognition in the wild.
Authors:Jinseong Kim, Jeonghoon Song, Gyeongseon Baek, Byeongjoon Noh
Abstract:
We propose \textbf{KeyRe-ID}, a keypoint-guided video-based person re-identification framework consisting of global and local branches that leverage human keypoints for enhanced spatiotemporal representation learning. The global branch captures holistic identity semantics through Transformer-based temporal aggregation, while the local branch dynamically segments body regions based on keypoints to generate fine-grained, part-aware features. Extensive experiments on MARS and iLIDS-VID benchmarks demonstrate state-of-the-art performance, achieving 91.73\% mAP and 97.32\% Rank-1 accuracy on MARS, and 96.00\% Rank-1 and 100.0\% Rank-5 accuracy on iLIDS-VID. The code for this work will be publicly available on GitHub upon publication.
Authors:Md Rashidunnabi, Kailash Hambarde, Hugo Proença
Abstract:
Video-based person re-identification (Re-ID) remains brittle in real-world deployments despite impressive benchmark performance. Most existing models rely on superficial correlations such as clothing, background, or lighting that fail to generalize across domains, viewpoints, and temporal variations. This survey examines the emerging role of causal reasoning as a principled alternative to traditional correlation-based approaches in video-based Re-ID. We provide a structured and critical analysis of methods that leverage structural causal models, interventions, and counterfactual reasoning to isolate identity-specific features from confounding factors. The survey is organized around a novel taxonomy of causal Re-ID methods that spans generative disentanglement, domain-invariant modeling, and causal transformers. We review current evaluation metrics and introduce causal-specific robustness measures. In addition, we assess practical challenges of scalability, fairness, interpretability, and privacy that must be addressed for real-world adoption. Finally, we identify open problems and outline future research directions that integrate causal modeling with efficient architectures and self-supervised learning. This survey aims to establish a coherent foundation for causal video-based person Re-ID and to catalyze the next phase of research in this rapidly evolving domain.
Authors:Nicoleta Basoc, Adrian Cosma, Andy CÇtrunÇ, Emilian RÇdoi
Abstract:
Gait recognition has emerged as a powerful tool for unobtrusive and long-range identity analysis, with growing relevance in surveillance and monitoring applications. Although recent advances in deep learning and large-scale datasets have enabled highly accurate recognition under closed-set conditions, real-world deployment demands open-set gait enrollment, which means determining whether a new gait sample corresponds to a known identity or represents a previously unseen individual. In this work, we introduce a transformer-based framework for open-set gait enrollment that is both dataset-agnostic and recognition-architecture-agnostic. Our method leverages a SetTransformer to make enrollment decisions based on the embedding of a probe sample and a context set drawn from the gallery, without requiring task-specific thresholds or retraining for new environments. By decoupling enrollment from the main recognition pipeline, our model is generalized across different datasets, gallery sizes, and identity distributions. We propose an evaluation protocol that uses existing datasets in different ratios of identities and walks per identity. We instantiate our method using skeleton-based gait representations and evaluate it on two benchmark datasets (CASIA-B and PsyMo), using embeddings from three state-of-the-art recognition models (GaitGraph, GaitFormer, and GaitPT). We show that our method is flexible, is able to accurately perform enrollment in different scenarios, and scales better with data compared to traditional approaches. We will make the code and dataset scenarios publicly available.
Authors:Adrian Cosma, Andy CÇtrunÇ, Emilian RÇdoi
Abstract:
Gait recognition from video streams is a challenging problem in computer vision biometrics due to the subtle differences between gaits and numerous confounding factors. Recent advancements in self-supervised pretraining have led to the development of robust gait recognition models that are invariant to walking covariates. While neural scaling laws have transformed model development in other domains by linking performance to data, model size, and compute, their applicability to gait remains unexplored. In this work, we conduct the first empirical study scaling on skeleton-based self-supervised gait recognition to quantify the effect of data quantity, model size and compute on downstream gait recognition performance. We pretrain multiple variants of GaitPT - a transformer-based architecture - on a dataset of 2.7 million walking sequences collected in the wild. We evaluate zero-shot performance across four benchmark datasets to derive scaling laws for data, model size, and compute. Our findings demonstrate predictable power-law improvements in performance with increased scale and confirm that data and compute scaling significantly influence downstream accuracy. We further isolate architectural contributions by comparing GaitPT with GaitFormer under controlled compute budgets. These results provide practical insights into resource allocation and performance estimation for real-world gait recognition systems.
Authors:Saverio Cavasin, Pietro Biasetton, Mattia Tamiazzo, Mauro Conti, Simone Milani
Abstract:
During criminal investigations, images of persons of interest directly influence the success of identification procedures. However, law enforcement agencies often face challenges related to the scarcity of high-quality images or their obsolescence, which can affect the accuracy and success of people searching processes. This paper introduces a novel forensic mugshot augmentation framework aimed at addressing these limitations. Our approach enhances the identification probability of individuals by generating additional, high-quality images through customizable data augmentation techniques, while maintaining the biometric integrity and consistency of the original data. Several experimental results show that our method significantly improves identification accuracy and robustness across various forensic scenarios, demonstrating its effectiveness as a trustworthy tool law enforcement applications. Index Terms: Digital Forensics, Person re-identification, Feature extraction, Data augmentation, Visual-Language models.
Authors:Ruiyang Ha, Songyi Jiang, Bin Li, Bikang Pan, Yihang Zhu, Junjie Zhang, Xiatian Zhu, Shaogang Gong, Jingya Wang
Abstract:
Conventional person re-identification (ReID) research is often limited to single-modality sensor data from static cameras, which fails to address the complexities of real-world scenarios where multi-modal signals are increasingly prevalent. For instance, consider an urban ReID system integrating stationary RGB cameras, nighttime infrared sensors, and UAVs equipped with dynamic tracking capabilities. Such systems face significant challenges due to variations in camera perspectives, lighting conditions, and sensor modalities, hindering effective person ReID. To address these challenges, we introduce the MP-ReID benchmark, a novel dataset designed specifically for multi-modality and multi-platform ReID. This benchmark uniquely compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging, captured by both UAVs and ground-based cameras in indoor and outdoor environments. Building on this benchmark, we introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios. Our method consistently outperforms state-of-the-art approaches, establishing a robust foundation for future research in complex and dynamic ReID environments. Our dataset are available at:https://mp-reid.github.io/.
Authors:Chanho Eom, Geon Lee, Kyunghwan Cho, Hyeonseok Jung, Moonsub Jin, Bumsub Ham
Abstract:
We introduce a new framework, dubbed Cerberus, for attribute-based person re-identification (reID). Our approach leverages person attribute labels to learn local and global person representations that encode specific traits, such as gender and clothing style. To achieve this, we define semantic IDs (SIDs) by combining attribute labels, and use a semantic guidance loss to align the person representations with the prototypical features of corresponding SIDs, encouraging the representations to encode the relevant semantics. Simultaneously, we enforce the representations of the same person to be embedded closely, enabling recognizing subtle differences in appearance to discriminate persons sharing the same attribute labels. To increase the generalization ability on unseen data, we also propose a regularization method that takes advantage of the relationships between SID prototypes. Our framework performs individual comparisons of local and global person representations between query and gallery images for attribute-based reID. By exploiting the SID prototypes aligned with the corresponding representations, it can also perform person attribute recognition (PAR) and attribute-based person search (APS) without bells and whistles. Experimental results on standard benchmarks on attribute-based person reID, Market-1501 and DukeMTMC, demonstrate the superiority of our model compared to the state of the art.
Authors:Kshitij Nikhal, Cedric Nimpa Fondje, Benjamin S. Riggan
Abstract:
Cross-spectral biometrics, such as matching imagery of faces or persons from visible (RGB) and infrared (IR) bands, have rapidly advanced over the last decade due to increasing sensitivity, size, quality, and ubiquity of IR focal plane arrays and enhanced analytics beyond the visible spectrum. Current techniques for mitigating large spectral disparities between RGB and IR imagery often include learning a discriminative common subspace by exploiting precisely curated data acquired from multiple spectra. Although there are challenges with determining robust architectures for extracting common information, a critical limitation for supervised methods is poor scalability in terms of acquiring labeled data. Therefore, we propose a novel unsupervised cross-spectral framework that combines (1) a new pseudo triplet loss with cross-spectral voting, (2) a new cross-spectral attention network leveraging multiple subspaces, and (3) structured sparsity to perform more discriminative cross-spectral clustering. We extensively compare our proposed RGB-IR biometric learning framework (and its individual components) with recent and previous state-of-the-art models on two challenging benchmark datasets: DEVCOM Army Research Laboratory Visible-Thermal Face Dataset (ARL-VTF) and RegDB person re-identification dataset, and, in some cases, achieve performance superior to completely supervised methods.
Authors:Chen Mao, Chong Tan, Jingqi Hu, Min Zheng
Abstract:
Person re-identification(ReID), as a crucial technology in the field of security, plays a vital role in safety inspections, personnel counting, and more. Most current ReID approaches primarily extract features from images, which are easily affected by objective conditions such as clothing changes and occlusions. In addition to cameras, we leverage widely available routers as sensing devices by capturing gait information from pedestrians through the Channel State Information (CSI) in WiFi signals and contribute a multimodal dataset. We employ a two-stream network to separately process video understanding and signal analysis tasks, and conduct multi-modal fusion and contrastive learning on pedestrian video and WiFi data. Extensive experiments in real-world scenarios demonstrate that our method effectively uncovers the correlations between heterogeneous data, bridges the gap between visual and signal modalities, significantly expands the sensing range, and improves ReID accuracy across multiple sensors.
Authors:Chenyue Li, Shuoyi Chen, Mang Ye
Abstract:
Wildlife ReID involves utilizing visual technology to identify specific individuals of wild animals in different scenarios, holding significant importance for wildlife conservation, ecological research, and environmental monitoring. Existing wildlife ReID methods are predominantly tailored to specific species, exhibiting limited applicability. Although some approaches leverage extensively studied person ReID techniques, they struggle to address the unique challenges posed by wildlife. Therefore, in this paper, we present a unified, multi-species general framework for wildlife ReID. Given that high-frequency information is a consistent representation of unique features in various species, significantly aiding in identifying contours and details such as fur textures, we propose the Adaptive High-Frequency Transformer model with the goal of enhancing high-frequency information learning. To mitigate the inevitable high-frequency interference in the wilderness environment, we introduce an object-aware high-frequency selection strategy to adaptively capture more valuable high-frequency components. Notably, we unify the experimental settings of multiple wildlife datasets for ReID, achieving superior performance over state-of-the-art ReID methods. In domain generalization scenarios, our approach demonstrates robust generalization to unknown species.
Authors:Chanho Eom, Wonkyung Lee, Geon Lee, Bumsub Ham
Abstract:
We address the problem of person re-identification (reID), that is, retrieving person images from a large dataset, given a query image of the person of interest. A key challenge is to learn person representations robust to intra-class variations, as different persons could have the same attribute, and persons' appearances look different, e.g., with viewpoint changes. Recent reID methods focus on learning person features discriminative only for a particular factor of variations (e.g., human pose), which also requires corresponding supervisory signals (e.g., pose annotations). To tackle this problem, we propose to factorize person images into identity-related and unrelated features. Identity-related features contain information useful for specifying a particular person (e.g., clothing), while identity-unrelated ones hold other factors (e.g., human pose). To this end, we propose a new generative adversarial network, dubbed identity shuffle GAN (IS-GAN). It disentangles identity-related and unrelated features from person images through an identity-shuffling technique that exploits identification labels alone without any auxiliary supervisory signals. We restrict the distribution of identity-unrelated features or encourage the identity-related and unrelated features to be uncorrelated, facilitating the disentanglement process. Experimental results validate the effectiveness of IS-GAN, showing state-of-the-art performance on standard reID benchmarks, including Market-1501, CUHK03, and DukeMTMC-reID. We further demonstrate the advantages of disentangling person representations on a long-term reID task, setting a new state of the art on a Celeb-reID dataset.
Authors:Fanxu Min, Qing Cai, Shaoxiang Guo, Yang Yu, Hao Fan, Junyu Dong
Abstract:
Current gait recognition research predominantly focuses on extracting appearance features effectively, but the performance is severely compromised by the vulnerability of silhouettes under unconstrained scenes. Consequently, numerous studies have explored how to harness information from various models, particularly by sufficiently utilizing the intrinsic information of skeleton sequences. While these model-based methods have achieved significant performance, there is still a huge gap compared to appearance-based methods, which implies the potential value of bridging silhouettes and skeletons. In this work, we make the first attempt to reconstruct dense body shapes from discrete skeleton distributions via the diffusion model, demonstrating a new approach that connects cross-modal features rather than focusing solely on intrinsic features to improve model-based methods. To realize this idea, we propose a novel gait diffusion model named DiffGait, which has been designed with four specific adaptations suitable for gait recognition. Furthermore, to effectively utilize the reconstructed silhouettes and skeletons, we introduce Perception Gait Integration (PGI) to integrate different gait features through a two-stage process. Incorporating those modifications leads to an efficient model-based gait recognition framework called ZipGait. Through extensive experiments on four public benchmarks, ZipGait demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both cross-domain and intra-domain settings, while achieving significant plug-and-play performance improvements.
Authors:Fanxu Min, Shaoxiang Guo, Fan Hao, Junyu Dong
Abstract:
Gait recognition is a biometric technology that recognizes the identity of humans through their walking patterns. Existing appearance-based methods utilize CNN or Transformer to extract spatial and temporal features from silhouettes, while model-based methods employ GCN to focus on the special topological structure of skeleton points. However, the quality of silhouettes is limited by complex occlusions, and skeletons lack dense semantic features of the human body. To tackle these problems, we propose a novel gait recognition framework, dubbed Gait Multi-model Aggregation Network (GaitMA), which effectively combines two modalities to obtain a more robust and comprehensive gait representation for recognition. First, skeletons are represented by joint/limb-based heatmaps, and features from silhouettes and skeletons are respectively extracted using two CNN-based feature extractors. Second, a co-attention alignment module is proposed to align the features by element-wise attention. Finally, we propose a mutual learning module, which achieves feature fusion through cross-attention, Wasserstein loss is further introduced to ensure the effective fusion of two modalities. Extensive experimental results demonstrate the superiority of our model on Gait3D, OU-MVLP, and CASIA-B.
Authors:Hamza Rami, Jhony H. Giraldo, Nicolas Winckler, Stéphane Lathuilière
Abstract:
Re-Identification systems (Re-ID) are crucial for public safety but face the challenge of having to adapt to environments that differ from their training distribution. Furthermore, rigorous privacy protocols in public places are being enforced as apprehensions regarding individual freedom rise, adding layers of complexity to the deployment of accurate Re-ID systems in new environments. For example, in the European Union, the principles of ``Data Minimization'' and ``Purpose Limitation'' restrict the retention and processing of images to what is strictly necessary. These regulations pose a challenge to the conventional Re-ID training schemes that rely on centralizing data on servers. In this work, we present a novel setting for privacy-preserving Distributed Unsupervised Domain Adaptation for person Re-ID (DUDA-Rid) to address the problem of domain shift without requiring any image transfer outside the camera devices. To address this setting, we introduce Fed-Protoid, a novel solution that adapts person Re-ID models directly within the edge devices. Our proposed solution employs prototypes derived from the source domain to align feature statistics within edge devices. Those source prototypes are distributed across the edge devices to minimize a distributed Maximum Mean Discrepancy (MMD) loss tailored for the DUDA-Rid setting. Our experiments provide compelling evidence that Fed-Protoid outperforms all evaluated methods in terms of both accuracy and communication efficiency, all while maintaining data privacy.
Authors:Chen Mao, Chong Tan, Jingqi Hu, Min Zheng
Abstract:
Person re-identification (ReID), as a crucial technology in the field of security, plays an important role in security detection and people counting. Current security and monitoring systems largely rely on visual information, which may infringe on personal privacy and be susceptible to interference from pedestrian appearances and clothing in certain scenarios. Meanwhile, the widespread use of routers offers new possibilities for ReID. This letter introduces a method using WiFi Channel State Information (CSI), leveraging the multipath propagation characteristics of WiFi signals as a basis for distinguishing different pedestrian features. We propose a two-stream network structure capable of processing variable-length data, which analyzes the amplitude in the time domain and the phase in the frequency domain of WiFi signals, fuses time-frequency information through continuous lateral connections, and employs advanced objective functions for representation and metric learning. Tested on a dataset collected in the real world, our method achieves 93.68% mAP and 98.13% Rank-1.
Authors:Hamza Rami, Jhony H. Giraldo, Nicolas Winckler, Stéphane Lathuilière
Abstract:
Online Unsupervised Domain Adaptation (OUDA) for person Re-Identification (Re-ID) is the task of continuously adapting a model trained on a well-annotated source domain dataset to a target domain observed as a data stream. In OUDA, person Re-ID models face two main challenges: catastrophic forgetting and domain shift. In this work, we propose a new Source-guided Similarity Preservation (S2P) framework to alleviate these two problems. Our framework is based on the extraction of a support set composed of source images that maximizes the similarity with the target data. This support set is used to identify feature similarities that must be preserved during the learning process. S2P can incorporate multiple existing UDA methods to mitigate catastrophic forgetting. Our experiments show that S2P outperforms previous state-of-the-art methods on multiple real-to-real and synthetic-to-real challenging OUDA benchmarks.
Authors:Vuong D. Nguyen, Shishir K. Shah
Abstract:
Long-term Person Re-Identification (LRe-ID) aims at matching an individual across cameras after a long period of time, presenting variations in clothing, pose, and viewpoint. In this work, we propose CCPA: Contrastive Clothing and Pose Augmentation framework for LRe-ID. Beyond appearance, CCPA captures body shape information which is cloth-invariant using a Relation Graph Attention Network. Training a robust LRe-ID model requires a wide range of clothing variations and expensive cloth labeling, which is lacked in current LRe-ID datasets. To address this, we perform clothing and pose transfer across identities to generate images of more clothing variations and of different persons wearing similar clothing. The augmented batch of images serve as inputs to our proposed Fine-grained Contrastive Losses, which not only supervise the Re-ID model to learn discriminative person embeddings under long-term scenarios but also ensure in-distribution data generation. Results on LRe-ID datasets demonstrate the effectiveness of our CCPA framework.
Authors:Vuong D. Nguyen, Samiha Mirza, Pranav Mantini, Shishir K. Shah
Abstract:
Current state-of-the-art Video-based Person Re-Identification (Re-ID) primarily relies on appearance features extracted by deep learning models. These methods are not applicable for long-term analysis in real-world scenarios where persons have changed clothes, making appearance information unreliable. In this work, we deal with the practical problem of Video-based Cloth-Changing Person Re-ID (VCCRe-ID) by proposing "Attention-based Shape and Gait Representations Learning" (ASGL) for VCCRe-ID. Our ASGL framework improves Re-ID performance under clothing variations by learning clothing-invariant gait cues using a Spatial-Temporal Graph Attention Network (ST-GAT). Given the 3D-skeleton-based spatial-temporal graph, our proposed ST-GAT comprises multi-head attention modules, which are able to enhance the robustness of gait embeddings under viewpoint changes and occlusions. The ST-GAT amplifies the important motion ranges and reduces the influence of noisy poses. Then, the multi-head learning module effectively reserves beneficial local temporal dynamics of movement. We also boost discriminative power of person representations by learning body shape cues using a GAT. Experiments on two large-scale VCCRe-ID datasets demonstrate that our proposed framework outperforms state-of-the-art methods by 12.2% in rank-1 accuracy and 7.0% in mAP.
Authors:Soon Yau Cheong, Armin Mustafa, Andrew Gilbert
Abstract:
This paper introduces ViscoNet, a novel one-branch-adapter architecture for concurrent spatial and visual conditioning. Our lightweight model requires trainable parameters and dataset size multiple orders of magnitude smaller than the current state-of-the-art IP-Adapter. However, our method successfully preserves the generative power of the frozen text-to-image (T2I) backbone. Notably, it excels in addressing mode collapse, a pervasive issue previously overlooked. Our novel architecture demonstrates outstanding capabilities in achieving a harmonious visual-text balance, unlocking unparalleled versatility in various human image generation tasks, including pose re-targeting, virtual try-on, stylization, person re-identification, and textile transfer.Demo and code are available from project page https://soon-yau.github.io/visconet/ .
Authors:Lei Wang, Bo Liu, Yinchi Ma, Fangfang Liang, Nawei Guo
Abstract:
Gait recognition has achieved promising advances in controlled settings, yet it significantly struggles in unconstrained environments due to challenges such as view changes, occlusions, and varying walking speeds. Additionally, efforts to fuse multiple modalities often face limited improvements because of cross-modality incompatibility, particularly in outdoor scenarios. To address these issues, we present a multi-modal Hierarchy in Hierarchy network (HiH) that integrates silhouette and pose sequences for robust gait recognition. HiH features a main branch that utilizes Hierarchical Gait Decomposer (HGD) modules for depth-wise and intra-module hierarchical examination of general gait patterns from silhouette data. This approach captures motion hierarchies from overall body dynamics to detailed limb movements, facilitating the representation of gait attributes across multiple spatial resolutions. Complementing this, an auxiliary branch, based on 2D joint sequences, enriches the spatial and temporal aspects of gait analysis. It employs a Deformable Spatial Enhancement (DSE) module for pose-guided spatial attention and a Deformable Temporal Alignment (DTA) module for aligning motion dynamics through learned temporal offsets. Extensive evaluations across diverse indoor and outdoor datasets demonstrate HiH's state-of-the-art performance, affirming a well-balanced trade-off between accuracy and efficiency.
Authors:Enhao Ning, Changshuo Wang, Huang Zhangc, Xin Ning, Prayag Tiwari
Abstract:
Person re-identification (Re-ID) technology plays an increasingly crucial role in intelligent surveillance systems. Widespread occlusion significantly impacts the performance of person Re-ID. Occluded person Re-ID refers to a pedestrian matching method that deals with challenges such as pedestrian information loss, noise interference, and perspective misalignment. It has garnered extensive attention from researchers. Over the past few years, several occlusion-solving person Re-ID methods have been proposed, tackling various sub-problems arising from occlusion. However, there is a lack of comprehensive studies that compare, summarize, and evaluate the potential of occluded person Re-ID methods in detail. In this review, we start by providing a detailed overview of the datasets and evaluation scheme used for occluded person Re-ID. Next, we scientifically classify and analyze existing deep learning-based occluded person Re-ID methods from various perspectives, summarizing them concisely. Furthermore, we conduct a systematic comparison among these methods, identify the state-of-the-art approaches, and present an outlook on the future development of occluded person Re-ID.
Authors:Yubin Wang, Huimin Yu, Yuming Yan, Shuyi Song, Biyang Liu, Yichong Lu
Abstract:
Cloth-Changing Person Re-Identification (CC-ReID) is a common and realistic problem since fashion constantly changes over time and people's aesthetic preferences are not set in stone. While most existing cloth-changing ReID methods focus on learning cloth-agnostic identity representations from coarse semantic cues (e.g. silhouettes and part segmentation maps), they neglect the continuous shape distributions at the pixel level. In this paper, we propose Continuous Surface Correspondence Learning (CSCL), a new shape embedding paradigm for cloth-changing ReID. CSCL establishes continuous correspondences between a 2D image plane and a canonical 3D body surface via pixel-to-vertex classification, which naturally aligns a person image to the surface of a 3D human model and simultaneously obtains pixel-wise surface embeddings. We further extract fine-grained shape features from the learned surface embeddings and then integrate them with global RGB features via a carefully designed cross-modality fusion module. The shape embedding paradigm based on 2D-3D correspondences remarkably enhances the model's global understanding of human body shape. To promote the study of ReID under clothing change, we construct 3D Dense Persons (DP3D), which is the first large-scale cloth-changing ReID dataset that provides densely annotated 2D-3D correspondences and a precise 3D mesh for each person image, while containing diverse cloth-changing cases over all four seasons. Experiments on both cloth-changing and cloth-consistent ReID benchmarks validate the effectiveness of our method.
Authors:Vipin Gautam, Shitala Prasad, Sharad Sinha
Abstract:
Person re-identification (ReID) is a well-known problem in the field of computer vision. The primary objective is to identify a specific individual within a gallery of images. However, this task is challenging due to various factors, such as pose variations, illumination changes, obstructions, and the presence ofconfusing backgrounds. Existing ReID methods often fail to capture discriminative features (e.g., head, shoes, backpacks) and instead capture irrelevant features when the target is occluded. Motivated by the success of part-based and attention-based ReID methods, we improve AlignedReID++ and present AaP-ReID, a more effective method for person ReID that incorporates channel-wise attention into a ResNet-based architecture. Our method incorporates the Channel-Wise Attention Bottleneck (CWAbottleneck) block and can learn discriminating features by dynamically adjusting the importance ofeach channel in the feature maps. We evaluated Aap-ReID on three benchmark datasets: Market-1501, DukeMTMC-reID, and CUHK03. When compared with state-of-the-art person ReID methods, we achieve competitive results with rank-1 accuracies of 95.6% on Market-1501, 90.6% on DukeMTMC-reID, and 82.4% on CUHK03.
Authors:Vipin Gautam, Shitala Prasad, Sharad Sinha
Abstract:
The growing need for video surveillance in public spaces has created a demand for systems that can track individuals across multiple cameras feeds in real-time. While existing tracking systems have achieved impressive performance using deep learning models, they often rely on pre-existing images of suspects or historical data. However, this is not always feasible in cases where suspicious individuals are identified in real-time and without prior knowledge. We propose a person-tracking system that combines correlation filters and Intersection Over Union (IOU) constraints for robust tracking, along with a deep learning model for cross-camera person re-identification (Re-ID) on top of YOLOv5. The proposed system quickly identifies and tracks suspect in real-time across multiple cameras and recovers well after full or partial occlusion, making it suitable for security and surveillance applications. It is computationally efficient and achieves a high F1-Score of 79% and an IOU of 59% comparable to existing state-of-the-art algorithms, as demonstrated in our evaluation on a publicly available OTB-100 dataset. The proposed system offers a robust and efficient solution for the real-time tracking of individuals across multiple camera feeds. Its ability to track targets without prior knowledge or historical data is a significant improvement over existing systems, making it well-suited for public safety and surveillance applications.
Authors:Yanze Li, Feixing Chen, Jingqi Cao, Ruoqi Zhao, Xuan Yang, Xingbang Yang, Yubo Fan
Abstract:
Powered ankle prostheses effectively assist people with lower limb amputation to perform daily activities. High performance prostheses with adjustable compliance and capability to predict and implement amputee's intent are crucial for them to be comparable to or better than a real limb. However, current designs fail to provide simple yet effective compliance of the joint with full potential of modification, and lack accurate gait prediction method in real time. This paper proposes an innovative design of powered ankle prosthesis with serial elastic actuator (SEA), and puts forward a MLP based gait recognition method that can accurately and continuously predict more gait parameters for motion sensing and control. The prosthesis mimics biological joint with similar weight, torque, and power which can assist walking of up to 4 m/s. A new design of planar torsional spring is proposed for the SEA, which has better stiffness, endurance, and potential of modification than current designs. The gait recognition system simultaneously generates locomotive speed, gait phase, ankle angle and angular velocity only utilizing signals of single IMU, holding advantage in continuity, adaptability for speed range, accuracy, and capability of multi-functions.
Authors:Haichao Shi, Mandi Luo, Xiao-Yu Zhang, Ran He
Abstract:
Visible-Infrared person re-identification (VI-ReID) is an important and challenging task in intelligent video surveillance. Existing methods mainly focus on learning a shared feature space to reduce the modality discrepancy between visible and infrared modalities, which still leave two problems underexplored: information redundancy and modality complementarity. To this end, properly eliminating the identity-irrelevant information as well as making up for the modality-specific information are critical and remains a challenging endeavor. To tackle the above problems, we present a novel mutual information and modality consensus network, namely CMInfoNet, to extract modality-invariant identity features with the most representative information and reduce the redundancies. The key insight of our method is to find an optimal representation to capture more identity-relevant information and compress the irrelevant parts by optimizing a mutual information bottleneck trade-off. Besides, we propose an automatically search strategy to find the most prominent parts that identify the pedestrians. To eliminate the cross- and intra-modality variations, we also devise a modality consensus module to align the visible and infrared modalities for task-specific guidance. Moreover, the global-local feature representations can also be acquired for key parts discrimination. Experimental results on four benchmarks, i.e., SYSU-MM01, RegDB, Occluded-DukeMTMC, Occluded-REID, Partial-REID and Partial\_iLIDS dataset, have demonstrated the effectiveness of CMInfoNet.
Authors:Kshitij Nikhal, Yujunrong Ma, Shuvra S. Bhattacharyya, Benjamin S. Riggan
Abstract:
Biometric applications, such as person re-identification (ReID), are often deployed on energy constrained devices. While recent ReID methods prioritize high retrieval performance, they often come with large computational costs and high search time, rendering them less practical in real-world settings. In this work, we propose an input-adaptive network with multiple exit blocks, that can terminate computation early if the retrieval is straightforward or noisy, saving a lot of computation. To assess the complexity of the input, we introduce a temporal-based classifier driven by a new training strategy. Furthermore, we adopt a binary hash code generation approach instead of relying on continuous-valued features, which significantly improves the search process by a factor of 20. To ensure similarity preservation, we utilize a new ranking regularizer that bridges the gap between continuous and binary features. Extensive analysis of our proposed method is conducted on three datasets: Market1501, MSMT17 (Multi-Scene Multi-Time), and the BGC1 (BRIAR Government Collection). Using our approach, more than 70% of the samples with compact hash codes exit early on the Market1501 dataset, saving 80% of the networks computational cost and improving over other hash-based methods by 60%. These results demonstrate a significant improvement over dynamic networks and showcase comparable accuracy performance to conventional ReID methods. Code will be made available.
Authors:Lei Wang, Bo Liu, Fangfang Liang, Bincheng Wang
Abstract:
Gait recognition is a biometric technique that identifies individuals by their unique walking styles, which is suitable for unconstrained environments and has a wide range of applications. While current methods focus on exploiting body part-based representations, they often neglect the hierarchical dependencies between local motion patterns. In this paper, we propose a hierarchical spatio-temporal representation learning (HSTL) framework for extracting gait features from coarse to fine. Our framework starts with a hierarchical clustering analysis to recover multi-level body structures from the whole body to local details. Next, an adaptive region-based motion extractor (ARME) is designed to learn region-independent motion features. The proposed HSTL then stacks multiple ARMEs in a top-down manner, with each ARME corresponding to a specific partition level of the hierarchy. An adaptive spatio-temporal pooling (ASTP) module is used to capture gait features at different levels of detail to perform hierarchical feature mapping. Finally, a frame-level temporal aggregation (FTA) module is employed to reduce redundant information in gait sequences through multi-scale temporal downsampling. Extensive experiments on CASIA-B, OUMVLP, GREW, and Gait3D datasets demonstrate that our method outperforms the state-of-the-art while maintaining a reasonable balance between model accuracy and complexity.
Authors:Xu Zhang, Fan Ni, Guan-Nan Dong, Aichun Zhu, Jianhui Wu, Mingcheng Ni, Hui Liu
Abstract:
Most existing methods for text-based person retrieval focus on text-to-image person retrieval. Nevertheless, due to the lack of dynamic information provided by isolated frames, the performance is hampered when the person is obscured or variable motion details are missed in isolated frames. To overcome this, we propose a novel Text-to-Video Person Retrieval (TVPR) task. Since there is no dataset or benchmark that describes person videos with natural language, we construct a large-scale cross-modal person video dataset containing detailed natural language annotations, termed as Text-to-Video Person Re-identification (TVPReid) dataset. In this paper, we introduce a Multielement Feature Guided Fragments Learning (MFGF) strategy, which leverages the cross-modal text-video representations to provide strong text-visual and text-motion matching information to tackle uncertain occlusion conflicting and variable motion details. Specifically, we establish two potential cross-modal spaces for text and video feature collaborative learning to progressively reduce the semantic difference between text and video. To evaluate the effectiveness of the proposed MFGF, extensive experiments have been conducted on TVPReid dataset. To the best of our knowledge, MFGF is the first successful attempt to use video for text-based person retrieval task and has achieved state-of-the-art performance on TVPReid dataset. The TVPReid dataset will be publicly available to benefit future research.
Authors:Mingkun Li, Peng Xu, Chun-Guang Li, Jun Guo
Abstract:
In this paper, we address a highly challenging yet critical task: unsupervised long-term person re-identification with clothes change. Existing unsupervised person re-id methods are mainly designed for short-term scenarios and usually rely on RGB cues so that fail to perceive feature patterns that are independent of the clothes. To crack this bottleneck, we propose a silhouette-driven contrastive learning (SiCL) method, which is designed to learn cross-clothes invariance by integrating both the RGB cues and the silhouette information within a contrastive learning framework. To our knowledge, this is the first tailor-made framework for unsupervised long-term clothes change \reid{}, with superior performance on six benchmark datasets. We conduct extensive experiments to evaluate our proposed SiCL compared to the state-of-the-art unsupervised person reid methods across all the representative datasets. Experimental results demonstrate that our proposed SiCL significantly outperforms other unsupervised re-id methods.
Authors:Lucas Pascotti Valem, Daniel Carlos Guimarães Pedronette
Abstract:
Person Re-ID has been gaining a lot of attention and nowadays is of fundamental importance in many camera surveillance applications. The task consists of identifying individuals across multiple cameras that have no overlapping views. Most of the approaches require labeled data, which is not always available, given the huge amount of demanded data and the difficulty of manually assigning a class for each individual. Recently, studies have shown that re-ranking methods are capable of achieving significant gains, especially in the absence of labeled data. Besides that, the fusion of feature extractors and multiple-source training is another promising research direction not extensively exploited. We aim to fill this gap through a manifold rank aggregation approach capable of exploiting the complementarity of different person Re-ID rankers. In this work, we perform a completely unsupervised selection and fusion of diverse ranked lists obtained from multiple and diverse feature extractors. Among the contributions, this work proposes a query performance prediction measure that models the relationship among images considering a hypergraph structure and does not require the use of any labeled data. Expressive gains were obtained in four datasets commonly used for person Re-ID. We achieved results competitive to the state-of-the-art in most of the scenarios.
Authors:Lucas Pascotti Valem, Daniel Carlos Guimarães Pedronette, Longin Jan Latecki
Abstract:
Impressive advances in acquisition and sharing technologies have made the growth of multimedia collections and their applications almost unlimited. However, the opposite is true for the availability of labeled data, which is needed for supervised training, since such data is often expensive and time-consuming to obtain. While there is a pressing need for the development of effective retrieval and classification methods, the difficulties faced by supervised approaches highlight the relevance of methods capable of operating with few or no labeled data. In this work, we propose a novel manifold learning algorithm named Rank Flow Embedding (RFE) for unsupervised and semi-supervised scenarios. The proposed method is based on ideas recently exploited by manifold learning approaches, which include hypergraphs, Cartesian products, and connected components. The algorithm computes context-sensitive embeddings, which are refined following a rank-based processing flow, while complementary contextual information is incorporated. The generated embeddings can be exploited for more effective unsupervised retrieval or semi-supervised classification based on Graph Convolutional Networks. Experimental results were conducted on 10 different collections. Various features were considered, including the ones obtained with recent Convolutional Neural Networks (CNN) and Vision Transformer (ViT) models. High effective results demonstrate the effectiveness of the proposed method on different tasks: unsupervised image retrieval, semi-supervised classification, and person Re-ID. The results demonstrate that RFE is competitive or superior to the state-of-the-art in diverse evaluated scenarios.
Authors:Prathistith Raj Medi, Ghanta Sai Krishna, Praneeth Nemani, Satyanarayana Vollala, Santosh Kumar
Abstract:
Person re-identification is vital for monitoring and tracking crowd movement to enhance public security. However, re-identification in the presence of occlusion substantially reduces the performance of existing systems and is a challenging area. In this work, we propose a plausible solution to this problem by developing effective occlusion detection and reconstruction framework for RGB images/videos consisting of Deep Neural Networks. Specifically, a CNN-based occlusion detection model classifies individual input frames, followed by a Conv-LSTM and Autoencoder to reconstruct the occluded pixels corresponding to the occluded frames for sequential (video) and non-sequential (image) data, respectively. The quality of the reconstructed RGB frames is further refined and fine-tuned using a Conditional Generative Adversarial Network (cGAN). Our method is evaluated on four well-known public data sets of the domain, and the qualitative reconstruction results are indeed appealing. Quantitative evaluation in terms of re-identification accuracy of the Siamese network showed an exceptional Rank-1 accuracy after occluded pixel reconstruction on various datasets. A comparative analysis with state-of-the-art approaches also demonstrates the robustness of our work for use in real-life surveillance systems.
Authors:Gaojie Wu, Wei-Shi Zheng, Yutong Lu, Qi Tian
Abstract:
Vision Transformer (ViT) has shown great potential for various visual tasks due to its ability to model long-range dependency. However, ViT requires a large amount of computing resource to compute the global self-attention. In this work, we propose a ladder self-attention block with multiple branches and a progressive shift mechanism to develop a light-weight transformer backbone that requires less computing resources (e.g. a relatively small number of parameters and FLOPs), termed Progressive Shift Ladder Transformer (PSLT). First, the ladder self-attention block reduces the computational cost by modelling local self-attention in each branch. In the meanwhile, the progressive shift mechanism is proposed to enlarge the receptive field in the ladder self-attention block by modelling diverse local self-attention for each branch and interacting among these branches. Second, the input feature of the ladder self-attention block is split equally along the channel dimension for each branch, which considerably reduces the computational cost in the ladder self-attention block (with nearly 1/3 the amount of parameters and FLOPs), and the outputs of these branches are then collaborated by a pixel-adaptive fusion. Therefore, the ladder self-attention block with a relatively small number of parameters and FLOPs is capable of modelling long-range interactions. Based on the ladder self-attention block, PSLT performs well on several vision tasks, including image classification, objection detection and person re-identification. On the ImageNet-1k dataset, PSLT achieves a top-1 accuracy of 79.9% with 9.2M parameters and 1.9G FLOPs, which is comparable to several existing models with more than 20M parameters and 4G FLOPs. Code is available at https://isee-ai.cn/wugaojie/PSLT.html.
Authors:Minsu Kim, Seungryong Kim, JungIn Park, Seongheon Park, Kwanghoon Sohn
Abstract:
Modern data augmentation using a mixture-based technique can regularize the models from overfitting to the training data in various computer vision applications, but a proper data augmentation technique tailored for the part-based Visible-Infrared person Re-IDentification (VI-ReID) models remains unexplored. In this paper, we present a novel data augmentation technique, dubbed PartMix, that synthesizes the augmented samples by mixing the part descriptors across the modalities to improve the performance of part-based VI-ReID models. Especially, we synthesize the positive and negative samples within the same and across different identities and regularize the backbone model through contrastive learning. In addition, we also present an entropy-based mining strategy to weaken the adverse impact of unreliable positive and negative samples. When incorporated into existing part-based VI-ReID model, PartMix consistently boosts the performance. We conduct experiments to demonstrate the effectiveness of our PartMix over the existing VI-ReID methods and provide ablation studies.
Authors:Mertcan Cokbas, Prakash Ishwar, Janusz Konrad
Abstract:
Person re-identification (PRID) has been thoroughly researched in typical surveillance scenarios where various scenes are monitored by side-mounted, rectilinear-lens cameras. To date, few methods have been proposed for fisheye cameras mounted overhead and their performance is lacking. In order to close this performance gap, we propose a multi-feature framework for fisheye PRID where we combine deep-learning, color-based and location-based features by means of novel feature fusion. We evaluate the performance of our framework for various feature combinations on FRIDA, a public fisheye PRID dataset. The results demonstrate that our multi-feature approach outperforms recent appearance-based deep-learning methods by almost 18% points and location-based methods by almost 3% points in matching accuracy. We also demonstrate the potential application of the proposed PRID framework to people counting in large, crowded indoor spaces.
Authors:Lei Wang, Bo Liu, Bincheng Wang, Fuqiang Yu
Abstract:
Gait recognition aims to identify individual-specific walking patterns by observing the different periodic movements of each body part. However, most existing methods treat each part equally and fail to account for the data redundancy caused by the different step frequencies and sampling rates of gait sequences. In this study, we propose a multi-granularity motion representation network (GaitMM) for gait sequence learning. In GaitMM, we design a combined full-body and fine-grained sequence learning module (FFSL) to explore part-independent spatio-temporal representations. Moreover, we utilize a frame-wise compression strategy, referred to as multi-scale motion aggregation (MSMA), to capture discriminative information in the gait sequence. Experiments on two public datasets, CASIA-B and OUMVLP, show that our approach reaches state-of-the-art performances.
Authors:Gabriel Bertocco, Antônio Theophilo, Fernanda Andaló, Anderson Rocha
Abstract:
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution. Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences, as intra-class distances are substantially lower than inter-class distances. However, this is not the case for forensic applications in which classes have similar semantics and the training and test sets have disjoint identities. General self-supervised learning methods might fail to learn discriminative features in this scenario, thus requiring more robust strategies. We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse. We propose a novel ensemble-based clustering strategy whereby clusters derived from different configurations are combined to generate a better grouping for the data samples in a fully-unsupervised way. This strategy allows clusters with different densities and higher variability to emerge, reducing intra-class discrepancies without requiring the burden of finding an optimal configuration per dataset. We also consider different Convolutional Neural Networks for feature extraction and subsequent distance computations between samples. We refine these distances by incorporating context and grouping them to capture complementary information. Our method is robust across both tasks, with different data modalities, and outperforms state-of-the-art methods with a fully-unsupervised solution without any labeling or human intervention.
Authors:Yeong-Jun Cho, Kuk-Jin Yoon
Abstract:
In this paper, we propose a novel distance-based camera network topology inference method for efficient person re-identification. To this end, we first calibrate each camera and estimate relative scales between cameras. Using the calibration results of multiple cameras, we calculate the speed of each person and infer the distance between cameras to generate distance-based camera network topology. The proposed distance-based topology can be applied adaptively to each person according to its speed and handle diverse transition time of people between non-overlapping cameras. To validate the proposed method, we tested the proposed method using an open person re-identification dataset and compared to state-of-the-art methods. The experimental results show that the proposed method is effective for person re-identification in the large-scale camera network with various people transition time.
Authors:Yeong-Jun Cho, Su-A Kim, Jae-Han Park, Kyuewang Lee, Kuk-Jin Yoon
Abstract:
Person re-identification is the task of recognizing or identifying a person across multiple views in multi-camera networks. Although there has been much progress in person re-identification, person re-identification in large-scale multi-camera networks still remains a challenging task because of the large spatio-temporal uncertainty and high complexity due to a large number of cameras and people. To handle these difficulties, additional information such as camera network topology should be provided, which is also difficult to automatically estimate, unfortunately. In this study, we propose a unified framework which jointly solves both person re-identification and camera network topology inference problems with minimal prior knowledge about the environments. The proposed framework takes general multi-camera network environments into account and can be applied to online person re-identification in large-scale multi-camera networks. In addition, to effectively show the superiority of the proposed framework, we provide a new person re-identification dataset with full annotations, named SLP, captured in the multi-camera network consisting of nine non-overlapping cameras. Experimental results using our person re-identification and public datasets show that the proposed methods are promising for both person re-identification and camera topology inference tasks.
Authors:Yeong-Jun Cho, Kuk-Jin Yoon
Abstract:
Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although there has been much progress in person re-identification over the last decade, it remains a challenging task because appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses in a so-called Pose-aware Multi-shot Matching (PaMM), which robustly estimates people's poses and efficiently conducts multi-shot matching based on pose information. Experimental results using public person re-identification datasets show that the proposed methods outperform state-of-the-art methods and are promising for person re-identification from diverse viewpoints and pose variances.
Authors:Robert Long, Rongxin Jiang, Mingrui Yan
Abstract:
Person Re-Identification (ReID) has several challenges in real-world surveillance systems due to clothing changes (CCReID) and the need for maintaining continual learning (LReID). Previous existing methods either develop models specifically for one application, which is mostly a same-cloth (SC) setting or treat CCReID as its own separate sub-problem. In this work, we will introduce the LReID-Hybrid task with the goal of developing a model to achieve both SC and CC while learning in a continual setting. Mismatched representations and forgetting from one task to the next are significant issues, we address this with CMLReID, a CLIP-based framework composed of two novel tasks: (1) Context-Aware Semantic Prompt (CASP) that generates adaptive prompts, and also incorporates context to align richly multi-grained visual cues with semantic text space; and (2) Adaptive Knowledge Fusion and Projection (AKFP) which produces robust SC/CC prototypes through the use of a dual-path learner that aligns features with our Clothing-State-Aware Projection Loss. Experiments performed on a wide range of datasets and illustrate that CMLReID outperforms all state-of-the-art methods with strong robustness and generalization despite clothing variations and a sophisticated process of sequential learning.
Authors:Waqar Ahmad, Evan Murphy, Vladimir A. Krylov
Abstract:
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning. We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
Authors:Po-Hsien Yu, Yu-Syuan Tseng, Shao-Yi Chien
Abstract:
Person re-identification (Re-ID) is a fundamental task in intelligent surveillance and public safety. Federated learning (FL) offers a privacy-preserving solution by enabling collaborative model training without centralized data collection. However, applying FL to real-world re-ID systems faces two major challenges: statistical heterogeneity across clients due to non-IID data distributions, and substantial communication overhead caused by frequent transmission of large-scale models. To address these issues, we propose FedKLPR, a lightweight and communication-efficient federated learning framework for person re-identification. FedKLPR introduces four key components. First, the KL-Divergence Regularization Loss (KLL) constrains local models by minimizing the divergence from the global feature distribution, effectively mitigating the effects of statistical heterogeneity and improving convergence stability under non-IID conditions. Secondly, KL-Divergence-Prune Weighted Aggregation (KLPWA) integrates pruning ratio and distributional similarity into the aggregation process, thereby improving the robustness of the global model while significantly reducing communication overhead. Furthermore, sparse Activation Skipping (SAS) mitigates the dilution of critical parameters during the aggregation of pruned client models by excluding zero-valued weights from the update process. Finally, Cross-Round Recovery (CRR) introduces a dynamic pruning control mechanism that halts pruning when necessary, enabling deeper compression while maintaining model accuracy. Experimental results on eight benchmark datasets demonstrate that FedKLPR achieves significant communication reduction. Compared with the state-of-the-art, FedKLPR reduces 33\%-38\% communication cost on ResNet-50 and 20\%-40\% communication cost on ResNet-34, while maintaining model accuracy within 1\% degradation.
Authors:Kun Gui, Hongliang Ren, Shang Shi, Jin Lu, Changqiu Yu, Quanjun Cao, Guomin Gu, Qi Xuan
Abstract:
Distributed Acoustic Sensing (DAS) technology finds growing applications across various domains. However, data distribution disparities due to heterogeneous sensing environments pose challenges for data-driven artificial intelligence (AI) models, limiting cross-domain generalization and facing a shortage of labeled training data. To address these issues, this study proposes a foundational model for DAS signal recognition based on a Masked Autoencoder, named MAEPD. The MAEPD model is pretrained on a dataset of 635,860 samples, encompassing DAS gait spatiotemporal signals, 2D GASF images for perimeter security, 2D time-frequency images for pipeline leakage, and open-dataset signals including whale vocalizations and seismic activities, using a self-supervised mask reconstruction task to capture deep semantic features of DAS signals. Visual Prompt Tuning (VPT) is employed for downstream recognition tasks. This method freezes the pretrained backbone parameters and fine-tunes only a small set of learnable visual prompt vectors inserted into the Transformer encoder layers. Experiments on the NVIDIA GeForce RTX 4080 Super platform validate MAEPD using indoor gait recognition as a downstream task. The VPT-Deep approach achieves a classification accuracy of 96.94% with just 0.322% of parameters fine-tuned, surpassing the traditional Full Fine Tuning (FFT) method by 0.61% and reducing training time by 45%. The model also exhibits robust performance in pipeline leakage detection, confirming the generality, efficiency, and scalability of MAEPD as a foundational model. This approach offers a novel paradigm for addressing the limited generalization of signal recognition models in the DAS domain.
Authors:Mingyu Wang, Haojie Liu, Zhiyong Li, Wei Jiang
Abstract:
Lifelong person re-identification (LReID) aims to incrementally accumulate knowledge across a sequence of tasks under domain shifts. Recently, replay-based methods have demonstrated strong effectiveness in LReID by rehearsing past samples stored in an auxiliary memory. However, storing historical exemplars raises concerns over data privacy. To avoid this, exemplar-free approaches attempt to match the distribution of past data without storing raw samples. Despite being privacy-friendly, these methods often suffer from performance degradation due to the forgetting of specific past knowledge representations. To this end, we propose to fuse information from sequential data into the pixel space in the replay memory, enabling Privacy-Preserving Replay (Pr$^2$R). More specifically, by distilling the training characteristics of multiple real images into a single image, the fused samples undergo pixel-level changes. This not only protects the privacy of the original data but also makes the replay samples more representative for sequential tasks. During the style replay phase, we align the current domain to the previous one while simultaneously adapting the replay samples to match the style of the current domain. This dual-alignment strategy effectively mitigates both class-incremental challenges and forgetting caused by domain shifts. Extensive experiments on multiple benchmarks show that the proposed method significantly improves replay effectiveness while preserving data privacy. Specifically, Pr$^2$R achieves 4% and 6% higher accuracy on sequential tasks compared to the current state-of-the-art and other replay-based methods, respectively.
Authors:Siddhartha Mondal, Avik Mitra, Chayan Sarkar
Abstract:
The deployment of robot assistants in large indoor spaces has seen significant growth, with escorting tasks becoming a key application. However, most current escorting robots primarily rely on navigation-focused strategies, assuming that the person being escorted will follow without issue. In crowded environments, this assumption often falls short, as individuals may struggle to keep pace, become obstructed, get distracted, or need to stop unexpectedly. As a result, conventional robotic systems are often unable to provide effective escorting services due to their limited understanding of human movement dynamics. To address these challenges, an effective escorting robot must continuously detect and interpret human actions during the escorting process and adjust its movement accordingly. However, there is currently no existing dataset designed specifically for human action detection in the context of escorting. Given that escorting often occurs in crowded environments, where other individuals may enter the robot's camera view, the robot also needs to identify the specific human it is escorting (the subject) before predicting their actions. Since no existing model performs both person re-identification and action prediction in real-time, we propose a novel neural network architecture that can accomplish both tasks. This enables the robot to adjust its speed dynamically based on the escortee's movements and seamlessly resume escorting after any disruption. In comparative evaluations against strong baselines, our system demonstrates superior efficiency and effectiveness, showcasing its potential to significantly improve robotic escorting services in complex, real-world scenarios.
Authors:Kailash A. Hambarde, Nzakiese Mbongo, Pavan Kumar MP, Satish Mekewad, Carolina Fernandes, Gökhan SilahtaroÄlu, Alice Nithya, Pawan Wasnik, MD. Rashidunnabi, Pranita Samale, Hugo Proença
Abstract:
Person reidentification (ReID) technology has been considered to perform relatively well under controlled, ground-level conditions, but it breaks down when deployed in challenging real-world settings. Evidently, this is due to extreme data variability factors such as resolution, viewpoint changes, scale variations, occlusions, and appearance shifts from clothing or session drifts. Moreover, the publicly available data sets do not realistically incorporate such kinds and magnitudes of variability, which limits the progress of this technology. This paper introduces DetReIDX, a large-scale aerial-ground person dataset, that was explicitly designed as a stress test to ReID under real-world conditions. DetReIDX is a multi-session set that includes over 13 million bounding boxes from 509 identities, collected in seven university campuses from three continents, with drone altitudes between 5.8 and 120 meters. More important, as a key novelty, DetReIDX subjects were recorded in (at least) two sessions on different days, with changes in clothing, daylight and location, making it suitable to actually evaluate long-term person ReID. Plus, data were annotated from 16 soft biometric attributes and multitask labels for detection, tracking, ReID, and action recognition. In order to provide empirical evidence of DetReIDX usefulness, we considered the specific tasks of human detection and ReID, where SOTA methods catastrophically degrade performance (up to 80% in detection accuracy and over 70% in Rank-1 ReID) when exposed to DetReIDXs conditions. The dataset, annotations, and official evaluation protocols are publicly available at https://www.it.ubi.pt/DetReIDX/
Authors:Chao Yuan, Tianyi Zhang, Guanglin Niu
Abstract:
Person re-identification (Re-ID) aims to match the same pedestrian in a large gallery with different cameras and views. Enhancing the robustness of the extracted feature representations is a main challenge in Re-ID. Existing methods usually improve feature representation by improving model architecture, but most methods ignore the potential contextual information, which limits the effectiveness of feature representation and retrieval performance. Neighborhood information, especially the potential information of multi-order neighborhoods, can effectively enrich feature expression and improve retrieval accuracy, but this has not been fully explored in existing research. Therefore, we propose a novel model DMON-ARO that leverages latent neighborhood information to enhance both feature representation and index performance. Our approach is built on two complementary modules: Dynamic Multi-Order Neighbor Modeling (DMON) and Asymmetric Relationship Optimization (ARO). The DMON module dynamically aggregates multi-order neighbor relationships, allowing it to capture richer contextual information and enhance feature representation through adaptive neighborhood modeling. Meanwhile, ARO refines the distance matrix by optimizing query-to-gallery relationships, improving the index accuracy. Extensive experiments on three benchmark datasets demonstrate that our approach achieves performance improvements against baseline models, which illustrate the effectiveness of our model. Specifically, our model demonstrates improvements in Rank-1 accuracy and mAP. Moreover, this method can also be directly extended to other re-identification tasks.
Authors:Zhanbo Huang, Xiaoming Liu, Yu Kong
Abstract:
In this paper, we propose H-MoRe, a novel pipeline for learning precise human-centric motion representation. Our approach dynamically preserves relevant human motion while filtering out background movement. Notably, unlike previous methods relying on fully supervised learning from synthetic data, H-MoRe learns directly from real-world scenarios in a self-supervised manner, incorporating both human pose and body shape information. Inspired by kinematics, H-MoRe represents absolute and relative movements of each body point in a matrix format that captures nuanced motion details, termed world-local flows. H-MoRe offers refined insights into human motion, which can be integrated seamlessly into various action-related applications. Experimental results demonstrate that H-MoRe brings substantial improvements across various downstream tasks, including gait recognition(CL@R1: +16.01%), action recognition(Acc@1: +8.92%), and video generation(FVD: -67.07%). Additionally, H-MoRe exhibits high inference efficiency (34 fps), making it suitable for most real-time scenarios. Models and code will be released upon publication.
Authors:Jincheng Yan, Yun Wang, Xiaoyan Luo, Yu-Wing Tai
Abstract:
Person re-identification (ReID) plays a critical role in applications such as security surveillance and criminal investigations. Most traditional image-based ReID methods face challenges including occlusions and lighting changes, while text provides complementary information to mitigate these issues. However, the integration of both image and text modalities remains underexplored. To address this gap, we propose {\bf PS-ReID}, a multimodal model that combines image and text inputs to enhance ReID performance. In contrast to existing ReID methods limited by cropped pedestrian images, our PS-ReID focuses on full-scene settings and introduces a multimodal ReID task that incorporates segmentation, enabling precise feature extraction of the queried individual, even under challenging conditions such as occlusion. To this end, our model adopts a dual-path asymmetric encoding scheme that explicitly separates query and target roles: the query branch captures identity-discriminative cues, while the target branch performs holistic scene reasoning. Additionally, a token-level ReID loss supervises identity-aware tokens, coupling retrieval and segmentation to yield masks that are both spatially precise and identity-consistent. To facilitate systematic evaluation, we construct M2ReID, currently the largest full-scene multimodal ReID dataset, with over 200K images and 4,894 identities, featuring multimodal queries and high-quality segmentation masks. Experimental results demonstrate that PS-ReID significantly outperforms unimodal query-based models in both ReID and segmentation tasks. The model excels in challenging real-world scenarios such as occlusion, low lighting, and background clutter, offering a robust and flexible solution for person retrieval and segmentation. All code, models, and datasets will be publicly available.
Authors:Chao Yuan, Guiwei Zhang, Changxiao Ma, Tianyi Zhang, Guanglin Niu
Abstract:
Person re-identification (ReID) aims to extract accurate identity representation features. However, during feature extraction, individual samples are inevitably affected by noise (background, occlusions, and model limitations). Considering that features from the same identity follow a normal distribution around identity centers after training, we propose a Training-Free Feature Centralization ReID framework (Pose2ID) by aggregating the same identity features to reduce individual noise and enhance the stability of identity representation, which preserves the feature's original distribution for following strategies such as re-ranking. Specifically, to obtain samples of the same identity, we introduce two components: Identity-Guided Pedestrian Generation: by leveraging identity features to guide the generation process, we obtain high-quality images with diverse poses, ensuring identity consistency even in complex scenarios such as infrared, and occlusion. Neighbor Feature Centralization: it explores each sample's potential positive samples from its neighborhood. Experiments demonstrate that our generative model exhibits strong generalization capabilities and maintains high identity consistency. With the Feature Centralization framework, we achieve impressive performance even with an ImageNet pre-trained model without ReID training, reaching mAP/Rank-1 of 52.81/78.92 on Market1501. Moreover, our method sets new state-of-the-art results across standard, cross-modality, and occluded ReID tasks, showcasing strong adaptability.
Authors:Myungseo Song, Jin-Woo Park, Jong-Seok Lee
Abstract:
We empirically investigate the camera bias of person re-identification (ReID) models. Previously, camera-aware methods have been proposed to address this issue, but they are largely confined to training domains of the models. We measure the camera bias of ReID models on unseen domains and reveal that camera bias becomes more pronounced under data distribution shifts. As a debiasing method for unseen domain data, we revisit feature normalization on embedding vectors. While the normalization has been used as a straightforward solution, its underlying causes and broader applicability remain unexplored. We analyze why this simple method is effective at reducing bias and show that it can be applied to detailed bias factors such as low-level image properties and body angle. Furthermore, we validate its generalizability across various models and benchmarks, highlighting its potential as a simple yet effective test-time postprocessing method for ReID. In addition, we explore the inherent risk of camera bias in unsupervised learning of ReID models. The unsupervised models remain highly biased towards camera labels even for seen domain data, indicating substantial room for improvement. Based on observations of the negative impact of camera-biased pseudo labels on training, we suggest simple training strategies to mitigate the bias. By applying these strategies to existing unsupervised learning algorithms, we show that significant performance improvements can be achieved with minor modifications.
Authors:Ruixing Wu, Yiming Yang, Jiakai He, Haifeng Hu
Abstract:
Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims to learn modality-invariant features from unlabeled cross-modality datasets and reduce the inter-modality gap. However, the existing methods lack cross-modality clustering or excessively pursue cluster-level association, which makes it difficult to perform reliable modality-invariant features learning. To deal with this issue, we propose a Extended Cross-Modality United Learning (ECUL) framework, incorporating Extended Modality-Camera Clustering (EMCC) and Two-Step Memory Updating Strategy (TSMem) modules. Specifically, we design ECUL to naturally integrates intra-modality clustering, inter-modality clustering and inter-modality instance selection, establishing compact and accurate cross-modality associations while reducing the introduction of noisy labels. Moreover, EMCC captures and filters the neighborhood relationships by extending the encoding vector, which further promotes the learning of modality-invariant and camera-invariant knowledge in terms of clustering algorithm. Finally, TSMem provides accurate and generalized proxy points for contrastive learning by updating the memory in stages. Extensive experiments results on SYSU-MM01 and RegDB datasets demonstrate that the proposed ECUL shows promising performance and even outperforms certain supervised methods.
Authors:Alireza Sedighi Moghaddam, Fatemeh Anvari, Mohammadjavad Mirshekari Haghighi, Mohammadali Fakhari, Mohammad Reza Mohammadi
Abstract:
Person Re-Identification (ReID) is a fundamental task in computer vision with critical applications in surveillance and security. Despite progress in recent years, most existing ReID models often struggle to generalize across diverse cultural contexts, particularly in Islamic regions like Iran, where modest clothing styles are prevalent. Existing datasets predominantly feature Western and East Asian fashion, limiting their applicability in these settings. To address this gap, we introduce Iran University of Science and Technology Person Re-Identification (IUST_PersonReId), a dataset designed to reflect the unique challenges of ReID in new cultural environments, emphasizing modest attire and diverse scenarios from Iran, including markets, campuses, and mosques. Experiments on IUST_PersonReId with state-of-the-art models, such as Semantic Controllable Self-supervised Learning (SOLIDER) and Contrastive Language-Image Pretraining Re-Identification (CLIP-ReID), reveal significant performance drops compared to benchmarks like Market1501 and Multi-Scene MultiTime (MSMT17), specifically, SOLIDER shows a drop of 50.75% and 23.01% Mean Average Precision (mAP) compared to Market1501 and MSMT17 respectively, while CLIP-ReID exhibits a drop of 38.09% and 21.74% mAP, highlighting the challenges posed by occlusion and limited distinctive features. Sequence-based evaluations show improvements by leveraging temporal context, emphasizing the dataset's potential for advancing culturally sensitive and robust ReID systems. IUST_PersonReId offers a critical resource for addressing fairness and bias in ReID research globally.
Authors:Yiming Yang, Weipeng Hu, Haifeng Hu
Abstract:
Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) offers a more flexible and cost-effective alternative compared to supervised methods. This field has gained increasing attention due to its promising potential. Existing methods simply cluster modality-specific samples and employ strong association techniques to achieve instance-to-cluster or cluster-to-cluster cross-modality associations. However, they ignore cross-camera differences, leading to noticeable issues with excessive splitting of identities. Consequently, this undermines the accuracy and reliability of cross-modal associations. To address these issues, we propose a novel Dynamic Modality-Camera Invariant Clustering (DMIC) framework for USL-VI-ReID. Specifically, our DMIC naturally integrates Modality-Camera Invariant Expansion (MIE), Dynamic Neighborhood Clustering (DNC) and Hybrid Modality Contrastive Learning (HMCL) into a unified framework, which eliminates both the cross-modality and cross-camera discrepancies in clustering. MIE fuses inter-modal and inter-camera distance coding to bridge the gaps between modalities and cameras at the clustering level. DNC employs two dynamic search strategies to refine the network's optimization objective, transitioning from improving discriminability to enhancing cross-modal and cross-camera generalizability. Moreover, HMCL is designed to optimize instance-level and cluster-level distributions. Memories for intra-modality and inter-modality training are updated using randomly selected samples, facilitating real-time exploration of modality-invariant representations. Extensive experiments have demonstrated that our DMIC addresses the limitations present in current clustering approaches and achieve competitive performance, which significantly reduces the performance gap with supervised methods.
Authors:Hao Chen, Francois Bremond, Nicu Sebe, Shiliang Zhang
Abstract:
Regular unsupervised domain adaptive person re-identification (ReID) focuses on adapting a model from a source domain to a fixed target domain. However, an adapted ReID model can hardly retain previously-acquired knowledge and generalize to unseen data. In this paper, we propose a Dual-level Joint Adaptation and Anti-forgetting (DJAA) framework, which incrementally adapts a model to new domains without forgetting source domain and each adapted target domain. We explore the possibility of using prototype and instance-level consistency to mitigate the forgetting during the adaptation. Specifically, we store a small number of representative image samples and corresponding cluster prototypes in a memory buffer, which is updated at each adaptation step. With the buffered images and prototypes, we regularize the image-to-image similarity and image-to-prototype similarity to rehearse old knowledge. After the multi-step adaptation, the model is tested on all seen domains and several unseen domains to validate the generalization ability of our method. Extensive experiments demonstrate that our proposed method significantly improves the anti-forgetting, generalization and backward-compatible ability of an unsupervised person ReID model.
Authors:Yongkang Ding, Rui Mao, Hanyue Zhu, Anqi Wang, Liyan Zhang
Abstract:
In public safety and social life, the task of Clothes-Changing Person Re-Identification (CC-ReID) has become increasingly significant. However, this task faces considerable challenges due to appearance changes caused by clothing alterations. Addressing this issue, this paper proposes an innovative method for disentangled feature extraction, effectively extracting discriminative features from pedestrian images that are invariant to clothing. This method leverages pedestrian parsing techniques to identify and retain features closely associated with individual identity while disregarding the variable nature of clothing attributes. Furthermore, this study introduces a gated channel attention mechanism, which, by adjusting the network's focus, aids the model in more effectively learning and emphasizing features critical for pedestrian identity recognition. Extensive experiments conducted on two standard CC-ReID datasets validate the effectiveness of the proposed approach, with performance surpassing current leading solutions. The Top-1 accuracy under clothing change scenarios on the PRCC and VC-Clothes datasets reached 64.8% and 83.7%, respectively.
Authors:Zhangjian Ji, Donglin Cheng, Kai Feng
Abstract:
Due to some complex factors (e.g., occlusion, pose variation and diverse camera perspectives), extracting stronger feature representation in person re-identification remains a challenging task. In this paper, we proposed a novel self-supervision and supervision combining transformer-based person re-identification framework, namely SSSC-TransReID. Different from the general transformer-based person re-identification models, we designed a self-supervised contrastive learning branch, which can enhance the feature representation for person re-identification without negative samples or additional pre-training. In order to train the contrastive learning branch, we also proposed a novel random rectangle mask strategy to simulate the occlusion in real scenes, so as to enhance the feature representation for occlusion. Finally, we utilized the joint-training loss function to integrate the advantages of supervised learning with ID tags and self-supervised contrastive learning without negative samples, which can reinforce the ability of our model to excavate stronger discriminative features, especially for occlusion. Extensive experimental results on several benchmark datasets show our proposed model obtains superior Re-ID performance consistently and outperforms the state-of-the-art ReID methods by large margins on the mean average accuracy (mAP) and Rank-1 accuracy.
Authors:Jiaxing Hao, Yanxi Wang, Zhigang Chang, Hongmin Gao, Zihao Cheng, Chen Wu, Xin Zhao, Peiye Fang, Rachmat Muwardi
Abstract:
Gait recognition is a remote biometric technology that utilizes the dynamic characteristics of human movement to identify individuals even under various extreme lighting conditions. Due to the limitation in spatial perception capability inherent in 2D gait representations, LiDAR can directly capture 3D gait features and represent them as point clouds, reducing environmental and lighting interference in recognition while significantly advancing privacy protection. For complex 3D representations, shallow networks fail to achieve accurate recognition, making vision Transformers the foremost prevalent method. However, the prevalence of dumb patches has limited the widespread use of Transformer architecture in gait recognition. This paper proposes a method named HorGait, which utilizes a hybrid model with a Transformer architecture for gait recognition on the planar projection of 3D point clouds from LiDAR. Specifically, it employs a hybrid model structure called LHM Block to achieve input adaptation, long-range, and high-order spatial interaction of the Transformer architecture. Additionally, it uses large convolutional kernel CNNs to segment the input representation, replacing attention windows to reduce dumb patches. We conducted extensive experiments, and the results show that HorGait achieves state-of-the-art performance among Transformer architecture methods on the SUSTech1K dataset, verifying that the hybrid model can complete the full Transformer process and perform better in point cloud planar projection. The outstanding performance of HorGait offers new insights for the future application of the Transformer architecture in gait recognition.
Authors:Yanxi Wang, Zhigang Chang, Chen Wu, Zihao Cheng, Hongmin Gao
Abstract:
Gait recognition is a rapidly progressing technique for the remote identification of individuals. Prior research predominantly employing 2D sensors to gather gait data has achieved notable advancements; nonetheless, they have unavoidably neglected the influence of 3D dynamic characteristics on recognition. Gait recognition utilizing LiDAR 3D point clouds not only directly captures 3D spatial features but also diminishes the impact of lighting conditions while ensuring privacy protection.The essence of the problem lies in how to effectively extract discriminative 3D dynamic representation from point clouds.In this paper, we proposes a method named SpheriGait for extracting and enhancing dynamic features from point clouds for Lidar-based gait recognition. Specifically, it substitutes the conventional point cloud plane projection method with spherical projection to augment the perception of dynamic feature.Additionally, a network block named DAM-L is proposed to extract gait cues from the projected point cloud data. We conducted extensive experiments and the results demonstrated the SpheriGait achieved state-of-the-art performance on the SUSTech1K dataset, and verified that the spherical projection method can serve as a universal data preprocessing technique to enhance the performance of other LiDAR-based gait recognition methods, exhibiting exceptional flexibility and practicality.
Authors:Hyeono Jung, Jangwon Lee, Jiwon Yoo, Dami Ko, Gyeonghwan Kim
Abstract:
Within the domain of person re-identification (ReID), partial ReID methods are considered mainstream, aiming to measure feature distances through comparisons of body parts between samples. However, in practice, previous methods often lack sufficient awareness of anatomical aspect of body parts, resulting in the failure to capture features of the same body parts across different samples. To address this issue, we introduce \textbf{Part Aware Transformer (PAFormer)}, a pose estimation based ReID model which can perform precise part-to-part comparison. In order to inject part awareness to pose tokens, we introduce learnable parameters called `pose token' which estimate the correlation between each body part and partial regions of the image. Notably, at inference phase, PAFormer operates without additional modules related to body part localization, which is commonly used in previous ReID methodologies leveraging pose estimation models. Additionally, leveraging the enhanced awareness of body parts, PAFormer suggests the use of a learning-based visibility predictor to estimate the degree of occlusion for each body part. Also, we introduce a teacher forcing technique using ground truth visibility scores which enables PAFormer to be trained only with visible parts. A set of extensive experiments show that our method outperforms existing approaches on well-known ReID benchmark datasets.
Authors:Daniel Shalam, Simon Korman
Abstract:
The Balanced-Pairwise-Affinities (BPA) feature transform is designed to upgrade the features of a set of input items to facilitate downstream matching or grouping related tasks. The transformed set encodes a rich representation of high order relations between the input features. A particular min-cost-max-flow fractional matching problem, whose entropy regularized version can be approximated by an optimal transport (OT) optimization, leads to a transform which is efficient, differentiable, equivariant, parameterless and probabilistically interpretable. While the Sinkhorn OT solver has been adapted extensively in many contexts, we use it differently by minimizing the cost between a set of features to $itself$ and using the transport plan's $rows$ as the new representation. Empirically, the transform is highly effective and flexible in its use and consistently improves networks it is inserted into, in a variety of tasks and training schemes. We demonstrate state-of-the-art results in few-shot classification, unsupervised image clustering and person re-identification. Code is available at \url{github.com/DanielShalam/BPA}.
Authors:Peng Gao, Yujian Lee, Hui Zhang, Xubo Liu, Yiyang Hu, Guquan Jing
Abstract:
Visible-infrared person re-identification (VI-ReID) aims to match people with the same identity between visible and infrared modalities. VI-ReID is a challenging task due to the large differences in individual appearance under different modalities. Existing methods generally try to bridge the cross-modal differences at image or feature level, which lacks exploring the discriminative embeddings. Effectively minimizing these cross-modal discrepancies relies on obtaining representations that are guided by identity and consistent across modalities, while also filtering out representations that are irrelevant to identity. To address these challenges, we introduce a dynamic identity-guided attention network (DIAN) to mine identity-guided and modality-consistent embeddings, facilitating effective bridging the gap between different modalities. Specifically, in DIAN, to pursue a semantically richer representation, we first use orthogonal projection to fuse the features from two connected coarse and fine layers. Furthermore, we first use dynamic convolution kernels to mine identity-guided and modality-consistent representations. More notably, a cross embedding balancing loss is introduced to effectively bridge cross-modal discrepancies by above embeddings. Experimental results on SYSU-MM01 and RegDB datasets show that DIAN achieves state-of-the-art performance. Specifically, for indoor search on SYSU-MM01, our method achieves 86.28% rank-1 accuracy and 87.41% mAP, respectively. Our code will be available soon.
Authors:Syeda Nyma Ferdous, Xin Li
Abstract:
Occlusion remains one of the major challenges in person reidentification (ReID) as a result of the diversity of poses and the variation of appearances. Developing novel architectures to improve the robustness of occlusion-aware person Re-ID requires new insights, especially on low-resolution edge cameras. We propose a deep ensemble model that harnesses both CNN and Transformer architectures to generate robust feature representations. To achieve robust Re-ID without the need to manually label occluded regions, we propose to take an ensemble learning-based approach derived from the analogy between arbitrarily shaped occluded regions and robust feature representation. Using the orthogonality principle, our developed deep CNN model makes use of masked autoencoder (MAE) and global-local feature fusion for robust person identification. Furthermore, we present a part occlusion-aware transformer capable of learning feature space that is robust to occluded regions. Experimental results are reported on several Re-ID datasets to show the effectiveness of our developed ensemble model named orthogonal fusion with occlusion handling (OFOH). Compared to competing methods, the proposed OFOH approach has achieved competent rank-1 and mAP performance.
Authors:Minyoung Oh, Jae-Young Sim
Abstract:
Lifelong person re-identification (LReID) assumes a practical scenario where the model is sequentially trained on continuously incoming datasets while alleviating the catastrophic forgetting in the old datasets. However, not only the training datasets but also the gallery images are incrementally accumulated, that requires a huge amount of computational complexity and storage space to extract the features at the inference phase. In this paper, we address the above mentioned problem by incorporating the backward-compatibility to LReID for the first time. We train the model using the continuously incoming datasets while maintaining the model's compatibility toward the previously trained old models without re-computing the features of the old gallery images. To this end, we devise the cross-model compatibility loss based on the contrastive learning with respect to the replay features across all the old datasets. Moreover, we also develop the knowledge consolidation method based on the part classification to learn the shared representation across different datasets for the backward-compatibility. We suggest a more practical methodology for performance evaluation as well where all the gallery and query images are considered together. Experimental results demonstrate that the proposed method achieves a significantly higher performance of the backward-compatibility compared with the existing methods. It is a promising tool for more practical scenarios of LReID.
Authors:Andy CÄtrunÄ, Adrian Cosma, Emilian RÄdoi
Abstract:
Gait, an unobtrusive biometric, is valued for its capability to identify individuals at a distance, across external outfits and environmental conditions. This study challenges the prevailing assumption that vision-based gait recognition, in particular skeleton-based gait recognition, relies primarily on motion patterns, revealing a significant role of the implicit anthropometric information encoded in the walking sequence. We show through a comparative analysis that removing height information leads to notable performance degradation across three models and two benchmarks (CASIA-B and GREW). Furthermore, we propose a spatial transformer model processing individual poses, disregarding any temporal information, which achieves unreasonably good accuracy, emphasizing the bias towards appearance information and indicating spurious correlations in existing benchmarks. These findings underscore the need for a nuanced understanding of the interplay between motion and appearance in vision-based gait recognition, prompting a reevaluation of the methodological assumptions in this field. Our experiments indicate that "in-the-wild" datasets are less prone to spurious correlations, prompting the need for more diverse and large scale datasets for advancing the field.
Authors:Tiantian Gong, Guodong Du, Junsheng Wang, Yongkang Ding, Liyan Zhang
Abstract:
Traditional text-based person re-identification (ReID) techniques heavily rely on fully matched multi-modal data, which is an ideal scenario. However, due to inevitable data missing and corruption during the collection and processing of cross-modal data, the incomplete data issue is usually met in real-world applications. Therefore, we consider a more practical task termed the incomplete text-based ReID task, where person images and text descriptions are not completely matched and contain partially missing modality data. To this end, we propose a novel Prototype-guided Cross-modal Completion and Alignment (PCCA) framework to handle the aforementioned issues for incomplete text-based ReID. Specifically, we cannot directly retrieve person images based on a text query on missing modality data. Therefore, we propose the cross-modal nearest neighbor construction strategy for missing data by computing the cross-modal similarity between existing images and texts, which provides key guidance for the completion of missing modal features. Furthermore, to efficiently complete the missing modal features, we construct the relation graphs with the aforementioned cross-modal nearest neighbor sets of missing modal data and the corresponding prototypes, which can further enhance the generated missing modal features. Additionally, for tighter fine-grained alignment between images and texts, we raise a prototype-aware cross-modal alignment loss that can effectively reduce the modality heterogeneity gap for better fine-grained alignment in common space. Extensive experimental results on several benchmarks with different missing ratios amply demonstrate that our method can consistently outperform state-of-the-art text-image ReID approaches.
Authors:Muhammad Imran Sharif, Mehwish Mehmood, Muhammad Irfan Sharif, Md Palash Uddin
Abstract:
Gait recognition (GR) is a growing biometric modality used for person identification from a distance through visual cameras. GR provides a secure and reliable alternative to fingerprint and face recognition, as it is harder to distinguish between false and authentic signals. Furthermore, its resistance to spoofing makes GR suitable for all types of environments. With the rise of deep learning, steadily improving strides have been made in GR technology with promising results in various contexts. As video surveillance becomes more prevalent, new obstacles arise, such as ensuring uniform performance evaluation across different protocols, reliable recognition despite shifting lighting conditions, fluctuations in gait patterns, and protecting privacy.This survey aims to give an overview of GR and analyze the environmental elements and complications that could affect it in comparison to other biometric recognition systems. The primary goal is to examine the existing deep learning (DL) techniques employed for human GR that may generate new research opportunities.
Authors:Cole Hill, Mauricio Pamplona Segundo, Sudeep Sarkar
Abstract:
Deep learning research has made many biometric recognition solution viable, but it requires vast training data to achieve real-world generalization. Unlike other biometric traits, such as face and ear, gait samples cannot be easily crawled from the web to form massive unconstrained datasets. As the human body has been extensively studied for different digital applications, one can rely on prior shape knowledge to overcome data scarcity. This work follows the recent trend of fitting a 3D deformable body model into gait videos using deep neural networks to obtain disentangled shape and pose representations for each frame. To enforce temporal consistency in the network, we introduce a new Linear Dynamical Systems (LDS) module and loss based on Koopman operator theory, which provides an unsupervised motion regularization for the periodic nature of gait, as well as a predictive capacity for extending gait sequences. We compare LDS to the traditional adversarial training approach and use the USF HumanID and CASIA-B datasets to show that LDS can obtain better accuracy with less training data. Finally, we also show that our 3D modeling approach is much better than other 3D gait approaches in overcoming viewpoint variation under normal, bag-carrying and clothing change conditions.
Authors:Lucas Maris, Yuki Matsuda, Keiichi Yasumoto
Abstract:
Camera-based person re-identification is a heavily privacy-invading task by design, benefiting from rich visual data to match together person representations across different cameras. This high-dimensional data can then easily be used for other, perhaps less desirable, applications. We here investigate the possibility of protecting such image data against uses outside of the intended re-identification task, and introduce a differential privacy mechanism leveraging both pixelisation and colour quantisation for this purpose. We show its ability to distort images in such a way that adverse task performances are significantly reduced, while retaining high re-identification performances.
Authors:Qiangchang Wang, Yilong Yin
Abstract:
Inspired by the fact that human brains can emphasize discriminative parts of the input and suppress irrelevant ones, substantial local mechanisms have been designed to boost the development of computer vision. They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency. In terms of application scenarios and paradigms, local mechanisms have different characteristics. In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches, including fine-grained visual recognition, person re-identification, few-/zero-shot learning, multi-modal learning, self-supervised learning, Vision Transformers, and so on. Categorization of local mechanisms in each field is summarized. Then, advantages and disadvantages for every category are analyzed deeply, leaving room for exploration. Finally, future research directions about local mechanisms have also been discussed that may benefit future works. To the best our knowledge, this is the first survey about local mechanisms on computer vision. We hope that this survey can shed light on future research in the computer vision field.
Authors:Luke K. Topham, Wasiq Khan, Dhiya Al-Jumeily, Abir Hussain
Abstract:
Person identification is a problem that has received substantial attention, particularly in security domains. Gait recognition is one of the most convenient approaches enabling person identification at a distance without the need of high-quality images. There are several review studies addressing person identification such as the utilization of facial images, silhouette images, and wearable sensor. Despite skeleton-based person identification gaining popularity while overcoming the challenges of traditional approaches, existing survey studies lack the comprehensive review of skeleton-based approaches to gait identification. We present a detailed review of the human pose estimation and gait analysis that make the skeleton-based approaches possible. The study covers various types of related datasets, tools, methodologies, and evaluation metrics with associated challenges, limitations, and application domains. Detailed comparisons are presented for each of these aspects with recommendations for potential research and alternatives. A common trend throughout this paper is the positive impact that deep learning techniques are beginning to have on topics such as human pose estimation and gait identification. The survey outcomes might be useful for the related research community and other stakeholders in terms of performance analysis of existing methodologies, potential research gaps, application domains, and possible contributions in the future.
Authors:Wes Robbins, Gabriel Bertocco, Terrance E. Boult
Abstract:
In unconstrained scenarios, face recognition and person re-identification are subject to distortions such as motion blur, atmospheric turbulence, or upsampling artifacts. To improve robustness in these scenarios, we propose a methodology called Distortion-Adaptive Learned Invariance for Identification (DaliID) models. We contend that distortion augmentations, which degrade image quality, can be successfully leveraged to a greater degree than has been shown in the literature. Aided by an adaptive weighting schedule, a novel distortion augmentation is applied at severe levels during training. This training strategy increases feature-level invariance to distortions and decreases domain shift to unconstrained scenarios. At inference, we use a magnitude-weighted fusion of features from parallel models to retain robustness across the range of images. DaliID models achieve state-of-the-art (SOTA) for both face recognition and person re-identification on seven benchmark datasets, including IJB-S, TinyFace, DeepChange, and MSMT17. Additionally, we provide recaptured evaluation data at a distance of 750+ meters and further validate on real long-distance face imagery.
Authors:Jiaqi Guo, Amy R. Reibman, Edward J. Delp
Abstract:
Unsupervised domain adaptive (UDA) person re-identification (re-ID) aims to learn identity information from labeled images in source domains and apply it to unlabeled images in a target domain. One major issue with many unsupervised re-identification methods is that they do not perform well relative to large domain variations such as illumination, viewpoint, and occlusions. In this paper, we propose a Synthesis Model Bank (SMB) to deal with illumination variation in unsupervised person re-ID. The proposed SMB consists of several convolutional neural networks (CNN) for feature extraction and Mahalanobis matrices for distance metrics. They are trained using synthetic data with different illumination conditions such that their synergistic effect makes the SMB robust against illumination variation. To better quantify the illumination intensity and improve the quality of synthetic images, we introduce a new 3D virtual-human dataset for GAN-based image synthesis. From our experiments, the proposed SMB outperforms other synthesis methods on several re-ID benchmarks.
Authors:Sinan Sabri, Zaigham Randhawa, Gianfranco Doretto
Abstract:
Person re-identification is a challenging task because of the high intra-class variance induced by the unrestricted nuisance factors of variations such as pose, illumination, viewpoint, background, and sensor noise. Recent approaches postulate that powerful architectures have the capacity to learn feature representations invariant to nuisance factors, by training them with losses that minimize intra-class variance and maximize inter-class separation, without modeling nuisance factors explicitly. The dominant approaches use either a discriminative loss with margin, like the softmax loss with the additive angular margin, or a metric learning loss, like the triplet loss with batch hard mining of triplets. Since the softmax imposes feature normalization, it limits the gradient flow supervising the feature embedding. We address this by joining the losses and leveraging the triplet loss as a proxy for the missing gradients. We further improve invariance to nuisance factors by adding the discriminative task of predicting attributes. Our extensive evaluation highlights that when only a holistic representation is learned, we consistently outperform the state-of-the-art on the three most challenging datasets. Such representations are easier to deploy in practical systems. Finally, we found that joining the losses removes the requirement for having a margin in the softmax loss while increasing performance.
Authors:Shahar Mahpod, Noam Gaash, Hay Hoffman, Gil Ben-Artzi
Abstract:
We introduce a novel approach for gait transfer from unconstrained videos in-the-wild. In contrast to motion transfer, the objective here is not to imitate the source's motions by the target, but rather to replace the walking source with the target, while transferring the target's typical gait. Our approach can be trained only once with multiple sources and is able to transfer the gait of the target from unseen sources, eliminating the need for retraining for each new source independently. Furthermore, we propose a novel metrics for gait transfer based on gait recognition models that enable to quantify the quality of the transferred gait, and show that existing techniques yield a discrepancy that can be easily detected.
We introduce Cycle Transformers GAN (CTrGAN), that consist of a decoder and encoder, both Transformers, where the attention is on the temporal domain between complete images rather than the spatial domain between patches. Using a widely-used gait recognition dataset, we demonstrate that our approach is capable of producing over an order of magnitude more realistic personalized gaits than existing methods, even when used with sources that were not available during training. As part of our solution, we present a detector that determines whether a video is real or generated by our model.
Authors:Haojie Liu, Daoxun Xia, Wei Jiang, Chao Xu
Abstract:
Visible-infrared person re-identification (VI-ReID) is a challenging and essential task, which aims to retrieve a set of person images over visible and infrared camera views. In order to mitigate the impact of large modality discrepancy existing in heterogeneous images, previous methods attempt to apply generative adversarial network (GAN) to generate the modality-consisitent data. However, due to severe color variations between the visible domain and infrared domain, the generated fake cross-modality samples often fail to possess good qualities to fill the modality gap between synthesized scenarios and target real ones, which leads to sub-optimal feature representations. In this work, we address cross-modality matching problem with Aligned Grayscale Modality (AGM), an unified dark-line spectrum that reformulates visible-infrared dual-mode learning as a gray-gray single-mode learning problem. Specifically, we generate the grasycale modality from the homogeneous visible images. Then, we train a style tranfer model to transfer infrared images into homogeneous grayscale images. In this way, the modality discrepancy is significantly reduced in the image space. In order to reduce the remaining appearance discrepancy, we further introduce a multi-granularity feature extraction network to conduct feature-level alignment. Rather than relying on the global information, we propose to exploit local (head-shoulder) features to assist person Re-ID, which complements each other to form a stronger feature descriptor. Comprehensive experiments implemented on the mainstream evaluation datasets include SYSU-MM01 and RegDB indicate that our method can significantly boost cross-modality retrieval performance against the state of the art methods.
Authors:Shaoxiong Zhang, Yunhong Wang, Tianrui Chai, Annan Li, Anil K. Jain
Abstract:
Human gait is considered a unique biometric identifier which can be acquired in a covert manner at a distance. However, models trained on existing public domain gait datasets which are captured in controlled scenarios lead to drastic performance decline when applied to real-world unconstrained gait data. On the other hand, video person re-identification techniques have achieved promising performance on large-scale publicly available datasets. Given the diversity of clothing characteristics, clothing cue is not reliable for person recognition in general. So, it is actually not clear why the state-of-the-art person re-identification methods work as well as they do. In this paper, we construct a new gait dataset by extracting silhouettes from an existing video person re-identification challenge which consists of 1,404 persons walking in an unconstrained manner. Based on this dataset, a consistent and comparative study between gait recognition and person re-identification can be carried out. Given that our experimental results show that current gait recognition approaches designed under data collected in controlled scenarios are inappropriate for real surveillance scenarios, we propose a novel gait recognition method, called RealGait. Our results suggest that recognizing people by their gait in real surveillance scenarios is feasible and the underlying gait pattern is probably the true reason why video person re-idenfification works in practice.
Authors:Weiyao Lin, Yang Shen, Junchi Yan, Mingliang Xu, Jianxin Wu, Jingdong Wang, Ke Lu
Abstract:
This paper addresses the problem of handling spatial misalignments due to camera-view changes or human-pose variations in person re-identification. We first introduce a boosting-based approach to learn a correspondence structure which indicates the patch-wise matching probabilities between images from a target camera pair. The learned correspondence structure can not only capture the spatial correspondence pattern between cameras but also handle the viewpoint or human-pose variation in individual images. We further introduce a global constraint-based matching process. It integrates a global matching constraint over the learned correspondence structure to exclude cross-view misalignments during the image patch matching process, hence achieving a more reliable matching score between images. Finally, we also extend our approach by introducing a multi-structure scheme, which learns a set of local correspondence structures to capture the spatial correspondence sub-patterns between a camera pair, so as to handle the spatial misalignments between individual images in a more precise way. Experimental results on various datasets demonstrate the effectiveness of our approach.
Authors:Sirshapan Mitra, Yogesh S. Rawat
Abstract:
Gait recognition is a valuable biometric task that enables the identification of individuals from a distance based on their walking patterns. However, it remains limited by the lack of large-scale labeled datasets and the difficulty of collecting diverse gait samples for each individual while preserving privacy. To address these challenges, we propose GaitCrafter, a diffusion-based framework for synthesizing realistic gait sequences in the silhouette domain. Unlike prior works that rely on simulated environments or alternative generative models, GaitCrafter trains a video diffusion model from scratch, exclusively on gait silhouette data. Our approach enables the generation of temporally consistent and identity-preserving gait sequences. Moreover, the generation process is controllable-allowing conditioning on various covariates such as clothing, carried objects, and view angle. We show that incorporating synthetic samples generated by GaitCrafter into the gait recognition pipeline leads to improved performance, especially under challenging conditions. Additionally, we introduce a mechanism to generate novel identities-synthetic individuals not present in the original dataset-by interpolating identity embeddings. These novel identities exhibit unique, consistent gait patterns and are useful for training models while maintaining privacy of real subjects. Overall, our work takes an important step toward leveraging diffusion models for high-quality, controllable, and privacy-aware gait data generation.
Authors:Rui Zhi, Zhen Yang, Haiyang Zhang
Abstract:
Person re-identification (Re-ID) aims to match person images across different camera views, with occluded Re-ID addressing scenarios where pedestrians are partially visible. While pre-trained vision-language models have shown effectiveness in Re-ID tasks, they face significant challenges in occluded scenarios by focusing on holistic image semantics while neglecting fine-grained attribute information. This limitation becomes particularly evident when dealing with partially occluded pedestrians or when distinguishing between individuals with subtle appearance differences. To address this limitation, we propose Attribute-Guide ReID (AG-ReID), a novel framework that leverages pre-trained models' inherent capabilities to extract fine-grained semantic attributes without additional data or annotations. Our framework operates through a two-stage process: first generating attribute pseudo-labels that capture subtle visual characteristics, then introducing a dual-guidance mechanism that combines holistic and fine-grained attribute information to enhance image feature extraction. Extensive experiments demonstrate that AG-ReID achieves state-of-the-art results on multiple widely-used Re-ID datasets, showing significant improvements in handling occlusions and subtle attribute differences while maintaining competitive performance on standard Re-ID scenarios.
Authors:Yufei Zheng, Wenjun Wang, Wenjun Gan, Jiawei Liu
Abstract:
Occluded person re-identification aims to retrieve holistic images based on occluded ones. Existing methods often rely on aligning visible body parts, applying occlusion augmentation, or complementing missing semantics using holistic images. However, they face challenges in handling diverse occlusion scenarios not seen during training and the issue of feature contamination from holistic images. To address these limitations, we propose Occlusion-Guided Feature Purification Learning via Reinforced Knowledge Distillation (OGFR), which simultaneously mitigates these challenges. OGFR adopts a teacher-student distillation architecture that effectively incorporates diverse occlusion patterns into feature representation while transferring the purified discriminative holistic knowledge from the holistic to the occluded branch through reinforced knowledge distillation. Specifically, an Occlusion-Aware Vision Transformer is designed to leverage learnable occlusion pattern embeddings to explicitly model such diverse occlusion types, thereby guiding occlusion-aware robust feature representation. Moreover, we devise a Feature Erasing and Purification Module within the holistic branch, in which an agent is employed to identify low-quality patch tokens of holistic images that contain noisy negative information via deep reinforcement learning, and substitute these patch tokens with learnable embedding tokens to avoid feature contamination and further excavate identity-related discriminative clues. Afterward, with the assistance of knowledge distillation, the student branch effectively absorbs the purified holistic knowledge to precisely learn robust representation regardless of the interference of occlusions.
Authors:Ngoc Q. Ly, Hieu N. M. Cao, Thi T. Nguyen
Abstract:
Person Re-Identification (Re-ID) is a very important task in video surveillance systems such as tracking people, finding people in public places, or analysing customer behavior in supermarkets. Although there have been many works to solve this problem, there are still remaining challenges such as large-scale datasets, imbalanced data, viewpoint, fine grained data (attributes), the Local Features are not employed at semantic level in online stage of Re-ID task, furthermore, the imbalanced data problem of attributes are not taken into consideration. This paper has proposed a Unified Re-ID system consisted of three main modules such as Pedestrian Attribute Ontology (PAO), Local Multi-task DCNN (Local MDCNN), Imbalance Data Solver (IDS). The new main point of our Re-ID system is the power of mutual support of PAO, Local MDCNN and IDS to exploit the inner-group correlations of attributes and pre-filter the mismatch candidates from Gallery set based on semantic information as Fashion Attributes and Facial Attributes, to solve the imbalanced data of attributes without adjusting network architecture and data augmentation. We experimented on the well-known Market1501 dataset. The experimental results have shown the effectiveness of our Re-ID system and it could achieve the higher performance on Market1501 dataset in comparison to some state-of-the-art Re-ID methods.
Authors:Md. Sakib Hassan Chowdhury, Md. Hafiz Ahamed, Bishowjit Paul, Sarafat Hussain Abhi, Abu Bakar Siddique, Md. Robius Sany
Abstract:
Gait recognition, known for its ability to identify individuals from a distance, has gained significant attention in recent times due to its non-intrusive verification. While video-based gait identification systems perform well on large public datasets, their performance drops when applied to real-world, unconstrained gait data due to various factors. Among these, uncontrolled outdoor environments, non-overlapping camera views, varying illumination, and computational efficiency are core challenges in gait-based authentication. Currently, no dataset addresses all these challenges simultaneously. In this paper, we propose an OptiGait-LGBM model capable of recognizing person re-identification under these constraints using a skeletal model approach, which helps mitigate inconsistencies in a person's appearance. The model constructs a dataset from landmark positions, minimizing memory usage by using non-sequential data. A benchmark dataset, RUET-GAIT, is introduced to represent uncontrolled gait sequences in complex outdoor environments. The process involves extracting skeletal joint landmarks, generating numerical datasets, and developing an OptiGait-LGBM gait classification model. Our aim is to address the aforementioned challenges with minimal computational cost compared to existing methods. A comparative analysis with ensemble techniques such as Random Forest and CatBoost demonstrates that the proposed approach outperforms them in terms of accuracy, memory usage, and training time. This method provides a novel, low-cost, and memory-efficient video-based gait recognition solution for real-world scenarios.
Authors:Zhihao Gong, Lian Wu, Yong Xu
Abstract:
Visible-infrared person re-identification (VIReID) provides a solution for ReID tasks in 24-hour scenarios; however, significant challenges persist in achieving satisfactory performance due to the substantial discrepancies between visible (VIS) and infrared (IR) modalities. Existing methods inadequately leverage information from different modalities, primarily focusing on digging distinguishing features from modality-shared information while neglecting modality-specific details. To fully utilize differentiated minutiae, we propose a Base-Detail Feature Learning Framework (BDLF) that enhances the learning of both base and detail knowledge, thereby capitalizing on both modality-shared and modality-specific information. Specifically, the proposed BDLF mines detail and base features through a lossless detail feature extraction module and a complementary base embedding generation mechanism, respectively, supported by a novel correlation restriction method that ensures the features gained by BDLF enrich both detail and base knowledge across VIS and IR features. Comprehensive experiments conducted on the SYSU-MM01, RegDB, and LLCM datasets validate the effectiveness of BDLF.
Authors:Xiangru Li, Wei Song, Yingda Huang, Wei Meng, Le Chang, Hongyang Li
Abstract:
Gait recognition enables contact-free, long-range person identification that is robust to clothing variations and non-cooperative scenarios. While existing methods perform well in controlled indoor environments, they struggle with cross-vertical view scenarios, where surveillance angles vary significantly in elevation. Our experiments show up to 60\% accuracy degradation in low-to-high vertical view settings due to severe deformations and self-occlusions of key anatomical features. Current CNN and self-attention-based methods fail to effectively handle these challenges, due to their reliance on single-scale convolutions or simplistic attention mechanisms that lack effective multi-frequency feature integration. To tackle this challenge, we propose CVVNet (Cross-Vertical-View Network), a frequency aggregation architecture specifically designed for robust cross-vertical-view gait recognition. CVVNet employs a High-Low Frequency Extraction module (HLFE) that adopts parallel multi-scale convolution/max-pooling path and self-attention path as high- and low-frequency mixers for effective multi-frequency feature extraction from input silhouettes. We also introduce the Dynamic Gated Aggregation (DGA) mechanism to adaptively adjust the fusion ratio of high- and low-frequency features. The integration of our core Multi-Scale Attention Gated Aggregation (MSAGA) module, HLFE and DGA enables CVVNet to effectively handle distortions from view changes, significantly improving the recognition robustness across different vertical views. Experimental results show that our CVVNet achieves state-of-the-art performance, with $8.6\%$ improvement on DroneGait and $2\%$ on Gait3D compared with the best existing methods.
Authors:Xin Liang, Yogesh S Rawat
Abstract:
Clothes-changing person re-identification (CC-ReID) aims to recognize individuals under different clothing scenarios. Current CC-ReID approaches either concentrate on modeling body shape using additional modalities including silhouette, pose, and body mesh, potentially causing the model to overlook other critical biometric traits such as gender, age, and style, or they incorporate supervision through additional labels that the model tries to disregard or emphasize, such as clothing or personal attributes. However, these annotations are discrete in nature and do not capture comprehensive descriptions.
In this work, we propose DIFFER: Disentangle Identity Features From Entangled Representations, a novel adversarial learning method that leverages textual descriptions to disentangle identity features. Recognizing that image features inherently mix inseparable information, DIFFER introduces NBDetach, a mechanism designed for feature disentanglement by leveraging the separable nature of text descriptions as supervision. It partitions the feature space into distinct subspaces and, through gradient reversal layers, effectively separates identity-related features from non-biometric features. We evaluate DIFFER on 4 different benchmark datasets (LTCC, PRCC, CelebreID-Light, and CCVID) to demonstrate its effectiveness and provide state-of-the-art performance across all the benchmarks. DIFFER consistently outperforms the baseline method, with improvements in top-1 accuracy of 3.6% on LTCC, 3.4% on PRCC, 2.5% on CelebReID-Light, and 1% on CCVID. Our code can be found here.
Authors:Asaf Joseph, Shmuel Peleg
Abstract:
Clothes-Changing Person Re-Identification (ReID) aims to recognize the same individual across different videos captured at various times and locations. This task is particularly challenging due to changes in appearance, such as clothing, hairstyle, and accessories. We propose a Clothes-Changing ReID method that uses only skeleton data and does not use appearance features. Traditional ReID methods often depend on appearance features, leading to decreased accuracy when clothing changes. Our approach utilizes a spatio-temporal Graph Convolution Network (GCN) encoder to generate a skeleton-based descriptor for each individual. During testing, we improve accuracy by aggregating predictions from multiple segments of a video clip. Evaluated on the CCVID dataset with several different pose estimation models, our method achieves state-of-the-art performance, offering a robust and efficient solution for Clothes-Changing ReID.
Authors:Ruiqi He, Zihan Wang, Xiang Zhou
Abstract:
Cloth-Changing Person Re-identification (CC-ReID) aims to solve the challenge of identifying individuals across different temporal-spatial scenarios, viewpoints, and clothing variations. This field is gaining increasing attention in big data research and public security domains. Existing ReID research primarily relies on face recognition, gait semantic recognition, and clothing-irrelevant feature identification, which perform relatively well in scenarios with high-quality clothing change videos and images. However, these approaches depend on either single features or simple combinations of multiple features, making further performance improvements difficult. Additionally, limitations such as missing facial information, challenges in gait extraction, and inconsistent camera parameters restrict the broader application of CC-ReID. To address the above limitations, we innovatively propose a Tri-Stream Dynamic Weight Network (TSDW) that requires only images. This dynamic weighting network consists of three parallel feature streams: facial features, head-limb features, and global features. Each stream specializes in extracting its designated features, after which a gating network dynamically fuses confidence levels. The three parallel feature streams enhance recognition performance and reduce the impact of any single feature failure, thereby improving model robustness. Extensive experiments on benchmark datasets (e.g., PRCC, Celeb-reID, VC-Clothes) demonstrate that our method significantly outperforms existing state-of-the-art approaches.
Authors:Yuheng Jia, Wesley Armour
Abstract:
Visible-Infrared Person Re-Identification (VI-ReID) plays a crucial role in applications such as search and rescue, infrastructure protection, and nighttime surveillance. However, it faces significant challenges due to modality discrepancies, varying illumination, and frequent occlusions. To overcome these obstacles, we propose \textbf{AMINet}, an Adaptive Modality Interaction Network. AMINet employs multi-granularity feature extraction to capture comprehensive identity attributes from both full-body and upper-body images, improving robustness against occlusions and background clutter. The model integrates an interactive feature fusion strategy for deep intra-modal and cross-modal alignment, enhancing generalization and effectively bridging the RGB-IR modality gap. Furthermore, AMINet utilizes phase congruency for robust, illumination-invariant feature extraction and incorporates an adaptive multi-scale kernel MMD to align feature distributions across varying scales. Extensive experiments on benchmark datasets demonstrate the effectiveness of our approach, achieving a Rank-1 accuracy of $74.75\%$ on SYSU-MM01, surpassing the baseline by $7.93\%$ and outperforming the current state-of-the-art by $3.95\%$.
Authors:Robyn Larracy, Angkoon Phinyomark, Ala Salehi, Eve MacDonald, Saeed Kazemi, Shikder Shafiul Bashar, Aaron Tabor, Erik Scheme
Abstract:
Gait refers to the patterns of limb movement generated during walking, which are unique to each individual due to both physical and behavioral traits. Walking patterns have been widely studied in biometrics, biomechanics, sports, and rehabilitation. While traditional methods rely on video and motion capture, advances in plantar pressure sensing technology now offer deeper insights into gait. However, underfoot pressures during walking remain underexplored due to the lack of large, publicly accessible datasets. To address this, we introduce the UNB StepUP-P150 dataset: a footStep database for gait analysis and recognition using Underfoot Pressure, including data from 150 individuals. This dataset comprises high-resolution plantar pressure data (4 sensors per cm-squared) collected using a 1.2m by 3.6m pressure-sensing walkway. It contains over 200,000 footsteps from participants walking with various speeds (preferred, slow-to-stop, fast, and slow) and footwear conditions (barefoot, standard shoes, and two personal shoes), supporting advancements in biometric gait recognition and presenting new research opportunities in biomechanics and deep learning. UNB StepUP-P150 establishes a new benchmark for plantar pressure-based gait analysis and recognition.
Authors:Qingxin Zhang, Haoyan Wei, Yang Qian
Abstract:
Group Re-Identification (Group ReID) aims matching groups of pedestrians across non-overlapping cameras. Unlike single-person ReID, Group ReID focuses more on the changes in group structure, emphasizing the number of members and their spatial arrangement. However, most methods rely on certainty-based models, which consider only the specific group structures in the group images, often failing to match unseen group configurations. To this end, we propose a novel Group-CLIP UncertaintyModeling (GCUM) approach that adapts group text descriptions to undetermined accommodate member and layout variations. Specifically, we design a Member Variant Simulation (MVS)module that simulates member exclusions using a Bernoulli distribution and a Group Layout Adaptation (GLA) module that generates uncertain group text descriptions with identity-specific tokens. In addition, we design a Group RelationshipConstruction Encoder (GRCE) that uses group features to refine individual features, and employ cross-modal contrastive loss to obtain generalizable knowledge from group text descriptions. It is worth noting that we are the first to employ CLIP to GroupReID, and extensive experiments show that GCUM significantly outperforms state-of-the-art Group ReID methods.
Authors:Fuxi Ling, Hongye Liu, Guoqiang Huang, Jing Li, Hong Wu, Zhihao Tang
Abstract:
Navigating the complexities of person re-identification (ReID) in varied surveillance scenarios, particularly when occlusions occur, poses significant challenges. We introduce an innovative Motion-Aware Fusion (MOTAR-FUSE) network that utilizes motion cues derived from static imagery to significantly enhance ReID capabilities. This network incorporates a dual-input visual adapter capable of processing both images and videos, thereby facilitating more effective feature extraction. A unique aspect of our approach is the integration of a motion consistency task, which empowers the motion-aware transformer to adeptly capture the dynamics of human motion. This technique substantially improves the recognition of features in scenarios where occlusions are prevalent, thereby advancing the ReID process. Our comprehensive evaluations across multiple ReID benchmarks, including holistic, occluded, and video-based scenarios, demonstrate that our MOTAR-FUSE network achieves superior performance compared to existing approaches.
Authors:Proma Hossain Progga, Md. Jobayer Rahman, Swapnil Biswas, Md. Shakil Ahmed, Arif Reza Anwary, Swakkhar Shatabda
Abstract:
Gait recognition is a significant biometric technique for person identification, particularly in scenarios where other physiological biometrics are impractical or ineffective. In this paper, we address the challenges associated with gait recognition and present a novel approach to improve its accuracy and reliability. The proposed method leverages advanced techniques, including sequential gait landmarks obtained through the Mediapipe pose estimation model, Procrustes analysis for alignment, and a Siamese biGRU-dualStack Neural Network architecture for capturing temporal dependencies. Extensive experiments were conducted on large-scale cross-view datasets to demonstrate the effectiveness of the approach, achieving high recognition accuracy compared to other models. The model demonstrated accuracies of 95.7%, 94.44%, 87.71%, and 86.6% on CASIA-B, SZU RGB-D, OU-MVLP, and Gait3D datasets respectively. The results highlight the potential applications of the proposed method in various practical domains, indicating its significant contribution to the field of gait recognition.
Authors:Yuhai Wang, Maryam Pishgar
Abstract:
Aerial-Ground Person Re-identification (AGPReID) holds significant practical value but faces unique challenges due to pronounced variations in viewing angles, lighting conditions, and background interference. Traditional methods, often involving a global analysis of the entire image, frequently lead to inefficiencies and susceptibility to irrelevant data. In this paper, we propose a novel Dynamic Token Selective Transformer (DTST) tailored for AGPReID, which dynamically selects pivotal tokens to concentrate on pertinent regions. Specifically, we segment the input image into multiple tokens, with each token representing a unique region or feature within the image. Using a Top-k strategy, we extract the k most significant tokens that contain vital information essential for identity recognition. Subsequently, an attention mechanism is employed to discern interrelations among diverse tokens, thereby enhancing the representation of identity features. Extensive experiments on benchmark datasets showcases the superiority of our method over existing works. Notably, on the CARGO dataset, our proposed method gains 1.18% mAP improvements when compared to the second place. In addition, we comprehensively analyze the impact of different numbers of tokens, token insertion positions, and numbers of heads on model performance.
Authors:Wenjia Jiang, Xiaoke Zhu, Jiakang Gao, Di Liao
Abstract:
Video-based visible-infrared person re-identification (VVI-ReID) is challenging due to significant modality feature discrepancies. Spatial-temporal information in videos is crucial, but the accuracy of spatial-temporal information is often influenced by issues like low quality and occlusions in videos. Existing methods mainly focus on reducing modality differences, but pay limited attention to improving spatial-temporal features, particularly for infrared videos. To address this, we propose a novel Skeleton-guided spatial-Temporal feAture leaRning (STAR) method for VVI-ReID. By using skeleton information, which is robust to issues such as poor image quality and occlusions, STAR improves the accuracy of spatial-temporal features in videos of both modalities. Specifically, STAR employs two levels of skeleton-guided strategies: frame level and sequence level. At the frame level, the robust structured skeleton information is used to refine the visual features of individual frames. At the sequence level, we design a feature aggregation mechanism based on skeleton key points graph, which learns the contribution of different body parts to spatial-temporal features, further enhancing the accuracy of global features. Experiments on benchmark datasets demonstrate that STAR outperforms state-of-the-art methods. Code will be open source soon.
Authors:Siddharth Seth, Akash Sonth, Anirban Chakraborty
Abstract:
Person re-identification (re-ID) aims to tackle the problem of matching identities across non-overlapping cameras. Supervised approaches require identity information that may be difficult to obtain and are inherently biased towards the dataset they are trained on, making them unscalable across domains. To overcome these challenges, we propose an unsupervised approach to the person re-ID setup. Having zero knowledge of true labels, our proposed method enhances the discriminating ability of the learned features via a novel two-stage training strategy. The first stage involves training a deep network on an expertly designed pose-transformed dataset obtained by generating multiple perturbations for each original image in the pose space. Next, the network learns to map similar features closer in the feature space using the proposed discriminative clustering algorithm. We introduce a novel radial distance loss, that attends to the fundamental aspects of feature learning - compact clusters with low intra-cluster and high inter-cluster variation. Extensive experiments on several large-scale re-ID datasets demonstrate the superiority of our method compared to state-of-the-art approaches.
Authors:Timur Mamedov, Anton Konushin, Vadim Konushin
Abstract:
Modern person re-identification (Re-ID) methods have a weak generalization ability and experience a major accuracy drop when capturing environments change. This is because existing multi-camera Re-ID datasets are limited in size and diversity, since such data is difficult to obtain. At the same time, enormous volumes of unlabeled single-camera records are available. Such data can be easily collected, and therefore, it is more diverse. Currently, single-camera data is used only for self-supervised pre-training of Re-ID methods. However, the diversity of single-camera data is suppressed by fine-tuning on limited multi-camera data after pre-training. In this paper, we propose ReMix, a generalized Re-ID method jointly trained on a mixture of limited labeled multi-camera and large unlabeled single-camera data. Effective training of our method is achieved through a novel data sampling strategy and new loss functions that are adapted for joint use with both types of data. Experiments show that ReMix has a high generalization ability and outperforms state-of-the-art methods in generalizable person Re-ID. To the best of our knowledge, this is the first work that explores joint training on a mixture of multi-camera and single-camera data in person Re-ID.
Authors:Zia-ur-Rehman, Arif Mahmood, Wenxiong Kang
Abstract:
Self-supervised learning systems have gained significant attention in recent years by leveraging clustering-based pseudo-labels to provide supervision without the need for human annotations. However, the noise in these pseudo-labels caused by the clustering methods poses a challenge to the learning process leading to degraded performance. In this work, we propose a pseudo-label refinement (SLR) algorithm to address this issue. The cluster labels from the previous epoch are projected to the current epoch cluster-labels space and a linear combination of the new label and the projected label is computed as a soft refined label containing the information from the previous epoch clusters as well as from the current epoch. In contrast to the common practice of using the maximum value as a cluster/class indicator, we employ hierarchical clustering on these soft pseudo-labels to generate refined hard-labels. This approach better utilizes the information embedded in the soft labels, outperforming the simple maximum value approach for hard label generation. The effectiveness of the proposed SLR algorithm is evaluated in the context of person re-identification (Re-ID) using unsupervised domain adaptation (UDA). Experimental results demonstrate that the modified Re-ID baseline, incorporating the SLR algorithm, achieves significantly improved mean Average Precision (mAP) performance in various UDA tasks, including real-to-synthetic, synthetic-to-real, and different real-to-real scenarios. These findings highlight the efficacy of the SLR algorithm in enhancing the performance of self-supervised learning systems.
Authors:Zhaoyong Wang, Yujie Liu, Mingyue Li, Wenxin Zhang, Zongmin Li
Abstract:
In occluded person re-identification(ReID), severe occlusions lead to a significant amount of irrelevant information that hinders the accurate identification of individuals. These irrelevant cues primarily stem from background interference and occluding interference, adversely affecting the final retrieval results. Traditional discriminative models, which rely on the specific content and positions of the images, often misclassify in cases of occlusion. To address these limitations, we propose the Data Distribution Reconstruction Network (DDRN), a generative model that leverages data distribution to filter out irrelevant details, enhancing overall feature perception ability and reducing irrelevant feature interference. Additionally, severe occlusions lead to the complexity of the feature space. To effectively handle this, we design a multi-center approach through the proposed Hierarchical SubcenterArcface (HS-Arcface) loss function, which can better approximate complex feature spaces. On the Occluded-Duke dataset, we achieved a mAP of 62.4\% (+1.1\%) and a rank-1 accuracy of 71.3\% (+0.6\%), surpassing the latest state-of-the-art methods(FRT) significantly.
Authors:Xiaobin Hong, Tarmizi Adam, Masitah Ghazali
Abstract:
Person Re-Identification (Re-ID) has gained popularity in computer vision, enabling cross-camera pedestrian recognition. Although the development of deep learning has provided a robust technical foundation for person Re-ID research, most existing person Re-ID methods overlook the potential relationships among local person features, failing to adequately address the impact of pedestrian pose variations and local body parts occlusion. Therefore, we propose a Transformer-enhanced Graph Convolutional Network (Tran-GCN) model to improve Person Re-Identification performance in monitoring videos. The model comprises four key components: (1) A Pose Estimation Learning branch is utilized to estimate pedestrian pose information and inherent skeletal structure data, extracting pedestrian key point information; (2) A Transformer learning branch learns the global dependencies between fine-grained and semantically meaningful local person features; (3) A Convolution learning branch uses the basic ResNet architecture to extract the person's fine-grained local features; (4) A Graph Convolutional Module (GCM) integrates local feature information, global feature information, and body information for more effective person identification after fusion. Quantitative and qualitative analysis experiments conducted on three different datasets (Market-1501, DukeMTMC-ReID, and MSMT17) demonstrate that the Tran-GCN model can more accurately capture discriminative person features in monitoring videos, significantly improving identification accuracy.
Authors:Yonggan Wu, Ling-Chao Meng, Yuan Zichao, Sixian Chan, Hong-Qiang Wang
Abstract:
For the visible-infrared person re-identification (VI-ReID) task, one of the primary challenges lies in significant cross-modality discrepancy. Existing methods struggle to conduct modality-invariant information mining. They often focus solely on mining singular dimensions like spatial or channel, and overlook the extraction of specific-modality multi-dimension information. To fully mine modality-invariant information across a wide range, we introduce the Wide-Ranging Information Mining Network (WRIM-Net), which mainly comprises a Multi-dimension Interactive Information Mining (MIIM) module and an Auxiliary-Information-based Contrastive Learning (AICL) approach. Empowered by the proposed Global Region Interaction (GRI), MIIM comprehensively mines non-local spatial and channel information through intra-dimension interaction. Moreover, Thanks to the low computational complexity design, separate MIIM can be positioned in shallow layers, enabling the network to better mine specific-modality multi-dimension information. AICL, by introducing the novel Cross-Modality Key-Instance Contrastive (CMKIC) loss, effectively guides the network in extracting modality-invariant information. We conduct extensive experiments not only on the well-known SYSU-MM01 and RegDB datasets but also on the latest large-scale cross-modality LLCM dataset. The results demonstrate WRIM-Net's superiority over state-of-the-art methods.
Authors:Fanzhi Jiang, Su Yang, Mark W. Jones, Liumei Zhang
Abstract:
Text-based person re-identification (Re-ID) is a challenging topic in the field of complex multimodal analysis, its ultimate aim is to recognize specific pedestrians by scrutinizing attributes/natural language descriptions. Despite the wide range of applicable areas such as security surveillance, video retrieval, person tracking, and social media analytics, there is a notable absence of comprehensive reviews dedicated to summarizing the text-based person Re-ID from a technical perspective. To address this gap, we propose to introduce a taxonomy spanning Evaluation, Strategy, Architecture, and Optimization dimensions, providing a comprehensive survey of the text-based person Re-ID task. We start by laying the groundwork for text-based person Re-ID, elucidating fundamental concepts related to attribute/natural language-based identification. Then a thorough examination of existing benchmark datasets and metrics is presented. Subsequently, we further delve into prevalent feature extraction strategies employed in text-based person Re-ID research, followed by a concise summary of common network architectures within the domain. Prevalent loss functions utilized for model optimization and modality alignment in text-based person Re-ID are also scrutinized. To conclude, we offer a concise summary of our findings, pinpointing challenges in text-based person Re-ID. In response to these challenges, we outline potential avenues for future open-set text-based person Re-ID and present a baseline architecture for text-based pedestrian image generation-guided re-identification(TBPGR).
Authors:Serdar Yildiz, Ahmet Nezih Kasim
Abstract:
The growing importance of person reidentification in computer vision has highlighted the need for more extensive and diverse datasets. In response, we introduce the ENTIRe-ID dataset, an extensive collection comprising over 4.45 million images from 37 different cameras in varied environments. This dataset is uniquely designed to tackle the challenges of domain variability and model generalization, areas where existing datasets for person re-identification have fallen short. The ENTIRe-ID dataset stands out for its coverage of a wide array of real-world scenarios, encompassing various lighting conditions, angles of view, and diverse human activities. This design ensures a realistic and robust training platform for ReID models. The ENTIRe-ID dataset is publicly available at https://serdaryildiz.github.io/ENTIRe-ID
Authors:Yuchuan Deng, Zhanpeng Hu, Jiakun Han, Chuang Deng, Qijun Zhao
Abstract:
Text-based Person Re-identification (TPR) aims to retrieve specific individual images from datasets based on textual descriptions. Existing TPR methods primarily focus on recognizing explicit and positive characteristics, often overlooking the role of negative descriptions. This oversight can lead to false positives-images that meet positive criteria but should be excluded based on negative descriptions. To address these limitations, we introduce DualFocus, a unified framework that integrates plausible descriptions to enhance the interpretative accuracy of vision-language models in TPR tasks. DualFocus leverages Dual (Positive/Negative) Attribute Prompt Learning (DAPL), which incorporates Dual Image-Attribute Contrastive (DIAC) Learning and Sensitive Image-Attributes Matching (SIAM) Learning, enabling the detection of non-existent attributes and reducing false positives. To achieve a balance between coarse and fine-grained alignment of visual and textual embeddings, we propose the Dynamic Tokenwise Similarity (DTS) loss, which refines the representation of both matching and non-matching descriptions, thereby improving the matching process through detailed and adaptable similarity assessments. The comprehensive experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid, DualFocus demonstrates superior performance over state-of-the-art methods, significantly enhancing both precision and robustness in TPR.
Authors:Zeng YU, Yunxiao Shi
Abstract:
Visible-infrared person re-identification (VI-reID) aims at matching cross-modality pedestrian images captured by disjoint visible or infrared cameras. Existing methods alleviate the cross-modality discrepancies via designing different kinds of network architectures. Different from available methods, in this paper, we propose a novel parameter optimizing paradigm, parameter hierarchical optimization (PHO) method, for the task of VI-ReID. It allows part of parameters to be directly optimized without any training, which narrows the search space of parameters and makes the whole network more easier to be trained. Specifically, we first divide the parameters into different types, and then introduce a self-adaptive alignment strategy (SAS) to automatically align the visible and infrared images through transformation. Considering that features in different dimension have varying importance, we develop an auto-weighted alignment learning (AAL) module that can automatically weight features according to their importance. Importantly, in the alignment process of SAS and AAL, all the parameters are immediately optimized with optimization principles rather than training the whole network, which yields a better parameter training manner. Furthermore, we establish the cross-modality consistent learning (CCL) loss to extract discriminative person representations with translation consistency. We provide both theoretical justification and empirical evidence that our proposed PHO method outperform existing VI-reID approaches.
Authors:Lingzhi Liu, Haiyang Zhang, Chengwei Tang, Tiantian Zhang
Abstract:
The memory dictionary-based contrastive learning method has achieved remarkable results in the field of unsupervised person Re-ID. However, The method of updating memory based on all samples does not fully utilize the hardest sample to improve the generalization ability of the model, and the method based on hardest sample mining will inevitably introduce false-positive samples that are incorrectly clustered in the early stages of the model. Clustering-based methods usually discard a significant number of outliers, leading to the loss of valuable information. In order to address the issues mentioned before, we propose an adaptive intra-class variation contrastive learning algorithm for unsupervised Re-ID, called AdaInCV. And the algorithm quantitatively evaluates the learning ability of the model for each class by considering the intra-class variations after clustering, which helps in selecting appropriate samples during the training process of the model. To be more specific, two new strategies are proposed: Adaptive Sample Mining (AdaSaM) and Adaptive Outlier Filter (AdaOF). The first one gradually creates more reliable clusters to dynamically refine the memory, while the second can identify and filter out valuable outliers as negative samples.
Authors:Shan Yang, Yongfei Zhang
Abstract:
Multimodal large language models (MLLM) have achieved satisfactory results in many tasks. However, their performance in the task of ReID (ReID) has not been explored to date. This paper will investigate how to adapt them for the task of ReID. An intuitive idea is to fine-tune MLLM with ReID image-text datasets, and then use their visual encoder as a backbone for ReID. However, there still exist two apparent issues: (1) Designing instructions for ReID, MLLMs may overfit specific instructions, and designing a variety of instructions will lead to higher costs. (2) When fine-tuning the visual encoder of a MLLM, it is not trained synchronously with the ReID task. As a result, the effectiveness of the visual encoder fine-tuning cannot be directly reflected in the performance of the ReID task. To address these problems, this paper proposes MLLMReID: Multimodal Large Language Model-based ReID. Firstly, we proposed Common Instruction, a simple approach that leverages the essence ability of LLMs to continue writing, avoiding complex and diverse instruction design. Secondly, we propose a multi-task learning-based synchronization module to ensure that the visual encoder of the MLLM is trained synchronously with the ReID task. The experimental results demonstrate the superiority of our method.
Authors:Yihu Song, Shuaishi Liu
Abstract:
Most existing methods tackle the problem of occluded person re-identification (ReID) by utilizing auxiliary models, resulting in a complicated and inefficient ReID framework that is unacceptable for real-time applications. In this work, a speed-up person ReID framework named SUReID is proposed to mitigate occlusion interference while speeding up inference. The SUReID consists of three key components: hierarchical token sparsification (HTS) strategy, non-parametric feature alignment knowledge distillation (NPKD), and noise occlusion data augmentation (NODA). The HTS strategy works by pruning the redundant tokens in the vision transformer to achieve highly effective self-attention computation and eliminate interference from occlusions or background noise. However, the pruned tokens may contain human part features that contaminate the feature representation and degrade the performance. To solve this problem, the NPKD is employed to supervise the HTS strategy, retaining more discriminative tokens and discarding meaningless ones. Furthermore, the NODA is designed to introduce more noisy samples, which further trains the ability of the HTS to disentangle different tokens. Experimental results show that the SUReID achieves superior performance with surprisingly fast inference.
Authors:Yajing Zhai, Yawen Zeng, Zhiyong Huang, Zheng Qin, Xin Jin, Da Cao
Abstract:
The fine-grained attribute descriptions can significantly supplement the valuable semantic information for person image, which is vital to the success of person re-identification (ReID) task. However, current ReID algorithms typically failed to effectively leverage the rich contextual information available, primarily due to their reliance on simplistic and coarse utilization of image attributes. Recent advances in artificial intelligence generated content have made it possible to automatically generate plentiful fine-grained attribute descriptions and make full use of them. Thereby, this paper explores the potential of using the generated multiple person attributes as prompts in ReID tasks with off-the-shelf (large) models for more accurate retrieval results. To this end, we present a new framework called Multi-Prompts ReID (MP-ReID), based on prompt learning and language models, to fully dip fine attributes to assist ReID task. Specifically, MP-ReID first learns to hallucinate diverse, informative, and promptable sentences for describing the query images. This procedure includes (i) explicit prompts of which attributes a person has and furthermore (ii) implicit learnable prompts for adjusting/conditioning the criteria used towards this person identity matching. Explicit prompts are obtained by ensembling generation models, such as ChatGPT and VQA models. Moreover, an alignment module is designed to fuse multi-prompts (i.e., explicit and implicit ones) progressively and mitigate the cross-modal gap. Extensive experiments on the existing attribute-involved ReID datasets, namely, Market1501 and DukeMTMC-reID, demonstrate the effectiveness and rationality of the proposed MP-ReID solution.
Authors:Xuecheng Hua, Ke Cheng, Hu Lu, Juanjuan Tu, Yuanquan Wang, Shitong Wang
Abstract:
The main challenge in the Visible-Infrared Person Re-Identification (VI-ReID) task lies in how to extract discriminative features from different modalities for matching purposes. While the existing well works primarily focus on minimizing the modal discrepancies, the modality information can not thoroughly be leveraged. To solve this problem, a Multi-scale Semantic Correlation Mining network (MSCMNet) is proposed to comprehensively exploit semantic features at multiple scales and simultaneously reduce modality information loss as small as possible in feature extraction. The proposed network contains three novel components. Firstly, after taking into account the effective utilization of modality information, the Multi-scale Information Correlation Mining Block (MIMB) is designed to explore semantic correlations across multiple scales. Secondly, in order to enrich the semantic information that MIMB can utilize, a quadruple-stream feature extractor (QFE) with non-shared parameters is specifically designed to extract information from different dimensions of the dataset. Finally, the Quadruple Center Triplet Loss (QCT) is further proposed to address the information discrepancy in the comprehensive features. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that the proposed MSCMNet achieves the greatest accuracy.
Authors:Yiyu Chen, Zheyi Fan, Zhaoru Chen, Yixuan Zhu
Abstract:
Person re-identification (re-ID) is a challenging task that aims to learn discriminative features for person retrieval. In person re-ID, Jaccard distance is a widely used distance metric, especially in re-ranking and clustering scenarios. However, we discover that camera variation has a significant negative impact on the reliability of Jaccard distance. In particular, Jaccard distance calculates the distance based on the overlap of relevant neighbors. Due to camera variation, intra-camera samples dominate the relevant neighbors, which reduces the reliability of the neighbors by introducing intra-camera negative samples and excluding inter-camera positive samples. To overcome this problem, we propose a novel camera-aware Jaccard (CA-Jaccard) distance that leverages camera information to enhance the reliability of Jaccard distance. Specifically, we design camera-aware k-reciprocal nearest neighbors (CKRNNs) to find k-reciprocal nearest neighbors on the intra-camera and inter-camera ranking lists, which improves the reliability of relevant neighbors and guarantees the contribution of inter-camera samples in the overlap. Moreover, we propose a camera-aware local query expansion (CLQE) to mine reliable samples in relevant neighbors by exploiting camera variation as a strong constraint and assign these samples higher weights in overlap, further improving the reliability. Our CA-Jaccard distance is simple yet effective and can serve as a general distance metric for person re-ID methods with high reliability and low computational cost. Extensive experiments demonstrate the effectiveness of our method.
Authors:Qilei Li, Shaogang Gong
Abstract:
While deep learning has significantly improved ReID model accuracy under the independent and identical distribution (IID) assumption, it has also become clear that such models degrade notably when applied to an unseen novel domain due to unpredictable/unknown domain shift. Contemporary domain generalization (DG) ReID models struggle in learning domain-invariant representation solely through training on an instance classification objective. We consider that a deep learning model is heavily influenced and therefore biased towards domain-specific characteristics, e.g., background clutter, scale and viewpoint variations, limiting the generalizability of the learned model, and hypothesize that the pedestrians are domain invariant owning they share the same structural characteristics. To enable the ReID model to be less domain-specific from these pure pedestrians, we introduce a method that guides model learning of the primary ReID instance classification objective by a concurrent auxiliary learning objective on weakly labeled pedestrian saliency detection. To solve the problem of conflicting optimization criteria in the model parameter space between the two learning objectives, we introduce a Primary-Auxiliary Objectives Association (PAOA) mechanism to calibrate the loss gradients of the auxiliary task towards the primary learning task gradients. Benefiting from the harmonious multitask learning design, our model can be extended with the recent test-time diagram to form the PAOA+, which performs on-the-fly optimization against the auxiliary objective in order to maximize the model's generative capacity in the test target domain. Experiments demonstrate the superiority of the proposed PAOA model.
Authors:Guiwei Zhang, Yongfei Zhang, Zichang Tan
Abstract:
Visible-infrared person re-identification is challenging due to the large modality gap. To bridge the gap, most studies heavily rely on the correlation of visible-infrared holistic person images, which may perform poorly under severe distribution shifts. In contrast, we find that some cross-modal correlated high-frequency components contain discriminative visual patterns and are less affected by variations such as wavelength, pose, and background clutter than holistic images. Therefore, we are motivated to bridge the modality gap based on such high-frequency components, and propose \textbf{Proto}type-guided \textbf{H}igh-frequency \textbf{P}atch \textbf{E}nhancement (ProtoHPE) with two core designs. \textbf{First}, to enhance the representation ability of cross-modal correlated high-frequency components, we split patches with such components by Wavelet Transform and exponential moving average Vision Transformer (ViT), then empower ViT to take the split patches as auxiliary input. \textbf{Second}, to obtain semantically compact and discriminative high-frequency representations of the same identity, we propose Multimodal Prototypical Contrast. To be specific, it hierarchically captures the comprehensive semantics of different modal instances, facilitating the aggregation of high-frequency representations belonging to the same identity. With it, ViT can capture key high-frequency components during inference without relying on ProtoHPE, thus bringing no extra complexity. Extensive experiments validate the effectiveness of ProtoHPE.
Authors:Eduardo de O. Andrade, Igor Garcia Ballhausen Sampaio, Joris Guérin, José Viterbo
Abstract:
The field of Person Re-Identification (Re-ID) has received much attention recently, driven by the progress of deep neural networks, especially for image classification. The problem of Re-ID consists in identifying individuals through images captured by surveillance cameras in different scenarios. Governments and companies are investing a lot of time and money in Re-ID systems for use in public safety and identifying missing persons. However, several challenges remain for successfully implementing Re-ID, such as occlusions and light reflections in people's images. In this work, we focus on adversarial attacks on Re-ID systems, which can be a critical threat to the performance of these systems. In particular, we explore the combination of adversarial attacks against Re-ID models, trying to strengthen the decrease in the classification results. We conduct our experiments on three datasets: DukeMTMC-ReID, Market-1501, and CUHK03. We combine the use of two types of adversarial attacks, P-FGSM and Deep Mis-Ranking, applied to two popular Re-ID models: IDE (ResNet-50) and AlignedReID. The best result demonstrates a decrease of 3.36% in the Rank-10 metric for AlignedReID applied to CUHK03. We also try to use Dropout during the inference as a defense method.
Authors:Takuro Fujii, Shuhei Tarashima
Abstract:
Text-based person re-identification (TBPReID) aims to retrieve person images represented by a given textual query. In this task, how to effectively align images and texts globally and locally is a crucial challenge. Recent works have obtained high performances by solving Masked Language Modeling (MLM) to align image/text parts. However, they only performed uni-directional (i.e., from image to text) local-matching, leaving room for improvement by introducing opposite-directional (i.e., from text to image) local-matching. In this work, we introduce Bidirectional Local-Matching (BiLMa) framework that jointly optimize MLM and Masked Image Modeling (MIM) in TBPReID model training. With this framework, our model is trained so as the labels of randomly masked both image and text tokens are predicted by unmasked tokens. In addition, to narrow the semantic gap between image and text in MIM, we propose Semantic MIM (SemMIM), in which the labels of masked image tokens are automatically given by a state-of-the-art human parser. Experimental results demonstrate that our BiLMa framework with SemMIM achieves state-of-the-art Rank@1 and mAP scores on three benchmarks.
Authors:Qian Wu, Ruixuan Xiao, Kaixin Xu, Jingcheng Ni, Boxun Li, Ziyao Xu
Abstract:
Gait recognition aims to distinguish different walking patterns by analyzing video-level human silhouettes, rather than relying on appearance information. Previous research on gait recognition has primarily focused on extracting local or global spatial-temporal representations, while overlooking the intrinsic periodic features of gait sequences, which, when fully utilized, can significantly enhance performance. In this work, we propose a plug-and-play strategy, called Temporal Periodic Alignment (TPA), which leverages the periodic nature and fine-grained temporal dependencies of gait patterns. The TPA strategy comprises two key components. The first component is Adaptive Fourier-transform Position Encoding (AFPE), which adaptively converts features and discrete-time signals into embeddings that are sensitive to periodic walking patterns. The second component is the Temporal Aggregation Module (TAM), which separates embeddings into trend and seasonal components, and extracts meaningful temporal correlations to identify primary components, while filtering out random noise. We present a simple and effective baseline method for gait recognition, based on the TPA strategy. Extensive experiments conducted on three popular public datasets (CASIA-B, OU-MVLP, and GREW) demonstrate that our proposed method achieves state-of-the-art performance on multiple benchmark tests.
Authors:Federica Spinola, Philipp Benz, Minhyeong Yu, Tae-hoon Kim
Abstract:
In real-world scenarios we often need to perform multiple tasks simultaneously. Multi-Task Learning (MTL) is an adequate method to do so, but usually requires datasets labeled for all tasks. We propose a method that can leverage datasets labeled for only some of the tasks in the MTL framework. Our work, Knowledge Assembly (KA), learns multiple tasks from disjoint datasets by leveraging the unlabeled data in a semi-supervised manner, using model augmentation for pseudo-supervision. Whilst KA can be implemented on any existing MTL networks, we test our method on jointly learning person re-identification (reID) and pedestrian attribute recognition (PAR). We surpass the single task fully-supervised performance by $4.2\%$ points for reID and $0.9\%$ points for PAR.
Authors:Victor Uc-Cetina, Laura Alvarez-Gonzalez, Anabel Martin-Gonzalez
Abstract:
Interest in automatic people re-identification systems has significantly grown in recent years, mainly for developing surveillance and smart shops software. Due to the variability in person posture, different lighting conditions, and occluded scenarios, together with the poor quality of the images obtained by different cameras, it is currently an unsolved problem. In machine learning-based computer vision applications with reduced data sets, one possibility to improve the performance of re-identification system is through the augmentation of the set of images or videos available for training the neural models. Currently, one of the most robust ways to generate synthetic information for data augmentation, whether it is video, images or text, are the generative adversarial networks. This article reviews the most relevant recent approaches to improve the performance of person re-identification models through data augmentation, using generative adversarial networks. We focus on three categories of data augmentation approaches: style transfer, pose transfer, and random generation.
Authors:Daniel Arkushin, Bar Cohen, Shmuel Peleg, Ohad Fried
Abstract:
In the Clothes-Changing Re-Identification (CC-ReID) problem, given a query sample of a person, the goal is to determine the correct identity based on a labeled gallery in which the person appears in different clothes. Several models tackle this challenge by extracting clothes-independent features. However, the performance of these models is still lower for the clothes-changing setting compared to the same-clothes setting in which the person appears with the same clothes in the labeled gallery. As clothing-related features are often dominant features in the data, we propose a new process we call Gallery Enrichment, to utilize these features. In this process, we enrich the original gallery by adding to it query samples based on their face features, using an unsupervised algorithm. Additionally, we show that combining ReID and face feature extraction modules alongside an enriched gallery results in a more accurate ReID model, even for query samples with new outfits that do not include faces. Moreover, we claim that existing CC-ReID benchmarks do not fully represent real-world scenarios, and propose a new video CC-ReID dataset called 42Street, based on a theater play that includes crowded scenes and numerous clothes changes. When applied to multiple ReID models, our method (GEFF) achieves an average improvement of 33.5% and 6.7% in the Top-1 clothes-changing metric on the PRCC and LTCC benchmarks. Combined with the latest ReID models, our method achieves new SOTA results on the PRCC, LTCC, CCVID, LaST and VC-Clothes benchmarks and the proposed 42Street dataset.
Authors:Di Wu, Chao Wang, Yong Wu, De-Shuang Huang
Abstract:
In recent years, person re-identification (PReID) has become a hot topic in computer vision duo to it is an important part in intelligent surveillance. Many state-of-the-art PReID methods are attention-based or multi-scale feature learning deep models. However, introducing attention mechanism may lead to some important feature information losing issue. Besides, most of the multi-scale models embedding the multi-scale feature learning block into the feature extraction deep network, which reduces the efficiency of inference network. To address these issue, in this study, we introduce an attention deep architecture with multi-scale deep supervision for PReID. Technically, we contribute a reverse attention block to complement the attention block, and a novel multi-scale layer with deep supervision operator for training the backbone network. The proposed block and operator are only used for training, and discard in test phase. Experiments have been performed on Market-1501, DukeMTMC-reID and CUHK03 datasets. All the experiment results show that the proposed model significantly outperforms the other competitive state-of-the-art methods.
Authors:Zongjing Cao, Hyo Jong Lee
Abstract:
Person re-identification has become a very popular research topic in the computer vision community owing to its numerous applications and growing importance in visual surveillance. Person re-identification remains challenging due to occlusion, illumination and significant intra-class variations across different cameras. In this paper, we propose a multi-task network base on an improved Res2Net model that simultaneously computes the identification loss and verification loss of two pedestrian images. Given a pair of pedestrian images, the system predicts the identities of the two input images and whether they belong to the same identity. In order to obtain deeper feature information of pedestrians, we propose to use the latest Res2Net model for feature extraction of each input image. Experiments on several large-scale person re-identification benchmark datasets demonstrate the accuracy of our approach. For example, rank-1 accuracies are 83.18% (+1.38) and 93.14% (+0.84) for the DukeMTMC and Market-1501 datasets, respectively. The proposed method shows encouraging improvements compared with state-of-the-art methods.
Authors:Amir Vajdi, Mohammad Reza Zaghian, Nazli Rafei Dehkordi, Elham Rastegari, Kian Maroofi, Saman Farahmand, Shaohua Jia, Marc Pomplun, Nurit Haspel, Akram Bayat
Abstract:
Gait recognition is the characterization of unique biometric patterns associated with each individual which can be utilized to identify a person without direct contact. A public gait database with a relatively large number of subjects can provide a great opportunity for future studies to build and validate gait authentication models. The goal of this study is to introduce a comprehensive gait database of 93 human subjects who walked between two endpoints (320 meters) during two different sessions and record their gait data using two smartphones, one attached to the right thigh and another one on the left side of the waist. This data is collected to be utilized by a deep learning-based method that requires enough time points. The metadata including age, gender, smoking, daily exercise time, height, and weight of an individual is recorded. this data set is publicly available.
Authors:Khawar Islam
Abstract:
Video-based person re-identification (video re-ID) has lately fascinated growing attention due to its broad practical applications in various areas, such as surveillance, smart city, and public safety. Nevertheless, video re-ID is quite difficult and is an ongoing stage due to numerous uncertain challenges such as viewpoint, occlusion, pose variation, and uncertain video sequence, etc. In the last couple of years, deep learning on video re-ID has continuously achieved surprising results on public datasets, with various approaches being developed to handle diverse problems in video re-ID. Compared to image-based re-ID, video re-ID is much more challenging and complex. To encourage future research and challenges, this first comprehensive paper introduces a review of up-to-date advancements in deep learning approaches for video re-ID. It broadly covers three important aspects, including brief video re-ID methods with their limitations, major milestones with technical challenges, and architectural design. It offers comparative performance analysis on various available datasets, guidance to improve video re-ID with valuable thoughts, and exciting research directions.
Authors:A V Subramanyam
Abstract:
Adversarial attacks have been recently investigated in person re-identification. These attacks perform well under cross dataset or cross model setting. However, the challenges present in cross-dataset cross-model scenario does not allow these models to achieve similar accuracy. To this end, we propose our method with the goal of achieving better transferability against different models and across datasets. We generate a mask to obtain better performance across models and use meta learning to boost the generalizability in the challenging cross-dataset cross-model setting. Experiments on Market-1501, DukeMTMC-reID and MSMT-17 demonstrate favorable results compared to other attacks.
Authors:Nathanael L. Baisa
Abstract:
Learning representative, robust and discriminative information from images is essential for effective person re-identification (Re-Id). In this paper, we propose a compound approach for end-to-end discriminative deep feature learning for person Re-Id based on both body and hand images. We carefully design the Local-Aware Global Attention Network (LAGA-Net), a multi-branch deep network architecture consisting of one branch for spatial attention, one branch for channel attention, one branch for global feature representations and another branch for local feature representations. The attention branches focus on the relevant features of the image while suppressing the irrelevant backgrounds. In order to overcome the weakness of the attention mechanisms, equivariant to pixel shuffling, we integrate relative positional encodings into the spatial attention module to capture the spatial positions of pixels. The global branch intends to preserve the global context or structural information. For the the local branch, which intends to capture the fine-grained information, we perform uniform partitioning to generate stripes on the conv-layer horizontally. We retrieve the parts by conducting a soft partition without explicitly partitioning the images or requiring external cues such as pose estimation. A set of ablation study shows that each component contributes to the increased performance of the LAGA-Net. Extensive evaluations on four popular body-based person Re-Id benchmarks and two publicly available hand datasets demonstrate that our proposed method consistently outperforms existing state-of-the-art methods.
Authors:Yuanpeng Tu
Abstract:
Recently unsupervised person re-identification (re-ID) has drawn much attention due to its open-world scenario settings where limited annotated data is available. Existing supervised methods often fail to generalize well on unseen domains, while the unsupervised methods, mostly lack multi-granularity information and are prone to suffer from confirmation bias. In this paper, we aim at finding better feature representations on the unseen target domain from two aspects, 1) performing unsupervised domain adaptation on the labeled source domain and 2) mining potential similarities on the unlabeled target domain. Besides, a collaborative pseudo re-labeling strategy is proposed to alleviate the influence of confirmation bias. Firstly, a generative adversarial network is utilized to transfer images from the source domain to the target domain. Moreover, person identity preserving and identity mapping losses are introduced to improve the quality of generated images. Secondly, we propose a novel collaborative multiple feature clustering framework (CMFC) to learn the internal data structure of target domain, including global feature and partial feature branches. The global feature branch (GB) employs unsupervised clustering on the global feature of person images while the Partial feature branch (PB) mines similarities within different body regions. Finally, extensive experiments on two benchmark datasets show the competitive performance of our method under unsupervised person re-ID settings.
Authors:Bharath Comandur
Abstract: This work focuses on player re-identification in broadcast videos of team sports. Specifically, we focus on identifying the same player in images captured from different camera viewpoints during any given moment of a match. This task differs from traditional applications of person re-id in a few important ways. Firstly, players from the same team wear highly similar clothes, thereby making it harder to tell them apart. Secondly, there are only a few number of samples for each identity, which makes it harder to train a re-id system. Thirdly, the resolutions of the images are often quite low and vary a lot. This combined with heavy occlusions and fast movements of players greatly increase the challenges for re-id. In this paper, we propose a simple but effective hierarchical data sampling procedure and a centroid loss function that, when used together, increase the mean average precision (mAP) by 7 - 11.5 and the rank-1 (R1) by 8.8 - 14.9 without any change in the network or hyper-parameters used. Our data sampling procedure improves the similarity of the training and test distributions, and thereby aids in creating better estimates of the centroids of the embeddings (or feature vectors). Surprisingly, our study shows that in the presence of severely limited data, as is the case for our application, a simple centroid loss function based on euclidean distances significantly outperforms the popular triplet-centroid loss function. We show comparable improvements for both convolutional networks and vision transformers. Our approach is among the top ranked methods in the SoccerNet Re-Identification Challenge 2022 leaderboard (test-split) with a mAP of 86.0 and a R1 of 81.5. On the sequestered challenge split, we achieve an mAP of 84.9 and a R1 of 80.1. Research on re-id for sports-related applications is very limited and our work presents one of the first discussions in the literature on this.